
MANUAL

Release 02.2024

Training Nexus Tracing

Training Nexus Tracing

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Training ..

 Training Nexus ..

 Training Nexus Tracing ... 1

 Basic Knowledge ... 8

 NEXUS Characteristics 8

 Limited Bandwidth 9

 Branch Trace Messages (All NEXUS Classes) 9

 Indirect Branch History Messages (All NEXUS Classes) 10

 Data Trace Messages (NEXUS Class 3 only) 12

 Ownership Trace Messages (All NEXUS Modules) 14

 Watchpoint Trace Messages (All NEXUS Classes) 15

 Data Acquisition Messages (IEEE-ISTO 5001-2008/2012 and NEXUS Class 3 only) 16

 Multicore Tracing 18

 AMP Tracing 18

 SMP Tracing 19

 Source for the Recorded Trace Information 20

 NEXUS Configuration by TRACE32 ... 22

 Configuration of the Trace Interface 22

 Parallel Interface 22

 Serial Interface 28

 Trace to Memory 30

 Multicore Tracing 31

 Configuration of the NEXUS Messages 33

 Basic Messages 33

 Additional Messages for IEEE-ISTO 5001-2008 and IEEE-ISTO 5001-2012 35

 Add Timestamps to NEXUS Messages (MPC57xx/SPC57x only) 39

 Multicore Tracing 43

 NEXUS Trace Clients 44

 Trace Client Types 44

 Configuration 47

 Target FIFO Overflow 48

 Diagnosis 49

 Stall Program Execution on Overflow Threat 50

 Suppress Data Trace Messages on Overflow Threat 51
Training Nexus Tracing | 2©1989-2024 Lauterbach

 Further Countermeasures 52

 FlowErrors 53

 Displaying the Trace Content ... 54

 Sources of Information for the Trace Display 54

 Settings in the Trace Configuration Window 55

 Recording Modes 55

 States of the Trace 64

 The AutoInit Command 65

 Multicore Tracing 66

 Basic Display Commands 67

 Default Listing 67

 Basic Formatting 69

 Correlating the Trace Listing with the Source Listing 70

 Browsing through the Trace Buffer 71

 Display Items 72

 Default Display Items 72

 Further Display Items 76

 Time Synchronization between TRACE32 Instances (AMP) 77

 Setup 77

 Utilization 78

 Find a Specific Record 79

 Belated Trace Analysis 80

 Save the Trace Information to an ASCII File 81

 Postprocessing with TRACE32 Instruction Set Simulator 82

 Trace-based Debugging (CTS) ... 86

 Re-Run the Program 86

 Setup 86

 Get Started 88

 Forward and Backward Debugging 90

 Re-Run the Program and Watch the Variables 91

 Setup 91

 Get Started 93

 Forward and Backward Debugging 97

 Details on HLL Instructions 98

 CTS Technique 99

 Filter and Trigger (Core) Overview .. 101

 Resources 102

 Filter and Trigger (Core) - Single Core .. 106

 Examples for TraceEnable on Instructions 106

 Example for TraceEnable on Instruction Range 111

 Examples for TraceEnable on Read/Write Accesses 114

 Example for TraceData 119
Training Nexus Tracing | 3©1989-2024 Lauterbach

 Examples for TraceON/TraceOFF 121

 Global TraceON/Trace OFF 121

 ProgramTraceON/Trace OFF 126

 DataTraceON/Trace OFF 130

 Example for TraceTrigger 134

 Example for TraceTrigger with a Trigger Delay 137

 Example for BusTrigger 140

 Example for BusCount (Watchpoint) 142

 Filter and Trigger (Core) - SMP Debugging .. 146

 Examples for TraceEnable on Single Instruction 147

 Examples for TraceEnable on Instruction Range 153

 Examples for TraceEnable on Read/Write Accesses 156

 Example for TraceData 161

 Examples for TraceON/TraceOFF 163

 Global TraceON/Trace OFF 163

 ProgramTraceON/TraceOFF 168

 DataTraceON/Trace OFF 173

 Example for TraceTrigger 177

 Example for TraceTrigger with a Trigger Delay 180

 Example for BusTrigger 184

 Example for BusCount (Watchpoint) 186

 Filter and Trigger (Trace Clients) ... 190

 Example for TraceEnableClient1 191

 OS-Aware Tracing (ORTI File) .. 193

 Activate the TRACE32 OS Awareness 193

 Exporting Task Information (Overview) 195

 OS-Aware Tracing - Single Core .. 196

 Exporting all Types of Task Information (OTM) 196

 Statistic Analysis of Task Switches 199

 Statistic Analysis of OSEK Service Routines 201

 Statistic Analysis of OSEK ISR2s 203

 Statistic Analysis of Task-related OSEK ISR2s 204

 Exporting all Types of Task Information and all Instructions (OTM) 205

 Statistic Analysis of Interrupts 205

 Statistic Analysis of Interrupts and Tasks 206

 Statistic Analysis of Interrupts in Tasks 207

 Exporting Task Information (Write Access) 208

 Task Switches 208

 OSEK Service Routines 211

 OSEK ISR2s 214

 Task-related OSEK ISR2s 217

 Exporting Task Switches and all Instructions (Write Access) 220
Training Nexus Tracing | 4©1989-2024 Lauterbach

 Statistic Analysis of Interrupts 220

 Statistic Analysis of Interrupts and Tasks 221

 Statistic Analysis of Interrupts in Tasks 222

 Belated Trace Analysis (OS) 223

 OS-Aware Tracing - SMP Systems .. 224

 Exporting all Types of Task Information (OTM) 224

 Statistic Analysis of Task Switches 227

 Statistic Analysis of OSEK Service Routines 229

 Statistic Analysis of OSEK ISR2s 231

 Statistic Analysis of Task-related OSEK ISR2s 233

 Exporting all Types of Task Information and all Instructions (OTM) 235

 Statistic Analysis of Interrupts 235

 Statistic Analysis of Interrupts and Tasks 236

 Statistic Analysis of Interrupts in Tasks 237

 Exporting Task Information (Write Access) 238

 Task Switches 238

 OSEK Service Routines 243

 OSEK ISR2s 248

 Task-related OSEK ISR2s 253

 Exporting Task Switches and all Instructions (Write Access) 257

 Statistic Analysis of Interrupts 257

 Statistic Analysis of Interrupts and Tasks 258

 Statistic Analysis of Interrupts in Tasks 259

 Belated Trace Analysis (OS) 260

 Function Run-Times Analysis (Overview) .. 261

 Software under Analysis (no OS or OS) 261

 Flat vs. Nesting Analysis 261

 Basic Knowledge about Flat Analysis 262

 Basic Knowledge about Nesting Analysis 263

 Summary 265

 Function Run-Times Analysis - Single .. 266

 Flat Analysis 266

 Optimum NEXUS Configuration (No OS) 266

 Optimum NEXUS Configuration (OS) 267

 Function Time Chart 268

 Nesting Analysis 276

 Restrictions 276

 Optimum NEXUS Configuration (No OS) 276

 Optimum NEXUS Configuration (OS) 277

 Items under Analysis 278

 Numerical Nested Function Run-time Analysis for all Software 281

 Additional Statistics Items for OS 289
Training Nexus Tracing | 5©1989-2024 Lauterbach

 Timing Improvements for OS 292

 Problems and Workarounds for OS 293

 More Nesting Analysis Commands 297

 Third-party Timing Tools 305

 Function Run-Times Analysis - SMP Instance ... 306

 Flat Analysis 306

 Optimum NEXUS Configuration (No OS) 306

 Optimum NEXUS Configuration (OS) 307

 Function Timing Diagram 308

 Function Timing Diagram (Including Task Information) 310

 Nesting Analysis 316

 Restrictions 316

 Optimum NEXUS Configuration (OS) 317

 Numerical Nested Function Run-time Analysis for all Software 318

 Timing Improvements for OS 326

 More Nesting Analysis Commands 327

 Third-party Timing Tools 334

 Structure the Trace Evaluation .. 335

 GROUP Creation 335

 Working with GROUPs 339

 GROUP Status ENable 339

 GROUP Status ENable + Merge 341

 GROUP Status ENable + HIDE 342

 Trace-based Code Coverage .. 343
Training Nexus Tracing | 6©1989-2024 Lauterbach

Training Nexus Tracing

Version 04-Mar-2024
Training Nexus Tracing | 7©1989-2024 Lauterbach

Basic Knowledge

NEXUS Characteristics

NEXUS is a message-based trace protocol. A NEXUS hardware module generates the trace messages.
Trace messages can be generated for activities of core(s), eTPU(s), GTM(s), for activities of DMA
controller(s), of FlexRay controller(s), of SRAM port sniffers and other units. The Source Processor
Identifier in the NEXUS messages identifies the trace source.

NEXUS hardware modules are available in two versions:

• NEXUS Class 2 + Modules provide the visibility of the instruction flow and task switches.

• NEXUS Class 3 + Modules provide the visibility of the instruction flow, load/store operations, task
switches and trace information generated by code instrumentation.

Trace messages generated by a NEXUS module:

• can be exported off-chip via a parallel trace interface.

• can be exported off-chip via a serial (Aurora) trace interface.

• can be stored to an on-chip trace memory (trace to memory).

NEXUS hardware modules are compliant to one of the following standards:

• IEEE-ISTO 5001™-2012

Serial (Aurora) trace interfaces are always compliant to this standard.

• IEEE-ISTO 5001™-2008

• IEEE-ISTO 5001™-2003

Before you continue with this training, refer to your processor manual and check:

• Which class is supported by your NEXUS module?

• Are trace messages exported off-chip via a parallel or serial trace interface?

• Are trace messages stored to an on-chip trace memory?

• Which NEXUS standard is supported by your NEXUS module?
Training Nexus Tracing | 8©1989-2024 Lauterbach

Limited Bandwidth

Regardless of the implementation of your NEXUS module (off-chip export or on-chip trace memory) it may
happen while testing that more trace messages are generated than the trace interface/memory interface can
convey. This may disturb your tests.

For a better understanding of this issue and its counter-measures, a short introduction into the NEXUS
protocol is given. The following example configuration is used: MPC5775K with parallel trace interface
consisting of 16 pins (MDO) for the export of NEXUS messages. The term trace beat is used for the trace
information that is transferred per trace clock.

Branch Trace Messages (All NEXUS Classes)

Branch trace messages provide a standard protocol for instruction flow visibility.

TCODE number = 3 (6 bits)

Source processor identifier

Number of sequential
instructions executed
since the last taken
branch (1 to 8 bits)

Direct Branch Messages

11 to 48 bits
in 1 to 4 trace beats

TCODE number = 4 (6 bits)

Number of sequential
instructions executed
since the last taken
branch (1 to 8 bits)

Indirect Branch Messages

13 to 81 bits
in 1 to 6 trace beats

Branch destination
address (1 to 32 bits)

Address space indicator
(1 bit)

(4 bits)
Source processor identifier

(4 bits)

Timestamp (optional)
(0 to 30 bits)

Timestamp (optional)
(0 to 30 bits)
Training Nexus Tracing | 9©1989-2024 Lauterbach

Indirect Branch History Messages (All NEXUS Classes)

Indirect Branch History Messages can be used to save bandwidth, since only indirect branches cause
messages. Information on direct branches is stored in the Direct Branch History.

Indirect Branch History Messages are recommended for:

• small trace ports if they have bandwidth problems

• long instruction flow traces

• TRACE32 Trace Mode STREAM

• multi-source traces

TCODE number = 28 (6 bits)

Number of sequential
instructions executed
since the last taken
branch (1 to 8 bits)

Indirect Branch History Messages

14 to 113 bits
in 1 to 8 trace beats

Branch destination
address (1 to 32 bits)

Direct branch
history (1 to 32 bits)

Address space indicator
(1 bit)

Source processor identifier
(4 bits)

Timestamp (optional)
(0 to 30 bits)
Training Nexus Tracing | 10©1989-2024 Lauterbach

• The caveat of the use of Indirect Branch History Messages is a less accurate timestamp, since
less NEXUS messages are generated and timestamped.

HTM OFF

HTM ON
Training Nexus Tracing | 11©1989-2024 Lauterbach

Data Trace Messages (NEXUS Class 3 only)

Data trace messages are used to export information on the load/store operations.

Exporting information on load/store operations may easily generate more trace messages than the
interface in use can convey. This is most likely to occur when several data accesses are carried out
in quick succession.

TCODE number = 5 (6 bits)

Source processor identifier

Data write messages

17 to 141 bits
in 2 to 9 trace beats

Data size (4 bits)

Data write address (1 to 32 bits)

Data write value (1 to 64 bits)

TCODE number = 6 (6 bits)

Data read messages

17 to 141 bits
in 2 to 9 trace beats

Data size (4 bits)

Data read address (1 to 32 bits)

Data read value (1 to 64 bits)

Address space Indicator
(1 bit)

Address space Indicator
(1 bits)

(4 bits)
Source processor identifier

(4 bits)

Timestamp (optional)
(0 to 30 bits)

Timestamp (optional)
(0 to 30 bits)
Training Nexus Tracing | 12©1989-2024 Lauterbach

If information on all load/store operations is exported, each data access can be correlated to its instruction
(data cycle assignment).

If a trace filter is used to export only some load/store operations, the correlation to the instruction is not
always possible.

It was not possible to correlate the load/store operation to its instruction. For this reason the data
access cycle is printed in red and is displayed preceding the next Branch Trace Message.
Training Nexus Tracing | 13©1989-2024 Lauterbach

Ownership Trace Messages (All NEXUS Modules)

Ownership trace messages are trace messages that are generated when a write access to the Process ID
register PID0 (8 bit) occurs.

Ownership trace messages can be used to export OS-related information e.g. task switch information for
NEXUS Class 2 Modules.

Alternative for IEEE-ISTO 5001TM-2012

Since 8 bits are often not sufficient to encode OS-related information, the 32-bit NEXUS PID Register
(NPIDR) can be used as an alternative. Ownership Trace Messages have also a slightly different format for

IEEE-ISTO 5001TM-2012.

TCODE number = 2 (6 bits)

Source processor identifier (4 bits)

Task/Process ID tag
(32 bits)

Ownership Trace Message

42 bits
in 3 trace beats

TCODE number = 2 (6 bits)

Source processor identifier (4 bits)

Task/Process ID tag
(1 to 32 bits)

Ownership Trace Message

11 to 72 bits

Timestamp (optional)
(0 to 30 bits)

in 1 to 5 trace beats
Training Nexus Tracing | 14©1989-2024 Lauterbach

The Ownership Trace Messages can not clearly be assigned to an instruction. Similar to the filtered Data
Trace Messages they are printed in red and displayed preceding the next Branch Trace Message.

Watchpoint Trace Messages (All NEXUS Classes)

The Onchip breakpoints of the MPC5xxx/SPC5xxx can be used:

• to stop the program execution at a specific event.

• to generate a pulse on EVTO at a specific event.

- Not available for AMP systems if synchronous break is activated.

- Not available for SMP systems.

• to export Watchpoint Hit Messages.
Training Nexus Tracing | 15©1989-2024 Lauterbach

Data Acquisition Messages (IEEE-ISTO 5001-2008/2012 and NEXUS Class 3 only)

Data Acquisition Messaging (DQM) allows code to be instrumented to export customized trace information.

Data Acquisition Messages are trace messages that are generated when a write access to the Debug Data
Acquisition Message register DDAM (32 bit) occurs. DQTAG (8 bit) is sampled from the DEVENT register
when a write to DDAM is performed.

The DQTAG field can be used to attribute the information written to DDAM. E.g. the DQTAG field can be
interpreted by the trace tool as a channel ID.

TCODE number = 7 (6 bits)

Source processor identifier

Data acquisition message

19 to 80 bits
in 2 to 6 trace beats

Data

Identification tag

(8 bits)

(4 bits)

from DQTAG

(1 to 32 bits)
from DDAM

Timestamp (optional)
(0 to 30 bits)
Training Nexus Tracing | 16©1989-2024 Lauterbach

The command group DQMTrace is used to display and analyze the Data Acquisition Messages.

DQMTrace.List

column layout

address Identification tag

cycle Always “write access to DDAM”

data Exported data

ti.back Timestamp
Training Nexus Tracing | 17©1989-2024 Lauterbach

Multicore Tracing

AMP Tracing

Trace Display Each TRACE32 instance analyzes and displays the trace
information generated by the core(s) it controls.

Trace messages generated by clients (DMA, FlexRay etc.) are
assigned to the TRACE32 instance that enabled the messaging.

Trace memory

NEXUS message from core 0

NEXUS message from core 0

NEXUS message from core 1

NEXUS message from core 0

NEXUS message from client1

NEXUS message from core 0

NEXUS message from core 1

NEXUS message from core 1

NEXUS message from core 1

NEXUS message from client1
Training Nexus Tracing | 18©1989-2024 Lauterbach

SMP Tracing

Trace Display Trace information from all trace sources in the SMP system is
displayed together.

Trace memory

NEXUS message from core 1

NEXUS message from core 1

NEXUS message from core 0

NEXUS message from core 1

NEXUS message from client1

NEXUS message from core 1

NEXUS message from core 0

NEXUS message from core 0

NEXUS message from core 0

NEXUS message from client1
Training Nexus Tracing | 19©1989-2024 Lauterbach

Source for the Recorded Trace Information

If TRACE32 is started when a PowerTrace hardware and a NEXUS ADAPTER / PREPROCESSOR
SERIAL is connected, the source for the trace information is the so-called Analyzer
(Trace.METHOD Analyzer).

The setting Trace.METHOD Analyzer has the following impacts:

1. Trace is an alias for Analyzer.

Trace.List ; Trace.List means
; Analyzer.List

Trace.Mode Fifo ; Trace.Mode Fifo means
; Analyzer.Mode Fifo
Training Nexus Tracing | 20©1989-2024 Lauterbach

2. All commands from the Trace menu apply to the Analyzer.

3. All Trace commands from the Perf menu apply to Analyzer.

4. TRACE32 is advised to use the trace information recorded to the Analyzer as source for the trace
evaluations of the following command groups:

This NEXUS Training uses always the command group Trace. If your trace information is stored to an on-
chip trace memory, just select the trace method Onchip and nearly all features will work as demonstrated
for the trace method Analyzer

CTS.<sub_cmd> Trace-based debugging

COVerage.<sub_cmd> Trace-based code coverage

ISTAT.<sub_cmd> Detailed instruction analysis

MIPS.<sub_cmd> MIPS analysis

BMC.<sub_cmd> Synthesize instruction flow with recorded benchmark counter
information

Trace.METHOD Onchip

Trace
commands
Training Nexus Tracing | 21©1989-2024 Lauterbach

NEXUS Configuration by TRACE32

Configuration of the Trace Interface

Parallel Interface

The interface configuration is done via the NEXUS window. The TRACE32 NEXUS window has a different

look for IEEE-ISTO 5001TM-2003, IEEE-ISTO 5001TM-2008 and IEEE-ISTO 5001TM-2012.
Training Nexus Tracing | 22©1989-2024 Lauterbach

NEXUS.state ; display NEXUS window

NEXUS window for IEEE-ISTO 5001TM-2003

NEXUS window for IEEE-ISTO 5001TM-2008

NEXUS window for IEEE-ISTO 5001TM-2012
Training Nexus Tracing | 23©1989-2024 Lauterbach

The configuration for a parallel NEXUS interface is identical for all compliant standards. This is why only

the simpler IEEE-ISTO 5001TM-2003 is shown in the configuration examples.

Select NEXUS Port Size

Selecting the NEXUS port size is only possible if SYStem Mode Down is selected.

NEXUS port size

MOD2 | MOD4 | MDO8 |
MDO12 | MDO16

Specify MDO[f:0]
(number of Message Data Out pins available)

NEXUS.PortSize MDO12 ; specify a trace port width of
; 12 MDOs
Training Nexus Tracing | 24©1989-2024 Lauterbach

Select the Trace Clock

The PortMode determines the frequency of MCKO (Message ClocK Out) relative to the system clock
(SYS_CLK). Max. MCKO is usually 80 MHz, please refer to the Nexus characteristics in the data sheet of
your chip for details.

NEXUS.PortMode 1/4
Training Nexus Tracing | 25©1989-2024 Lauterbach

Measure MCKO

To measure the MCKO frequency with TRACE32 proceed as follows:
Training Nexus Tracing | 26©1989-2024 Lauterbach

Enable Double Data Rate

Advise the NEXUS module to export trace information on the rising and falling edge of MCKO (not
supported by all chips/cores).

NEXUS.DDR ON
Training Nexus Tracing | 27©1989-2024 Lauterbach

Serial Interface

Chips with serial interface provide a Nexus module compliant to the IEEE-ISTO 5001TM-2012 standard.

Select NEXUS PortSize

Selecting the NEXUS PortSize is only possible if SYStem Mode Down is selected.

NEXUS port size

2Lane | 4Lane Specify number of (Aurora) lanes

NEXUS.PortSize 2Lane ; specify a trace port with 2 lanes
Training Nexus Tracing | 28©1989-2024 Lauterbach

Set Fixed Bit Clock

Set the bit clock according to the processor’s data sheet.

Automotive processors usually need an external reference clock for Aurora operation. Lauterbach´s
PREPROCESSOR SERIAL can provide this clock signal. It is enabled using NEXUS.RefClock ON.

NEXUS.PortMode 1250Mbps
Training Nexus Tracing | 29©1989-2024 Lauterbach

Trace to Memory

The usage of the onchip trace memory requires that trace memory is allocated.

Emulation devices may provide more trace memory.

; allocate trace memory for 4K NEXUS packets (packet size = 32 bit)
; A: stands for physical memory
Onchip.TBARange A:0xD000000--0xD003fff

; allocate trace memory for 32K NEXUS packets (packet size = 32 bit)
; EEC: stands for emulation device memory
Onchip.TBARange EEC:0xC000000--0xC01FFFF
Training Nexus Tracing | 30©1989-2024 Lauterbach

Multicore Tracing

Trace information generated for multiple cores is:

• Exported via a single off-chip trace interface.

• Stored in a joint on-chip trace memory.

SMP Systems

Due to the fact that one TRACE32 instance is used to control multiple cores in an SMP system there is only
one NEXUS configuration window, and thus no problem to keep the Nexus interface setting consistent.

Since trace messaging from more than one core may easily generate more trace messages than the
interface in use can convey, it is possible to enable the message generation only for the cores that are in the
focus of the analysis.

NEXUS.CoreENable {<logical_core>} Enable core tracing for listed logical cores.
Training Nexus Tracing | 31©1989-2024 Lauterbach

AMP Systems

The situation is different for multiple cores in an AMP system. Here each core is controlled by its own
TRACE32 instance, each with its own NEXUS configuration window. Since the TRACE32 Resource
Management does not keep the Nexus interface settings in multiple TRACE32 instances consistent, this is
the job of the user.

Since trace messaging from more than one core may easily generate more trace messages than the
interface in use can convey, it is recommended to disable the message generation for core(s) that are not in
the focus of the analysis.

NEXUS.OFF
Training Nexus Tracing | 32©1989-2024 Lauterbach

Configuration of the NEXUS Messages

Basic Messages

Messages

BTM ON Enable Branch Trace Messages.

BTM ON + HTM ON Enable Indirect Branch History Messages.

OTM ON
(2003/2008 Standard)

OTM PID0
(2012 Standard)
OTM NPIDR
(2012 Standard)

Enable Ownership Trace Messages via 8-bit PID0.

Enable Ownership Trace Messages via 8-bit PID0.

Enable Ownership Trace Messages via 32-bit NPIDR.

WTM ON Enable Watchpoint Hit Messages.

Watchpoint Hit Messages are usually not used by the user.
TRACE32 enables them automatically, if they are needed.

NEXUS window for IEEE-ISTO 5001TM-2003

NEXUS window for IEEE-ISTO 5001TM-2012
Training Nexus Tracing | 33©1989-2024 Lauterbach

DTM Read
DTM Write
DTM ReadWrite
DTM IFETCH

DTM ReadLimited
(2012 Standard)

DTM WriteLimited
(2012 Standard)

DTM ReadWriteLimited
(2012 Standard)

Enable Data Read Messages.
Enable Data Write Messages.
Enable Data Read and Write Messages.
Instruction fetches are exported as Data Read Messages.

The basic idea of the Limited settings is to exclude stack
read/writes from the message generation and thus avoid
bandwidth problems.

Enable Data Read Messages, but exclude read accesses using

GPR R1 in effective address computations.

Enable Data Write Messages, but exclude write accesses using

GPR R1 in effective address computations.

Enable Data Read and Write Messages, but exclude read/write
accesses using GPR R1 in effective address computations.

NEXUS.BTM ON ; enable Branch Trace Messages

NEXUS.DTM ReadWrite ; enable Data Trace Messages for
; both read and write operations

NEXUS.OTM NPIDR ; enable Ownership Trace Messages
; via NPIDR register
Training Nexus Tracing | 34©1989-2024 Lauterbach

Additional Messages for IEEE-ISTO 5001-2008 and IEEE-ISTO 5001-2012

Data Acquisition Messages

Messages

DQM ON Enable Data Acquisition Messages.
Training Nexus Tracing | 35©1989-2024 Lauterbach

Program Trace Correlation Message (PID/NPIDR)

When a write to the PID or NPIDR register occurs, a Program Trace Correlation Message can be generated
instead of an Ownership Trace Message.

The Program Trace Correlation Message contains the address of the instruction that wrote the OS-related
information to the PID or NPIDR register and the OS-related information itself.

This has the following advantages:

• Trace.List: the OS-related information can be directly assigned to instruction that wrote to the
PID or NPIDR register.

• Trace.STATistic.Func: the accuracy of all task-aware function run-time measurements is
improved.

OTM ON
PID_MSR ON
(2008 Standard)
or

OTM PID0
PID_MSR ON
(2012 Standard)
or

OTM NPIDR
PID_MSR ON
(2012 Standard)

Enable Program Trace Correlation Messages for Ownership
tracing.

POTD Periodic Ownership Trace message Disable.

OFF: Periodic Ownership Trace Message is enabled (default).
ON: Periodic Ownership Trace Message is disabled.
Recommended if PID0 register is used.

NEXUS.OTM NPIDR

NEXUS.PID_MSR ON

NEXUS.POTD ON
Training Nexus Tracing | 36©1989-2024 Lauterbach

Program Trace Correlation Message (Branch and Link Instruction)

A Program Trace Correlation Message is generated when a direct branch function call (bl/bcl/bla/bcla)
occurred while Indirect Branch History messaging is used.

BL_HTM Program Trace Correlation Message is generated on a direct
branch function call (for NEXUS.HTM ON only).

NEXUS.BTM ON

NEXUS.HTM ON

NEXUS.PTCM BL_HTM ON

No NEXUS message
for function call

NEXUS message for function call
Training Nexus Tracing | 37©1989-2024 Lauterbach

Enabling Program Trace Correlation Messages for direct branch function calls allows the optimum
message generation for function run-time measurements. The screenshots below show this for the
TRACE32 command Trace.Chart.Func.

Legend:

• I: Indirect Branch Message generated for function exits (“BLR”), function pointers, interrupts etc.

• I: Direct Branch Message generated for function calls (opcode “BL”)

• I: Direct Branch Message generated for conditional branches

BTM ON
more trace messages are generated than required.

BTM ON + HTM OM
too little trace messages are generated for an accurate run-time measurement.

BTM ON + HTM ON + BL_HTM ON
an optimum number of trace messages is generated for an accurate run-time measurement.
Training Nexus Tracing | 38©1989-2024 Lauterbach

Add Timestamps to NEXUS Messages (MPC57xx/SPC57x only)

The Nexus Module implemented on the MPC57xx/SPC57x is able to add a timestamp field to the Nexus
messages. The timestamp value is applied to the messages as they enter the Nexus message queues.

To use this feature proceed as follows:

1. Check TimeStamps in the NEXUS configuration window.

TRACE32 calculates its trace time information (ti.back) out of the values of the Nexus timestamp field
(TS=). To calculate the time information TRACE32 needs to know the core clock frequency.

NEXUS.TimeStamps ON
Training Nexus Tracing | 39©1989-2024 Lauterbach

2. Inform TRACE32 about the core clock frequency.

Trace.CLOCK 40.MHz

Trace.CLOCK <freq> Specify core clock frequency.

Trace.CLOCK {<freq>} The core clock frequency can be set per core in an SMP
system.
Training Nexus Tracing | 40©1989-2024 Lauterbach

If you do not know your core clock frequency you can measure it as follows:

3. If all configurations are done start and stop the program execution.

4. Display the result.

BMC.CNT0.EVENT PROC-CYC ; configure CNT0 to count processor
; cycles

BMC.PROfile ; display the frequency of CNT0
Training Nexus Tracing | 41©1989-2024 Lauterbach

Adding timestamp information to Nexus messages has the following advantages:

• The time is more precise, because it is added at the trace source. Parallel execution is clearly
visible.

• Nexus timestamps are the only way to get time information for trace-to-memory (onchip trace).

• Nexus timestamps solve some issues of the serial trace recording.

But Nexus timestamps have also disadvantages:

• They need additional bandwidth (approx. 20%).

• The TRACE32 trace decoding becomes slower, since the time information has to be calculated
for the complete recording before it can be displayed (Tracking).

• Since TRACE32 uses a fixed core frequency to calculate trace time information out of the Nexus
timestamps, this calculation is not possible for variable clock frequencies.

To display only the Nexus timestamp information in the trace display, use the following command:

• It may happen, that not all cores in a chip provide the ability to generate Nexus timestamps.

If NEXUS TimeStamps is unchecked, the TRACE32 tool timestamp mechanism is used. This means a
Nexus message is timestamped after it is completely received and stored into the trace memory of the
TRACE32 tool. The TRACE32 tool timestamp has a resolution of 20ns for POWERTRACE/ETHERNET or
POWERTRACE PX and 5 ns for POWERTRACE II / POWERTRACE III. The time is less precise, because
it is added at the trace sink. The merging of the parallel trace streams to a single serial trace stream and
the TRACE32 recording logic are the main reasons that make TRACE32 tool timestamp less precise.

Trace.List Nexus CLOCKS.Back DEFault TIme.Back.OFF
Training Nexus Tracing | 42©1989-2024 Lauterbach

Multicore Tracing

SMP systems: Due to the fact that one TRACE32 instance is used to control all cores of the SMP system,
the message setup is identical for all controlled cores.

AMP systems: Due to the fact that one TRACE32 instance is used per core, an individual message setup
per core is possible.
Training Nexus Tracing | 43©1989-2024 Lauterbach

NEXUS Trace Clients

A MPC5xxx/SPC5xxx core can provide several models for the trace clients.

Trace Client Types

Dedicated Trace Clients

Each client that can generate NEXUS messages has its own Message Generator.

Message
Generator

CORE

Message
Generator

Client 1
e.g. DMA 1

Message
Generator

Client 2

e.g. DMA 2

NEXUS FIFO
Training Nexus Tracing | 44©1989-2024 Lauterbach

SRAM Port Sniffers as Trace Client

A port sniffers is used to generate the NEXUS messages for the selected clients.

Please be aware, that the NXSS (Nexus Crossbar Slave Port Data Trace Module) can only snoop read/write
accesses from the selected trace client to the connected SRAM.

Client 1
e.g. eDMA0

Client 2
e.g. FlexRay

Crossbar Switch

SRAM0 SRAM1

NXSS_0

Message
Generator

NXSS_1

Message
Generator

NEXUS FIFO
Training Nexus Tracing | 45©1989-2024 Lauterbach

Trace Client Concentrator

The Message Generator of the Client Concentrator generates NEXUS messages for the connected clients.
Clients can be enabled independently.

Message
Generator

Client
Concentrator0

Message
Generator

Client

NEXUS FIFO

Concenrator1

C
lie

nt
 A

C
lie

nt
 B

C
lie

nt
 C

C
lie

nt
 N

C
lie

nt
 O

C
lie

nt
 P
Training Nexus Tracing | 46©1989-2024 Lauterbach

Configuration

Possible clients:

Possible modes:

NEXUS.CLIENT1 SELECT DMA ; specify DMA for CLIENT1

NEXUS.CLIENT1 MODE DTM ; NEXUS messages are generated
; according to the DTM settings
; (here write)

DMA/DMA2 DMA controller

ETHERNET Ethernet controller

FLEXRAY FlexRay controller

PDI Parallel Digital Interface controller

…

OFF No NEXUS messages are generated.

Read Generate NEXUS messages for all read accesses.

Write Generate NEXUS messages for all write accesses.

ReadWrite Generate NEXUS messages for all read and write accesses.

DTM The client is using the DTM settings.
Training Nexus Tracing | 47©1989-2024 Lauterbach

Target FIFO Overflow

TARGET FIFO OVERFLOW, PROGRAM FLOW LOST occurs, when so much trace information is
generated that it can not be buffered in the NEXUS FIFO.
Training Nexus Tracing | 48©1989-2024 Lauterbach

Diagnosis

In order to get an immediate display of the trace contents TRACE32 uploads only the currently displayed
section from the physical trace memory to the host. To check if there are FIFOFULLs it is recommended to
upload the complete trace contents to the host by the command: Trace.FLOWPROCESS.

The number of FIFOFULL is printed to the TRACE32 state line as result of the following command:

The following TRACE32 functions allows you to process the result in a script:

The single FIFOFULLs can be found in the trace:

FIFOFULLs may occur during your tests, they are not errors. But FIFOFULLs may disturb your trace
analysis. There are various strategies to avoid FIFOFULLs.

Trace.Find FIFOFULL /ALL

FOUND.COUNT()
Training Nexus Tracing | 49©1989-2024 Lauterbach

Stall Program Execution on Overflow Threat

Overrun control

STALL OFF Generate overrun message when a new message can not be
queued due to the NEXUS FIFO being full. No new message is
queued to the NEXUS FIFO until it is completely empty.

STALL ON
(2003 Standard)

Stall the program execution whenever the on-chip NEXUS FIFO
threatens to overflow.

STALL 1/4
(2008/2012 Standard)

Stall the program execution when 1/4 of the on-chip NEXUS FIFO
is filled.

STALL 1/2
(2008/2012 Standard)

Stall the program execution when 1/2 of the on-chip NEXUS FIFO
is filled.

STALL 3/4
(2008/2012 Standard)

Stall the program execution when 3/4 of the on-chip NEXUS FIFO
is filled.

NEXUS.STALL 3/4
Training Nexus Tracing | 50©1989-2024 Lauterbach

Suppress Data Trace Messages on Overflow Threat

Since Data Trace Messages are high-risk for NEXUS FIFOs getting full, it may be helpful to suppress these
messages when the NEXUS FIFO reaches a certain fill level.

The NEXUS protocol does not indicate the message suppression. But read/write cycles that can not be
assigned to its instruction (displayed in red) are a good indicator, the a message suppression occurred.

NEXUS.DTM ReadWrite

NEXUS.SupprTHReshold 3/4 ; Sets the NEXUS FIFO fill level, at which
; messages will be suppressed

NEXUS.SpenDTM ON ; Suppress Data Trace Messages when the
; NEXUS FIFO reaches the specified filling
; level

… ; Start and stop the program execution

Trace.FindAll,CYcle Write ; Search for all write accesses
Training Nexus Tracing | 51©1989-2024 Lauterbach

Further Countermeasures

If you do not want to stall the program execution or suppress messages, just reduce the number of the
generated trace messages:

• Enable HTM (NEXUS.BTM ON and NEXUS.HTM ON)

• Switch DTM to off when possible (NEXUS.DTM OFF).

• Disable the NEXUS message generation for cores you are not interested in for you current
analysis.

• Filter the DTMs. Refer to “Filter and Trigger (Core) Overview”, page 101 for details.
Training Nexus Tracing | 52©1989-2024 Lauterbach

FlowErrors

TRACE32 indicates FLOWERRORS:

• If the instruction flow information generated by NEXUS does not match with the code image in
the target.

• If invalid NEXUS messages are generated.

The complete number of FLOWERRORS is printed to the TRACE32 state line as result of the following
command:

The single FLOWERROR can be found in the trace:

FLOWERRORs are errors and it is recommended to fix them. Please contact your local Lauterbach support
if you need assistance.

Trace.Find FLOWERROR /ALL
Training Nexus Tracing | 53©1989-2024 Lauterbach

Displaying the Trace Content

Sources of Information for the Trace Display

In order to provide an intuitive trace display the following sources of information are merged:

• The trace information recorded.

• The program code from the target memory read via the JTAG interface.

• The symbol and debug information already loaded to TRACE32.

Symbol and debug
information loaded

to TRACE32

Recorded trace
information

Uploaded from
the source of

trace information

Program code from
target memory

Read via
JTAG

interface
Training Nexus Tracing | 54©1989-2024 Lauterbach

Settings in the Trace Configuration Window

The main influencing factor on the trace information is the NEXUS hardware module. It specifies what type
of trace information is generated for the user.

Another important influencing factor are the settings in the TRACE32 Trace Configuration window. They
specify how much trace information can be recorded and when the trace recording is stopped.

Recording Modes

The Mode settings in the Trace configuration window specify how much trace information can be recorded
and when the trace recording is stopped.

The following modes are provided:

• Fifo, Stack, Leash Mode: allow to record as much trace records as indicated in the SIZE field of
the Trace Configuration window.

• STREAM Mode (PowerTrace II hardware only): STREAM mode specifies that the trace
information is immediately streamed to a file on the host computer. STREAM mode allows a
trace memory size of several T Frames.
Training Nexus Tracing | 55©1989-2024 Lauterbach

• PIPE Mode (PowerTrace II hardware only): PIPE mode specifies that the trace information is
immediately streamed to a named pipe on the host computer.

PIPE mode creates the path to convey trace raw data to an application outside of TRACE32
PowerView. The named pipe has to be created by the receiving application before TRACE32 can
connect to it.

• RTS Mode (PowerTrace II hardware only): RTS mode enables the processing while the trace
data are recorded. The main use case for RTS is a live display of the code coverage results.

Trace.Mode PIPE

Trace.PipeWRITE <pipe_name> Connect to named pipe

Trace.PipeWRITE \\.\pipe\<pipe_name> Connect to named pipe (Windows)

Trace.PipeWRITE Disconnect from named pipe

…

Trace.Mode PIPE ; switch trace to PIPE mode

Trace.PipeWRITE \\.\pipe\pproto00 ; connect to named pipe
; (Windows)

…

Trace.PipeWRITE ; disconnect from named pipe

NEXUS packets (no tool timestamp) are conveyed in PIPE mode.
Training Nexus Tracing | 56©1989-2024 Lauterbach

Fifo Mode

Trace.Mode Fifo ; default mode

; when the trace memory is full
; the newest trace information will
; overwrite the oldest one

; the trace memory contains all
; information generated until the
; program execution stopped

In Fifo mode negative record numbers are used. The last record gets the smallest negative number.
Training Nexus Tracing | 57©1989-2024 Lauterbach

Stack Mode

Trace.Mode Stack ; when the trace memory is full
; the trace recording is stopped

; the trace memory contains all
; information generated directly
; after the start of the program
; execution

The trace recording is
.stopped as soon as

the trace memory is
full (OFF state)

Green running in the Debug State Field
indicates that program execution is running

OFF in the Trace State Field
indicates that the trace
recording is switched off
Training Nexus Tracing | 58©1989-2024 Lauterbach

Since the trace recording starts with the program execution and stops when the trace memory is full,
positive record numbers are used in Stack mode. The first record in the trace gets the smallest
positive number.
Training Nexus Tracing | 59©1989-2024 Lauterbach

Leash Mode

Trace.Mode Leash ; when the trace memory is nearly
; full the program execution is
; stopped

; Leash mode uses the same record
; numbering scheme as Stack mode

The program execution is stopped as soon as
the trace buffer is nearly full.

Since stopping the program execution when the trace
buffer is nearly full requires some logic/time, used is
smaller than the maximum SIZE.
Training Nexus Tracing | 60©1989-2024 Lauterbach

STREAM Mode (PowerTrace II hardware only)

The trace information is immediately streamed to a file on the host computer after it was placed into the trace
memory. This procedure extends the size of the trace memory to several T Frames.

• STREAM mode requires a TRACE32 trace hardware that allows streaming the trace information
while recording. This is currently supported by PowerTrace II.

• STREAM mode required a 64-bit host computer and a 64-bit TRACE32 executable to handle the
large trace record numbers.

By default the streaming file is placed into the TRACE32 temporary directory
(OS.PresentTemporaryDirectory()).

The command Trace.STREAMFILE <file> allows to specific a different name and location for the streaming
file.

TRACE32 stops the streaming when less then the 1 GByte free memory left on the drive by default.

The command Trace.STREAMFileLimit <+/- limit in bytes> allows a user-defined free memory limitation.

Please be aware that the streaming file is deleted as soon as you de-select the STREAM mode or when you
exit TRACE32.

NEXUS.HTM ON ; enable Indirect Branch History
; Messaging to get compact raw
; trace data

Trace.Mode STREAM ; STREAM the recorded trace
; information to a file on the host
; computer

; STREAM mode uses the same record
; numbering scheme as Stack mode

Trace.STREAMFILE d:\temp\mystream.t32 ; specify the location for
; your streaming file

Trace.STREAMFileLimit 5000000000. ; streaming file is limited to
; 5 GByte

Trace.STREAMFileLimit -5000000000. ; streaming is stopped when less
; the 5 GByte free memory is left
; on the drive
Training Nexus Tracing | 61©1989-2024 Lauterbach

In STREAM mode the used field is split:

Indication of how much trace information is intercepted in the trace memory

Number of records saved to streaming file

of the TRACE32 trace tool

STREAM mode can
generate very large
record numbers
Training Nexus Tracing | 62©1989-2024 Lauterbach

STREAM mode can only be used if the average data rate at the trace port does not exceed the maximum
transmission rate of the host interface in use. Peak loads at the trace port are intercepted by the trace
memory, which can be considered to be operating as a large FIFO.

If the average data rate at the trace port exceeds the maximum transmission rate of the host interface in use,
a PowerTrace FIFO Overrun occurs. TRACE32 stops streaming and empties the PowerTrace FIFO.
Streaming is re-started after the PowerTrace FIFO is empty.

A PowerTrace FIFO Overrun is indicated as follows:

1. A ! in the used area of the Trace configuration window indicates an overrun of the PowerTrace
FIFO.

2. The OVERRUN is indicated in all trace display windows.
Training Nexus Tracing | 63©1989-2024 Lauterbach

States of the Trace

The trace buffer can either sample or allows the read-out for information display.

The current state of the trace is always indicated in the Trace State field of the TRACE32 state line.

The Trace states trigger and break are introduced in detail later in this training.

States of the Trace

DISable The trace is disabled.

OFF The trace is not sampling. The trace contents can be red-out and
displayed.

Arm The trace is sampling. The trace contents can not be red.
Training Nexus Tracing | 64©1989-2024 Lauterbach

The AutoInit Command

Init Button Clear the trace memory. All other settings in the Trace
configuration window remain valid.

AutoInit CheckBox ON: The trace memory is cleared whenever the program execution
is started (Go, Step).
Training Nexus Tracing | 65©1989-2024 Lauterbach

Multicore Tracing

The focus of the Trace configuration window is:

• Setup and maintenance of the TRACE32 trace tool (METHOD Analyzer).

• Setup and maintenance of the onchip trace (METHOD Onchip).

SMP systems: Due to the fact that one TRACE32 instance is used to control all cores, setups and states
are identical for all controlled cores.

AMP systems: Due to the fact that the setups and states are maintained by multiple TRACE32 instances,
the TRACE32 Resource Management maintains consistency for all joint settings and joint states.

Consistency maintenance means: status changes in one TRACE32 instance affect all other TRACE32
instances.

Joint Settings and States
Training Nexus Tracing | 66©1989-2024 Lauterbach

Basic Display Commands

Default Listing

Trace.List Default trace display.

Conditional
branch

not executed

Conditional
branch

executed

Data access
Timing information

(pastel printed)
Training Nexus Tracing | 67©1989-2024 Lauterbach

The trace information for all cores is displayed by default in the Trace.List window if you are working with an
SMP system. The column run and the coloring of the trace information are used for core indication.

Trace.List /CORE <n> The option CORE allows a per core display.
Training Nexus Tracing | 68©1989-2024 Lauterbach

Basic Formatting

The More button works vice versa.

1. time Less Suppress the display of the program trace package information
(ptrace).

2. time Less Suppress the display of the assembly code.

3. time Less Suppress the data access information (e.g. wr-byte cycles).

1.

2.

3.
Training Nexus Tracing | 69©1989-2024 Lauterbach

Correlating the Trace Listing with the Source Listing

Active Window

All windows opened with
the /Track option follow the
cursor movements in the
active window
Training Nexus Tracing | 70©1989-2024 Lauterbach

Browsing through the Trace Buffer

Pg Scroll page up.

Pg Scroll page down.

Ctrl - Pg Go to the first record sampled in the trace buffer.

Ctrl - Pg Go to the last record sampled in the trace buffer.
Training Nexus Tracing | 71©1989-2024 Lauterbach

Display Items

Default Display Items

• Column record

Displays the record numbers

• Column run

The column run displays some graphic element to provide a quick overview on the instruction
flow.

Trace.List List.ADDRESS DEFault

Sequential
instruction flow

(solid line)

backward branch

forward branch
Training Nexus Tracing | 72©1989-2024 Lauterbach

The column run also indicates interrupts and TRAPs.

• Column cycle

The main cycle types are:

- ptrace (program trace information)

- rd-byte, rd-word, rd-long (read access)

- wr-byte, wr-word, wr-long (write access)

- owner (ownership trace messages)

- unknown (Branch Trace Messages that can not be decoded)

The decoding of the Branch Trace Messages can start, as soon as a full address
(F-ADDR) is exported. Branch Trace Messages that can not be decoded are marked as
unknown.
Training Nexus Tracing | 73©1989-2024 Lauterbach

• Column address/symbol

The address column shows the following information:
<access class>:<logical_address>

The symbol column shows the corresponding symbolic address.

Access Classes

F Program address, disassembly shows standard PowerPC
instructions

V Program address, disassembly shows VLE encoded
instructions

D Data address
Training Nexus Tracing | 74©1989-2024 Lauterbach

• Column ti.back

The ti.back column shows the time distance to the previous record.
Training Nexus Tracing | 75©1989-2024 Lauterbach

Further Display Items

Time Information

Set the Global Zero Point (tool timestamp only)

TIme.Back Time relative to the previous record (red)

TIme.Fore Time relative to the next record (green).

TIme.Zero Time relative to the global zero point.

Trace.List TIme.Back TIme.Fore TIme.Zero DEFault

Establish the
selected record as
global zero point
Training Nexus Tracing | 76©1989-2024 Lauterbach

Time Synchronization between TRACE32 Instances (AMP)

Setup

If a AMP multi-core debugging session is set up, start/stop synchronization for the cores is established.

For trace synchronization the following commands have to be executed:

SYnch.XTrack localhost:10001 ; in TRACE32 instance for core0

SYnch.XTrack localhost:10000 ; in TRACE32 instance for core1

Start/stop
synchronization
between cores/instances
Training Nexus Tracing | 77©1989-2024 Lauterbach

Utilization

The base for the trace synchronization is the tool timestamp or if enabled the Nexus timestamps.

Trace.List TIme.Zero DEFault /Track ; /Track enables here the
; time synchronisation to
; trace display windows in
; other TRACE32 instance

Time
synchronization
between
TRACE32
instances
Training Nexus Tracing | 78©1989-2024 Lauterbach

Find a Specific Record

Example: Find a specific symbol address.

A more detailed description on how to find specific events in the trace is given in “Application Note for
Trace.Find” (app_trace_find.pdf).
Training Nexus Tracing | 79©1989-2024 Lauterbach

Belated Trace Analysis

There are several ways for a belated trace analysis:

1. Save a part of the trace contents into an ASCII file and analyze this trace contents by reading.

2. Save the trace contents in a compact format into a file. Load the trace contents at a subsequent
date into a TRACE32 Instruction Set Simulator and analyze it there.
Training Nexus Tracing | 80©1989-2024 Lauterbach

Save the Trace Information to an ASCII File

Saving a part of the trace contents to an ASCII file requires the following steps:

1. Select Print in the File menu to specify the file name and the output format.

2. It only makes sense to save a part of the trace contents into an ASCII-file. Use the record
numbers to specify the trace part you are interested in.

TRACE32 provides the command prefix WinPrint. to redirect the result of a display command into a
file.

3. Use an ASCII editor to display the result.

PRinTer.FileType ASCIIE ; specify output format
; here enhanced ASCII

PRinTer.FILE testrun.lst ; specify the file name

; save the trace record range (-8976.)--(-2418.) into the
; specified file
WinPrint.Trace.List (-8976.)--(-2418.)
Training Nexus Tracing | 81©1989-2024 Lauterbach

Postprocessing with TRACE32 Instruction Set Simulator

1. Save the contents of the trace memory into a file.

The default extension for the trace file is .ad.

Trace.SAVE testrun1
Training Nexus Tracing | 82©1989-2024 Lauterbach

2. Start a TRACE32 Instruction Set Simulator (PBI=SIM).

Training Nexus Tracing | 83©1989-2024 Lauterbach

3. Select your target CPU within the simulator. Then establish the communication between
TRACE32 and the simulator.

4. Load the trace file.

Trace.LOAD testrun
Training Nexus Tracing | 84©1989-2024 Lauterbach

5. Display the trace contents.

6. Load symbol and debug information if you need it.

The TRACE32 Instruction Set Simulator provides the same trace display and analysis commands as the
TRACE32 debugger.

Data.LOAD.Elf diabc_ext.x /NoCODE

LOAD indicates that the source for the trace information is the loaded file.
Training Nexus Tracing | 85©1989-2024 Lauterbach

Trace-based Debugging (CTS)

Trace-based debugging allows to re-run the recorded program section within TRACE32 PowerView.

If Data Trace Messages were enabled for ReadWrite, it is also possible to watch memory, variable and
register changes while re-running the recorded program section.

Re-Run the Program

Setup

In order to re-run the program, it is sufficient to only enable Branch Trace Messaging. One of the following
configurations is suitable:

• BTM ON

• BTM ON + HTM ON

• BTM ON + HTM ON + BL_HTM ON

If you use an OS, it is recommended to also record the task switch information. See “OS-Aware Tracing
(ORTI File)” in Training Nexus Tracing, page 193 (training_nexus.pdf).
Training Nexus Tracing | 86©1989-2024 Lauterbach

Un-check UseFinalMemory in the CTS configuration window. A full explanation on this is given later in the
chapter “CTS Technique”, page 99

CTS.state

CTS.UseFinalMemory OFF
Training Nexus Tracing | 87©1989-2024 Lauterbach

Get Started

Specify the starting point for the trace re-run by selecting Set CTS from the Trace pull-down menu. The
starting point in the example below is the entry to the function func10.

Selecting Set CTS has the following effect:

• TRACE32 PowerView will use the preceding trace packet as starting point for the trace re-run.

• The TRACE32 PowerView GUI does no longer show the current state of the target system, but it
shows the target state as it was, when the starting point instruction was executed. This display
mode is called CTS View.
Training Nexus Tracing | 88©1989-2024 Lauterbach

CTS View means:

• The instruction pointer is set to the values it had when the starting point instruction was
executed. This is done for all cores if an SMP system is under test.

• The content of the core registers is reconstructed (as far as possible) to the values they had
when the starting point instruction was executed. This is done for all cores if an SMP system is
under test. If TRACE32 can not reconstruct the content of a register it is displayed as empty.

• TRACE32 PowerView uses a yellow look-and-feel to indicate CTS View.

• The Off button in the Source Listing can be used to switch off the CTS View.

TRACE32 PowerView displays the state of the target as it was when
the instruction of the trace record -1997651.0 was executed
Training Nexus Tracing | 89©1989-2024 Lauterbach

Forward and Backward Debugging

Now you can start to re-run the recorded program section within TRACE32 PowerView by forward or
backward debugging.

Forward Debugging

Backward Debugging

Forward debugging commands Backward debugging commands

No function No function

Single step

Step over call Re-run until function exit

Single step
backward

Step backward
over call

Re-run backward
to function entry
Training Nexus Tracing | 90©1989-2024 Lauterbach

Re-Run the Program and Watch the Variables

This feature only makes send for the IEEE-ISTO 5001-2008 and the IEEE-ISTO 5001-2012 standard.

Setup

In order to re-run the program and watch the variables, the following Nexus setups are recommended:

• Enable Branch Trace Messaging (BTM ON / BTM ON + HTM ON /
BTM ON + HTM ON + BL_HTM ON)

• Enable Data Trace Messages for read/write accesses, but suppress Data Trace Messages on
overflow threat.

; Configuration example

NEXUS.BTM ON

NEXUS.HTM ON

NEXUS.BL_HTM ON

NEXUS.DTM ReadWrite

NEXUS.SupprTHReshold 3/4 ; Advise Nexus to suppress specified
; messages when Nexus FIFO is 3/4 filled

NEXUS.SpenDTM ON ; Advise Nexus to suppress Data Trace
; Messages when the specified filling
; level is reached
Training Nexus Tracing | 91©1989-2024 Lauterbach

Un-check UseMemory in the CTS configuration window. A full explanation on this is given later in the
chapter “CTS Technique”, page 99.

CTS.state

CTS.UseMemory OFF
Training Nexus Tracing | 92©1989-2024 Lauterbach

Get Started

Specify the starting point for the trace re-run by selecting Set CTS from the Trace pull-down menu. The
starting point in the example below is the read access to the variable mstatic1 in function func2d.
Training Nexus Tracing | 93©1989-2024 Lauterbach

Selecting Set CTS has the following effect:

• TRACE32 PowerView will use the preceding trace packet as starting point for the trace re-run.

• The TRACE32 PowerView GUI does no longer show the current state of the target system, but it
shows the target state as it was, when the starting point instruction was executed. This display
mode is called CTS View.
Training Nexus Tracing | 94©1989-2024 Lauterbach

CTS View means:

• The instruction pointer is set to the values it had when the starting point instruction was
executed. This is done for all cores if an SMP system is under test.

• The content of the core registers is reconstructed (as far as possible) to the values they had
when the starting point instruction was executed. This is done for all cores if an SMP system is
under test. If TRACE32 can not reconstruct the content of a register it is displayed as empty.

• The contents of the variables changed by the recorded program section are reconstructed (as far
as possible) to the values they had when the starting point instruction was executed. If TRACE32
can not reconstruct the content of a variable ??? are displayed.

• TRACE32 PowerView uses a yellow look-and-feel to indicate CTS View.

• The Off button in the Source Listing can be used to switch off the CTS View.
Training Nexus Tracing | 95©1989-2024 Lauterbach

TRACE32 PowerView displays the state of the target as it was when
the instruction of the trace record -11009060.0 was executed
Training Nexus Tracing | 96©1989-2024 Lauterbach

Forward and Backward Debugging

Now you can start to re-run the recorded program section within TRACE32 PowerView by forward or
backward debugging.

Forward Debugging

Backward Debugging

Forward debugging commands Backward debugging commands

No function No function

Single step

Step over call Re-run until function exit

Single step
backward

Step backward
over call

Re-run backward
to function entry
Training Nexus Tracing | 97©1989-2024 Lauterbach

Details on HLL Instructions

The technology used for Trace-Based Debugging allows additionally to display a full HLL trace.

For each HLL step the following information is displayed:

• The values of the local and global variables used in the HLL step

• The result of the HLL step

• The time needed for the HLL step

CTS.List List pure HLL trace.
Training Nexus Tracing | 98©1989-2024 Lauterbach

CTS Technique

CTS reads and evaluates the current state of the target together with the information recorded to the trace
memory by default.

The following commands are used to configure CTS properly:

If CTS.UseFinalMemory is ON and TRACE32 detects that a memory address was not changed by the
recorded program section, TRACE32 PowerView displays the current content of this memory in CTS display
mode.

• If Data Trace Messaging is disabled (NEXUS.DTM OFF), TRACE32 can not detect which
memory content was changed. This is the reason why CTS.UseFinalMemory has to be set to
OFF.

• If Data Trace Messaging is enabled (NEXUS.DTM ReadWrite) it is not guaranteed, that all
read/write accesses are recorded. This is the reason why CTS.UseFinalMemory has to be set to
OFF.

CTS.UseFinalMemory ON Default setting within TRACE32

Contents of the
trace buffer

Current state of the target

Memory

Memory-mapped
peripherals

CPU register

SPR register

CTS

Command: CTS.UseFinalMemory ON Command: CTS.UseFinalContext ON

Shared memory
(AMP system)
Training Nexus Tracing | 99©1989-2024 Lauterbach

Please be aware, that CTS ignores all read/write cycles that can not be assigned to its instruction (displayed
in red).

CTS supposes by default that memory is only written by the core(s) for which trace information is recorded
into the trace memory. But other bus master such as the DMA controller or other, not recorded cores, can
change memory too. And external interfaces can change memory mapped peripheral registers.

All memory ranges, that are not only changed by the core(s) for which trace information is recorded, have to
be excluded from the CTS memory/variable reconstruction.

If Data Trace Messaging is disabled (NEXUS.DTM OFF) and CTS.UseFinalMemory is switch OFF, but your
target memory contains constants, you can configure TRACE32 to use these constants for the CTS
reconstruction by the following commands:

If CTS.UseFinalContext is ON and TRACE32 detects that a register was not changed by the recorded
program section, TRACE32 PowerView displays the current content of this register in CTS View mode.

CTS.UseFinalContext has to be set to OFF, if you used Stack mode for tracing recording.

MAP.VOLATILE <range> Declare specified address range as volatile.

MAP.VOLATILE 0xF0000000—0xFFFFFFFF ; exclude peripheral register
; address space from the CTS
; reconstruction

MAP.VOLATILE 0x40018000--0x4001BFFF ; exclude memory that is
; changed not only by the
; recorded core(s)
; from the CTS reconstruction

MAP.CONST <address_range>

CTS.UseConst ON

CTS.UseFinalContext ON Default setting within TRACE32
Training Nexus Tracing | 100©1989-2024 Lauterbach

Filter and Trigger (Core) Overview

TraceEnable, TraceData, TraceON and TraceOFF are so-called filters. Filters can be used advise the
NEXUS module to generate trace information only for events of interest.

TraceEnable: Advise the NEXUS module to generate trace messages only for the specified instruction(s) or
read/write accesses.

TraceData: Advise the NEXUS module to generate trace messages for all executed instructions and for the
specified read/write accesses.

TraceON: Advise the NEXUS module to start the generation of trace messages at the specified event.

TraceOFF: Advise the NEXUS module to stop the generation of trace messages at the specified event.

TraceTrigger, BusTrigger and BusCount are so-called triggers. Triggers can be used to advise the NEXUS
module to signal the occurrence of an event. TRACE32 can react on this occurrence by stopping the trace
recording, by counting the event ….

TraceTrigger: Stop the trace recording at the specified event.

BusTrigger: Generate a pulse on the trigger bus at the specified event.

BusCount: Count the specified event.
Training Nexus Tracing | 101©1989-2024 Lauterbach

Resources

The MPC5xxx provides the following resources for filter and trigger:

• Data Trace Control Register (DTC): to filter Data Trace Messages (2-4 address ranges)

• Watchpoint Trigger Register: to activate a trace action on a specified event. The source for the
specified event are the Watchpoints that are also used for the on-chip breakpoints.

NEXUS.Register

Core type: On-chip
Breakpoints

Instruction
Address
Breakpoints

Data Address
Breakpoints

Data Value
Breakpoints

e200z0
e200z0h

4 instruction
2 read/write
no counters

4 single
breakpoints
-- or --
2 breakpoint
ranges

2 single
breakpoints
-- or --
1 breakpoint
range

none

e200z0Hn3 4 instruction
2 read/write
2 data value
no counters

4 single
breakpoints
-- or --
2 breakpoint
ranges

2 single
breakpoints
-- or --
1 breakpoint
range

2 single
breakpoints
(associated
with data
address BPs)

e200z1
e200z3
e200z6
e200z650
e200z750

4 instruction
2 read/write
2 counters

4 single
breakpoints
-- or --
2 breakpoint
ranges

2 single
breakpoints
-- or --
1 breakpoint
range

none
Training Nexus Tracing | 102©1989-2024 Lauterbach

e200z335 4 instruction
2 read/write
2 data value
2 counters

4 single
breakpoints
-- or --
2 breakpoint
ranges

2 single
breakpoints
-- or --
1 breakpoint
range

2 single
breakpoints
(associated
with data
address BPs)

e200z446
e200z4d
e200z760

8 instruction
2 read/write
2 data value
2 counters

8 single
breakpoints
-- or --
2 breakpoint
ranges and
4 single
breakpoints

2 single
breakpoints
-- or --
1 breakpoint
range

2 single
breakpoints
(associated
with data
address BPs)

e200z210
e200z215
e200z225
e200z420
e200z425
e200z720
e200z4201
e200z4203
e200z4204
e200z4251
e200z7260

8 instruction
4 read/write
2 data value
no counters

8 single
breakpoints
-- or --
4 breakpoint
ranges

4 single
breakpoints
-- or --
2 breakpoint
ranges

2 single
breakpoints
(associated
with data
address BPs)

Core type: On-chip
Breakpoints

Instruction
Address
Breakpoints

Data Address
Breakpoints

Data Value
Breakpoints
Training Nexus Tracing | 103©1989-2024 Lauterbach

• The MPC57xx provides also means to control Program Trace Messaging and Data Trace
Messaging from the application.

Nexus Development Control Register:

Machine Status Register:

PTMARK Bit 1 Program Trace Messaging when PMM bit is set

DTMARK Bit 1 Data Trace Messaging when PMM bit is set

PMM Bit Performance monitor mark bit.

PMM Bit 1, PTMARK Bit 1 ->
Program Trace Messaging is enabled

PMM Bit 1, DTMARK Bit 1 ->
Data Trace Messaging is enabled
Training Nexus Tracing | 104©1989-2024 Lauterbach

The table below summarizes the influence of the filter/ trigger on the messaging.

WTM
Watchpoint
Trace
Messages

BTM
Branch
Trace
Messages

DTM
Data Trace
Messages

OTM
Ownership
Trace
Messages

DQM
Data
Acquisition
Messages

TraceEnable on
single instruction

Watchpoint
Hit
Message
for
instruction

Disabled Unaffected Unaffected Unaffected

TraceEnable on
instruction range

Unused Filter
applies

Filter
applies

Unaffected Unaffected

TraceEnable on
read/write access

Unused BTM
disabled

DTM
enabled

Filter
applies

Unaffected Unaffected

TraceData Unused Unaffected DTM
enabled

Filter
applies

Unaffected Unaffected

Global
TraceON/
TraceOFF

Unused Filter
applies

Filter
applies

Unaffected Unaffected

Program
TraceON/
TraceOFF

Unused BTM
enabled

Filter
applies

Unaffected Unaffected Unaffected

Data
TraceON/
TraceOFF

Unused Unaffected Filter
applies

Unaffected Unaffected

TraceTrigger
BusTrigger
BusCount

WHM for
instruction
or data
address/da
ta value

Unaffected Unaffected Unaffected Unaffected
Training Nexus Tracing | 105©1989-2024 Lauterbach

Filter and Trigger (Core) - Single Core

Examples for TraceEnable on Instructions

Resource: Watchpoints

Controlled message types

Disable message types, that are unaffected by the filter and not required for your analysis.

WTM
Watchpoint Trace
Messages

BTM
Branch Trace
Messages

DTM
Data Trace
Messages

OTM
Ownership
Trace
Messages

DQM
Data
Acquisition
Messages

Watchpoint Hit
Message(s) is
generated for the
specified
instruction(s)

Disabled Unaffected Unaffected Unaffected
Training Nexus Tracing | 106©1989-2024 Lauterbach

Example 1: Advise the NEXUS module to generate only trace information for the entries to the function
sieve.

1. Set a Program breakpoint to the start address of the function sieve and select the action
TraceEnable.

2. Start the program execution and stop it.

3. Display the result.
Training Nexus Tracing | 107©1989-2024 Lauterbach

The following Trace.STATistic command calculates the time intervals for a program address event. The
program address event is here the entry to the function sieve:

Trace.STATistic.AddressDIStance sieve
Training Nexus Tracing | 108©1989-2024 Lauterbach

Example 2: Advise the NEXUS module to generate trace information for the entries to the function sieve
and for the exits of the function sieve.

1. Set a Program breakpoint to the start address of the function sieve and select the action
TraceEnable.

2. Set a Program breakpoint to the exit address of the function sieve and select the action
TraceEnable.

3. Start the program execution and stop it.

sYmbol.EXIT(<symbol>) Returns the exit address of the specified function
Training Nexus Tracing | 109©1989-2024 Lauterbach

4. Display the result.

The following Trace.STATistic command calculates the time intervals between two program address events
A and B. The entry to the function sieve is A in this example, the exit from the function is B.

Trace.STATistic.AddressDURation sieve sYmbol.EXIT(sieve)
Training Nexus Tracing | 110©1989-2024 Lauterbach

Example for TraceEnable on Instruction Range

Resource: Watchpoints, limited to one instruction address range

Controlled message types

Enable BTM. This filter requires that Branch History messaging is disabled.

Enable DTM if you are interested in the read/write accesses performed by the specified instruction address
range.

Disable message types, that are unaffected by the filter and not required for your analysis.

WTM BTM DTM OTM DQM

Unused Filter applies if BTM
is enabled

Filter applies if DTM
is enabled

Unaffected Unaffected
Training Nexus Tracing | 111©1989-2024 Lauterbach

Example: Advise the NEXUS module to generate trace information for all taken branches within the function
func9.

1. Enable Branch Trace messaging, but don't enable Indirect Branch History messaging.

Disable Data Trace messaging.

2. Set a Program breakpoint to the complete address range of the function func9 (HLL check box
ON) and select the action TraceEnable.

3. Start the program execution and stop it.
Training Nexus Tracing | 112©1989-2024 Lauterbach

4. Display the result.
Training Nexus Tracing | 113©1989-2024 Lauterbach

Examples for TraceEnable on Read/Write Accesses

Resource: DTC Register

Controlled message types

Disable message types, that are unaffected by the filter and not required for your analysis.

WTM BTM DTM OTM DQM

Unused BTM is
disabled by
filter

DTM is enabled by
filter

Filter applies

Unaffected Unaffected
Training Nexus Tracing | 114©1989-2024 Lauterbach

Example: Disable Branch Trace messaging and advise the NEXUS module to only generate trace
information for the write accesses to the variable flags[3].

1. Set a Write breakpoint to the variable flags[3] and select the action TraceEnable

- no data value possible (limitation of DTC Register)

- accessing instruction not possible (limitation of DTC Register)

2. Start the program execution and stop it.

3. Display the result.
Training Nexus Tracing | 115©1989-2024 Lauterbach

The Variable pull-down provides various way to analyze the variable contents over the time.

; open a window to display the variable
Var.View flags[3]

Display the value changes of a variable graphically
Trace.Chart.DistriB Data /Filter Address Var.RANGE(<var>)
Training Nexus Tracing | 116©1989-2024 Lauterbach

Display variable contents over the time numerically
Trace.Chart.VarState
Training Nexus Tracing | 117©1989-2024 Lauterbach

Display variable contents over the time graphically
Trace.DRAW.Var %DEFault <var>
Training Nexus Tracing | 118©1989-2024 Lauterbach

Example for TraceData

Resource: DTC Register

Controlled message types

Disable message types that are unaffected by the filter and not required for the analysis.

WTM BTM DTM OTM DQM

Unused Unaffected DTM is enabled by
filter

Filter applies

Unaffected Unaffected
Training Nexus Tracing | 119©1989-2024 Lauterbach

Example: Advise the NEXUS module to generate trace information for the write accesses to flags[12] and to
generate trace information for all executed instructions.

1. Enable Branch Trace messaging.

2. Set a Write breakpoint to the variable flags[12] and select the action TraceData.

3. Start the program execution and stop it.

4. Display the result.

Please be aware that in the case of a TraceData filter a correlation of the data access and the
instruction is in most cases not possible.
Training Nexus Tracing | 120©1989-2024 Lauterbach

Examples for TraceON/TraceOFF

Global TraceON/Trace OFF

Resource: Watchpoints

Controlled message types

Enable Branch Trace Messaging and Data Trace Messaging if this information is required for your analysis.

Disable messages types that are unaffected and not required for the analysis.

WTM BTM DTM OTM DQM

Unused Filter applies Filter applies Unaffected Unaffected
Training Nexus Tracing | 121©1989-2024 Lauterbach

Example:

Advise the NEXUS module to start Branch Trace messaging and Data Write Messages at the entry to the
function func9.

Advise the NEXUS module to stop Branch Trace messaging and Data Write Messages at the exit of the
function func9.

1. Enable Branch Trace Messages and Data Write Messages.
Training Nexus Tracing | 122©1989-2024 Lauterbach

2. Set a Program breakpoint to the entry of the function func9 and select the action TraceON.
Training Nexus Tracing | 123©1989-2024 Lauterbach

3. Set a Program breakpoint to the exit of the function func9 and select the action TraceOFF.

4. Start the program execution and stop it.
Training Nexus Tracing | 124©1989-2024 Lauterbach

5. Display the result.

The event that switched the trace generation on is not visible in the trace.
Training Nexus Tracing | 125©1989-2024 Lauterbach

ProgramTraceON/Trace OFF

Resource: Watchpoints

Controlled message types

Disable messages types that are unaffected and not required for the analysis.

WTM BTM DTM OTM DQM

Unused BTM is enabled by
filter

Filter applies

Unaffected Unaffected Unaffected
Training Nexus Tracing | 126©1989-2024 Lauterbach

Example:

Advise the NEXUS module to generate trace information for all write accesses.

Advise the NEXUS module to start the Branch Trace messaging at the entry to the function func9.

Advise the NEXUS module to stop Branch Trace messaging at the exit of the function func9.

1. Enable Data Trace messaging for write accesses.

2. Open the TrOnchip window and select ProgramTraceON for Alpha.
Training Nexus Tracing | 127©1989-2024 Lauterbach

3. Select ProgramTraceOFF for Beta.

4. Set a Program breakpoint to the entry of the function func9 and select Alpha.

5. Set a Program breakpoint to the exit of the function func9 and select Beta.

6. Start and stop the program execution.
Training Nexus Tracing | 128©1989-2024 Lauterbach

7. Display the result.

Command line example

; establish a default start situation
Break.Delete /ALL
TrOnchip.RESet

; messaging setup
NEXUS.BTM ON
NEXUS.DTM Write

; filter settings
TrOnchip.Alpha ProgramTraceON
TrOnchip.Beta ProgramTraceOFF
Break.Set func9 /Program /Alpha
Break.Set sYmbol.EXIT(func9) /Program /Beta

Go

…

Break

; display result
Trace.List
Training Nexus Tracing | 129©1989-2024 Lauterbach

DataTraceON/Trace OFF

Resource: Watchpoints

Controlled message types

Enable Data Trace messaging as required for the analysis.

Disable messages types that are unaffected and not required for the analysis.

WTM BTM DTM OTM DQM

Unused Unaffected Filter applies Unaffected Unaffected
Training Nexus Tracing | 130©1989-2024 Lauterbach

Example:

Enable Branch Trace messaging. Advise the NEXUS module to start the generation of Data Write
Messages at the entry to the function func9. Advise the NEXUS module to stop the generation of Data Write
Messages at the exit of the function func9.

1. Enable Branch Trace messaging and Data Trace messaging for write accesses.

2. Open the TrOnchip window and select DataTraceON for Alpha.
Training Nexus Tracing | 131©1989-2024 Lauterbach

3. Select DataTraceOFF for Beta.

4. Set a Program breakpoint to the entry of the function func9 and select Alpha.

5. Set a Program breakpoint to the exit of the function func9 and select Beta.

6. Start and stop the program execution.
Training Nexus Tracing | 132©1989-2024 Lauterbach

7. Display the result.
Training Nexus Tracing | 133©1989-2024 Lauterbach

Example for TraceTrigger

Resource: Watchpoints and logic in NEXUS Adapter (parallel trace only)

Controlled message types

Disable messages types that are unaffected and not required for the analysis.

WTM BTM DTM OTM DQM

Watchpoint Hit
Message(s) is
generated for
the specified
instruction(s)
or data
address+data
value

Unaffected Unaffected Unaffected Unaffected
Training Nexus Tracing | 134©1989-2024 Lauterbach

Example:

Enable Branch Trace messaging. Advise the NEXUS module to generate a trigger for the trace if the
function sieve is entered. Use this trigger to stops the trace recording.

1. Enable Branch Trace messaging.

2. Set a Program breakpoint to the start address of the function sieve and select the action
TraceTrigger.
Training Nexus Tracing | 135©1989-2024 Lauterbach

3. Start the program execution

The state of the trace changes from Arm to BRK when the trigger occurs.

4. Display the result.

The trace generation is usually stopped before trace information is generated for the event that
caused the trigger.

State of the
program execution

State of the
trace recording

(running) (Arm = recording)

State of the
trace recording
(BRK = break by trigger,
recording is stopped)
Training Nexus Tracing | 136©1989-2024 Lauterbach

Example for TraceTrigger with a Trigger Delay

Example: Advise the NEXUS module to generate a trigger for the trace if a write access occurs to the
variable flags[3]. Advise TRACE32 to fill another 10% of the trace memory before the trace recording is
stopped.

1. Set a Write breakpoint to the variable flags[3] and select the action TraceTrigger.

2. Define the trigger delay in the Trace Configuration Window.
Training Nexus Tracing | 137©1989-2024 Lauterbach

3. Start the program execution.

The state of the trace changes from Arm to TRG when the trigger occurs.

The state of the trace changes from TRG to BRK when the delay counter elapses.

State of the
program execution

State of the
trace recording

(running) (Arm = recording)

State of the
trace recording
(BRK = delay counter elapsed,
recording is stopped)

State of the
trace recording
(TRG = trigger occurred,
delay counter started)
Training Nexus Tracing | 138©1989-2024 Lauterbach

4. Display the result.

Push the Trigger button in the Trace Goto window to find the record, where TraceTrigger
was detected by the trace (WHM message). Here the sign of the record numbers has changed.
The TraceTrigger event is usually shortly after this point.
Training Nexus Tracing | 139©1989-2024 Lauterbach

Example for BusTrigger

Resource: Watchpoints and logic in NEXUS Adapter (parallel trace only)

Controlled message types

Example: Generate a 100 ns high pulse on the trigger connector of POWERTRACE/ETHERNET or
POWER DEBUG II when a write access to flags[9] occurs.

1. Set a write breakpoint to the variable flags[9] and select the action BusTrigger.

2. Start the program execution.

WTM BTM DTM OTM DQM

Watchpoint Hit
Message(s) is
generated for
the specified
instruction(s)
or data
address+data
value

Unaffected Unaffected Unaffected Unaffected
Training Nexus Tracing | 140©1989-2024 Lauterbach

3. Open the TrBus window to watch the trigger.
Training Nexus Tracing | 141©1989-2024 Lauterbach

Example for BusCount (Watchpoint)

Resource: Watchpoints and logic in NEXUS Adapter (parallel trace only). Only one event possible.

Controlled message types

Example 1: Count how often the function sieve is called.

1. Set a Program breakpoint to the start address of the function sieve and select the action
BusCount.

WTM BTM DTM OTM DQM

Watchpoint Hit
Message(s) is
generated for
the specified
instruction(s)
or data
address+data
value

Unaffected Unaffected Unaffected Unaffected
Training Nexus Tracing | 142©1989-2024 Lauterbach

2. Open the TRACE32 counter window and select EventHigh.

3. Start the program execution and display the result.
Training Nexus Tracing | 143©1989-2024 Lauterbach

Example 2: Measure the averaged time distance in which the function sieve is called.

1. Set a Program breakpoint to the start address of the function sieve and select the action
BusCount.

2. Open the TRACE32 counter window and select Period.
Training Nexus Tracing | 144©1989-2024 Lauterbach

3. Start the program execution and display the result.
Training Nexus Tracing | 145©1989-2024 Lauterbach

Filter and Trigger (Core) - SMP Debugging

Filters and Triggers are programmed to all cores that are controlled by the TRACE32 instance.

The fact that TRACE32 does not know on which core of the SMP system a program section is running has
the consequence that the same filters/triggers are programmed to all cores. So, from the perspective of
TRACE32, you can say the resources for filters/triggers are shared by all cores.
Training Nexus Tracing | 146©1989-2024 Lauterbach

Examples for TraceEnable on Single Instruction

Resource: Watchpoints

Controlled message types

Disable message types, that are unaffected by the filter and not required for your analysis.

WTM
Watchpoint Trace
Messages

BTM
Branch Trace
Messages

DTM
Data Trace
Messages

OTM
Ownership
Trace
Messages

DQM
Data
Acquisition
Messages

Watchpoint Hit
Message(s) is
generated for the
specified
instruction(s)

Disabled Unaffected Unaffected Unaffected
Training Nexus Tracing | 147©1989-2024 Lauterbach

Example 1: Advise the NEXUS module to generate only trace information for the entries to the function
memcpy.

1. Set a Program breakpoint to the start address of the function memcpy and select the action
TraceEnable.

2. Start the program execution and stop it.

3. Display the result.

Break.Delete /ALL ; delete all breakpoints

Break.Set memcpy /Program /TraceEnable ; program filter

Go ; start program execution

…

Break ; stop program execution

Trace.List ; display result
Training Nexus Tracing | 148©1989-2024 Lauterbach

The following Trace.STATistic command calculates the time intervals for a program address event. The
program address event is here the entry to the function memcpy. The core information is discarded for this
calculation.

If you need the result per core, use the following command:

Trace.STATistic.AddressDIStance memcpy

Trace.STATistic.AddressDIStance memcpy /CORE 0
Training Nexus Tracing | 149©1989-2024 Lauterbach

Example 2: Advise the NEXUS module to generate trace information for the entries to the function memcpy
and for the exits of the function memcpy.

1. Set a Program breakpoint to the start address of the function memcpy and select the action
TraceEnable.

2. Set a Program breakpoint to the exit address of the function memcpy and select the action
TraceEnable.

3. Start the program execution and stop it.

sYmbol.EXIT(<symbol>) Returns the exit address of the specified function
Training Nexus Tracing | 150©1989-2024 Lauterbach

4. Display the result.
Training Nexus Tracing | 151©1989-2024 Lauterbach

The following Trace.STATistic command calculates the time intervals between two program address events
A and B. The entry to the function memcpy is A in this example, the exit from the function is B. The core
information is discarded for this calculation.

If you need the result per core, use the following command:

Trace.STATistic.AddressDURation memcpy memcpy+0x78

Trace.STATistic.AddressDURation memcpy memcpy+0x78 /CORE 0
Training Nexus Tracing | 152©1989-2024 Lauterbach

Examples for TraceEnable on Instruction Range

Resource: Limited to one instruction address range

Controlled message types

Enable BTM. This filter requires that Branch History messaging is disabled.

Enable DTM if you are interested in the read/write accesses performed by the specified instruction address
range.

Disable message types, that are unaffected by the filter and not required for your analysis.

WTM BTM DTM OTM DQM

Unused Filter applies if BTM
is enabled

Filter applies if DTM
is enabled

Unaffected Unaffected
Training Nexus Tracing | 153©1989-2024 Lauterbach

Example: Advise the NEXUS module to generate trace information for all taken branches within the function
OSInterruptDispatcher1.

1. Enable Branch Trace messaging, but don't enable Indirect Branch History messaging.

Disable Data Trace messaging.

2. Set a Program breakpoint to the complete address range of the function OSInterruptDispatcher1
(HLL check box ON) and select the action TraceEnable.
Training Nexus Tracing | 154©1989-2024 Lauterbach

3. Start the program execution and stop it.

4. Display the result.
Training Nexus Tracing | 155©1989-2024 Lauterbach

Examples for TraceEnable on Read/Write Accesses

Resource: DTC Register

Controlled message types

Disable message types, that are unaffected by the filter and not required for your analysis.

WTM BTM DTM OTM DQM

Unused BTM is
disabled by
filter

DTM is enabled by
filter

Filter applies

Unaffected Unaffected
Training Nexus Tracing | 156©1989-2024 Lauterbach

Example: Disable Branch Trace Messaging and advise the NEXUS module to generate trace information
for the write accesses to the variable hookNmb.

1. Set a Write breakpoint to the variable hookNmb and select the action TraceEnable

- no data value possible (limitation of DTC Register)

- accessing instruction not possible (limitation of DTC Register)

2. Start the program execution and stop it.

3. Display the result.
Training Nexus Tracing | 157©1989-2024 Lauterbach

The Variable pull-down provides various ways to analyze the variable contents over the time.

; open a window to display the variable
Var.View hookNmb

Display the value changes of a variable graphically - value changes per core
Trace.Chart.DistriB Data /Filter Address Var.RANGE(<var>) [/SplitCORE]

Display the value changes of a variable graphically - value changes of all cores
Trace.Chart.DistriB Data /Filter Address Var.RANGE(<var>) /JoinCORE
Training Nexus Tracing | 158©1989-2024 Lauterbach

Display variable contents over the time (numerically) - the core information is discarded
Trace.Chart.VarState
Training Nexus Tracing | 159©1989-2024 Lauterbach

Display variable contents over the time (graphically) - the core information is discarded
Trace.DRAW.Var %DEFault <var>
Training Nexus Tracing | 160©1989-2024 Lauterbach

Example for TraceData

Resource: DTC Register

Controlled message types

Disable message types that are unaffected by the filter and not required for the analysis.

WTM BTM DTM OTM DQM

Unused Unaffected DTM is enabled by
filter

Filter applies

Unaffected Unaffected
Training Nexus Tracing | 161©1989-2024 Lauterbach

Example: Advise the NEXUS module to generate Data Trace Messages for all write accesses to the
variable hookNmb and to generate trace information for all executed instructions.

1. Enable Branch Trace messaging.

2. Set a Write breakpoint to the variable hookNmb and select the action TraceData.

3. Start the program execution and stop it.

4. Display the result.

Please be aware that in the case of a TraceData filter a correlation of the data access and the
instruction is in most cases not possible.
Training Nexus Tracing | 162©1989-2024 Lauterbach

Examples for TraceON/TraceOFF

Resource: Watchpoints

Global TraceON/Trace OFF

Controlled message types

Enable Branch Trace Messaging and Data Trace Messaging if this information is required for your analysis.

Diable messages types that are unaffected and not required for the analysis.

WTM BTM DTM OTM DQM

Unused Filter applies Filter applies Unaffected Unaffected
Training Nexus Tracing | 163©1989-2024 Lauterbach

Example:

Advise the NEXUS module to start Branch Trace messaging and Data Write Messages at the entry to the
function OSInterruptDispatcher1.

Advise the NEXUS module to stop Branch Trace messaging and Data Write Messages at the exit of the
function OSInterruptDispatcher1.

1. Enable Branch Trace Messages and Data Write Messages.
Training Nexus Tracing | 164©1989-2024 Lauterbach

2. Set a Program breakpoint to the entry of the function OSInterruptDispatcher1 and select the
action TraceON.
Training Nexus Tracing | 165©1989-2024 Lauterbach

3. Set a Program breakpoint to the exit of the function OSInterruptDispatcher1 and select the action
TraceOFF.

4. Start the program execution and stop it.
Training Nexus Tracing | 166©1989-2024 Lauterbach

5. Display the result.

The event that switched the trace generation on is not visible in the trace.
Training Nexus Tracing | 167©1989-2024 Lauterbach

ProgramTraceON/TraceOFF

Controlled message types

Diable messages types that are unaffected and not required for the analysis.

WTM BTM DTM OTM DQM

Unused BTM is enabled by
filter

Filter applies

Unaffected Unaffected Unaffected
Training Nexus Tracing | 168©1989-2024 Lauterbach

Example:

Advise the NEXUS module to generate trace information on all write accesses.

Advise the NEXUS module to start the Branch Trace messaging at the entry to the function memcpy.

Advise the NEXUS module to stop Branch Trace messaging at the exit of the function memcpy.

1. Enable Data Trace messaging for write accesses.

2. Open the TrOnchip window and select ProgramTraceON for Alpha.
Training Nexus Tracing | 169©1989-2024 Lauterbach

3. Select ProgramTraceOFF for Beta.

4. Set a Program breakpoint to the entry of the function memcpy and select the action Alpha.

5. Set a Program breakpoint to the exit of the function at memcpy and select the action Beta.

6. Start and stop the program execution.
Training Nexus Tracing | 170©1989-2024 Lauterbach

7. Display the result.
Training Nexus Tracing | 171©1989-2024 Lauterbach

; default start situation
Break.Delete /ALL
TrOnchip.RESet

; messaging setup
NEXUS.BTM ON
NEXUS.DTM Write

; filter settings
TrOnchip.Alpha ProgramTraceON
TrOnchip.Beta ProgramTraceOFF
Break.Set memcpy /Program /Alpha
Break.Set memcpy+0x78 /Program /Beta

Go

…

Break

; display result
Trace.List
Training Nexus Tracing | 172©1989-2024 Lauterbach

DataTraceON/Trace OFF

Controlled message types

Enable the Data Trace Messaging as required for the analysis.

Disable messages types that are unaffected and not required for the analysis.

WTM BTM DTM OTM DQM

Unused Unaffected Filter applies Unaffected Unaffected
Training Nexus Tracing | 173©1989-2024 Lauterbach

Example:

Enable Branch Trace messaging. Advise the NEXUS module to start the generation of Data Write
Messages at the entry to the function OSInterruptDispatcher1. Advise the NEXUS module to stop the
generation of Data Write Messages at the exit of the function OSInterruptDispatcher1.

1. Enable Branch Trace messaging and Data Trace messaging for write accesses.

2. Open the TrOnchip window and select DataTraceON for Alpha.
Training Nexus Tracing | 174©1989-2024 Lauterbach

3. Select DataTraceOFF for Beta.

4. Set a Program breakpoint to the entry of the function OSInterruptDispatcher1 and select the
action Alpha.

5. Set a Program breakpoint to the exit of the function OSInterruptDispatcher1and select the action
Beta.

6. Start and stop the program execution.
Training Nexus Tracing | 175©1989-2024 Lauterbach

7. Display the result.
Training Nexus Tracing | 176©1989-2024 Lauterbach

Example for TraceTrigger

Resource: Watchpoints and logic in NEXUS Adapter (parallel trace only)

Controlled message types

Disable messages types that are unaffected and not required for the analysis.

Example: Enable Branch Trace messaging. Advise the NEXUS module to generate a trigger for the trace if
the function memcpy is entered. Use this trigger to stops the trace recording.

1. Enable Branch Trace messaging.

WTM BTM DTM OTM DQM

Watchpoint Hit
Message(s) is
generated for
the specified
instruction(s)
or data
address+data
value

Unaffected Unaffected Unaffected Unaffected
Training Nexus Tracing | 177©1989-2024 Lauterbach

2. Set a Program breakpoint to the start address of the function memcpy and select the action
TraceTrigger.

3. Start the program execution.

State of the
program execution

State of the
trace recording

(running) (Arm = recording)

State of the
trace recording
(BRK = break by trigger,
recording is stopped)
Training Nexus Tracing | 178©1989-2024 Lauterbach

4. Display the result.

The trace generation is usually stopped before the trace information for the event that caused the
trigger is exported.
Training Nexus Tracing | 179©1989-2024 Lauterbach

Example for TraceTrigger with a Trigger Delay

Example:

Advise the NEXUS module to generate a trigger if a write access to the variable hookNmb occurs. Advise
TRACE32 to fill another 10% of the trace memory before the trace recording is stopped.

1. Enable Branch Trace messaging and Data Trace messaging for write accesses.

2. Set a Write breakpoint to the variable hookNmb and select the action TraceTrigger.
Training Nexus Tracing | 180©1989-2024 Lauterbach

3. Define the trigger delay in the Trace Configuration Window.
Training Nexus Tracing | 181©1989-2024 Lauterbach

4. Start the program execution.

State of the
program execution

State of the
trace recording

(running) (Arm = recording)

State of the
trace recording
(BRK = delay counter elapsed,
recording is stopped)

State of the
trace recording
(TRG = trigger occurred,
delay counter started)
Training Nexus Tracing | 182©1989-2024 Lauterbach

5. Display the result.

Push the Trigger button in the Trace Goto window to find the record, where the trigger
occurred (WHM message). Here the sign of the record numbers changed.
The specified event is usually exported shortly after this point.
Training Nexus Tracing | 183©1989-2024 Lauterbach

Example for BusTrigger

Resource: Watchpoints and logic in NEXUS Adapter (parallel trace only)

Controlled message types

Example: Generate a 100 ns high pulse on the trigger connector of the POWER TRACE / ETHERNET or
POWER DEBUG II when 3 is writes to hookNmb.

1. Set a write breakpoint to the variable flags[9] and select the action BusTrigger.

WTM BTM DTM OTM DQM

Watchpoint Hit
Message(s) is
generated for
the specified
instruction(s)
or data
address+data
value

Unaffected Unaffected Unaffected Unaffected
Training Nexus Tracing | 184©1989-2024 Lauterbach

2. Start the program execution.

3. Open the TrBus window to watch the trigger.
Training Nexus Tracing | 185©1989-2024 Lauterbach

Example for BusCount (Watchpoint)

Resource: Watchpoints and logic in NEXUS Adapter (parallel trace only). Only one event possible.

Controlled message types

Example 1: Count how often the function sieve is called.

1. Set a program breakpoint to the start address of the function sieve and select the action
BusCount.

WTM BTM DTM OTM DQM

Watchpoint Hit
Message(s) is
generated for
the specified
instruction(s)
or data
address+data
value

Unaffected Unaffected Unaffected Unaffected
Training Nexus Tracing | 186©1989-2024 Lauterbach

2. Open the TRACE32 counter window and select EventHigh.

3. Start the program execution and display the result.
Training Nexus Tracing | 187©1989-2024 Lauterbach

Example 2: Measure the period in which the function sieve is called.

1. Set a program breakpoint to the function sieve and select the action BusCount.

2. Open the TRACE32 counter window and select Period.
Training Nexus Tracing | 188©1989-2024 Lauterbach

3. Start the program execution and display the result.
Training Nexus Tracing | 189©1989-2024 Lauterbach

Filter and Trigger (Trace Clients)

The filter and trigger feature for the Trace Clients are provided via the TrOnchip window.

Trace Clients have their own resources in the NEXUS module. E.g. DMA client on MPC5554.
Training Nexus Tracing | 190©1989-2024 Lauterbach

Example for TraceEnableClient1

Example MPC5554: Sample only DMA reads from address 0x40001000++0FFF.

1. Select DMA a Trace Client1

2. Set a Read breakpoint to the address range 0x40001000++0FFF and select Alpha as breakpoint
action.
Training Nexus Tracing | 191©1989-2024 Lauterbach

3. Select TraceEnableClient1 for Alpha in the TrOnchip window.

4. Start and stop the program.

5. Display the result.
Training Nexus Tracing | 192©1989-2024 Lauterbach

OS-Aware Tracing (ORTI File)

Activate the TRACE32 OS Awareness

TRACE32 includes a configurable target-OS debugger to provide symbolic debugging of operating systems.

Since most users use an AUTOSAR operating system, this is taken as an example here.

In order to provide AUTOSAR-aware tracing an ORTI file is required. The ORTI file is created by the
AUTOSAR System Builder. It describes the structure and the memory mapping of the operating system
objects.

Setup command:

Loading the ORTI file results in the following:

• Symbolic debugging of the OSEK OS is possible. Debug commands are provided via an ORTI
menu.

• The Trace menu is extended for OS-aware trace display.

TASK.ORTI <ORTI_file> Load the ORTI file into TRACE32
Training Nexus Tracing | 193©1989-2024 Lauterbach

• The Perf menu is extended for OS-aware profiling.

• The manual of the OS Awareness for OSEK/ORTI is added to the Help menu.

• The name of the current task is displayed in the Task field of the TRACE32 state line.

Task field
Training Nexus Tracing | 194©1989-2024 Lauterbach

Exporting Task Information (Overview)

There are two methods how task information can be generated by the NEXUS hardware module:

• By generating an Ownership Trace Messages

This method should be used if supported by the OSEK operating system. It is the only method for
NEXUS Class 2 Modules.

• By generating trace information for a specific write access

This method requires a NEXUS Class 3 Module. It should be used, if the OSEK operating system
does not support Ownership Trace Messages.
Training Nexus Tracing | 195©1989-2024 Lauterbach

OS-Aware Tracing - Single Core

Exporting all Types of Task Information (OTM)

Ownership Trace Messages are generated when the OS updates

• the 8-bit Process ID register (PID0) - all compliant standards

• NEXUS PID Register (NPIDR) - IEEE-ISTO 5001-2012 compliant NEXUS module

PID0/NPIDR are updated by the OS on

• task switches

• entries and exits to service routines

• starts of ISR2 interrupt service routines and NO_ISR information

AUTOSAR OSs perform this update since 10/2010.

If you are using a IEEE-ISTO 5001-2003/2008 compliant NEXUS module and your task ID is longer the
8-bit, the PID0 register has to be updated in several steps. This requires special support from your OS. If
your OS does not provide this special support, Lauterbach can provide you patch information. Please
contact support@lauterbach.com for details.

The generation of Ownership Trace Messages has to be enabled within TRACE32.

NEXUS.OTM ON ; enable the generation of Ownership Trace
; Messages
Training Nexus Tracing | 196©1989-2024 Lauterbach

Example:

1. Advise the NEXUS hardware module to generate only Ownership Trace Messages.

2. Start and stop the program execution to fill the trace buffer.

3. Display the result.

NEXUS.BTM OFF ; disable the Branch Trace
; Messages

NEXUS.OTM ON ; enable the Ownership Trace
; Messages

cycle types

owner Ownership trace message for task switches

service Ownership trace message for entries and exits to OSEK
service routines

intr Ownership trace message for start of OSEK interrupt
service routine and NO_ISR information
Training Nexus Tracing | 197©1989-2024 Lauterbach

TRACE32 allows to search for all available cycle types e.g. owner:
Training Nexus Tracing | 198©1989-2024 Lauterbach

Statistic Analysis of Task Switches

The following two commands perform a statistical analysis of the task switches:

TRACE32 assigns all trace information generated before the first task information to the (unknown) task.
Training Nexus Tracing | 199©1989-2024 Lauterbach

Trace.STATistic.TASK Task runtime statistic

Trace.Chart.TASK Task runtime time chart
Training Nexus Tracing | 200©1989-2024 Lauterbach

Statistic Analysis of OSEK Service Routines

The following two commands perform a statistical analysis of the OSEK service routines:

(unknown) represents the time in which the
processor/core is not in an OSEK service routine
Training Nexus Tracing | 201©1989-2024 Lauterbach

Trace.STATistic.TASKSRV Statistic on service routines

Trace.Chart.TASKSRV Time chart on service routines
Training Nexus Tracing | 202©1989-2024 Lauterbach

Statistic Analysis of OSEK ISR2s

The following two commands perform a statistical analysis of the OSEK interrupt service routines:

TRACE32 assigns all trace information generated before the first intr information to (unknown).

Trace.STATistic.TASKINTR Statistic on interrupt service routines

 Trace.Chart.TASKINTR Time chart on interrupt service routines
Training Nexus Tracing | 203©1989-2024 Lauterbach

Statistic Analysis of Task-related OSEK ISR2s

The following command allows to perform a statistical analysis of the OSEK interrupt service routines related
to the active tasks.

intr information that was generated before the first task information is assigned to the @(unknown) task.

Trace.STATistic.TASKVSINTR Task-related statistic on interrupt service routines

Trace.Chart.TASKVSINTR Time-chart for task related interrupt service routines
Training Nexus Tracing | 204©1989-2024 Lauterbach

Exporting all Types of Task Information and all Instructions (OTM)

General setup:

Statistic Analysis of Interrupts

NEXUS.BTM ON ; enable the Branch Trace
; Messages

NEXUS.OTM ON ; enable the Ownership Trace
; Messages

Trace.STATistic.InterruptIsFunction ON ; advise TRACE32 to regard the
; time between interrupt entry
; and exit as function

Trace.Chart.INTERRUPT Interrupt time chart

Trace.STATistic.INTERRUPT Interrupt statistic
Training Nexus Tracing | 205©1989-2024 Lauterbach

Statistic Analysis of Interrupts and Tasks

Trace.Chart.TASKORINTERRUPT Time chart of interrupts and tasks

Trace.STATistic.TASKORINTERRUPT Statistic of interrupts and tasks
Training Nexus Tracing | 206©1989-2024 Lauterbach

Statistic Analysis of Interrupts in Tasks

Trace.Chart.TASKVSINTERRUPT Time chart interrupts, task-related

Trace.STATistic.TASKVSINTERRUPT Statistic of interrupts, task-related
Training Nexus Tracing | 207©1989-2024 Lauterbach

Exporting Task Information (Write Access)

Task Switches

Each operating system has a variable that contains the information which task is currently running. One way
to export task switch information is to advise the NEXUS hardware module to generate trace information
when a write access to this variable occurs.

The address of this variable is provided by the TRACE32 function TASK.CONFIG(magic).

PRINT TASK.CONFIG(magic) ; print the address of the variable
; that holds the task identifier
Training Nexus Tracing | 208©1989-2024 Lauterbach

Example: Advise the NEXUS hardware module to generate only trace information on task switches.

1. Set a Write breakpoint to the address indicated by TASK.CONFIG(magic) and select the trace
action TraceEnable.

2. Start and stop the program execution to fill the trace buffer

3. Display the result.

Break.Set TASK.CONFIG(magic) /Write /TraceEnable
Training Nexus Tracing | 209©1989-2024 Lauterbach

The following two commands perform a statistical analysis of the task switches:
Training Nexus Tracing | 210©1989-2024 Lauterbach

OSEK Service Routines

The time spent in OSEK service routines can be evaluated.

OSEK writes information on the entries and exits to OSEK service routines to a defined variable. One way to
export information on OSEK service routines is to advise the NEXUS hardware module to generate trace
information when a write access to this variable occurs.

The address of this variable is provided by the TRACE32 function TASK.CONFIG(magic_service).

Trace.STATistic.TASK Task runtime statistic

Trace.Chart.TASK Task runtime time chart

PRINT TASK.CONFIG(magic_service) ; print the address of the variable
; that holds the service
; information
Training Nexus Tracing | 211©1989-2024 Lauterbach

Example: Advise the NEXUS hardware module to generate only trace information for entries and exits to
OSEK service routines.

1. Set a Write breakpoint to the address indicated by TASK.CONFIG(magic_service) and select the
trace action TraceEnable.

2. Start and stop the program execution to fill the trace buffer

3. Display the result.

Break.Set TASK.CONFIG(magic_service) /Write /TraceEnable
Training Nexus Tracing | 212©1989-2024 Lauterbach

The following two commands perform a statistical analysis of the OSEK service routines:

(unknown) represents the time in which the
processor/core is not in an OSEK service routine
Training Nexus Tracing | 213©1989-2024 Lauterbach

OSEK ISR2s

The time spent in OSEK interrupt service routine can be evaluated.

OSEK writes information on the start of an interrupt service routine to a defined variable as well as the
information NO_ISR. One way to export information on OSEK interrupt service routine is to advise the
NEXUS hardware module to generate trace information when a write access to this variable occurs.

The address of this variable is provided by the TRACE32 function TASK.CONFIG(magic_isr2).

Trace.STATistic.TASKSRV Statistic on service routines

Trace.Chart.TASKSRV Time chart on service routines

PRINT TASK.CONFIG(magic_isr2) ; print the address of the variable
; that holds the interrupt service
; information
Training Nexus Tracing | 214©1989-2024 Lauterbach

Example: Advise the NEXUS hardware module to generate only trace information on the start of an
interrupt service routine as well as on the information NO_ISR.

1. Set a Write breakpoint to the address indicated by TASK.CONFIG(magic_isr2) and select the
trace action TraceEnable.

2. Start and stop the program execution to fill the trace buffer

3. Display the result.

Break.Set TASK.CONFIG(magic_isr2) /Write /TraceEnable
Training Nexus Tracing | 215©1989-2024 Lauterbach

The following two commands perform a statistical analysis of the OSEK interrupt service routines:

Trace.STATistic.TASKINTR Statistic on interrupt service routines

Trace.Chart.TASKINTR Time chart on interrupt service routines
Training Nexus Tracing | 216©1989-2024 Lauterbach

Task-related OSEK ISR2s

OSEK interrupt service routines that occur in multiple tasks can be displayed per task, if the following
information is available:

• Task switch information

• ISR2 start and NO_ISR information

Example:

1. Advise the NEXUS hardware module to generate only trace information

- on task switches

- on the start of an interrupt service routine as well as on the information NO_ISR

2. Start and stop the program execution to fill the trace buffer.

Break.Set TASK.CONFIG(magic) /Write /TraceEnable

Break.Set TASK.CONFIG(magic_isr2) /Write /TraceEnable
Training Nexus Tracing | 217©1989-2024 Lauterbach

3. Display the result.
Training Nexus Tracing | 218©1989-2024 Lauterbach

The following command allows to perform a statistical analysis of the OSEK interrupt service routines related
to the active tasks.

ISR2 information that was generated before the first TASK information is assigned to the @(unknown) task.

Trace.STATistic.TASKVSINTR Task-related statistic on interrupt service routines

Trace.Chart.TASKVSINTR Time-chart on task related interrupt service routines
Training Nexus Tracing | 219©1989-2024 Lauterbach

Exporting Task Switches and all Instructions (Write Access)

General setup:

Statistic Analysis of Interrupts

Break.Set TASK.CONFIG(magic) /Write /TraceData

; advise TRACE32 to regard the time between interrupt entry
; and exit as function
Trace.STATistic.InterruptIsFunction ON

Trace.Chart.INTERRUPT Interrupt time chart

Trace.STATistic.INTERRUPT Interrupt statistic
Training Nexus Tracing | 220©1989-2024 Lauterbach

Statistic Analysis of Interrupts and Tasks

Trace.Chart.TASKORINTERRUPT Time chart of interrupts and tasks

Trace.STATistic.TASKORINTERRUPT Statistic of interrupts and tasks
Training Nexus Tracing | 221©1989-2024 Lauterbach

Statistic Analysis of Interrupts in Tasks

Trace.Chart.TASKVSINTERRUPT Time chart interrupts, task-related

Trace.STATistic.TASKVSINTERRUPT Statistic of interrupts, task-related
Training Nexus Tracing | 222©1989-2024 Lauterbach

Belated Trace Analysis (OS)

The TRACE32 Instruction Set Simulator can be used for a belated OS-aware trace evaluation. To set up the
TRACE32 Instruction Set Simulator for belated OS-aware trace evaluation proceed as follows:

1. Save the trace information for the belated evaluation to a file.

2. Set up the TRACE32 Instruction Set Simulator for a belated OS-aware trace evaluation (here
OSEK on a MPC5553):

Trace.SAVE belated__orti.ad

SYStem.CPU MPC5553 ; select the target CPU

SYStem.Up ; establish the
; communication between
; TRACE32 and the TRACE32
; Instruction Set
; Simulator

Trace.LOAD belated_orti.ad ; load the trace file

Data.Load.ELF my_app.out /NoCODE /GHS ; load the symbol and
; debug information

TASK.ORTI my_orti.ort ; load the ORTI file

Trace.List List.TASK DEFault ; display the trace
; listing
Training Nexus Tracing | 223©1989-2024 Lauterbach

OS-Aware Tracing - SMP Systems

Exporting all Types of Task Information (OTM)

Ownership Trace Messages are generated when the OS updates

• the 8-bit Process ID register (PID0) - IEEE-ISTO 5001-2003 compliant NEXUS module

• NEXUS PID Register (NPIDR) - IEEE-ISTO 5001-2008 compliant NEXUS module and subsequent
standards

PID0 respectively NPIDR is updated on

• task switches

• entries and exits to OSEK service routines

• start of OSEK interrupt service routines and start of NO_ISR code

The ORTI standard support task-aware tracing via OTMs since October/2010.

If you are using a IEEE-ISTO 5001-2003 compliant NEXUS Class 2 module and your task ID is longer the
8-bit, the PID0 register has to be updated in several steps. This requires special support from your OSEK
system. If your OSEK system does not provide this special support, Lauterbach can provide you patch
information. Please contact support@lauterbach.com for details.

The generation of Ownership Trace Messages has to be enabled within TRACE32.

NEXUS.OTM ON ; enable the generation of Ownership Trace
; Messages
Training Nexus Tracing | 224©1989-2024 Lauterbach

Example:

1. Advise the NEXUS hardware module to generate only Ownership Trace Messages.

2. Start and stop the program execution to fill the trace buffer.

3. Display the result.

NEXUS.BTM OFF ; disable the Branch Trace
; messaging

NEXUS.OTM ON ; enable the Ownership Trace
; Messages

cycle types

owner Ownership trace message for task switches

service Ownership trace message for entries and exits to OSEK
service routines

intr Ownership trace message for start of OSEK interrupt
service routine and start of NO_ISR code
Training Nexus Tracing | 225©1989-2024 Lauterbach

TRACE32 allows to search for all available cycle types e.g. owner:
Training Nexus Tracing | 226©1989-2024 Lauterbach

Statistic Analysis of Task Switches

The following commands perform a statistical analysis of the task switches:

TRACE32 assigns all trace information generated before the first task information to the (unknown) tasks.
The (unknown) tasks are always displayed per core.

Trace.STATistic.TASK [/SplitCORE] Task runtime statistic, result per core

Trace.STATistic.TASK /MergeCORE Task runtime statistic, results of all cores merged
Training Nexus Tracing | 227©1989-2024 Lauterbach

The following commands display a time-chart of the task run-times:

Trace.Chart.TASK [/SplitCORE] Task runtime time chart, result per core

Trace.Chart.TASK /MergeCORE Task runtime time chart, results of all cores merged
Training Nexus Tracing | 228©1989-2024 Lauterbach

Statistic Analysis of OSEK Service Routines

The following commands perform a statistical analysis of the OSEK service routines:

Trace.STATistic.TASKSRV [/SplitCORE] Statistic on service routines, result per core

(unknown) represents the time in which the
processor/core is not in an OSEK service routine
Training Nexus Tracing | 229©1989-2024 Lauterbach

Trace.Chart.TASKSRV [/SplitCORE] Time chart on service routines, result per core
Training Nexus Tracing | 230©1989-2024 Lauterbach

Statistic Analysis of OSEK ISR2s

The following commands perform a statistical analysis of the OSEK interrupt service routines:

TRACE32 assigns all trace information generated before the first intr information to (unknown).

Trace.STATistic.TASKINTR [/SplitCORE] Statistic on interrupt service routines, result per core
Training Nexus Tracing | 231©1989-2024 Lauterbach

 Trace.Chart.TASKINTR [/SplitCORE] Time chart on interrupt service routines, result per core
Training Nexus Tracing | 232©1989-2024 Lauterbach

Statistic Analysis of Task-related OSEK ISR2s

The following commands allow to perform a statistical analysis of the OSEK interrupt service routines related
to the active tasks.

Trace.STATistic.TASKVSINTR [/SplitCORE] Task-related statistic on interrupt service
routines, result per core

Trace.Chart.TASKVSINTR [/SplitCORE] Time-chart for task related interrupt service
routines, result per core
Training Nexus Tracing | 233©1989-2024 Lauterbach

intr information that was generated before the first task information is assigned to the @(unknown) task.
Training Nexus Tracing | 234©1989-2024 Lauterbach

Exporting all Types of Task Information and all Instructions (OTM)

General setup:

Statistic Analysis of Interrupts

NEXUS.BTM ON ; enable the Branch Trace
; Messages

NEXUS.OTM ON ; enable the Ownership Trace
; Messages

Trace.STATistic.InterruptIsFunction ON ; advise TRACE32 to regard the
; time between interrupt entry
; and exit as function

Trace.Chart.INTERRUPT [/SplitCORE] Interrupt time chart (default), results split
up per core

Trace.Chart.INTERRUPT /CORE <n> Interrupt time chart for specified core

Trace.STATistic.INTERRUPT [/SplitCORE] Interrupt statistic (default), results split up
per core

Trace.STATistic.INTERRUPT /CORE <n> Interrupt statistic for specified core
Training Nexus Tracing | 235©1989-2024 Lauterbach

Statistic Analysis of Interrupts and Tasks

Trace.Chart.TASKORINTERRUPT [/SplitCORE] Time chart for interrupts and tasks
(default), results split up per core

Trace.Chart.TASKORINTERRUPT /CORE <n> Time chart for interrupts and tasks for
specified core

Trace.STATistic.TASKORINTERRUPT [/SplitCORE] Statistic for interrupts and tasks (default),
results split up per core

Trace.STATistic.TASKORINTERRUPT /CORE <n> Statistic for interrupts and tasks for
specified core
Training Nexus Tracing | 236©1989-2024 Lauterbach

Statistic Analysis of Interrupts in Tasks

Trace.Chart.TASKVSINTERRUPT [/SplitCORE] Interrupt time chart, task-related (default),
results split up per core

Trace.Chart.TASKVSINTERRUPT /CORE <n> Interrupt time chart task-related, for
specified core

Trace.STATistic.TASKVSINTERRUPT [/SplitCORE] Interrupt statistic, task-related (default),
results split up per core

Trace.STATistic.TASKVSINTERRUPT /CORE <n> Interrupt statistic, task-related, for
specified core
Training Nexus Tracing | 237©1989-2024 Lauterbach

Exporting Task Information (Write Access)

Task Switches

An SMP operating system has one variable per core that contains the information which task is currently
running. One way to export task switch information is to advise the NEXUS hardware module to generate
trace information when a write access to one of these variables occurs.

The address of these variables is provided by the TRACE32 functions TASK.CONFIG(magic[<core>]).

PRINT TASK.CONFIG(magic[0]) ; print the address of the variable
; that holds the task identifier
; for core 0

PRINT TASK.CONFIG(magic[1]) ; print the address of the variable
; that holds the task identifier
; for core 1

…

PRINT TASK.CONFIG(magic[n]) ; print the address of the variable
; that holds the task identifier
; for core n
Training Nexus Tracing | 238©1989-2024 Lauterbach

Example: Advise the NEXUS hardware module to generate only trace information on task switches for a
dual-core chip.

1. Set a Write breakpoint to the address indicated by TASK.CONFIG(magic[0]) and select the trace
action TraceEnable.

2. Set a Write breakpoint to the address indicated by TASK.CONFIG(magic[1]) and select the trace
action TraceEnable.

3. Start and stop the program execution to fill the trace buffer

Break.Set TASK.CONFIG(magic[0]) /Write /TraceEnable

Break.Set TASK.CONFIG(magic[1]) /Write /TraceEnable
Training Nexus Tracing | 239©1989-2024 Lauterbach

4. Display the result.
Training Nexus Tracing | 240©1989-2024 Lauterbach

The following commands perform a statistical analysis of the task switches:

Trace.STATistic.TASK [/SplitCORE] Task runtime statistic, result per core

Trace.STATistic.TASK /MergeCORE Task runtime statistic, results of all cores merged
Training Nexus Tracing | 241©1989-2024 Lauterbach

The following commands display a time-chart of the task run-times:

Trace.Chart.TASK [/SplitCORE] Task runtime time chart, result per core

Trace.Chart.TASK /MergeCORE Task runtime time chart, results of all cores merged
Training Nexus Tracing | 242©1989-2024 Lauterbach

OSEK Service Routines

The time spent in OSEK service routines can be evaluated.

OSEK writes information on the entries and exits to OSEK service routines to a defined variable per core.
One way to export information on OSEK service routines is to advise the NEXUS hardware module to
generate trace information when a write access to one of these variables occurs.

The address of these variables is provided by the TRACE32 functions
TASK.CONFIG(magic_service[<core>]).

PRINT TASK.CONFIG(magic_service[0]) ; print the address of the
; variable that holds the
; service information for core 0

PRINT TASK.CONFIG(magic_service[1]) ; print the address of the
; variable that holds the
; service information for core 1

…

PRINT TASK.CONFIG(magic_service[n]) ; print the address of the
; variable that holds the
; service information for core n
Training Nexus Tracing | 243©1989-2024 Lauterbach

Example: Advise the NEXUS hardware module to generate only trace information for entries and exits to
OSEK service routines for a dual-core chip.

1. Set a Write breakpoint to the address indicated by TASK.CONFIG(magic_service[0]) and select
the trace action TraceEnable.

2. Set a Write breakpoint to the address indicated by TASK.CONFIG(magic_service[1]) and select
the trace action TraceEnable.

3. Start and stop the program execution to fill the trace buffer

Break.Set TASK.CONFIG(magic_service[0]) /Write /TraceEnable

Break.Set TASK.CONFIG(magic_service[1]) /Write /TraceEnable
Training Nexus Tracing | 244©1989-2024 Lauterbach

4. Display the result.
Training Nexus Tracing | 245©1989-2024 Lauterbach

The following two commands perform a statistical analysis of the OSEK service routines:

Trace.STATistic.TASKSRV [/SplitCORE] Statistic on service routines, result per core

(unknown) represents the time in which the
processor/core is not in an OSEK service routine
Training Nexus Tracing | 246©1989-2024 Lauterbach

Trace.Chart.TASKSRV [/SplitCORE] Time chart on service routines, result per core
Training Nexus Tracing | 247©1989-2024 Lauterbach

OSEK ISR2s

The time spent in OSEK interrupt service routines can be evaluated.

OSEK writes information on the start of an interrupt service routine to a defined variable per core as well as
the information NO_ISR. One way to export information on OSEK interrupt service routines is to advise the
NEXUS hardware module to generate trace information when a write access to these variables occurs.

The address of these variables is provided by the TRACE32 functions
TASK.CONFIG(magic_isr2[<core>]).

PRINT TASK.CONFIG(magic_isr2[0]) ; print the address of the variable
; that holds the interrupt service
; information for core 0

PRINT TASK.CONFIG(magic_isr2[1]) ; print the address of the variable
; that holds the interrupt service
; information for core 1

…

PRINT TASK.CONFIG(magic_isr2[n]) ; print the address of the variable
; that holds the interrupt service
; information for core n
Training Nexus Tracing | 248©1989-2024 Lauterbach

Example: Advise the NEXUS hardware module to generate only trace information on the start of an
interrupt service routine as well as on the information NO_ISR for a dual-core chip.

1. Set a Write breakpoint to the address indicated by TASK.CONFIG(magic_isr2[0]) and select the
trace action TraceEnable.

2. Set a Write breakpoint to the address indicated by TASK.CONFIG(magic_isr2[1]) and select the
trace action TraceEnable.

3. Start and stop the program execution to fill the trace buffer

Break.Set TASK.CONFIG(magic_isr2[0]) /Write /TraceEnable

Break.Set TASK.CONFIG(magic_isr2[1]) /Write /TraceEnable
Training Nexus Tracing | 249©1989-2024 Lauterbach

4. Display the result.
Training Nexus Tracing | 250©1989-2024 Lauterbach

The following commands perform a statistical analysis of the OSEK interrupt service routines:

Trace.STATistic.TASKINTR [/SplitCORE] Statistic on interrupt service routines, result per core
Training Nexus Tracing | 251©1989-2024 Lauterbach

 Trace.Chart.TASKINTR [/SplitCORE] Time chart on interrupt service routines, result per core
Training Nexus Tracing | 252©1989-2024 Lauterbach

Task-related OSEK ISR2s

OSEK interrupt service routines that occur in multiple tasks can be displayed per task, if the following
information is available:

• Task switch information per core

• ISR2 start and NO_ISR information per core

Example:

1. Advise the NEXUS hardware module to generate the following trace information for a dual-core
chip:

- task switches per core

- start of an interrupt service routine as well as on the information NO_ISR per core.
Training Nexus Tracing | 253©1989-2024 Lauterbach

2. Start and stop the program execution to fill the trace buffer.

Break.Set TASK.CONFIG(magic[0]) /Write /TraceEnable

Break.Set TASK.CONFIG(magic_isr2[0]) /Write /TraceEnable

Break.Set TASK.CONFIG(magic[1]) /Write /TraceEnable

Break.Set TASK.CONFIG(magic_isr2[1]) /Write /TraceEnable
Training Nexus Tracing | 254©1989-2024 Lauterbach

3. Display the result.
Training Nexus Tracing | 255©1989-2024 Lauterbach

The following commands allow to perform a statistical analysis of the OSEK interrupt service routines related
to the active tasks.

intr information that was generated before the first task information is assigned to the @(unknown) task.

Trace.STATistic.TASKVSINTR [/SplitCORE] Task-related statistic on interrupt service
routines, result per core

Trace.Chart.TASKVSINTR [/SplitCORE] Time-chart for task related interrupt service
routines, result per core
Training Nexus Tracing | 256©1989-2024 Lauterbach

Exporting Task Switches and all Instructions (Write Access)

General setup:

Statistic Analysis of Interrupts

Break.Set TASK.CONFIG(magic[0]) /Write /TraceData

Break.Set TASK.CONFIG(magic[1]) /Write /TraceData

…

; advise TRACE32 to regard the time between interrupt entry
; and exit as function
Trace.STATistic.InterruptIsFunction ON

Trace.Chart.INTERRUPT [/SplitCORE] Interrupt time chart (default), results split
up per core

Trace.Chart.INTERRUPT /CORE <n> Interrupt time chart for specified core

Trace.STATistic.INTERRUPT [/SplitCORE] Interrupt statistic (default), results split up
per core

Trace.STATistic.INTERRUPT /CORE <n> Interrupt statistic for specified core
Training Nexus Tracing | 257©1989-2024 Lauterbach

Statistic Analysis of Interrupts and Tasks

Trace.Chart.TASKORINTERRUPT [/SplitCORE] Time chart for interrupts and tasks
(default), results split up per core

Trace.Chart.TASKORINTERRUPT /CORE <n> Time chart for interrupts and tasks for
specified core

Trace.STATistic.TASKORINTERRUPT [/SplitCORE] Statistic for interrupts and tasks (default),
results split up per core

Trace.STATistic.TASKORINTERRUPT /CORE <n> Statistic for interrupts and tasks for
specified core
Training Nexus Tracing | 258©1989-2024 Lauterbach

Statistic Analysis of Interrupts in Tasks

Trace.Chart.TASKVSINTERRUPT [/SplitCORE] Interrupt time chart, task-related (default),
results split up per core

Trace.Chart.TASKVSINTERRUPT /CORE <n> Interrupt time chart task-related, for
specified core

Trace.STATistic.TASKVSINTERRUPT [/SplitCORE] Interrupt statistic, task-related (default),
results split up per core

Trace.STATistic.TASKVSINTERRUPT /CORE <n> Interrupt statistic, task-related, for
specified core
Training Nexus Tracing | 259©1989-2024 Lauterbach

Belated Trace Analysis (OS)

The TRACE32 Instruction Set Simulator can be used for a belated OS-aware trace evaluation. To set up the
TRACE32 Instruction Set Simulator for belated OS-aware trace evaluation proceed as follows:

1. Save the trace information for the belated evaluation to a file.

2. Set up the TRACE32 Instruction Set Simulator for a belated OS-aware trace evaluation (here
OSEK on a MPC5553):

Trace.SAVE belated__orti.ad

SYStem.CPU MPC5553 ; select the target CPU

SYStem.Up ; establish the
; communication between
; TRACE32 and the TRACE32
; Instruction Set
; Simulator

Trace.LOAD belated_orti.ad ; load the trace file

Data.Load.ELF my_app.out /NoCODE /GHS ; load the symbol and
; debug information

TASK.ORTI my_orti.ort ; load the ORTI file

Trace.List List.TASK DEFault ; display the trace
; listing
Training Nexus Tracing | 260©1989-2024 Lauterbach

Function Run-Times Analysis (Overview)

All commands for the function run-time analysis introduced in this chapter use the contents of the trace
buffer as base for their analysis.

If you use Branch History Tracing it is recommended to enable Program Trace Correlation Messages for
bl <func> and e_bl <func> instructions (saves return address in link register, then jumps to <func>)
(IEEE-ISTO 5001-2008 and subsequent standards only).

As a result function entries are timestamped in the trace.

Software under Analysis (no OS or OS)

For the use of the function run-time analysis it is helpful to differentiate between two types of application
software:

1. Software without operating system (abbreviation: no OS)

2. Software with an operating system (abbreviation: OS)

Flat vs. Nesting Analysis

TRACE32 provides two methods to analyze function run-times:

• Flat analysis

• Nesting analysis

NEXUS.HTM ON

NEXUS.PTCM BL_HTM ON ; generate Program Trace
; Correlation message when a
; “Branch and Link” instruction
; executes
Training Nexus Tracing | 261©1989-2024 Lauterbach

Basic Knowledge about Flat Analysis

The flat function run-time analysis bases on the symbolic instruction addresses of the trace entries. The time
spent by an instruction is assigned to the corresponding function/symbol region.

min shortest time continuously in the address range of the
function/symbol region

max longest time continuously in the address range of the
function/symbol region

main

func1

func2

func1
func3

func1

main

func1

func3

func1

main

maxmin

Entry of func1 Entry of func1

Exit of func1 Exit of func1
Training Nexus Tracing | 262©1989-2024 Lauterbach

Basic Knowledge about Nesting Analysis

The function nesting analysis analyses only high-level language functions.
Training Nexus Tracing | 263©1989-2024 Lauterbach

In order to display a nesting function run-time analysis TRACE32 analyzes the structure of the program
execution by processing the trace information. The focus is put on the transition between functions (see
picture above). The following events are of interest:

1. Function entries

2. Function exits

3. Entries to interrupt service routines

4. Exits of interrupt service routines

5. Entries to TRAP handlers (not implemented yet)

6. Exits of TRAP handlers (not implemented yet)

min shortest time within the function including all subfunctions and traps

max longest time within the function including all subfunctions and traps

func1

func2

interrupt_service1

main

func1

func2

func1

func3

func1

main

func1
func3

func1

main

Entry of func1 Entry of func1

Exit of func1 Exit of func1

max min
Training Nexus Tracing | 264©1989-2024 Lauterbach

Summary

The nesting analysis provides more details on the structure and the timing of the program run, but it is much
more sensitive then the flat analysis. Missing or tricky function exits for example result in a worthless nesting
analysis.
Training Nexus Tracing | 265©1989-2024 Lauterbach

Function Run-Times Analysis - Single

This chapter applies for single-core TRACE32 instances.

Flat Analysis

It is recommended to reduce the trace information generated by NEXUS to the required minimum.

• To avoid an overload of the NEXUS port.

• To make best use of the available trace memory.

• To get a more accurate timestamp.

Optimum NEXUS Configuration (No OS)

Flat function run-time analysis does not require any data information if no OS is used. That’s why it is
recommended to switch Data Trace Messaging off.

NEXUS.DTM OFF
Training Nexus Tracing | 266©1989-2024 Lauterbach

Optimum NEXUS Configuration (OS)

Your function time chart can include task information if you advise NEXUS to export the instruction flow and
task switches. For details refer to the chapter “OS-Aware Tracing (ORTI File)”, page 193.

Optimum Configuration 1 (if OSEK generated OTMs):

Optimum Configuration 2 (if OSEK does not support OTMs, NEXUS class 3 only):

Trace.Chart.sYmbol /TASK "TASK3"

NEXUS.OTM ON

Break.Set TASK.CONFIG(magic) /Write /TraceData
Training Nexus Tracing | 267©1989-2024 Lauterbach

Function Time Chart

TRACE32 PowerView provides a time chart which shows when the program counter was in which
function/symbol range.

Trace.Chart.sYmbol Display function time chart (no OS)

Trace.Chart.sYmbol [/MergeTASK] Display function time chart (OS but task
information is not of interest)

Pushing the Chart button in the Trace.List window
opens a Trace.Chart.sYmbol window
Training Nexus Tracing | 268©1989-2024 Lauterbach

(STOPPED): If the trace recording contains time periods in which the program execution was stopped, these
time periods are assigned to (STOPPED).

(FIFOFULL): If the trace recording contains time periods in which FIFO overflow was indicated, these time
periods are assigned to (FIFOFULL).
Training Nexus Tracing | 269©1989-2024 Lauterbach

Trace.Chart.sYmbol /SplitTASK Display function time chart including task
information (OS only)

@<task_name> Task name information

@(unknown) • Function was running before the OS was started

• Function was recorded before first task switch
information was recorded

(UNKNOWN)@ Message decoding not possible.

(other)@(unknown) No trace information available.
Training Nexus Tracing | 270©1989-2024 Lauterbach

Trace.Chart.sYmbol /TASK <task_name> Display function time chart for specified task
(OS only)

(other)@(other) All other trace information
Training Nexus Tracing | 271©1989-2024 Lauterbach

Did you know?

If Window is selected in the Chart Config window, the functions that are active at the selected point of time
are visualized in the scope of the Trace.Chart.sYmbol window. This is helpful especially if you scroll
horizontally.

For a detailed description of all options provided by the Chart Config window refer to the command
description of Trace.STATistic.Sort.

If you want to get the time chart only for a few functions, you can use the /Address option to list them.

More features to structure your trace analysis are introduced in “Structure the Trace Evaluation”, page
335.

Trace.Chart.sYmbol /Address <func1>||<func2>||…

Select Window
Training Nexus Tracing | 272©1989-2024 Lauterbach

Numeric Analysis

Analog to the timing diagram also a numerical analysis is provided.

survey

item number of recorded functions/symbol regions

total time period recorded by the trace

samples total number of recorded changes of functions/symbol regions
(instruction flow continuously in the address range of a
function/symbol region)
Training Nexus Tracing | 273©1989-2024 Lauterbach

Only the grey rows provide useful information about the run-time of a function/symbol range.

function details

address function/symbol region name

(other) program sections that can not be assigned to a
function/symbol region

total time period in the function/symbol region during the recorded time
period

min shortest time continuously in the address range of the
function/symbol region

max longest time continuously in the address range of the
function/symbol region

avr average time continuously in the address range of the
function/symbol region (calculated as total/count)

count number of new entries (start address executed) into the address
range of the function/symbol region

ratio ratio of time in the function/symbol region with regards to the total
time period recorded
Training Nexus Tracing | 274©1989-2024 Lauterbach

Trace.STATistic.sYmbol Flat function run-time analysis (no OS)
- numerical display

Trace.STATistic.sYmbol [/MergeTASK] Flat function run-time analysis (OS)
- numerical display
- no task information

Trace.STATistic.sYmbol /SplitTASK Flat function run-time analysis (OS)
- numerical display including task
 information

Trace.STATistic.sYmbol /TASK <task_name> Flat function run-time analysis (OS)
- numerical display for specified task

Pushing the Config button provides the possibility to specify a different
sorting criterion for the address column or a different column layout.
By default the functions/symbol regions are sorted by their recording order.
Training Nexus Tracing | 275©1989-2024 Lauterbach

Nesting Analysis

Restrictions

1. The nesting analysis analyses only high-level language functions.

2. The nested function run-time analysis expects common ways to enter/exit functions.

3. The nesting analysis is sensitive with regards to FIFOFULLs.

Optimum NEXUS Configuration (No OS)

The nesting function run-time analysis doesn’t require any data information if no OS is used. That’s why it is
recommended to switch the export of data information off.

NEXUS.DTM OFF
Training Nexus Tracing | 276©1989-2024 Lauterbach

Optimum NEXUS Configuration (OS)

TRACE32 PowerView builds up a separate call tree for each task.

In order to hook a function entry/exit into the correct call tree, TRACE32 PowerView needs to know which
task was running when the entry/exit occurred.

The standard way to get information on the current task is to advise the NEXUS to export the instruction flow
and task switches. For details refer to the chapter “OS-Aware Tracing (ORTI File)”, page 193.

Optimum Configuration 1 (if OSEK generated OTMs):

Optimum Configuration 2 (if OSEK does not support OTMs, NEXUS class 3 only):

Trace.STATistic.TREE /TASK "Cyclic"

NEXUS.OTM ON

; default setting since 2015-01
Trace.STATistic.InterruptIsFunction ON

Break.Set TASK.CONFIG(magic) /Write /TraceData

; default setting since 2015-01
Trace.STATistic.InterruptIsFunction ON
Training Nexus Tracing | 277©1989-2024 Lauterbach

Items under Analysis

In order to prepare the results for the nesting analysis TRACE32 post-processes the instruction flow to find:

• Function entries

The execution of the first instruction of an HLL function is regarded as function entry.

Additional identifications for function entries are implemented depending on the processor
architecture and the used compiler.

Trace.Chart.Func ; function func10 as
; example

Trace.List /Track
Training Nexus Tracing | 278©1989-2024 Lauterbach

• Function exits

A RETURN instruction within an HLL function is regarded as function exit.

Additional identifications for function exits are implemented depending on the processor
architecture and the used compiler.
Training Nexus Tracing | 279©1989-2024 Lauterbach

• Entries to interrupt service routines (asynchronous)

If an indirect branch to the Interrupt Vector Table occurs, an interrupt entry is detected. The interrupt
function gets the name VTABLE+<offset> if no symbol is specified.

• Exits of interrupt service routines

RETURN FROM INTERRUPT is regarded as exit of the interrupt function.

• Entries to TRAP handlers (not implemented yet)

• Exits of TRAP handlers (not implemented yet)

• Task switches

Task switches are needed to build correct call trees if a target operating system is used.
Training Nexus Tracing | 280©1989-2024 Lauterbach

Numerical Nested Function Run-time Analysis for all Software

Trace.STATistic.Func Nested function run-time analysis
- numeric display

survey

funcs: <number> number of functions in the trace

total: <time> total measurement time

intr: <time> total time in interrupt service routines
Training Nexus Tracing | 281©1989-2024 Lauterbach

The main reasons for all the issues are code optimizations.

survey (issue indication)

stopped: <time> The analyzed trace recording contains program stops. <time>
indicates the total time the program execution was stopped.

<number> problems The nested analysis contains problems. Please contact
support@lauterbach.com.

<number> workarounds The nested analysis contains issues, but TRACE32 found solutions
for them. It is recommended to perform a sanity check on the
proposed solutions.

stack overflow at
<record>

The nested analysis exceeds the nesting level 200. It is highly likely
that the function exit for an often called function is missing. The
command Trace.STATistic.TREE can help you to identify the
function. If you need further help please contact
support@lauterbach.com.

stack underflow at
<record>

The nested analysis exceeds the nesting level 200. It is highly likely
that the function entry for an often executed function is missing. The
command Trace.STATistic.TREE can help you to identify the
function. If you need further help please contact
support@lauterbach.com.
Training Nexus Tracing | 282©1989-2024 Lauterbach

• HLL function

• (root)

The function nesting is regarded as tree, (root) is the root of the function nesting.

• Interrupt service routine

• HLL trap handler (not implemented yet)

columns

range (NAME) function name, sorted by their recording order as default
Training Nexus Tracing | 283©1989-2024 Lauterbach

columns (cont.)

total total time within the function

min shortest time between function entry and exit, time spent in interrupt
service routines is excluded

No min time is displayed if a function exit was never executed.

max longest time between function entry and exit, time spent in interrupt
service routines is excluded

avr average time between function entry and exit, time spent in interrupt
service routines is excluded
Training Nexus Tracing | 284©1989-2024 Lauterbach

If function entries or exits are missing, this is displayed in the following format:

<times within the function >. (<number of missing function entries>/<number of missing function exits>).

Interpretation examples:

1. 2. (2/0): 2 times within the function, 2 function entries missing

2. 4. (0/3): 4 times within the function, 3 function exits missing

3. 11. (1/1): 11 times within the function, 1 function entry and 1 function exit is missing.

columns (cont.)

count number of times within the function

If the number of missing function entries or exits is higher the 1 the analysis
performed by the command Trace.STATistic.Func might fail due to nesting
problems. A detailed view to the trace contents is recommended.

columns (cont.)

intern%
(InternalRatio,
InternalBAR.LOG)

ratio of time within the function without subfunctions, TRAP
handlers, interrupts
Training Nexus Tracing | 285©1989-2024 Lauterbach

columns (cont.) - times only in function

Internal total time between function entry and exit without called sub-functions,
TRAP handlers, interrupt service routines

IAVeRage average time between function entry and exit without called sub-
functions, TRAP handlers, interrupt service routines

IMIN shortest time between function entry and exit without called sub-
functions, TRAP handlers, interrupt service routines

IMAX longest time spent in the function between function entry and exit without
called sub-functions, TRAP handlers, interrupt service routines

InternalRatio <Internal time of function>/<Total measurement time> as a numeric
value.

InternalBAR <Internal time of function>/<Total measurement time> graphically.

Pushing the Config… button allows to display additional columns
Training Nexus Tracing | 286©1989-2024 Lauterbach

columns (cont.) - times in sub-functions and TRAP handlers

External total time spent within called sub-functions/TRAP handlers

EAVeRage average time spent within called sub-functions/TRAP handlers

EMIN shortest time spent within called sub-functions/TRAP handlers

EMAX longest time spent within called sub-functions/TRAP handlers

columns (cont.) - interrupt times

ExternalINTR total time the function was interrupted

ExternalINTRMAX max. time one function pass was interrupted

INTRCount number of interrupts that occurred during the function run-time
Training Nexus Tracing | 287©1989-2024 Lauterbach

The following graphic give an overview how times are calculated:

Entry to func1

func2

TRAP1

func3

interrupt 1

Exit of func1

To
ta

l o
f

(r
o

o
t)

Start of measurement

End of measurement

To
ta

l o
f

fu
n

c1

In
te

rn
al

 o
f

fu
n

c1

E
xt

er
n

al
 o

f
fu

n
c1

E
xt

er
n

al
IN

T
R

 o
f

fu
n

c1

Entry to func1

Exit of func1

Exit of func1

Entry to func1
Training Nexus Tracing | 288©1989-2024 Lauterbach

Additional Statistics Items for OS

• HLL function

HLL function “func2” running in task “Cyclic”

• Root of call tree for task “Cyclic”

• Unknown task

Before the first task switch is found in the trace, the task is unknown

• Root of unknown task
Training Nexus Tracing | 289©1989-2024 Lauterbach

columns - task/thread related information

TASKCount number of tasks that interrupt the function

ExternalTASK total time in other tasks

ExternalTASKMAX max. time 1 function pass was interrupted by a task
Training Nexus Tracing | 290©1989-2024 Lauterbach

Entry to func1 in TASK1

func2 in TASK1

TASK2

func2 in TASK1

func3 in TASK1

TRAP1 in TASK1

func4 in TASK1

TASK3

func4 in TASK1

interrupt1 in TASK1

Exit of func1 in TASK1

To
ta

l o
f

(r
o

o
t)

@
ro

o
t

Start of measurement

First entry to TASK1

Last exit of TASK1

To
ta

l o
f

(r
o

o
t)

@
TA

S
K

1

In
te

rn
al

 o
f

fu
n

c1
@

TA
S

K
1

E
xt

er
n

al
 o

f
fu

n
c1

@
TA

S
K

1

E
xt

er
n

al
IN

T
R

 o
f

fu
n

c1
@

TA
S

K
1

E
xt

er
n

al
TA

S
K

 o
f

fu
n

c1
@

TA
S

K
1

First task switch recorded to trace

To
ta

l o
f

fu
n

c1
@

TA
S

K
1

Entry to func1 in TASK1

Exit of func1 in TASK1
Training Nexus Tracing | 291©1989-2024 Lauterbach

Timing Improvements for OS

The standard NEXUS settings do often not allow to locate exactly the instructions that are already executed
by a newly activated task. This is especially true is Branch History Messaging is used. This might disturb the
task-aware function run-time measurement.

An instruction-accurate assignment of the task switches may improve the results.

IEEE-ISTO 5001-2008 and Subsequent Standards

The Ownership Trace Messages (task switches) can be exactly assigned to an instruction, if the following
setting is done.

Alternative

NEXUS.PTCM PID_MSR ON ; enable Program Trace Correlation
; Messages for PID0/NPIDR accesses

NEXUS.POTD ON ; disable Periodic Ownership Trace
; Messages

; mark instruction that performs the task switch for the task-aware
; function run-time analysis
sYmbol.MARKER.Create TASKSWITCH osDispatcher+0x100
Training Nexus Tracing | 292©1989-2024 Lauterbach

Problems and Workarounds for OS

TRACE32 analyzes the structure of the program execution by processing the trace information in order to
provide the nesting statistic. The objective is to construct a complete call tree. When a OS is used, it is more
likely the TRACE32 has issues while construction the call tree. There are two types of issues:

• PROBLEMS

A PROBLEM is a point it the trace recording that TRACE32 can not integrate into the current
nesting. TRACE32 does not discard this point for the call tree, it integrates this point by assigning
a meaningful interpretation.

TRACE32 marks functions that include a PROBLEM with ! in the count column.

• WORKAROUNDS

A WORKAROUND is a point it the trace recording that TRACE32 can not integrate into the
current nesting. But TRACE32 integrates this point into the function nesting, by supplementing
information based on previous scenarios in the nesting. TRACE32 marks functions that include a
WORKAROUND with ? in the count column.

It is recommended to drag the count column wider to see all details.

The following two TRACE32 windows are recommended if you want to inspect the issues:

Trace.ListNesting

Trace.List List.TASK List.ADDRESS List.sYmbol DEFault /Track
Training Nexus Tracing | 293©1989-2024 Lauterbach

Example 1: We inspect the problem with the function EE_oo_TerminateTask.

We start to search for the entry to the function EE_oo_TerminateTask in the task Task2 in the
Trace.ListNesting window.

In the screenshot above we can see that the exit from the function EE_oo_TerminateTask is marked as a
problem. Why is that?
Training Nexus Tracing | 294©1989-2024 Lauterbach

Let's examine the function EE_oo_TerminateTask by looking to the trace listing.

In its execution the function EE_oo_TerminateTask calls the function EE_hal_terminate_task.

Now one would expect the function EE_hal_terminate_task returns with the se_blr instruction to the calling
function (which was EE_oo_TerminateTask). But if we look at the trace listing, we see that the program
execution continued in the middle of the function EE_std_run_task_code.

execution of the function EE_hal_terminate_task
Training Nexus Tracing | 295©1989-2024 Lauterbach

But since function EE_std_run_task_code+0x10 does not fit into the call tree and the function
EE_oo_TerminateTask does not continue later in the trace recording, TRACE32 adds the function exit of
EE_oo_TerminateTask to the call tree and marks it with !.
Training Nexus Tracing | 296©1989-2024 Lauterbach

More Nesting Analysis Commands

Look and Feel (No OS)

Trace.STATistic.FuncDURation <function> Detailed analysis of a single function, time between
function entry and exit, time spent in interrupt service
routines is excluded.
Training Nexus Tracing | 297©1989-2024 Lauterbach

Look and Feel (OS)

Detailed analysis of a single function, time between function entry and exit, time spent in interrupt
service routines and other tasks is excluded.

Trace.STATistic.FuncDURation <function> [/TASK "<task_name>"]
Training Nexus Tracing | 298©1989-2024 Lauterbach

Please be aware, that details are shown for all function runs. If you are interested in a task-specific analysis,
you have to use the /TASK "<task_name>" option.
Training Nexus Tracing | 299©1989-2024 Lauterbach

Look and Feel (No OS)

Look and Feel (OS)

Trace.Chart.Func Nested function run-time analysis
- graphical display
Training Nexus Tracing | 300©1989-2024 Lauterbach

Look and Feel (No OS)

Trace.STATistic.TREE Nested function run-time analysis
- tree display
Training Nexus Tracing | 301©1989-2024 Lauterbach

Look and Feel (OS)

It is also possible to get a task-specific tree.

Trace.STATistic.TREE /TASK "Cyclic"
Training Nexus Tracing | 302©1989-2024 Lauterbach

Look and Feel (No OS)

Trace.STATistic.LINKage <address> Nested function run-time analysis
- linkage analysis
Training Nexus Tracing | 303©1989-2024 Lauterbach

Look and Feel (OS)
Training Nexus Tracing | 304©1989-2024 Lauterbach

Third-party Timing Tools

TRACE32 also provides an interface to third-party timing tools. For details refer to “Trace Export for Third-
Party Timing Tools” (app_timing_tools.pdf).
Training Nexus Tracing | 305©1989-2024 Lauterbach

Function Run-Times Analysis - SMP Instance

This chapter applies for SMP TRACE32 instances.

Flat Analysis

It is recommended to reduce the trace information generated by NEXUS to the required minimum.

• To avoid an overload of the NEXUS port.

• To make best use of the available trace memory.

• To get a more accurate timestamp.

Optimum NEXUS Configuration (No OS)

Flat function run-time analysis does not require any data information if no OS is used. That’s why it is
recommended to switch the broadcasting of data information off.

NEXUS.DTM OFF
Training Nexus Tracing | 306©1989-2024 Lauterbach

Optimum NEXUS Configuration (OS)

Your function time chart can include task information if you advise NEXUS to export the instruction flow and
task switches. For details refer to the chapter OS-Aware Tracing of this training.

Optimum Configuration 1 (if OSEK generated OTMs):

Optimum Configuration 2 (if OSEK does not support OTMs, NEXUS class 3 only):

Trace.Chart.sYmbol /TASK "TASKRCV1"

NEXUS.OTM ON

Break.Set TASK.CONFIG(magic[0]) /Write /TraceData
Break.Set TASK.CONFIG(magic[1]) /Write /TraceData
…

Training Nexus Tracing | 307©1989-2024 Lauterbach

Function Timing Diagram

TRACE32 PowerView provides a timing diagram which shows when the program counter was in which
function/symbol range.

Trace.Chart.sYmbol [/SplitCore /Sort CoreTogether] Flat function run-time analysis
- graphical display
- split the result per core
- sort results per core and then per
recording order

Pushing the Chart button in the Trace.List window
opens a Trace.Chart.sYmbol window
Training Nexus Tracing | 308©1989-2024 Lauterbach

Trace.Chart.sYmbol [/SplitCore] /Sort CoreSeparated Flat function run-time analysis
- graphical display
- split the result per core
- sort the results per recording order

Trace.Chart.sYmbol /MergeCore Flat function run-time analysis
- graphical display
- merge the results of all cores
Training Nexus Tracing | 309©1989-2024 Lauterbach

Function Timing Diagram (Including Task Information)

Default setting
Trace.Chart.sYmbol [/MergeTASK] [/SplitCore /Sort CoreTogether]

Display function time chart with task information
Trace.Chart.sYmbol /SplitTASK [/SplitCore /Sort CoreTogether]

@<task_name> Task name information

@(unknown) • Function was running before the OS was started

• Function was recorded before first task switch information
was recorded

(root)@(unknown) No trace information available
Training Nexus Tracing | 310©1989-2024 Lauterbach

Display function time chart for the specified task
Trace.Chart.sYmbol /TASK <task_name> [/SplitCore /Sort CoreTogether]

@<task_name> Functions running while the specified task was running

(root)@(unknown) All other trace information
Training Nexus Tracing | 311©1989-2024 Lauterbach

Did you know?

If Window and CoreSeparated is selected in the Chart Config window, the functions that are active at the
selected point of time are visualized in the scope of the Trace.Chart.sYmbol window. This is helpful
especially if you scroll horizontally.

For a detailed description of all Sort options provided by the Chart Config window refer to the command
description of Trace.STATistic.Sort.

Select Window
and
CoreSeparated
Training Nexus Tracing | 312©1989-2024 Lauterbach

Numeric Analysis

Analog to the timing diagram also a numerical analysis is provided.

survey

item number of recorded functions/symbol regions

total time period recorded by the trace

samples total number of recorded changes of functions/symbol regions
(instruction flow continuously in the address range of a
function/symbol region)
Training Nexus Tracing | 313©1989-2024 Lauterbach

function details

address function/symbol region name

(other) program sections that can not be assigned to a
function/symbol region
(UNKNOWN) program sections that can not be decoded

total time period in the function/symbol region during the recorded time
period

min shortest time continuously in the address range of the
function/symbol region

max longest time continuously in the address range of the
function/symbol region

avr average time continuously in the address range of the
function/symbol region (calculated as total/count)

count number of new entries (start address executed) into the address
range of the function/symbol region

ratio ratio of time in the function/symbol region with regards to the total
time period recorded
Training Nexus Tracing | 314©1989-2024 Lauterbach

Trace.STATistic.sYmbol /MergeCORE Flat function run-time analysis
- numerical display
- merge the results of all cores

Trace.STATistic.sYmbol /Sort CoreSeparated Flat function run-time analysis
- numerical display
- split the result per core
- sort the results per recording order

Trace.STATistic.sYmbol [/MergeTASK] Flat function run-time analysis (OS)
- numerical display
- no task information

Trace.STATistic.sYmbol /SplitTASK Flat function run-time analysis (OS)
- numerical display including task
 information

Trace.STATistic.sYmbol /TASK <task_name> Flat function run-time analysis (OS)
- numerical display for specified task
Training Nexus Tracing | 315©1989-2024 Lauterbach

Nesting Analysis

Restrictions

1. The nesting analysis analyses only high-level language functions.

2. The nested function run-time analysis expects common ways to enter/exit functions.

3. The nesting analysis is sensitive with regards to FIFOFULLs.
Training Nexus Tracing | 316©1989-2024 Lauterbach

Optimum NEXUS Configuration (OS)

TRACE32 PowerView builds up a separate call tree for each task.

In order to hook a function entry/exit into the correct call tree, TRACE32 PowerView needs to know which
task was running when the entry/exit occurred.

The standard way to get information on the current task is to advise the NEXUS to export the instruction flow
and task switches. For details refer to the chapter OS-Aware Tracing of this training.

Optimum Configuration 1 (if OSEK generated OTMs):

Optimum Configuration 2 (if OSEK does not support OTMs, NEXUS class 3 only):

Trace.STATistic.TREE /TASK "TASKRCV1"

NEXUS.OTM ON

Trace.STATistic.InterruptIsFunction ON

Break.Set TASK.CONFIG(magic[0]) /Write /TraceData
Break.Set TASK.CONFIG(magic[1]) /Write /TraceData
…

Trace.STATistic.InterruptIsFunction ON
Training Nexus Tracing | 317©1989-2024 Lauterbach

Numerical Nested Function Run-time Analysis for all Software

• Task-specific function run-time analysis, core information is discarded.

• Functions that can not be assigned to a task are assigned to the (@unknown) task, per core
display.

• Interrupt service routines are assigned to (@interrupt) task, per core display.

Trace.STATistic.Func Nested function run-time analysis
- numeric display
Training Nexus Tracing | 318©1989-2024 Lauterbach

• HLL function, task specific

HLL function “OSWaitRC” running in task “TASKRCV1”

• Root of task-specific call tree

(root) of call tree for task TASKRCV1

survey

func number of functions in the trace

total total measurement time

intr total time in interrupt service routines

columns

range (NAME) function name, sorted by their recording order as default
Training Nexus Tracing | 319©1989-2024 Lauterbach

• Indirect branch into interrupt vector table

• Interrupt service function

• Root of @(interrupt)

TRACE32 assigns all trace information generated before the first task switch to the @(unknown) task.
Training Nexus Tracing | 320©1989-2024 Lauterbach

columns (cont.)

total total time within the function

min shortest time between function entry and exit, time spent in interrupt
service routines is excluded

No min time is displayed if a function exit was never executed.

max longest time between function entry and exit, time spent in interrupt
service routines is excluded

avr average time between function entry and exit, time spent in interrupt
service routines is excluded
Training Nexus Tracing | 321©1989-2024 Lauterbach

If function entries or exits are missing, this is displayed in the following format:

<times within the function >. (<number of missing function entries>/<number of missing function exits>).

Interpretation examples:

1. 2. (2/0): 2 times within the function, 2 function entries missing

2. 4. (0/3): 4 times within the function, 3 function exits missing

3. 11. (1/1): 11 times within the function, 1 function entry and 1 function exit is missing.

columns (cont.)

count number of times within the function

If the number of missing function entries or exits is higher the 1 the analysis
performed by the command Trace.STATistic.Func might fail due to nesting
problems. A detailed view to the trace contents is recommended.

columns (cont.)

intern%
(InternalRatio,
InternalBAR.LOG)

ratio of time within the function without subfunctions and interrupts
Training Nexus Tracing | 322©1989-2024 Lauterbach

columns (cont.) - times only in function

Internal total time between function entry and exit without called sub-functions,
TRAP handlers, interrupt service routines

IAVeRage average time between function entry and exit without called sub-
functions, TRAP handlers, interrupt service routines

IMIN shortest time between function entry and exit without called sub-
functions, TRAP handlers, interrupt service routines

IMAX longest time spent in the function between function entry and exit without
called sub-functions, TRAP handlers, interrupt service routines

InternalRatio <Internal time of function>/<Total measurement time> as a numeric
value.

InternalBAR <Internal time of function>/<Total measurement time> graphically.

Pushing the Config… button allows to display additional columns
Training Nexus Tracing | 323©1989-2024 Lauterbach

columns (cont.) - times in sub-functions and TRAP handlers

External total time spent within called sub-functions/TRAP handlers

EAVeRage average time spent within called sub-functions/TRAP handlers

EMIN shortest time spent within called sub-functions/TRAP handlers

EMAX longest time spent within called sub-functions/TRAP handlers

columns (cont.) - interrupt times

ExternalINTR total time the function was interrupted

ExternalINTRMAX max. time one function pass was interrupted

INTRCount number of interrupts that occurred during the function run-time

columns - task/thread related information

TASKCount number of tasks that interrupt the function

ExternalTASK total time in other tasks

ExternalTASKMAX max. time 1 function pass was interrupted by a task
Training Nexus Tracing | 324©1989-2024 Lauterbach

Entry to func1 in TASK1

func2 in TASK1

TASK2

func2 in TASK1

func3 in TASK1

TRAP1 in TASK1

func4 in TASK1

TASK3

func4 in TASK1

interrupt1 in TASK1

Exit of func1 in TASK1

To
ta

l o
f

(r
o

o
t)

@
ro

o
t

Start of measurement

First entry to TASK1

Last exit of TASK1

To
ta

l o
f

(r
o

o
t)

@
TA

S
K

1

In
te

rn
al

 o
f

fu
n

c1
@

TA
S

K
1

E
xt

er
n

al
 o

f
fu

n
c1

@
TA

S
K

1

E
xt

er
n

al
IN

T
R

 o
f

fu
n

c1
@

TA
S

K
1

E
xt

er
n

al
TA

S
K

 o
f

fu
n

c1
@

TA
S

K
1

First task switch recorded to trace

To
ta

l o
f

fu
n

c1
@

TA
S

K
1

Entry to func1 in TASK1

Exit of func1 in TASK1
Training Nexus Tracing | 325©1989-2024 Lauterbach

Timing Improvements for OS

The standard NEXUS settings do often not allow to locate exactly the instructions that are already executed
by a newly activated task. This is especially true is Branch History Messaging is used. This might disturb the
task-aware function run-time measurement.

An instruction-accurate assignment of the task switches may improve the results.

IEEE-ISTO 5001-2008 and Subsequent Standards

The Ownership Trace Messages (task switches) can be exactly assigned to an instruction, if the following
setting is done.

Alternative

NEXUS.PTCM PID_MSR ON ; enable Program Trace Correlation
; Messages for PID0/NPIDR accesses

NEXUS.POTD ON ; disable Periodic Ownership Trace
; Messages

; mark instruction that performs the task switch for the task-aware
; function run-time analysis
sYmbol.MARKER.Create TASKSWITCH osDispatcher+0x100
Training Nexus Tracing | 326©1989-2024 Lauterbach

More Nesting Analysis Commands

Detailed analysis of a single function, time between function entry and exit, time spent in interrupt
service routines and other tasks is excluded.

Trace.STATistic.FuncDURation <function> [/TASK "<task_name>"] [/FilterCORE "<core_number>"]
Training Nexus Tracing | 327©1989-2024 Lauterbach

Please be aware, that details are shown for all function runs. If you are interested in a task-specific analysis
you have to use the /TASK "<task_name>" option.
Training Nexus Tracing | 328©1989-2024 Lauterbach

The @(interrrupt) and the @(unknown) task are split up per core.
Training Nexus Tracing | 329©1989-2024 Lauterbach

Please be aware, that details are shown for all function runs. If you are interested in a core-specific analysis
you have to use the /FilterCORE <core_number> option.
Training Nexus Tracing | 330©1989-2024 Lauterbach

Trace.Chart.Func Nested function run-time analysis
- graphical display
Training Nexus Tracing | 331©1989-2024 Lauterbach

It is also possible to get a task-specific tree.

Trace.STATistic.TREE Nested function run-time analysis
- tree display

Trace.STATistic.TREE /TASK "TASKRCV1"
Training Nexus Tracing | 332©1989-2024 Lauterbach

Trace.STATistic.LINKage <address> Nested function run-time analysis
- linkage analysis
Training Nexus Tracing | 333©1989-2024 Lauterbach

Third-party Timing Tools

TRACE32 also provides an interface to third-party timing tools. For details refer to “Trace Export for Third-
Party Timing Tools” (app_timing_tools.pdf).
Training Nexus Tracing | 334©1989-2024 Lauterbach

Structure the Trace Evaluation

The command group GROUP allows to structure the software for the trace evaluation. This is especially
useful if the software consists of a huge number of functions/modules.

GROUP Creation

If the command GROUP.Create is entered without parameters, the Group.Create dialog is opened.

The basic setup for a GROUP includes the following steps:

1. Specify the GROUP name.

GROUP.Create

GROUP name

GROUP members

GROUP attributes
Training Nexus Tracing | 335©1989-2024 Lauterbach

2. Specify the GROUP members.

GROUPS are address ranges, so you can use functions, modules, or programs to specify the group
members.

A new group member is selected by a double-click.

Open the symbol data base
to select the group members
Training Nexus Tracing | 336©1989-2024 Lauterbach

3. Specify the GROUP color and close the dialog with Ok.

The GROUP color is used to mark the GROUP members in the trace analysis windows.

4. Display the GROUP information.

5. Push the Store… button, if you want to generate a scipt that allows you to re-set the
specified groups at any time.
Training Nexus Tracing | 337©1989-2024 Lauterbach

; script group_settings.cmm
B::

 GROUP.RESET
 GROUP.CREATE "my_group" \\diabc\diabc\func10 /OLIVE
 GROUP.CREATE "my_group" \\diabc\diabc\func11 /OLIVE
 GROUP.CREATE "my_group" \\diabc\diabc\func13 /OLIVE
 GROUP.CREATE "my_group" \\diabc\diabc\func14 /OLIVE
 GROUP.CREATE "my_group" \\diabc\diabc\func15 /OLIVE
 GROUP.CREATE "my_group" \\diabc\diabc\func16 /OLIVE
 GROUP.CREATE "my_group" \\diabc\diabc\func17 /OLIVE
 GROUP.CREATE "my_group" \\diabc\diabc\func18 /OLIVE
 GROUP.CREATE "my_group" \\diabc\diabc\func19 /OLIVE
 GROUP.CREATE "my_group" \\diabc\diabc\func20 /OLIVE

 ENDDO
Training Nexus Tracing | 338©1989-2024 Lauterbach

Working with GROUPs

The GROUP status determines the appearance of a GROUP in the trace display and analysis windows. The
following three statuses are available:

• ENable

• ENable + Merge

• ENable + HIDE

GROUP Status ENable

TRACE32 provide the following features if a GROUP has the status ENable:

1. GROUP members are marked in the Trace Listing by their group color.
Training Nexus Tracing | 339©1989-2024 Lauterbach

2. Special statistic commands are provide for the GROUPS.

Trace.STATistic.GROUP Group-based run-time analysis.

Trace.Chart.GROUP Group-based time chart.
Training Nexus Tracing | 340©1989-2024 Lauterbach

GROUP Status ENable + Merge

TRACE32 provide the following feature if a GROUP has the status ENable and Merge:

The GROUP represents its members in all trace analysis window. No details about the GROUP
members are displayed.
Training Nexus Tracing | 341©1989-2024 Lauterbach

GROUP Status ENable + HIDE

TRACE32 provide the following feature if a GROUP has the status ENable and HIDE:

1. The GROUP represents its members in all trace analysis window. No details about the
GROUP members are displayed.

2. The trace information recorded for the GROUP members is hidden in the Trace Listing.
Training Nexus Tracing | 342©1989-2024 Lauterbach

Trace-based Code Coverage

The manual “Application Note for Trace-Based Code Coverage” (app_code_coverage.pdf) gives a
detailed introduction to the trace-based code coverage.

Since the core information is discarded for trace-based code coverage, there is no difference between
single-core and SMP TRACE32 instances with regard to this feature.

It is recommended to enable Branch History Messaging for Code Coverage. This advises the Nexus module
to generate the trace messages in a compact way.

Incremental Code Coverage has to be used in the following situations:

• POWERTRACE/ETHERNET as universal debug and trace hardware

• POWER TRACE PX as universal trace hardware

• On-chip trace memory

• High-bandwidth trace interfaces

NEXUS.BTM ON

NEXUS.HTM ON
Training Nexus Tracing | 343©1989-2024 Lauterbach

	Training Nexus Tracing
	Basic Knowledge
	NEXUS Characteristics
	Limited Bandwidth
	Branch Trace Messages (All NEXUS Classes)
	Indirect Branch History Messages (All NEXUS Classes)
	Data Trace Messages (NEXUS Class 3 only)
	Ownership Trace Messages (All NEXUS Modules)
	Watchpoint Trace Messages (All NEXUS Classes)
	Data Acquisition Messages (IEEE-ISTO 5001-2008/2012 and NEXUS Class 3 only)

	Multicore Tracing
	AMP Tracing
	SMP Tracing

	Source for the Recorded Trace Information

	NEXUS Configuration by TRACE32
	Configuration of the Trace Interface
	Parallel Interface
	Serial Interface
	Trace to Memory
	Multicore Tracing

	Configuration of the NEXUS Messages
	Basic Messages
	Additional Messages for IEEE-ISTO 5001-2008 and IEEE-ISTO 5001-2012
	Add Timestamps to NEXUS Messages (MPC57xx/SPC57x only)
	Multicore Tracing

	NEXUS Trace Clients
	Trace Client Types
	Configuration

	Target FIFO Overflow
	Diagnosis
	Stall Program Execution on Overflow Threat
	Suppress Data Trace Messages on Overflow Threat
	Further Countermeasures

	FlowErrors

	Displaying the Trace Content
	Sources of Information for the Trace Display
	Settings in the Trace Configuration Window
	Recording Modes
	States of the Trace
	The AutoInit Command
	Multicore Tracing

	Basic Display Commands
	Default Listing
	Basic Formatting
	Correlating the Trace Listing with the Source Listing
	Browsing through the Trace Buffer

	Display Items
	Default Display Items
	Further Display Items

	Time Synchronization between TRACE32 Instances (AMP)
	Setup
	Utilization

	Find a Specific Record
	Belated Trace Analysis
	Save the Trace Information to an ASCII File
	Postprocessing with TRACE32 Instruction Set Simulator

	Trace-based Debugging (CTS)
	Re-Run the Program
	Setup
	Get Started
	Forward and Backward Debugging

	Re-Run the Program and Watch the Variables
	Setup
	Get Started
	Forward and Backward Debugging
	Details on HLL Instructions

	CTS Technique

	Filter and Trigger (Core) Overview
	Resources

	Filter and Trigger (Core) - Single Core
	Examples for TraceEnable on Instructions
	Example for TraceEnable on Instruction Range
	Examples for TraceEnable on Read/Write Accesses
	Example for TraceData
	Examples for TraceON/TraceOFF
	Global TraceON/Trace OFF
	ProgramTraceON/Trace OFF
	DataTraceON/Trace OFF

	Example for TraceTrigger
	Example for TraceTrigger with a Trigger Delay
	Example for BusTrigger
	Example for BusCount (Watchpoint)

	Filter and Trigger (Core) - SMP Debugging
	Examples for TraceEnable on Single Instruction
	Examples for TraceEnable on Instruction Range
	Examples for TraceEnable on Read/Write Accesses
	Example for TraceData
	Examples for TraceON/TraceOFF
	Global TraceON/Trace OFF
	ProgramTraceON/TraceOFF
	DataTraceON/Trace OFF

	Example for TraceTrigger
	Example for TraceTrigger with a Trigger Delay
	Example for BusTrigger
	Example for BusCount (Watchpoint)

	Filter and Trigger (Trace Clients)
	Example for TraceEnableClient1

	OS-Aware Tracing (ORTI File)
	Activate the TRACE32 OS Awareness
	Exporting Task Information (Overview)

	OS-Aware Tracing - Single Core
	Exporting all Types of Task Information (OTM)
	Statistic Analysis of Task Switches
	Statistic Analysis of OSEK Service Routines
	Statistic Analysis of OSEK ISR2s
	Statistic Analysis of Task-related OSEK ISR2s

	Exporting all Types of Task Information and all Instructions (OTM)
	Statistic Analysis of Interrupts
	Statistic Analysis of Interrupts and Tasks
	Statistic Analysis of Interrupts in Tasks

	Exporting Task Information (Write Access)
	Task Switches
	OSEK Service Routines
	OSEK ISR2s
	Task-related OSEK ISR2s

	Exporting Task Switches and all Instructions (Write Access)
	Statistic Analysis of Interrupts
	Statistic Analysis of Interrupts and Tasks
	Statistic Analysis of Interrupts in Tasks

	Belated Trace Analysis (OS)

	OS-Aware Tracing - SMP Systems
	Exporting all Types of Task Information (OTM)
	Statistic Analysis of Task Switches
	Statistic Analysis of OSEK Service Routines
	Statistic Analysis of OSEK ISR2s
	Statistic Analysis of Task-related OSEK ISR2s

	Exporting all Types of Task Information and all Instructions (OTM)
	Statistic Analysis of Interrupts
	Statistic Analysis of Interrupts and Tasks
	Statistic Analysis of Interrupts in Tasks

	Exporting Task Information (Write Access)
	Task Switches
	OSEK Service Routines
	OSEK ISR2s
	Task-related OSEK ISR2s

	Exporting Task Switches and all Instructions (Write Access)
	Statistic Analysis of Interrupts
	Statistic Analysis of Interrupts and Tasks
	Statistic Analysis of Interrupts in Tasks

	Belated Trace Analysis (OS)

	Function Run-Times Analysis (Overview)
	Software under Analysis (no OS or OS)
	Flat vs. Nesting Analysis
	Basic Knowledge about Flat Analysis
	Basic Knowledge about Nesting Analysis
	Summary

	Function Run-Times Analysis - Single
	Flat Analysis
	Optimum NEXUS Configuration (No OS)
	Optimum NEXUS Configuration (OS)
	Function Time Chart

	Nesting Analysis
	Restrictions
	Optimum NEXUS Configuration (No OS)
	Optimum NEXUS Configuration (OS)
	Items under Analysis
	Numerical Nested Function Run-time Analysis for all Software
	Additional Statistics Items for OS
	Timing Improvements for OS
	Problems and Workarounds for OS
	More Nesting Analysis Commands

	Third-party Timing Tools

	Function Run-Times Analysis - SMP Instance
	Flat Analysis
	Optimum NEXUS Configuration (No OS)
	Optimum NEXUS Configuration (OS)
	Function Timing Diagram
	Function Timing Diagram (Including Task Information)

	Nesting Analysis
	Restrictions
	Optimum NEXUS Configuration (OS)
	Numerical Nested Function Run-time Analysis for all Software
	Timing Improvements for OS
	More Nesting Analysis Commands

	Third-party Timing Tools

	Structure the Trace Evaluation
	GROUP Creation
	Working with GROUPs
	GROUP Status ENable
	GROUP Status ENable + Merge
	GROUP Status ENable + HIDE

	Trace-based Code Coverage

