
MANUAL

Release 02.2024

Establish Your Debug Session

Establish Your Debug Session

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Debugger Getting Started ..

 Establish Your Debug Session .. 1

 History ... 4

 Establish your Debug Session .. 5

 Key TRACE32 Setup Commands 5

 The PER.view/PER.Set Command 5

 The Data.LOAD Command 7

 Debug Scenarios 10

 Establish the Debug Communication ... 12

 Debug Scenario 1 ... 18

 Onchip/NOR Flash Programming 19

 The Flash Programming File 19

 On-chip Flash Programming 20

 Off-chip NOR Flash Programming 25

 Configure the TRACE32 OS Awareness 36

 Debug Scenario 2 ... 37

 Typical Boot Sequence 37

 Flash Programming (NAND/Serial/eMMC) 42

 The Flash Programming File and the Debug Symbol File 42

 NAND Flash Programming (non-generic NAND Flash Controller) 43

 eMMC Flash Programming 55

 Establish the Communication 56

 Load the Debug Symbols 56

 Debug Scenario 3 ... 57

 Run the Boot Loader 58

 Load Application (and/or OS) Code and Debug Symbols 59

 Load Debug Symbols only 59

 Configure the TRACE32 OS Awareness 59

 Complete Setup Example 59

 Debug Scenario 4 ... 60

 Write a Script to Configure the Target 61

 Load Application (and/or OS) Code and Debug Symbols 61

 Configure the TRACE32 OS Awareness 61
Establish Your Debug Session | 2©1989-2024 Lauterbach

 Start-Up Scripts .. 62

 Write a Start-Up Script 62

 Run a Start-up Script 63

 Automated Start-up Scripts 64
Establish Your Debug Session | 3©1989-2024 Lauterbach

Establish Your Debug Session

Version 04-Mar-2024

History

16-Oct-2014 Initial version of the manual.

23-Jan-2020 Full revision of the manual.
Establish Your Debug Session | 4©1989-2024 Lauterbach

Establish your Debug Session

Before you can start debugging, the debug environment has to be set up. The necessary setup depends
crucially on the debug scenario.

Key TRACE32 Setup Commands

The PER.view/PER.Set Command

A debug setup requires various configurations in core/chip related configuration registers.

The main commands to perform these configurations are:

The main command to inspect the configurations is:

PER.Set.simple <address>|<range> [%<format>] <string> Modify configuration register/on-
chip peripheral

Data.Set <address>|<range> [%<format>] <string> Modify memory-mapped
configuration register/on-chip
peripheral

PER.view <file> [<tree_search_item>] /SpotLight Display the configuration registers/on-
chip peripherals, highlight changes
Establish Your Debug Session | 5©1989-2024 Lauterbach

Example: Disable Watchdog

; Display “Watchdog Timer” configuration registers, highlight changes
; a comma is used instead of the <file>
PER.view , "Watchdog Timer" /SpotLight

; Disable Watchdog timer by configuring Watchdog Timer Control Register
; (WTCON)
PER.Set.simple 0x53000000 %Long 0x0
Establish Your Debug Session | 6©1989-2024 Lauterbach

The Data.LOAD Command

A debug setup requires to load the code to be debugged and to load the debug symbols. TRACE32
PowerView supports a wide range of compilers and compiler output formats.

To get a list of all compilers supported for your core proceed as follows:

1. Open the Processor Architecture Manual for your core.

2. Refer to the compiler list provided by this manual. The Option column lists the supported output
formats.
Establish Your Debug Session | 7©1989-2024 Lauterbach

The most important commands to load the code to be debugged and the debug symbols are:

A in-depth introduction to the Data.LOAD command is given in the chapter “Load the Application
Program” (training_hll.pdf).

Data.LOAD.<sub_cmd> <file> /<option> Load code and debug symbols

Data.LOAD.Binary <file> /<option> Load only code

Data.LOAD.<sub_cmd> <file> /NoCODE /<option> Load only debug symbols

Data.LOAD.Elf demo-flash.elf ; Load code and debug symbols from
; ELF file

Data.LOAD.AIF demo.axf ; Load code and debug symbols from
; AIF file

Data.LOAD.Elf * ; Load code and debug symbols from
; ELF file
; open file browser to select file

Data.LOAD.Elf demo.elf /NoCODE ; Load debug symbols from ELF file

Data.LOAD.Binary my_app.bin ; Load code from binary file
Establish Your Debug Session | 8©1989-2024 Lauterbach

The TASK.CONFIG Command

Today most applications use an operating system. TRACE32 PowerView includes a configurable target-OS
debugger to provide symbolic debugging of operating systems.

Lauterbach provides ready-to-run configuration files for most common available OSes.

To get the appropriate information on your OS, proceed as follows:

1. Open the online help and deactivate the help filter.

2. Open the TRACE32 OS Awareness Manual for your operating system.
Establish Your Debug Session | 9©1989-2024 Lauterbach

Debug Scenarios

The necessary setup for your debug session depends crucially on the debug scenario. The graphic below
shows you that there are mainly four debug scenarios.

Is the software
running out of flash?

Is a boot loader
available?

YES NO

YES NO

Debug

Establish the communication between
the debugger and core(s)

Is the software
running out of

Scenario 4
Debug

Scenario 3

Onchip/NOR flash?

YES

Debug
Scenario 1

NO

Debug
Scenario 2
Establish Your Debug Session | 10©1989-2024 Lauterbach

After the communication between the debugger and the core(s) is established, there a four debug
scenarios. Each debug scenario requires a different setup.

• Debug Scenario 1

The boot loader or the application (and/or the operating system) under debug is running out of
Onchip/NOR flash.

• Debug Scenario 2

The boot loader under debug is running out of a flash e.g. a NAND or serial flash.

• Debug Scenario 3

The application (and/or the operating system) under debug are running out of RAM and a ready-
to-run boot loader configures the target system and especially the RAM for this debug scenario.

• Debug Scenario 4

The application (and/or the operating system) under debug are running out of RAM. The target
configuration, especially the RAM configuration has to be done by TRACE32 commands,
because there is no ready-to-run boot loader.
Establish Your Debug Session | 11©1989-2024 Lauterbach

Establish the Debug Communication

1. Select the core/chip

2. Adjust the JTAG clock if required

3. Set the required options for your
core/chip

4. Establish the communication
Establish Your Debug Session | 12©1989-2024 Lauterbach

1. Select the target core/chip

Inform the debugger about the core/chip on your target, if an automatic detection of the core/chip is
not possible. Wild card symbols * or ? are allowed.

SYStem.DETECT CPU Auto detection of CPU

SYStem.CPU <cpu> Select the CPU/chip

SYStem.CPU CortexR5

SYStem.CPU CortexR5*
Establish Your Debug Session | 13©1989-2024 Lauterbach

2. Adjust the JTAG clock

The debugger uses a default JTAG clock of 10 MHz. Adjusting the JTAG clock might be necessary:

- if a fixed relation between the core clock and the JTAG clock is specified.

- if RTCK has to be used as JTAG clock for an ARM core.

SYStem.JtagClock <frequency> Select the JTAG clock

SYStem.JtagClock 1.MHz

SYStem.JtagClock 100.kHz

SYStem.JtagClock RTCK
Establish Your Debug Session | 14©1989-2024 Lauterbach

3. Set the required options for your core/chip

Some cores/chips require additional settings before the communication can be established.

For details refer to the Processor Architecture Manual.

Additional settings
Establish Your Debug Session | 15©1989-2024 Lauterbach

4. Establish the communication

The most common way to establish the communication between the debugger and the core(s) is Up.

If Up is selected, the following steps are performed:

- Reset of the core/chip

- Initialization of the communication between the debugger and the core(s)

- Stop of the core(s) at the reset vector

SYStem.Up Establish the communication between the debugger and the
core(s)
Establish Your Debug Session | 16©1989-2024 Lauterbach

A second useful way to establish the communication between the debugger and the core/chip is
Attach. Attach allows to connect the debugger to an already running core/chip.

If Attach is selected, the following step is performed:

1. Initialization of the communication between the debugger and the core(s).

SYStem.Mode Attach Establish the communication between the debugger and the
target core(s) (without reset)

SYStem.Mode Attach

Break ; stop the program execution
Establish Your Debug Session | 17©1989-2024 Lauterbach

Debug Scenario 1

The boot loader or the application (and/or the operating system) under debug is running out of the on-chip
flash or out of a NOR flash device.

Is an OS used?
YES NO

Establish the debug communication

Program the software to on-chip/NOR flash

(this includes the loading of the debug
symbols)

Configure the TRACE32
OS Awareness for your OS

Ready for debug*

*Considering the circumstance that a process has to be started manually e.g. via a TERMinal window
Establish Your Debug Session | 18©1989-2024 Lauterbach

Onchip/NOR Flash Programming

The debugger supports the programming of on-chip flash and off-chip NOR flash devices.

The Flash Programming File

On-chip flash and off-chip NOR flash programming allows to load any output file generated by your compiler.

NOTE: Flash programming requires that data cache is disabled for the address range
covered by the FLASH.
Establish Your Debug Session | 19©1989-2024 Lauterbach

On-chip Flash Programming

Videos about the on-chip flash programming can be found here:
support.lauterbach.com/kb/articles/flash-programming

Ready-to-run scripts for most on-chip flashs can be found in ~~/demo/<architecture>/flash/<cpu>.cmm

e.g. ~~/demo/arm/flash/mk20.cmm

e.g. ~~/demo/powerpc/flash/mpc5xxx.cmm
Establish Your Debug Session | 20©1989-2024 Lauterbach

https://support.lauterbach.com/kb/articles/flash-programming

To program the software to the on-chip flash of your processor/chip proceed as follows:

1. Start the script appropriate for your processor/chip.

2. TRACE32 PowerView informs you when all preparations are done. Please confirm that you are
ready to choose the boot loader or the application to be programmed.
Establish Your Debug Session | 21©1989-2024 Lauterbach

3. Please select the boot loader or application to be programmed.

TRACE32 PowerView informs you, that the programming is done.

If the boot loader/application is compiled with debug symbols they are automatically loaded into TRACE32
PowerView with the flash programming.

For details on the on-chip flash programming open the flash programming script.

; ~~ represents the TRACE32 installation directory
PEDIT ~~/demo/powerpc/flash/mpc5xxx.cmm
Establish Your Debug Session | 22©1989-2024 Lauterbach

The following parameters can be used, when the flash programming script is called:

Not every script supports all parameters. The parameters relevant for your script are described in the meta
data section of the script.

If you create your own start-up script for your target hardware, please call the flash
programming script from there.

If you leave the flash programming script unchanged, you can always replace it
with its most current version.

CPU=<cpu> If a FLASH programming script supports a CPU family, you can
provide your target CPU as parameter.

PREPAREONLY Advise the FLASH programming script to prepare the FLASH
programming by declaring the FLASH sectors and by linking the
appropriate programming binary. The FLASH programming
commands are bypassed.

DUALPORT=0|1 Disable/enable DualPort FLASH programming.
For all processors/cores that allow to write to physical memory
while the CPU is running a higher FLASH programming
performance can be achieved by the use of DualPort FLASH
Programming
Establish Your Debug Session | 23©1989-2024 Lauterbach

The following framework can be used to call the flash programming script from your start-up script.

More details on the on-chip flash programming can be found in “Onchip/NOR FLASH Programming
User’s Guide” (norflash.pdf).

…

DO <flash_script> [CPU=<cpu>] PREPAREONLY [DUALPORT=0|1]

; program file to on-chip FLASH
FLASH.ReProgram ALL /Erase
Data.LOAD.Elf <file>
FLASH.ReProgram off

; reset processor/chip
; might be necessary to reset all target settings made by the flash
; programming script
SYStem.Up

; continue with start-up script
;…
Establish Your Debug Session | 24©1989-2024 Lauterbach

Off-chip NOR Flash Programming

TRACE32 PowerView provides two methods to program off-chip NOR flash:

1. Tool-based programming

Tool-based programming means that the flash programming algorithm is part of the TRACE32
software. Tool-based programming is easy to configure but slow.

2. Target-controlled programming

Target-controlled flash programming means that the underlying flash programming algorithm is
detached from the TRACE32 software. Target-controlled flash programming works as follows:

1. The flash algorithm is downloaded to the target RAM.

2. The programming data are downloaded to the target RAM.

3. The flash algorithm running in the target RAM programs the data to the flash devices.

Target-controlled flash programming minimizes the communication between the host and the
debugger hardware. This makes target-controlled flash programming fast.

Programming off-chip NOR flash requires the following steps (see next page):

NOTE: It is recommended to start with tool-based flash programming. If this works properly
you can switch to target-controlled flash programming.
Establish Your Debug Session | 25©1989-2024 Lauterbach

Program flash

Make sure that the core has write
access to the flash

Is the watchdog
disabled?

Disable watchdog

NO YES

Establish the debug communication

Is the data cache
disabled?

Disable data caches

NO YES

Has the core
access to RAM?

Enable RAM access

NO YES

Do you want to use target-
controlled programming?

YESNO
Establish Your Debug Session | 26©1989-2024 Lauterbach

1. Disable Internal and External Watchdog

Example

; Display “Watchdog Timer” configuration registers, highlight changes
PER.view , "Watchdog Timer" /SpotLight

; Disable Watchdog timer by configuring Watchdog Timer Control Register
; (WTCON)
PER.Set.simple 0x53000000 %Long 0x0
Establish Your Debug Session | 27©1989-2024 Lauterbach

2. Disable Data Cache

The data cache has to be disabled for the address ranges of all flash devices to enable TRACE32
PowerView to read the flash status information.

Example

; Display the memory management configuration registers
; highlight changes
PER.view , "Core Registers,Memory Management Unit" /SpotLight

; Disable Data Cache by configuring the control register SCTLR
PER.Set.simple C15:0x1 %Long 0x550078
Establish Your Debug Session | 28©1989-2024 Lauterbach

3. Make sure that the core has write access to the flash

NOR flash programming requires that the core has write access to the flash device(s).

The following settings in the bus configuration have to be done for each NOR flash device:

• Definition of the base address of the NOR flash device

• Definition of the size of the NOR flash device

• Definition of the bus size that is used to access the NOR flash device

• The write access has to be enabled for the NOR flash device

• Definition of the timing (number of wait states for the write access to the NOR flash device)

Use the PER.view command to check the settings in the bus configuration registers.
Establish Your Debug Session | 29©1989-2024 Lauterbach

Example for ColdFire

Bus configuration after reset:

In order to have write access to the used off-chip NOR flash device the Address Region 0 has to be
configured for the following characteristics:

• Base address 0xa0000000

• Size 16 MByte

• Bus size 16 bit

Correct bus configuration for NOR flash programming.

PER.Set <address> %<format> <value>

Data.Set <address> %<format> <value>

PER.view , /SpotLight ; Highlight all changed
; configuration registers

PER.Set 0xf0000080 %Long 0xA0000031 ; ADDSEL0

PER.Set 0xf00000c0 %Long 0x00508637 ; BUSCON0
Establish Your Debug Session | 30©1989-2024 Lauterbach

Framework for Tool-based Flash Programming

More details on the concepts of the TRACE32 NOR flash programming can be found in “Onchip/NOR
FLASH Programming User’s Guide” (norflash.pdf).

If your FLASH device doesn’t provide CFI please refer to “Onchip/NOR FLASH Programming User’s
Guide” (norflash.pdf) for details on the FLASH programming procedure.

FLASH.RESet Reset the FLASH declaration table

FLASH.CFI <start_address> <data_bus_width> Generate a FLASH declaration by evaluating the
Common Flash Interface description inside the
FLASH device.
The command FLASH.CFI requires the definition
of
• the <start_address> of the FLASH device
• the <data_bus_width> that is used by the

core to access the FLASH device

FLASH.List List the FLASH declaration table

FLASH.UNLOCK ALL Unlock the FLASH sectors

FLASH.ReProgram ALL | OFF Enable/disable the FLASH programming

Data.LOAD.<sub_cmd> <file> /<option> Load code and debug symbols
Establish Your Debug Session | 31©1989-2024 Lauterbach

Example

FLASH.RESet ; Reset the FLASH declaration table

FLASH.CFI 0xa0000000 Word ; Generate a FLASH declaration via
; CFI

FLASH.List ; Display the FLASH declaration
; table

FLASH.UNLOCK ALL ; Unlock the FLASH device if
; required
; e.g. some FLASH devices are
; locked after power on

FLASH.ReProgram ALL ; Enable the FLASH for programming

Data.LOAD.Elf demo.elf ; Specify the file that contains
; the code and the debug symbols

FLASH.ReProgram off ; Program FLASH and disable
; the FLASH programming afterwards

Data.LOAD.Elf demo.elf /DIFF ; Verify the FLASH programming

IF FOUND()
PRINT "Verify error after FLASH programming"

ELSE
PRINT "FLASH programming completed successfully"
Establish Your Debug Session | 32©1989-2024 Lauterbach

Framework for Target-controlled Flash Programming

FLASH.RESet Reset the FLASH declaration table

FLASH.CFI <start_address> <bus_width> /TARGET <code_range> <data_range>

Generate a FLASH declaration by evaluating the
Common Flash Interface description inside the
FLASH device.
The command FLASH.CFI requires the definition
of
• the <start_address> of the FLASH device
• the <data_bus_width> that is used by the

core to access the FLASH device
• the target RAM location <code_range> for

the flash programming algorithm
• the target RAM location <data_range> for

the flash programming data

FLASH.List List the FLASH declaration table

FLASH.UNLOCK ALL Unlock the FLASH sectors

FLASH.ReProgram ALL | OFF Enable/disable the FLASH programming

Data.LOAD.<sub_cmd> <file> /<option> Load code and debug symbols
Establish Your Debug Session | 33©1989-2024 Lauterbach

Details on <code_range>

Required size for the code is size_of(file) + 32 byte

Details on <data_range>

The parameter <data_range> specifies the RAM location for the data, especially

• the <data_buffer_size> for the programming data. Recommended buffer size is 4 KByte, smaller
buffer sizes are also possible. The max. buffer size is 16 KByte

• the argument buffer for the communication between TRACE32 PowerView and the programming
algorithm

• the stack

<data_buffer_size> =
size_of(<data_range>) - 64 byte argument buffer - 256 byte stack

Memory mapping for the <code_range> Flash programming algorithm

32 byte

Memory mapping for the <data_range>

Data buffer for data transfer
between TRACE32 and
flash programming algorithm
<buffer_size> calculated as
described above

256 byte stack

64 byte argument buffer
Establish Your Debug Session | 34©1989-2024 Lauterbach

4. Enable RAM Access

Target-controlled Flash Programming requires, that the core has access to the RAM locations specified for
<code_range> and <data_range>.

If this is not the case the following settings in the bus configuration have to be done for an off-chip RAM:

• Definition of the base address of the RAM

• Definition of the size of the RAM

• Definition of the bus size that is used to access the RAM

• Definition of the timing (number of wait states for the RAM access)
Establish Your Debug Session | 35©1989-2024 Lauterbach

Example

Configure the TRACE32 OS Awareness

Refer to “The TASK.CONFIG Command”, page 9 for details.

; reset the FLASH declaration table
FLASH.RESet

; set up the FLASH declaration for target-controlled programming
; target RAM at address 0x20000000
FLASH.CFI 0x0 Word /TARGET 0x20000000++0xfff 0x20001000++0xfff

; display FLASH declaration table
FLASH.List

; unlock the FLASH device if required for a power-up locked device
; FLASH.UNLOCK ALL

; enable the programming for all declared FLASH devices
FLASH.ReProgram ALL

; specify the file that contains the code and the debug symbols
Data.LOAD.Elf demo.elf

; program the file and disable the FLASH programming afterwards
FLASH.ReProgram off

; verify the FLASH contents
Data.LOAD.Elf demo.elf /DIFF

IF FOUND()
PRINT "Verify error after FLASH programming"

ELSE
PRINT "FLASH programming completed successfully"

...
Establish Your Debug Session | 36©1989-2024 Lauterbach

Debug Scenario 2

The boot loader under debug is running out of a flash e.g. a NAND flash.

In contrast to NOR flash, code can not be executed out of NAND or serial flash. The code has always to be
copied to RAM before it can be executed.

Typical Boot Sequence

Before the setup for debug scenario 2 is described, it might be useful to have a look at a typical boot
sequence. If the boot loader is running out of flash the system start-up might include the following steps:
Establish Your Debug Session | 37©1989-2024 Lauterbach

1. Reset

At RESET the boot loader is copied from the flash to an on-chip SRAM, which is mapped to the reset
vector. The boot loader starts afterwards.

Please be aware, that some core(s) require a correct ECC for this copy procedure.

Flash

Boot loader (max. 4 kByte)

Kernel image
(compressed)

Second stage boot loader

Boot loader (max. 4 kByte)

Chip

On-chip SRAM

SDRAM

Copied by hardware
at RESET boot.bin

kernel.bin

0x0
Establish Your Debug Session | 38©1989-2024 Lauterbach

2. Boot loader is running

The main task of the boot loader is to initialize the SDRAM and to copy the second stage boot loader
to SDRAM. When this is done the control is passed to the second stage boot loader.

Flash

Boot loader (max. 4 kByte)

Kernel image
(compressed)

Second stage boot loader

Boot loader (max. 4 kByte)

Chip

On-chip SRAM

SDRAM

Second stage boot loader

Copied by boot loader
to SDRAM

boot.bin

kernel.bin
Establish Your Debug Session | 39©1989-2024 Lauterbach

3. Second stage boot loader is running

The main task of the second stage boot loader is to copy the kernel image to SDRAM. When this is
done the control is passed to the kernel.

Flash

Boot loader (max. 4 kByte)

Kernel image
(compressed)

Second stage boot loader

Chip

On-chip SRAM

SDRAM

Second stage boot loader

Copied by second stage
boot loader to SDRAM

Boot loader (max. 4 kByte)

Kernel image

boot.bin

kernel.bin
Establish Your Debug Session | 40©1989-2024 Lauterbach

Setup for Debug Scenario 2

Establish the debug communication

Load the debug symbols for the boot

Is the boot loader
already in the

flash?

Program boot loader

NO

code to flash

YES

loader into TRACE32 PowerView

Ready for debug
Establish Your Debug Session | 41©1989-2024 Lauterbach

Flash Programming (NAND/Serial/eMMC)

The Flash Programming File and the Debug Symbol File

Flash programming can only program binary files. Therefore two output files have to be generated by the
compiler:

• A binary file (e.g. boot.bin)

• A file containing the debug symbols (e.g. boot.elf)

NOTE: Flash programming requires that data cache and MMU are disabled.
Establish Your Debug Session | 42©1989-2024 Lauterbach

NAND Flash Programming (non-generic NAND Flash Controller)

Ready-to-run flash programming scripts for most processors/chips can be found in the directory
~~/demo/<architecture>/flash

Folder and file name convention:
~~/demo/<architecture>/flash/<cpu_name>-<prefix_of_nand_flash_code>.cmm

Get <cpu_name> from the CPU column of the list of “Supported NAND/Serial Flash Controller” on the
Lauterbach home page (www.lauterbach.com) if the CONTROLLER column does not indicate generic.

If the CONTROLLER column indicates generic refer to “NAND Flash Programming (generic NAND
Flash Controller)”, page 46.
Establish Your Debug Session | 43©1989-2024 Lauterbach

Get the prefix of the <nand_flash_code> from the CODE column of the list of “Supported Flash
Devices” on the Lauterbach home page (www.lauterbach.com).

Name of flash programming script here ~~/demo/arm/flash/imx31-nand2g08.cmm
Establish Your Debug Session | 44©1989-2024 Lauterbach

To program the code to flash proceed as follows:

1. Start the script appropriate for your processor/chip and appropriate for your flash device.

2. TRACE32 PowerView informs you when all preparations are done. Please confirm that you are
ready to choose the boot loader binary to be programmed.

3. Please select the boot loader to be programmed.

Detail on NAND flash programming can be found in “NAND FLASH Programming User’s Guide”
(nandflash.pdf).
Establish Your Debug Session | 45©1989-2024 Lauterbach

NAND Flash Programming (generic NAND Flash Controller)

The CONTROLLER column of the list of “Supported NAND/Serial Flash Controller” on the Lauterbach
home page (www.lauterbach.com) indicates “generic”, if a processor/chip has a generic NAND flash
controller.

Programming script for generic NAND flash controller have to be written by the user.
Establish Your Debug Session | 46©1989-2024 Lauterbach

Programming a flash device with the help of a generic NAND flash controller requires the following steps:

Has the core
access to RAM?

Enable RAM access

NO YES

Program flash

Prepare flash controller and flash for
programming

Is the watchdog
disabled?

Disable watchdog

NO YES

Establish the debug communication
Establish Your Debug Session | 47©1989-2024 Lauterbach

1. Prepare the NAND FLASH Controller and the NAND FLASH for Programming

Programming a flash device requires a proper initialization of the flash controller and the bus interface. The
following settings might be necessary:

• Power up the flash clock domain.

• Enable the flash controller or bus.

• Configure the communication signals (clock, timing, etc.).

• Inform the flash controller about the flash device (large/small page, ECC, spare, etc.).

• Configure the flash pins if they are muxed with other functions of the processor/chip.

• Disable the write protection for the flash.

Use the PER.Set/PER.view commands for this setup.

Example for s3c2410X (ARM920T):

PER.view , "NAND Flash Controller" /SpotLight

; enable and configure NAND flash controller
PER.Set 0x4E000000 %Long 0xE030
Establish Your Debug Session | 48©1989-2024 Lauterbach

2. Enable RAM Access

TRACE32 PowerView runs the flash programming algorithm in target RAM. It requires at least 16 KByte of
RAM for this purpose.

This requires that the core has access to target RAM.

If the core has no access to target RAM, the access to target RAM has to be set up.

Correct settings in the bus configuration registers are key for the RAM access. The following settings in the
bus configuration have to be done:

• Definition of the RAM base address

• Definition of the RAM size

• Definition of the bus size that is used to access the RAM

• The write access has to be enabled for the RAM

• Definition of the timing (number of wait states for the write access to the RAM)

Use the PER.Set/PER.view commands for this setup.
Establish Your Debug Session | 49©1989-2024 Lauterbach

Example SDRAM configuration on an s3c2410X (ARM920T):

Bus configuration after reset:

PER.Set 0x48000000 %Long 0x2222D222
PER.Set 0x48000004 %Long 0x00000700
PER.Set 0x48000008 %Long 0x00007ff0
PER.Set 0x4800000C %Long 0x00000700
PER.Set 0x48000010 %Long 0x00001F4C
PER.Set 0x48000014 %Long 0x00000700
PER.Set 0x48000018 %Long 0x00000700
PER.Set 0x4800001C %Long 0x00018005
PER.Set 0x48000020 %Long 0x00018005
PER.Set 0x48000024 %Long 0x008e0459
PER.Set 0x48000028 %Long 0x00000032
PER.Set 0x4800002C %Long 0x00000030
PER.Set 0x48000030 %Long 0x00000030
PER.Set 0x53000030 %Long 0x00000000
Establish Your Debug Session | 50©1989-2024 Lauterbach

Correct bus configuration for SDRAM usage:
Establish Your Debug Session | 51©1989-2024 Lauterbach

3. Disable internal and external watchdog

Example (ARM920T):

; Display “Watchdog Timer” configuration registers, highlight changes
PER.view , "Watchdog Timer" /SpotLight

; Disable Watchdog timer by configuring Watchdog Timer Control Register
; (WTCON)
PER.Set.simple 0x53000000 %Long 0x0
Establish Your Debug Session | 52©1989-2024 Lauterbach

Generic NAND Flash Programming Framework

The following commands are useful, if a generic NAND flash controller is used to program a flash. For details
refer to “NAND FLASH Programming User´s Guide” (nandflash.pdf).

More details on the FLASHFILE.TARGET command:

The name of the flash programming algorithm depends on the NAND flash to be programmed (e.g.
nand5608.bin for the K9F5608 NAND flash from Samsung).

Its location in the TRACE32 demo folder is defined by the number of data I/O pins between the NAND flash
controller and the flash device. E.g. is there are 8 data I/O pins between the NAND flash controller and the
flash device the algorithm can be found in:

~~/demo/<architecture>/flash/byte/<nand_flash_code>.bin

FLASHFILE.RESet Reset NAND flash programming to
default.

FLASHFILE.CONFIG <cmd_reg> <addr_reg> <io_reg> Inform TRACE32 PowerView on the
NAND flash registers

FLASHFILE.TARGET <code_range> <data_range> <file> Inform TRACE32 PowerView on all
details about flash programming
algorithm.

FLASHFILE.Erase <range> Erase NAND flash.

FLASHFILE.LOAD <file> <address> Program binary file to NAND flash.
Establish Your Debug Session | 53©1989-2024 Lauterbach

This flash programming algorithm is downloaded to a target RAM when flash programming is performed.
Therefore TRACE32 PowerView needs to be informed about an appropriate RAM location by the
<code_range> parameter of the FLASH.TARGET program

required size for the code is size_of(file) + 32 byte

The parameter <data_range> specifies the RAM location for the data, especially

• the <data_buffer_size> for the programming data. Recommended buffer size is 4 KByte, smaller
buffer sizes are also possible. The max. buffer size is 16 KByte

• the argument buffer for the communication between TRACE32 PowerView and the programming
algorithm

• the stack

<data_buffer_size> =
size_of(<data_range>) - 64 byte argument buffer - 256 byte stack

Example

FLASHFILE.RESet

FLASHFILE.CONFIG 0x4E000004 0x4E000008 0x4E00000C

FLASHFILE.TARGET 0x30000000++0x1FFF 0x30002000++0x3FFF
~~/demo/arm/flash/byte/nand5608.bin

FLASHFILE.Erase 0x0--0x1FFFF

FLASHFILE.LOAD boot.bin 0x0

Memory mapping for the <code_range> FLASH algorithm

32 byte

Memory mapping for the <data_range>

Data buffer for data transfer
between TRACE32 and
NAND FLASH algorithm
<buffer_size> calculated as
described above

256 byte stack

64 byte argument buffer
Establish Your Debug Session | 54©1989-2024 Lauterbach

eMMC Flash Programming

Folder and file name convention:
~~/demo/<architecture>/flash/<cpu_name>-emmc.cmm

Get <cpu_name> from the CPU column of the list of “Supported NAND/Serial Flash Controller” on the
Lauterbach home page (www.lauterbach.com).

Name of flash programming script here
~~/demo/arm/flash/pxa920-emmc.cmm

Detail on eMMC flash programming can be found in “eMMC FLASH Programming User’s Guide”
(emmcflash.pdf).
Establish Your Debug Session | 55©1989-2024 Lauterbach

Establish the Communication

It is required to establish the communication between the debugger and the core by SYStem.Up. This
advise the processor/chip to reset before the communication is established (details can be found on
“Establish your Debug Session”, page 5).

Load the Debug Symbols

If you want to debug only the second stage boot loader you can set an on-chip breakpoint to its start
address:

; load debug symbols for boot loader and second stage boot loader
; address of boot loader: 0x0--0x3fff
; address of second stage boot loader: 0x33f80000++0x3ffff
; symbol mapping has to be accordingly
Data.LOAD.Elf boot.elf /NoCODE

Break.Set start_boot2 /Onchip
Establish Your Debug Session | 56©1989-2024 Lauterbach

Debug Scenario 3

The application (and/or the operating system) under debug are running out of RAM and a ready-to-run boot
loader configures the target system and especially the RAM for this debug scenario.

Establish the debug communication

Run the boot loader until the target
configuration is done

Does the boot loader
load the application

(and/or the OS)

YES NO

Load debug symbols
for application (and/or OS)

Load application (and/or OS)
code to RAM
(this includes the loading of
the debug symbols)

to RAM?

Is an OS used?
YES NO

Configure the TRACE32
OS Awareness for your OS

Ready for debug*

*Considering the circumstance that a process has to be started manually e.g. via a TERMinal window
Establish Your Debug Session | 57©1989-2024 Lauterbach

Run the Boot Loader

The most important command to run the boot loader are:

Example 1

Example 2

Example 3

Example 4

Go Start program execution

Break Stop program execution

WAIT <time> Wait the defined time (for scripts only)

Go <address> Run the program until the specified address is reached

Break.Set <address> Set a breakpoint to the specified address

Go ; start the program execution

Break ; stop the program execution after
; the target initialization is done

;… ; script example

Go ; start the program execution

WAIT 0.5s ; wait 500. ms

Break ; stop the program execution

;… ; continue with other setups

Go 0xc0001000 ; run the program until the
; complete setup is done

Break.Set 0xc0001000 ; set a breakpoint to the end
; of the boot loader

Go ; start the program execution

WAIT !STATE.RUN() ; wait until the program stops
; at the end of the boot loader

;… ; continue with other setups
Establish Your Debug Session | 58©1989-2024 Lauterbach

Load Application (and/or OS) Code and Debug Symbols

If the boot loader does not load the application (and/or OS) you can perform the loading by the following
command:

Load Debug Symbols only

If the boot loader loads the application (and/or OS) code to RAM you need only to load the debug symbols.

Configure the TRACE32 OS Awareness

Refer to “The TASK.CONFIG Command”, page 9 for details.

Complete Setup Example

Example for a boot loader that loads the application to RAM.

Data.LOAD.Elf my_app.elf

Data.LOAD.Elf my_app.elf /NoCODE

SYStem.CPU

SYStem.Up

Go ; start the program execution

WAIT 0.5s ; wait 500. ms

Break ; stop the program execution

Data.LOAD.Elf my_app /NoCODE
Establish Your Debug Session | 59©1989-2024 Lauterbach

Debug Scenario 4

The application (and the operating system) under debug are running out of RAM. The target configuration,
especially the RAM configuration has to be done by TRACE32 commands, because there is no ready-to-run
boot loader.

Establish the debug communication

Use TRACE32 commands to configure
the target, especially the target RAM and

Load application (and OS) code to RAM
(this includes the loading of the debug
symbols)

Is an OS used?
YES NO

Configure the TRACE32
OS Awareness for your OS

Ready for debug*

*Considering the circumstance that a process has to be started manually e.g. via a TERMinal window

the UART
Establish Your Debug Session | 60©1989-2024 Lauterbach

Write a Script to Configure the Target

A minimum target configuration has to configure all used memories and the serial interface.

Use the PER.Set/PER.view commands for this setup.

Load Application (and/or OS) Code and Debug Symbols

Configure the TRACE32 OS Awareness

Refer to “The TASK.CONFIG Command”, page 9 for details.

Data.LOAD.Elf my_app.elf
Establish Your Debug Session | 61©1989-2024 Lauterbach

Start-Up Scripts

It is strongly recommended to summarize the commands, that are used to set up the debug environment, in
a start-up script. The script language PRACTICE is provided for this purpose.

The standard extension for a script file is .cmm.

Write a Start-Up Script

The debugger provides an ASCII editor, that allows to write, to run and to debug a start-up script.

The debugger provides two commands, that allow you to convert debugger configuration information to a
script.

PEDIT <file> Open <file> with the script editor

PEDIT my_startup

STOre <file> [<item>] Generate a script that allows to reproduce the current settings

ClipSTOre [<item>] Generate a command list in the clip-text that allows to reproduce the
current settings

STOre system_settings SYStem

PEDIT system_settings

; Generate a script that allows you
; to reproduce the settings of the
; SYStem window at any time

; Open the file system_settings

ClipSTOre SYStem ; Generate a command list that
; allows you to reproduce the
; settings of the SYStem window
; at any time
; The generated command list can be
; pasted in any editor
Establish Your Debug Session | 62©1989-2024 Lauterbach

Run a Start-up Script

ChDir.DO <file> Change directory and run script

ChDir.DO my_startup.cmm
Establish Your Debug Session | 63©1989-2024 Lauterbach

Automated Start-up Scripts

There are two ways to define a start-up script, that is automatically started, when the debugger is started.

1. Define start-up script in conjunction with the executable

The debugger-executable can be started with the start-up script as parameters.

2. Use T32Start to define an automated start-up script

If you use T32Start to start the debugger, an automated start-up script can be defined.

c:\t32\t32arm.exe -s g:\and\arm\start.cmm
Establish Your Debug Session | 64©1989-2024 Lauterbach

	Establish Your Debug Session
	History
	Establish your Debug Session
	Key TRACE32 Setup Commands
	The PER.view/PER.Set Command
	The Data.LOAD Command
	The TASK.CONFIG Command

	Debug Scenarios

	Establish the Debug Communication
	Debug Scenario 1
	Onchip/NOR Flash Programming
	The Flash Programming File
	On-chip Flash Programming
	Off-chip NOR Flash Programming

	Configure the TRACE32 OS Awareness

	Debug Scenario 2
	Typical Boot Sequence
	Flash Programming (NAND/Serial/eMMC)
	The Flash Programming File and the Debug Symbol File
	NAND Flash Programming (non-generic NAND Flash Controller)
	NAND Flash Programming (generic NAND Flash Controller)
	eMMC Flash Programming

	Establish the Communication
	Load the Debug Symbols

	Debug Scenario 3
	Run the Boot Loader
	Load Application (and/or OS) Code and Debug Symbols
	Load Debug Symbols only
	Configure the TRACE32 OS Awareness
	Complete Setup Example

	Debug Scenario 4
	Write a Script to Configure the Target
	Load Application (and/or OS) Code and Debug Symbols
	Configure the TRACE32 OS Awareness

	Start-Up Scripts
	Write a Start-Up Script
	Run a Start-up Script
	Automated Start-up Scripts

