
MANUAL

Release 09.2024

Training Basic Debugging

Training Basic Debugging

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Training ..

 Debugger Training ..

 Training Basic Debugging ... 1

 System Concept .. 6

 On-chip Debug Interface 7

 Debug Features 7

 TRACE32 Tools 8

 On-chip Debug Interface plus On-chip Trace Buffer 10

 On-chip Debug Interface plus Trace Port 12

 NEXUS Interface 13

 Starting a TRACE32 PowerView Instance ... 14

 Basic TRACE32 PowerView Parameters 14

 Configuration File 14

 Standard Parameters 15

 Examples for Configuration Files 16

 Additional Parameters 20

 Application Properties (Windows only) 21

 Configuration via T32Start (Windows only) 22

 About TRACE32 23

 Version Information 23

 Prepare Full Information for a Support Email 24

 TRACE32 PowerView .. 25

 TRACE32 PowerView Components 25

 Main Menu Bar and Accelerators 26

 Main Tool Bar 28

 Window Area 30

 Command Line 33

 Message Line 36

 Softkeys 37

 State Line 38

 Registers .. 39

 Core Registers 39

 Display the Core Registers 39

 Colored Display of Changed Registers 40
Training Basic Debugging | 2©1989-2024 Lauterbach

 Modify the Contents of a Core Register 41

 Special Function Register 42

 Display the Special Function Registers 42

 Details about a Single Special Function Register 45

 Modify a Special Function Register 46

 The PER Definition File 47

 Memory Display and Modification ... 48

 The Data.dump Window 49

 Display the Memory Contents 49

 Modify the Memory Contents 54

 Run-time Memory Access 55

 Colored Display of Changed Memory Contents 65

 The List Window 66

 Displays the Source Listing Around the PC 66

 Displays the Source Listing of a Selected Function 67

 Breakpoints .. 69

 Breakpoint Implementations 69

 Software Breakpoints in RAM 69

 Software Breakpoints in FLASH 71

 Onchip Breakpoints in NOR Flash 72

 Onchip Breakpoints on Read/Write Accesses 75

 Onchip Breakpoints by Processor Architecture 76

 ETM Breakpoints for ARM or Cortex-A/-R 77

 Breakpoint Types 80

 Program Breakpoints 81

 Read/Write Breakpoints 83

 Breakpoint Handling ... 85

 Breakpoint Setting at Run-time 85

 Real-time Breakpoints vs. Intrusive Breakpoints 86

 Break.Set Dialog Box 88

 The HLL Check Box - Function Name 89

 The HLL Check Box - Program Line Number 92

 The HLL Check Box - Variable 94

 The HLL Check Box - HLL Expression 96

 Implementations 99

 Actions 100

 Options 104

 DATA Breakpoints 108

 Advanced Breakpoints 112

 TASK-aware Breakpoints 113

 Intrusive TASK-aware Breakpoint 113

 Real-time TASK-aware Breakpoint 116
Training Basic Debugging | 3©1989-2024 Lauterbach

 COUNTer 117

 Software Counter 117

 On-chip Counter 120

 CONDition 121

 CMD 129

 memory/register/var 132

 Display a List of all Set Breakpoints 137

 Delete Breakpoints 138

 Enable/Disable Breakpoints 138

 Store Breakpoint Settings 139

 Debugging .. 140

 Debugging of Optimized Code 140

 Basic Debug Control 143

 Sample-based Profiling .. 155

 Program Counter Sampling 155

 Standard Procedure 156

 Details 160

 TASK Sampling 162
Training Basic Debugging | 4©1989-2024 Lauterbach

Training Basic Debugging

Version 05-Oct-2024
Training Basic Debugging | 5©1989-2024 Lauterbach

System Concept

A single-core processor/multi-core chip can provide:

• An on-chip debug interface

• An on-chip debug interface plus an on-chip trace buffer

• An on-chip debug interface plus an off-chip trace port

• A NEXUS interface including an on-chip debug interface

Depending on the debug resources different debug features can be provided and different TRACE32 tools
are offered.
Training Basic Debugging | 6©1989-2024 Lauterbach

On-chip Debug Interface

The TRACE32 debugger allows you to test your embedded hardware and software by using the on-chip
debug interface. The most common on-chip debug interface is JTAG.

A single on-chip debug interface can be used to debug all cores of a multi-core chip.

Debug Features

Depending on the processor architecture different debug features are available.

Debug features provided by all processor architectures:

• Read/write access to registers

• Read/write access to memories

• Start/stop of program execution

Debug features specific for a processor architecture:

• Number of on-chip breakpoints

• Read/write access to memory while the program execution is running

• Additional features as benchmark counters, triggers etc.
Training Basic Debugging | 7©1989-2024 Lauterbach

TRACE32 Tools

The TRACE32 debugger hardware always consists of:

• Universal debugger hardware

• Debug cable specific to the processor architecture

Debug Only Modules

Current module:

• POWER DEBUG E40

Deprecated modules:

• POWER DEBUG INTERFACE / USB 3

• POWER DEBUG INTERFACE / USB 2

��������	

POWER DEBUG E40

POWER DEBUG E40

PC or
Workstation

USB
Cable

Target

D
eb

ug
C

on
ne

ct
or

Debug Cable
Training Basic Debugging | 8©1989-2024 Lauterbach

Debug Modules with Option for Off-chip Trace Extension

Current module:

• POWER DEBUG X50

Deprecated modules:

• POWER DEBUG PRO (USB 3 and 1 GBit Ethernet)

• POWER DEBUG II (USB 2 and 1 GBit Ethernet)

• POWER DEBUG / ETHERNET (USB 2 and 100 MBit Ethernet)

POWER DEBUG X50

��������	

POWER DEBUG X50

SWITCH PC or
Workstation

1 GBit Ethernet

Ethernet
Cable

Target

D
eb

ug
C

on
ne

ct
or

Debug Cable
Training Basic Debugging | 9©1989-2024 Lauterbach

On-chip Debug Interface plus On-chip Trace Buffer

A number of single-core processors/multi-core chips offer in addition to the on-chip debug interface an on-
chip trace buffer.

On-chip Trace Features

The on-chip trace buffer can store information:

• On the executed instructions.

• On task/process switches.

• On load/store operations if supported by the on-chip trace generation hardware.

In order to analyze and display the trace information the debug cable needs to provide a Trace License. The
Trace Licenses use the following name convention:

• <core>-TRACE e.g. ARM-TRACE

• or <core>-MCDS) e.g. TriCore-MCDS
Training Basic Debugging | 10©1989-2024 Lauterbach

The display and the evaluation of the trace information is described in the following training manuals:

• “Training Arm CoreSight ETM Tracing” (training_arm_etm.pdf).

• “Training Cortex-M Tracing” (training_cortexm_etm.pdf).

• “Training AURIX Tracing” (training_aurix_trace.pdf).

• “Training Hexagon ETM Tracing” (training_hexagon_etm.pdf).

• “Training MPC5xxx/SPC5xx Nexus Tracing” (training_nexus_mpc5500.pdf).
Training Basic Debugging | 11©1989-2024 Lauterbach

On-chip Debug Interface plus Trace Port

A number of single-core processors/multi-core chips offer in addition to the on-chip debug interface a so-
called trace port. The most common trace port is the TPIU for the ARM/Cortex architecture.

Off-chip Trace Features

The trace port exports in real-time trace information:

• On the executed instructions.

• On task/process switches.

• On load/store operations if supported by the on-chip trace generation logic.

The display and the evaluation of the trace information is described in the following training manuals:

• “Training Arm CoreSight ETM Tracing” (training_arm_etm.pdf)

• “Training Cortex-M Tracing” (training_cortexm_etm.pdf)

• “Training AURIX Tracing” (training_aurix_trace.pdf)

• “Training Hexagon ETM Tracing” (training_hexagon_etm.pdf)
Training Basic Debugging | 12©1989-2024 Lauterbach

NEXUS Interface

NEXUS is a standardized interface for on-chip debugging and real-time trace especially for the automotive
industry.

NEXUS Features

Debug features provided by all single-core processors/multi-core chips:

• Read/write access to the registers

• Read/write access to all memories

• Start/stop of program execution

• Read/write access to memory while the program execution is running

Debug features specific for single-core processor/multi-core chip:

• Number of on-chip breakpoints

• Benchmark counters, triggers etc.

Trace features provided by all single-core processors/multi-core chips:

• Information on the executed instructions.

• Information on task/process switches.

Trace features specific for the single-core processor/multi-core chip:

• Information on load/store operations if supported by the trace generation logic.

The display and the evaluation of the trace information is described in “Training MPC5xxx/SPC5xx Nexus
Tracing” (training_nexus_mpc5500.pdf).
Training Basic Debugging | 13©1989-2024 Lauterbach

Starting a TRACE32 PowerView Instance

Basic TRACE32 PowerView Parameters

This chapter describes the basic parameters required to start a TRACE32 PowerView instance.

The parameters are defined in the configuration file. By default the configuration file is named config.t32. It
is located in the TRACE32 system directory (parameter SYS).

Configuration File

Open the file config.t32 from the system directory (default c:\T32\config.t32) with any ASCII editor.

The following rules apply to the configuration file:

• Parameters are defined paragraph by paragraph.

• The first line/headline defines the parameter type.

• Each parameter definition ends with an empty line.

• If no parameter is defined, the default parameter will be used.
Training Basic Debugging | 14©1989-2024 Lauterbach

Standard Parameters

Parameter Syntax Description

Host interface PBI=
<host_interface>

PBI=ICD
<host_interface>

Host interface type of TRACE32 tool
hardware (USB or ethernet)

Full parameter syntax which is not in use.

Environment
variables

OS=
ID=<identifier>
TMP=<temp_directory>
SYS=<system_directory>
HELP=<help_directory>

(ID) Prefix for all files which are saved by
the TRACE32 PowerView instance into the
TMP directory

(TMP) Temporary directory used by the
TRACE32 PowerView instance (*)

(SYS) System directory for all TRACE32
files

(HELP) Directory for the TRACE32 help
PDFs (**)

Printer
definition

PRINTER=WINDOWS All standard Windows printer can be used
from TRACE32 PowerView

License file LICENSE=<license_directory> Directory for the TRACE32 license file
(not required for new tools)

(*) In order to display source code information TRACE32 PowerView creates a
copy of all loaded source files and saves them into the TMP directory.

(**) The TRACE32 online help is PDF-based.
Training Basic Debugging | 15©1989-2024 Lauterbach

Examples for Configuration Files

Configuration File for USB

Single debugger hardware module connected via USB:

Multiple debugger hardware modules connected via USB:

; Host interface
PBI=
USB

; Environment variables
OS=
ID=T32
TMP=C:\temp
SYS=C:\t32
HELP=C:\t32\pdf

; temporary directory for TRACE32
; system directory for TRACE32
; help directory for TRACE32

; Printer settings
PRINTER=WINDOWS ; all standard windows printer can be

; used from the TRACE32 user interface

; Host interface
PBI=
USB
NODE=training1 ; NODE name of TRACE32

; Environment variables
OS=
ID=T32_training1
TMP=C:\temp
SYS=C:\t32
HELP=C:\t32\pdf

; temporary directory for TRACE32
; system directory for TRACE32
; help directory for TRACE32

; Printer settings
PRINTER=WINDOWS ; all standard windows printer can be

; used from TRACE32 PowerView
Training Basic Debugging | 16©1989-2024 Lauterbach

Use the IFCONFIG command to assign a device name (NODE=) to a debugger hardware module. The
manufacturing default device name is the serial number of the debugger hardware module:

• e.g. E18110012345 for a debugger hardware module with ethernet interface, such as PowerDebug
PRO.

• e.g. C18110045678 for a debugger hardware module with USB interface only, such as PowerDebug
USB 3.

IFCONFIG Dialog to assign USB device name

Please be aware that USB device names are case-sensitive

Enter device name

Save device name to
debugger hardware module
Training Basic Debugging | 17©1989-2024 Lauterbach

Remote Control for POWER DEBUG INTERFACE / USB

TRACE32 allows to communicate with a POWER DEBUG INTERFACE USB from a remote PC. For an
example, see “Example: Remote Control for POWER DEBUG INTERFACE / USB” in TRACE32
Installation Guide, page 46 (installation.pdf).
Training Basic Debugging | 18©1989-2024 Lauterbach

Configuration File for Ethernet

Ethernet Configuration and Operation Profile

; Host interface
PBI=
NET
NODE=training1

; Environment variables
OS=
ID=T32
SYS=C:\t32
HELP=C:\t32\pdf

; temp directory for TRACE32
; system directory for TRACE32
; help directory for TRACE32

; Printer settings
PRINTER=WINDOWS ; all standard windows printer can be

; used from the TRACE32 user interface

IFCONFIG Dialog to display and change information for the Ethernet interface
Training Basic Debugging | 19©1989-2024 Lauterbach

Additional Parameters

Changing the font size can be helpful for a more comfortable display of TRACE32 windows.

Display with normal font:
:

Display with small font:

; Screen settings
SCREEN=
FONT=SMALL ; Use small fonts
Training Basic Debugging | 20©1989-2024 Lauterbach

Application Properties (Windows only)

The Properties window allows you to configure some basic settings for the TRACE32 software.

To open the Properties window, right-click the desired TRACE32 icon in the Windows Start menu.

Definition of the Configuration File

By default the configuration file config.t32 in the TRACE32 system directory (parameter SYS) is used. The
option -c allows you to define your own location and name for the configuration file.

Definition of a Working Directory

After its start TRACE32 PowerView is using the specified working directory. It is recommended not to work in
the system directory.

Definition of the Window Size for TRACE32 PowerView

You can choose between Normal window, Minimized and Maximized.

C:\T32_ARM\bin\windows\t32marm.exe -c j:\and\config.t32

PWD TRACE32 command to display the current working directory

Configuration File

Working Directory

Window Size
Training Basic Debugging | 21©1989-2024 Lauterbach

Configuration via T32Start (Windows only)

The basic parameters can also be set up in an intuitive way via T32Start.

A detailed online help for t32start.exe is available via the Help button or in “T32Start” (app_t32start.pdf).

Parameters
Training Basic Debugging | 22©1989-2024 Lauterbach

About TRACE32

If you want to contact your local Lauterbach support, it might be helpful to provide some basis information
about your TRACE32 tool.

Version Information

The VERSION window informs you about:

1. The version of the TRACE32 software.

2. The debug licenses programmed into the debug cable and the expiration date of your software
warranty respectively the expiration date of your software warranty.

3. The serial number of the debug cable.

VERSION.view Display the VERSION window.

VERSION.HARDWARE Display more details about the TRACE32 hardware modules.

VERSION.SOFTWARE Display more details about the TRACE32 software.

1

2

3

Training Basic Debugging | 23©1989-2024 Lauterbach

Prepare Full Information for a Support Email

Be sure to include detailed system information about your TRACE32 configuration.

1. To generate a system information report, choose Help > Support > Systeminfo.

2. Preferred: click Save to File, and send the system information as an attachment to your e-mail.

3. Click Save to Clipboard, and then paste the system information into your e-mail.
Training Basic Debugging | 24©1989-2024 Lauterbach

TRACE32 PowerView

TRACE32 PowerView Components

The structure of the menu bar and the tool bar are defined by the file t32.men
which is located in the TRACE32 system directory.

TRACE32 allows you to modify the menu bar and the tool bar so they will better
fit your requirements. Refer to “Training Menu Programming”
(training_menu.pdf) for details.

Main Menu Bar
Main Tool Bar

C
o

n
te

xt
 M

en
u

Local Buttons

Message Line
SoftkeyLine
State Line

Window Area

Command Line
Training Basic Debugging | 25©1989-2024 Lauterbach

Main Menu Bar and Accelerators

The main menu bar provides all important TRACE32 functions sorted by groups.

For often used commands accelerators are defined.

Accelerators
Training Basic Debugging | 26©1989-2024 Lauterbach

A user specific menu can be defined very easily:

MENU.AddMenu <name> <command> Add a user menu

MENU.RESet Reset menu to default

; user menu
MENU.AddMenu "Set PC to main" "Register.Set PC main"

; user menu with accelerator
MENU.AddMenu "Set PC to main, ALT+F10" "Register.Set PC main"

For more complex changes to the main menu bar refer to “Training Menu
Programming” (training_menu.pdf).

Videos about the menu programming can be found here:
support.lauterbach.com/kb/articles/trace32-user-interface-customization

User Menu
Training Basic Debugging | 27©1989-2024 Lauterbach

https://support.lauterbach.com/kb/articles/trace32-user-interface-customization

Main Tool Bar

The main tool bar provides fast access to often used commands.

The user can add his own buttons very easily:

Information on the <tool image> can be found in Help -> Contents

TRACE32 Documents -> IDE User Interface -> PowerView Command Reference -> MENU ->
Programming Commands -> TOOLITEM.

MENU.AddTool <tooltip_text> <tool_image> <command> Add a button to the toolbar

MENU.RESet Reset menu to default

; <tooltip text> here: Set PC to main
; <tool image> here: button with capital letters PM in black
; <command> here: Register.Set PC main

MENU.AddTool "Set PC to main" "PM,X" "Register.Set PC main"

User specific
button
Training Basic Debugging | 28©1989-2024 Lauterbach

All predefined TRACE32 icons can be inspected as follows:

Or by following TRACE32 command:

The predefined icons can easily be used to create new icons.

ChDir.DO ~~/demo/menu/internal_icons.cmm

; overprint the icon colorpurple with the character v in White color
Menu.AddTool "Set PC to main" "v,W,colorpurple" "Register.Set PC main"

For more complex changes to the main tool bar refer to “Training Menu
Programming” (training_menu.pdf).

Videos about the menu programming can be found here:
support.lauterbach.com/kb/articles/trace32-user-interface-customization
Training Basic Debugging | 29©1989-2024 Lauterbach

https://support.lauterbach.com/kb/articles/trace32-user-interface-customization

Window Area

Save Page Layout

No information about the window layout is saved when you exit TRACE32 PowerView. To save the window
layout use the Store Windows to … command in the Window menu.

Script example:

// andT32_1000003 Sat Jul 21 16:59:55 2012

 B::

 TOOLBAR ON
 STATUSBAR ON
 FramePOS 68.0 5.2857 107. 45.
 WinPAGE.RESet

 WinCLEAR
 WinPOS 0.0 0.0 80. 16. 15. 1. W000
 WinTABS 10. 10. 25. 62.
 List

 WinPOS 0.0 21.643 80. 5. 25. 1. W001
 WinTABS 13. 0. 0. 0. 0. 0. 0.
 Break.List

 WinPAGE.select P000

 ENDDO

Store Windows to … generates a script, that
allows you to reactivate the window-configuration
at any time.
Training Basic Debugging | 30©1989-2024 Lauterbach

Run the script to reactivate the stored
window-configuration
Training Basic Debugging | 31©1989-2024 Lauterbach

Modify Window

The window header
displays the command
which was executed to
open the window

By clicking with the right
mouse button to the window
header, the command which
was executed to open the
window is re-displayed in the
command line and can be
modified there
Training Basic Debugging | 32©1989-2024 Lauterbach

Command Line

Command Structure

Device prompt: the default device prompt is B::. It stands for BDM which was the first on-chip debug
interface supported by Lauterbach.

A TRACE32 command has the following structure:

Command line

Data.dump 0x1000--0x1fff /Byte

Command group
Subcommand

Parameter(s)

Option(s)
Training Basic Debugging | 33©1989-2024 Lauterbach

Command Examples

Each command can be abbreviated. The significant letters are always written in upper case letters.

Examples for the parameter syntax and the use of options will be presented throughout this training.

 Data Command group to display, modify … memory

Data.dump Displays a hex dump

Data.Set Modify memory

Data.LOAD.auto Loads code to the target memory

 Break Command group to set, list, delete … breakpoints

Break.Set Sets a breakpoint

Break.List Lists all set breakpoint

Break.Delete Deletes a breakpoint
Training Basic Debugging | 34©1989-2024 Lauterbach

The Online Help for a Specific Command

Push F1 to get the online help for the specified command.
Add one blank.
Enter the command to the command line.
Training Basic Debugging | 35©1989-2024 Lauterbach

Message Line

• Message line for system and error messages

• Message Area window for the display of the last system and error messages

Message Line

Message Area
Training Basic Debugging | 36©1989-2024 Lauterbach

Softkeys

The softkey line allows to enter a specific command step by step. Here an example:

Select the command group, here Data.

Select the subcommand, here dump.

Angle brackets request an entry from the user,
here e.g. the entry of a <range> or an <address>.

The display of the hex. dump can be adjusted to your needs by an option.

Select the option formats to get a list of all format options.

The command is complete now.

Select a format option, here Byte.
Training Basic Debugging | 37©1989-2024 Lauterbach

State Line

The Cursor field of the state line provides:

• Boot information (Booting …, Initializing … etc.).

• Information on the item selected by one of the TRACE32 PowerView cursors.

The Debug field of the state line provides:

• Information on the debug communication (system down, system ready etc.)

• Information on the state of the debugger (running, stopped, stopped at breakpoint etc.)

The Mode field of the state line indicates the debug mode. The debug mode defines how source code
information is displayed.

• Asm = assembler code

• Hll = programming language code/high level language

• Mix = a mixture of both

It also defines how single stepping is performed (assembler line-wise or programming language
line-wise).

The debug mode can be changed by using the Mode pull-down.

Cursor
field

Debug
field

Mode
field
Training Basic Debugging | 38©1989-2024 Lauterbach

Registers

Core Registers

Display the Core Registers

Register.view
Training Basic Debugging | 39©1989-2024 Lauterbach

Colored Display of Changed Registers

The option /SpotLight advises TRACE32 PowerView to mark changes.

Establish /SpotLight as default setting

Register.view /SpotLight ; The registers changed by the last
; step are marked in dark red.

; The registers changed by the
; step before the last step are
; marked a little bit lighter.

; This works up to a level of 4.

SETUP.Var %SpotLight Establish the option SpotLight as default setting for
- all Variable windows
- Register window
- PERipheral window
- the HLL Stack Frame
- Data.dump window
Training Basic Debugging | 40©1989-2024 Lauterbach

Modify the Contents of a Core Register

Register.Set <register> <value> Modify register

By double clicking to the register contents
a Register.Set command is automatically displayed

in the command line.
Enter the new value and press return to modify the

register contents.
Training Basic Debugging | 41©1989-2024 Lauterbach

Special Function Register

Display the Special Function Registers

TRACE32 supports a free configurable window to display/manipulate configuration registers and the on-chip
peripheral registers at a logical level. Predefined peripheral files are available for most standard
processors/chips.

Tree Display

The individual configuration registers/on-chip peripherals are organized by TRACE32 PowerView in a tree
structure. On demand, details about a selected register can be displayed.

Please be aware, that TRACE32 permanently updates all windows. The default
update rate is 10 times per second.
Training Basic Debugging | 42©1989-2024 Lauterbach

Full Display

Sometimes it might be useful to expand the tree structure from the start.

Commands:

PER.view <filename> [<tree_item>] Display the configuration registers/on-chip peripherals

; Display all functional units in expanded mode
; , advises TRACE32 PowerView to use the default peripheral file
; * stands for all <tree-items>
PER.view , "*"

Use the right mouse and
select Show all
Training Basic Debugging | 43©1989-2024 Lauterbach

The following command sequence can be used to save the contents of all configuration registers/on-chip
peripheral registers to a file.

; Display the functional unit "ID Registers" within "Core Registers"
; in expanded mode
PER.view , "Core Registers,ID Registers"

; Display the functional unit "DMA_Channel_0" within "sDMA_Module,sDMA"
; in expanded mode
PER.view , "sDMA_Module,sDMA,DMA_Channel_0"

; PRinTer.FileType ASCIIE ; Select ASCII ENHANCED as output
; format
; (default output format)

PRinTer.FILE Per.lst ; Define Per.lst as output file

WinPrint.PER.view ; Save contents of all
; configuration registers/on-chip
; peripheral registers to the
; specified file
Training Basic Debugging | 44©1989-2024 Lauterbach

Details about a Single Special Function Register

The access class, address, bit position and the full name of the selected item are
displayed in the state line; the full name of the selected item is taken from the
processor/chip manual.
Training Basic Debugging | 45©1989-2024 Lauterbach

Modify a Special Function Register

You can modify the contents of a configuration/on-chip peripheral register:

• By pressing the right mouse button and selecting one of the predefined values from the pull-
down menu.

• By a double-click to a numeric value. A PER.Set command to change the contents of the
selected register is displayed in the command line. Enter the new value and confirm it with return.

Data.Set is equivalent to PER.Set.simple if the configuration register is memory mapped.

PER.Set.simple <address>|<range> [%<format>] <value> Modify configuration register/on-
chip peripheral

Data.Set <address>|<range> [%<format>] <value> Modify memory

PER.Set.simple D:0xF87FFF10 %Long 0x00000b02
Training Basic Debugging | 46©1989-2024 Lauterbach

The PER Definition File

The layout of the PER window is described by a PER definition file.

The definition can be changed to fit to your requirements using the PER command group.

The path and the version of the actual PER definition file can be displayed by using:

VERSION.SOFTWARE

PER.view <filename> Display the configuration registers/on-chip peripherals specified by
<filename>

PER.view C:\T32_ARM\percortexa9mpcore.per
Training Basic Debugging | 47©1989-2024 Lauterbach

Memory Display and Modification

This training section introduces the most often used methods to display and modify memory:

• The Data.dump command, that displays a hex dump of a memory area, and
the Data.Set command that allows to modify the contents of a memory address.

• The List.auto command, that displays the memory contents as source code listing.

A so-called access class is always displayed together with a memory address. The following access
classes are available for all processor architectures:

For additional access classes provided by your processor architecture refer to your “Processor
Architecture Manuals”.

P:1000 Program address 0x1000

D:6814 Data address 0x6814
Training Basic Debugging | 48©1989-2024 Lauterbach

The Data.dump Window

Display the Memory Contents
Training Basic Debugging | 49©1989-2024 Lauterbach

Use an Address to Specify the Start Address for the Data.dump Window

Please be aware, that TRACE32 permanently updates all windows. The default
update rate is 10 times per second.
Training Basic Debugging | 50©1989-2024 Lauterbach

Use an Address Range to Specify the Addresses for the Data.dump Window

If you enter an address range, only data for the specified address range are displayed. This is useful if a
memory area close to memory-mapped I/O registers should be displayed and you do not want TRACE32
PowerView to generate read cycles for the I/O registers.

Conventions for address ranges:

• <start_address>--<end_address>

• <start_address>..<end_address>

• <start_address>++<offset_in_byte>

• <start_address>++<offset_in_word> (for DSPs)
Training Basic Debugging | 51©1989-2024 Lauterbach

Use a Symbol to Specify the Start Address for the Data.dump Window

Use i to select any symbol name or label known to TRACE32 PowerView.

By default an oriented display
is used (line break at 2x).
A small arrow indicates
the specified dump address.
Training Basic Debugging | 52©1989-2024 Lauterbach

Data.dump <address> | <range> [/<option>] Display a hex dump of the memory

Data.dump 0x6814 ; Display a hex dump starting at
; address 0x6814

Data.dump 0x6810--0x682f ; Display a hex dump of the
; specified address range

Data.dump 0x6810..0x682f ; Display a hex dump of the
; specified address range

Data.dump 0x6810++0x1f ; Display a hex dump of the
; specified address range

Data.dump ast ; Display a hex dump starting at
; the address of the label ast

Data.dump ast /Byte ; Display a hex dump starting at
; the address of the label ast in
; byte format
Training Basic Debugging | 53©1989-2024 Lauterbach

Modify the Memory Contents

Data.Set <address>|<range> [%<format>] <value> [/<option>]

Data.Set 0x6814 0xaa ; Write 0xaa to the address
; 0x6814

Data.Set 0x6814 %Long 0xaaaa ; Write 0xaaaa as a 32 bit value to
; the address 0x6814, add the
; leading zeros automatically

Data.Set 0x6814 %LE %Long 0xaaaa ; Write 0xaaaa as a 32 bit value to
; the address 0x6814, add the
; leading zeros automatically

; Use Little Endian mode

By a left mouse double-click to the memory contents
 a Data.Set command is automatically

displayed in the command line,
you can enter the new value and

confirm it with return.
Training Basic Debugging | 54©1989-2024 Lauterbach

Run-time Memory Access

TRACE32 PowerView updates the displayed memory contents by default only if the cores is stopped.

A hatched window frame
indicates that the information

display is brozen because the
core is executing the program.

The plain window frame
indicates that the information

is updated, because the
program execution is
stopped.
Training Basic Debugging | 55©1989-2024 Lauterbach

Non-intrusive Run-time Memory Access

Various cores allow a debugger to read and write physical memory (not cache) while the core is executing
the program. The debugger has in most cases direct access to the processor/chip internal bus, so no extra
load for the core is generated by this feature.

Open the SYStem window in order to check if your processor architecture allows a debugger to read/write
memory while the core is executing the program:

Please be aware that caches, MMUs, tightly-coupled memories and suchlike add conditions to the run-time
memory access or at worst make its use impossible.

Restrictions

The following description is only a rough overview on the restrictions. Details about your core can be found in
the Processor Architecture Manual.

MemAccess Enable/NEXUS/DAP
indicates that the core allows
the debugger to read/write the
memory while the core is
executing the program.
Training Basic Debugging | 56©1989-2024 Lauterbach

Cache

If run-time memory access for a cached memory location is enabled the debugger acts as follows:

• Program execution is stopped

The data is read via the cache respectively written via the cache.

• Program execution is running

Since the debugger has no access to the caches while the program execution is running, the
data is read from physical memory. The physical memory contains the current data only if the
cache is configured as write-through for the accessed memory location, otherwise out-dated data
is read.

Since the debugger has no access to the cache while the program execution is running, the data
is written to the physical memory. The new data has only an effect on the current program
execution if the debugger can invalidate the cache entry for the accessed memory location. This
useful feature is not available for most cores.

MMU

Debuggers have no access to the TLBs while the program execution is running. As a consequence run-time
memory access can not be used, especially if the TLBs are dynamically changed by the program.

In the exceptional case of static TLBs, the TLBs can be scanned into the debugger. This scanned copy of
the TLBs can be used by the debugger for the address translation while the program execution is running.

Tightly-coupled Memory

Tightly-coupled memory might not be accessible via the system memory bus.

Usage

The usage of the non-intrusive run-time memory access has to be configured explicitly. Two methods are
provided:

• Configure the run-time memory access for a specific memory area.

• Configure run-time memory access for all windows that display memory contents (not available
for all processor architectures).
Training Basic Debugging | 57©1989-2024 Lauterbach

Configure the run-time memory access for a specific memory area:

If the E check box is enabled, the attribute E is added to the memory class:

Write accesses to the memory work correspondingly:

EP:1000 Program address 0x1000 with run-time memory access

ED:6814 Data address 0x6814 with run-time memory access

Enable the E check box to switch
the run-time memory access to ON

A plain window frame
indicates that the
information is updated
while the core is
executing the program

Data.Set via run-time

(attribute E)
memory access
Training Basic Debugging | 58©1989-2024 Lauterbach

SYStem.MemAccess Enable ; Enable the non-intrusive
; run-time memory access

;…

Go ; Start program execution

Data.dump E:0x6814 ; Display a hex dump starting at
; address 0x6814 via run-time
; memory access

Data.Set E:0x6814 0xAA ; Write 0xAA to the address
; 0x6814 via run-time memory
; access
Training Basic Debugging | 59©1989-2024 Lauterbach

Configure the run-time memory access for all windows that display memory
(not available for all cores):

If MemAccess Enable/NEXUS/DAP is
selected and DUALPORT is checked,
run-time memory is configured for
all windows that display memory

All windows that display memory
have a plain window frame,
because they are updated while
the core is executing the program

Write access is possible for all
memories while the core is
executing the program
Training Basic Debugging | 60©1989-2024 Lauterbach

SYStem.MemAccess Enable ; Enable the non-intrusive
; run-time memory access

SYStem.Option.DUALPORT ON ; Activate the run-time memory
; access for all windows that
; display memory

; this SYStem.Option is only
; available for some processor
; architectures

;…

Go ; Start program execution

Data.dump 0x6814 ; Display a hex dump starting at
; address 0x6814 via run-time
; memory access

Data.Set 0x6814 0xAA ; Write 0xAA to the address
; 0x6814 via run-time memory
; access
Training Basic Debugging | 61©1989-2024 Lauterbach

Intrusive Run-Time Memory Access

If your processor architecture doesn’t allow a debugger to read or write memory while the core is executing
the program, you can activate an intrusive run-time memory access if required.

If an intrusive run-time memory access is activated, TRACE32 stops the program execution periodically to
read/write the specified memory area. Each update takes at least 50 us.

The time taken by a short stop depends on various factors:

• The time required by the debugger to start and stop the program execution on a processor/core
(main factor).

• The number of cores that need to be stopped and restarted.

• Cache and MMU assesses that need to be performed to read the information of interest.

• The type of information that is read during the short stop.

CpuAccess Enable allows an
intrusive run-time memory access

core(s) is core(s) is stopped to allow
TRACE32 PowerView to read/write
the specified memory

executing the program
Training Basic Debugging | 62©1989-2024 Lauterbach

An intrusive run-time memory access is only possible for a specific memory area.

Write accesses to the memory work correspondingly:

Enable the E check box to switch

A plain window frame

A red S in the state line indicates that a TRACE32 feature is

the run-time memory access to ON

indicates that the
information is updated
while the core(s) is

activated that requires short-time stops of the program execution

executing the program

Data.Set via run-time
memory access with short
stop of the program
execution
Training Basic Debugging | 63©1989-2024 Lauterbach

SYStem.CpuAccess Enable ; Enable the intrusive
; run-time memory access

;…

Go ; Start program execution

Data.dump E:0x6814 ; Display a hex dump starting at
; address 0x6814 via an intrusive
; run-time memory access

Data.Set E:0x6814 0xAA ; Write 0xAA to the address
; 0x6814 via an intrusive
; run-time memory access
Training Basic Debugging | 64©1989-2024 Lauterbach

Colored Display of Changed Memory Contents

Data.dump flags /SpotLight ; Display a hex dump starting at
; the address of the label flags

; Mark changes

Enable the option SpotLight to mark the
memory contents changed by the last 4 single
steps in orange, older changes being lighter.
Training Basic Debugging | 65©1989-2024 Lauterbach

The List Window

Displays the Source Listing Around the PC

If MIX mode is selected for
debugging, assembler and HLL
information is displayed

If HLL mode is selected for
debugging, only HLL
information is displayed
Training Basic Debugging | 66©1989-2024 Lauterbach

Displays the Source Listing of a Selected Function

List.auto [<address>] [/<option>] Display source listing

Select the function you
want to display
Training Basic Debugging | 67©1989-2024 Lauterbach

List ; Display a source listing
; around the PC

List E: ; Display a source listing,
; allow scrolling while the
; program execution is running

List * ; Open the symbol browser to
; select a function for display

List func17 ; Display a source listing of
; func17
Training Basic Debugging | 68©1989-2024 Lauterbach

Breakpoints

Videos about the breakpoint handling can be found here:
support.lauterbach.com/kb/articles/using-breakpoints-in-trace32

Breakpoint Implementations

A debugger has two methods to realize breakpoints: Software breakpoints and Onchip breakpoints.

Software Breakpoints in RAM

The default implementation for breakpoints on instructions is a Software breakpoint. If a Software breakpoint
is set the original instruction at the breakpoint address is patched by a special instruction (usually TRAP) to
stop the program and return the control to the debugger.
Training Basic Debugging | 69©1989-2024 Lauterbach

https://support.lauterbach.com/kb/articles/using-breakpoints-in-trace32

The number of software breakpoints is unlimited.
.

Breakpoints on instructions are called Program breakpoints by TRACE32 PowerView.

Please be aware that TRACE32 PowerView always tries to set an Onchip
breakpoint, when the setting of a Software Breakpoint fails.
Training Basic Debugging | 70©1989-2024 Lauterbach

Software Breakpoints in FLASH

TRACE32 allows to set Software breakpoints to FLASH. Please be aware that the affected FLASH sector
has to be erased and programmed in order to patch the break instruction used by the Software breakpoint.
This usually takes some time and reduces the number of FLASH erase cycles. For details refer to
“Software Breakpoints in FLASH” (norflash.pdf).
Training Basic Debugging | 71©1989-2024 Lauterbach

Onchip Breakpoints in NOR Flash

Most core(s) provide a small number of Onchip breakpoints in form of breakpoint registers. These Onchip
breakpoints can be used to set breakpoints to instructions in read-only memory like onchip or NOR FLASH.
Training Basic Debugging | 72©1989-2024 Lauterbach

Since Software breakpoints are used by default for Program breakpoints, TRACE32 PowerView can be
informed explicitly where to use Onchip breakpoints. Depending on your memory layout, the following
methods are provided:

1. If the code is completely located in read-only memory, the default implementation for the
Program breakpoints can be changed.

Break.METHOD Program Onchip Advise TRACE32 PowerView to
implement Program breakpoints
always as Onchip breakpoints

Change the implementation of Program breakpoints to Onchip
Training Basic Debugging | 73©1989-2024 Lauterbach

2. If the code is located in RAM and onchip/NOR FLASH you can define code ranges where
Onchip breakpoints are used.

Check your settings as follows:

MAP.BOnchip <range> Advise TRACE32 PowerView to implement Program
breakpoints as Onchip breakpoints within the defined
address range

MAP.List Check your settings

MAP.BOnchip 0x0++0x1FFF

MAP.BOnchip 0xA0000000++0x1FFFFF

For the specified address ranges Program breakpoints are
implemented as Onchip breakpoints. For all other memory areas
Software breakpoints are used.
Training Basic Debugging | 74©1989-2024 Lauterbach

Onchip Breakpoints on Read/Write Accesses

Onchip breakpoints can be used to stop the core at a read or write access to a memory location.
Training Basic Debugging | 75©1989-2024 Lauterbach

Onchip Breakpoints by Processor Architecture

Refer to your Processor Architecture Manual for a detailed list of the available Onchip breakpoints.

For some processor architectures Onchip breakpoints can only mark single addresses (e.g Cortex-A9).
Most processor architectures, however, allow to mark address ranges with Onchip breakpoints. It is very
common that one Onchip breakpoint marks the start address of the address range while the second Onchip
breakpoint marks the end address (e.g. MPC57xx).

The command Break.CONFIG.VarConvert (TrOnchip.VarConvert in older software versions) allows to
control how range breakpoints are set for scalars (int, float, double).

The current setting can be inspected and changed from the Break.CONFIG window.

Example: the red line in the Data.View window shows the range of the Onchip breakpoint.

Break.CONFIG.VarConvert
ON

If a breakpoint is set to a scalar variable (int, float, double) the
breakpoint is set to the start address of the variable.
+ Requires only one single address breakpoint.
- Program will not stop on unintentional accesses to the variable’s
address space.

Break.CONFIG.VarConvert
OFF

If a breakpoint is set to a scalar variable (int, float, double) breakpoints
are set to all memory addresses that store the variable value.

+ The program execution stops also on any unintentional accesses
to the variable’s address space.
- Requires two onchip breakpoints since a range breakpoint is
used.

; Set an Onchip breakpoint to the start address of the variable vint
Break.CONFIG.VarConvert ON
Var.Break.Set vint /Write
Data.View vint

; Set an Onchip breakpoint to the whole memory range address of the
; variable vint
Break.CONFIG.VarConvert OFF
Var.Break.Set vint /Write
Data.View vin
Training Basic Debugging | 76©1989-2024 Lauterbach

A number of processor architectures provide only bit masks or fixed range sizes to mark an address range
with Onchip breakpoints. In this case the address range is always enlarged to the smallest bit mask/next
allowed range that includes the address range.

It is recommended to control which addresses are actually marked with breakpoints by using the
Break.List /Onchip command:

Breakpoint setting:

ETM Breakpoints for ARM or Cortex-A/-R

ETM breakpoints extend the number of available breakpoints. Some Onchip breakpoints offered by ARM
and Cortex-A/-R cores provide restricted functionality. ETM breakpoints can help you to overcome some of
these restrictions.

ETM breakpoints always show a break-after-make behavior with a rather large delay. Thus, use ETM
breakpoints only if necessary.

Var.Break.Set str2

Break.List

Break.List /Onchip
Training Basic Debugging | 77©1989-2024 Lauterbach

Program Breakpoints Read/Write
Breakpoints

Data Value
Breakpoints

ARM7
ARM9

Onchip breakpoints:
up to 2, but address
range only as bit mask
(Reduced to 1 if soft-
ware breakpoints are
used)

ETM breakpoints:
up to 2 exact address
ranges

Onchip breakpoints:
up to 2, but address
range only as bit mask

ETM breakpoints:
up to 2 exact address
ranges

Onchip Breakpoint:
up to 2, but address range
only as bit mask

ETM breakpoints:
up to 2 data value breakpoints
for exact address ranges

ARM11 Onchip breakpoints:
6, but only single
addresses

ETM breakpoints:
up to 2 exact address
ranges possible

Onchip breakpoints:
2, but only single
addresses

ETM breakpoints:
up to 2 exact address
ranges possible

Onchip breakpoints:
no data value breakpoints
possible

ETM breakpoints:
up to 2 data value breakpoints
for exact address ranges

Cortex-A5 Onchip breakpoints:
3, but only single
addresses

ETM breakpoints:
up to 2 exact address
ranges

Onchip breakpoints:
2, but address range
only as bit mask

ETM breakpoints:
up to 2 exact address
ranges

Onchip breakpoints:
no data value breakpoints
possible

ETM breakpoints:
up to 2 data value breakpoints
for exact address ranges

Cortex-A7
Cortex-R7

Onchip breakpoints:
6, but only single
addresses

ETM breakpoints:
up to 2 exact address
ranges

Onchip breakpoints:
4, but address range
only as bit mask

ETM breakpoints:
up to 2 exact address
ranges

Onchip breakpoints:
no data value breakpoints
possible

ETM breakpoints:
up to 2 data value breakpoints
for exact address ranges

Cortex-A8 Onchip breakpoints:
6, but address range
only as bit mask

ETM breakpoints:
up to 2 exact address
ranges

Onchip breakpoints:
2, but address range
only as bit mask

ETM breakpoints:
up to 2 exact address
ranges

Onchip breakpoints:
no data value breakpoints
possible

ETM breakpoints:
up to 2 data value breakpoints
for exact address ranges
Training Basic Debugging | 78©1989-2024 Lauterbach

No ETM breakpoints are available for the Cortex-M family.

Please refer to the description of the ETM.StoppingBreakPoints command, if you want to use the ETM
breakpoints.

Cortex-R4
Cortex-R5

Onchip breakpoints:
2..8, but address
range only as bit mask

ETM breakpoints:
up to 2 exact address
ranges

Onchip breakpoints:
1..8, but address
range only as bit mask

ETM breakpoints:
up to 2 exact address
ranges

Onchip breakpoints:
no data value breakpoints
possible

ETM breakpoints:
up to 2 data value breakpoints
for exact address ranges

Cortex-A9
Cortex-A15
Cortex-A17

Onchip breakpoints:
6, but only single
addresses

ETM breakpoints:
2 exact address ranges

Onchip breakpoints:
4, but address range
only as bit mask

ETM breakpoints:
—

Onchip breakpoints:
no data value breakpoints
possible

ETM breakpoints:
—

Program Breakpoints Read/Write
Breakpoints

Data Value
Breakpoints

Cortex-A3x
Cortex-A5x
Cortex-A6x
Cortex-A7x
Cortex-R82
Cortex-X
Neoverse

Onchip breakpoints:
6, but only single
addresses

ETM breakpoints:
2 exact address ranges
(more on request)

Onchip breakpoints:
4, but address range
only as bit mask

ETM breakpoints:
—

Onchip breakpoints:
no data value breakpoints
possible

ETM breakpoints:
—

Cortex-R52 Onchip breakpoints:
8, but only single
addresses

ETM breakpoints:
up to 2 exact address
ranges

Onchip breakpoints:
8, but address range
only as bit mask

ETM breakpoints:
—

Onchip breakpoints:
no data value breakpoints
possible

ETM breakpoints:
—

Program Breakpoints Read/Write
Breakpoints

Data Value
Breakpoints
Training Basic Debugging | 79©1989-2024 Lauterbach

Breakpoint Types

TRACE32 PowerView provides the following breakpoint types for standard debugging.

Breakpoint Types Possible Implementations

Program Software (Default)
Onchip

Read, Write,
ReadWrite

Onchip (Default)
Training Basic Debugging | 80©1989-2024 Lauterbach

Program Breakpoints

The program stops before the instruction marked by the breakpoint is executed (break before make).

Break.Set <address> /Program [/DISable] Set a Program breakpoint to the specified address.
The Program breakpoint can be disabled if required.

Set a Program breakpoint
by a left mouse
double-click
to the instruction

The red program breakpoint indicator marks all code lines for which a Program breakpoint is set.

Disable the Program
breakpoint by a
left mouse double-click
to the red program
breakpoint indicator.
The program breakpoint
indicator becomes grey.
Training Basic Debugging | 81©1989-2024 Lauterbach

Break.Set 0xA34f /Program ; set a Program breakpoint to
; address 0xA34f

Break.Set func1 /Program ; set a Program breakpoint to the
; entry of func1
; (first address of function func1)

Break.Set func1+0x1c /Program ; set a Program breakpoint to the
; instruction at address
; func1 plus 28 bytes
; (assuming that byte is the
; smallest addressable unit)

Break.Set func11\7 ; set a Program breakpoint to the
; 7th line of code of the function
; func11
; (line in compiled program)

Break.Set func17 /Program /DISable ; set a Program breakpoint to the
; entry of func17
; diable Program breakpoint

Break.List ; list all breakpoints
Training Basic Debugging | 82©1989-2024 Lauterbach

Read/Write Breakpoints

On most core(s) the program stops after the read or write access (break after make).

Core stops at
a read access
to the variable

Core stops at
a write access
to the variable
Training Basic Debugging | 83©1989-2024 Lauterbach

Break.Set <address> | <range> /Read | /Write | /ReadWrite [/DISable]

; allow HLL expression to specify breakpoint
Var.Break.Set <hll_expression> /Read | /Write | /ReadWrite [/DISable]

Break.Set 0x0B56 /Read

Break.Set ast /Write

Break.Set vpchar+5 /ReadWrite /DISable

Var.Break.Set flags /Write

Var.Break.Set flags[3] /Read

Var.Break.Set ast->count /ReadWrite /DISable

Break.List

If an HLL variable is displayed,
a small red breakpoint indicator

A small grey breakpoint indicator

marks an active Read/Write breakpoint.

marks a disabled Read/Write breakpoint.
Training Basic Debugging | 84©1989-2024 Lauterbach

Breakpoint Handling

Breakpoint Setting at Run-time

Software breakpoints

• If MemAccess Enable/NEXUS/DAP is enabled, Software breakpoints can be set while the
core(s) is executing the program. Please be aware that this is not possible if an instruction cache
and an MMU is used.

• If CpuAccess is enabled, Software breakpoints can be set while the core(s) is executing the
program. If the breakpoint is set via CpuAccess the real-time behavior is influenced.

• If MemAccess and CpuAccess is Denied Software breakpoints can only be set when the
program execution is stopped.

The behavior of Onchip breakpoints is core dependent. E.g. on all ARM/Cortex cores Onchip breakpoints
can be set while the program execution is running.
Training Basic Debugging | 85©1989-2024 Lauterbach

Real-time Breakpoints vs. Intrusive Breakpoints

TRACE32 PowerView offers in addition to the basic breakpoints (Program/Read/Write) also complex
breakpoints. Whenever possible these breakpoints are implemented as real-time breakpoints.

Real-time breakpoints do not disturb the real-time program execution on the core(s), but they require a
complex on-chip break logic.

If the on-chip break logic of a core does not provide the required features or if Software breakpoints are
used, TRACE32 has to implement an intrusive breakpoint.

Intrusive breakpoint perform as follows:

Each stop to perform the check suspends the program execution for at least 1 ms. For details refer to
“StopAndGo Mode” in TRACE32 Concepts, page 57 (trace32_concepts.pdf)

The (short-time) display of a red S in the state line indicates that an intrusive breakpoint was hit.

Perform
required check

Check not ok

Check ok

Program execution

Stop program execution

Stay stopped

at breakpoint hit
Continue with

program execution
Training Basic Debugging | 86©1989-2024 Lauterbach

Intrusive breakpoints are marked with a special breakpoint indicator:
Training Basic Debugging | 87©1989-2024 Lauterbach

Break.Set Dialog Box

There are two standard ways to open a Break.Set dialog.

or
Training Basic Debugging | 88©1989-2024 Lauterbach

The HLL Check Box - Function Name

Function Name/HLL Check Box OFF

Program breakpoint is set to the function entry (first address of the function).

sYmbol.INFO func11 ; display symbol information
; for function func11
Training Basic Debugging | 89©1989-2024 Lauterbach

Break.Set func11
Training Basic Debugging | 90©1989-2024 Lauterbach

Function name/HLL Check Box ON (only for special use cases)

• If the on-chip break logic supports ranges for Program breakpoints, a Program breakpoint
implemented as Onchip is set to the full address range covered by the function.

• If the on-chip break logic provides only bitmasks to realizes breakpoints on instruction ranges, a
Program breakpoint implemented as Onchip is set by using the smallest bitmask that covers the
complete address range of the function.

• otherwise this breakpoint is rejected with an error message.

Var.Break.Set func11
Training Basic Debugging | 91©1989-2024 Lauterbach

The HLL Check Box - Program Line Number

Program Line Number/HLL Check Box OFF

Program breakpoint is set to the first assembler instruction generated for the program line number.

Program Line Number/HLL Check Box ON

• If the on-chip break logic supports ranges for Program breakpoints, a Program breakpoint
implemented as Onchip is set to the full address range covered by all assembler instructions
generated for the program line number.

• If the on-chip break logic provides only bitmasks to realizes breakpoints on instruction ranges, a
Program breakpoint implemented as Onchip is set by using the smallest bitmask that covers the

sYmbol.INFO func10\7 ; display debug information
; for 7th program line in
; function func10

Break.Set func10\7
Training Basic Debugging | 92©1989-2024 Lauterbach

complete address range of the program line.

• otherwise this breakpoint is rejected with an error message.
Training Basic Debugging | 93©1989-2024 Lauterbach

The HLL Check Box - Variable

Variable/HLL Check Box OFF

Selected breakpoint (ReadWrite/Read/Write) is set to the start address of the variable.

sYmbol.INFO flags ; display symbol information
; for variable flags

Break.Set flags
Training Basic Debugging | 94©1989-2024 Lauterbach

Variable/HLL Check Box ON

• If the on-chip break logic supports ranges for Read/Write breakpoints, the specified breakpoint is
set to the complete address range covered by the variable.

• If the on-chip break logic provides only bitmasks to realizes Read/Write breakpoints on address
ranges, the specified breakpoint is set by using the smallest bitmask that covers the address
range used by the variable.

Var.Break.Set flags
Training Basic Debugging | 95©1989-2024 Lauterbach

The HLL Check Box - HLL Expression

Variable/HLL Check Box Must Be ON

If you want to use an HLL expression to specify the address range for a Read/Write breakpoint, the HLL
check box has to be checked.

• If the on-chip break logic supports ranges for Read/Write breakpoints, the specified breakpoint is
set to the complete address range covered by the HLL expression.

• If the on-chip break logic provides only bitmasks to realizes Read/Write breakpoints on address
ranges, the specified breakpoint is set by using the smallest bitmask that covers the address
range used by the HLL expression.

sYmbol.INFO flags ; display symbol information
; for variable flags
Training Basic Debugging | 96©1989-2024 Lauterbach

Var.Break.Set flags[3]
Training Basic Debugging | 97©1989-2024 Lauterbach

Allow Wildcards in address/expression

Set Program breakpoints the all function that match the defined name pattern.

Requires sufficient resources if Onchip breakpoints are used.

Break.SetPATtern func2*

Check * to enable wildcard usage
Training Basic Debugging | 98©1989-2024 Lauterbach

Implementations

Implementation

auto Use breakpoint implementation as predefined in TRACE32 PowerView.

SOFT Implement breakpoint as Software breakpoint.

Onchip Implement breakpoint as Onchip breakpoint.

Implementation
Training Basic Debugging | 99©1989-2024 Lauterbach

Actions

By default the program execution is stopped when a breakpoint is hit (action stop). TRACE32 PowerView
provides the following additional reactions on a breakpoint hit:

Alpha, Beta, Charly, Delta and Echo breakpoint are only used in very special cases. For this reason no
description is given in the general part of the training material.

Action (debugger)

Spot The program execution is stopped shortly at a breakpoint hit to update the
screen. As soon as the screen is updated, the program execution continues.

Alpha Set an Alpha breakpoint.

Beta Set a Beta breakpoint.

Charly Set a Charly breakpoint.

Delta Set a Delta breakpoint.

Echo Set an Echo breakpoint.

WATCH Trigger the debug pin at the specified event (not available for all processor
architectures).
Training Basic Debugging | 100©1989-2024 Lauterbach

A detailed description for the Actions (on-chip and off-chip trace) can be found in the following manuals:

• “Training Arm CoreSight ETM Tracing” (training_arm_etm.pdf).

• “Training Cortex-M Tracing” (training_cortexm_etm.pdf).

• “Training AURIX Tracing” (training_aurix_trace.pdf).

• “Training Hexagon ETM Tracing” (training_hexagon_etm.pdf).

• “Training MPC5xxx/SPC5xx Nexus Tracing” (training_nexus_mpc5500.pdf).

or with the description of the Break.Set command.

Action (on-chip or off-chip trace)

TraceEnable Advise on-chip trace logic to generate trace information on the specified event.

TraceON Advise on-chip trace logic to start with the generation of trace information at the
specified event.

TraceOFF Advise on-chip trace logic to stop with the generation of trace information at the
specified event.

TraceTrigger Advise on-chip trace logic to generate a trigger at the specified event.
TRACE32 PowerView stops the recording of trace information when a trigger is
detected.
Training Basic Debugging | 101©1989-2024 Lauterbach

Example for the Action Spot

The information displayed within TRACE32 PowerView is by default only updated, when the core(s) stops
the program execution.

The action Spot can be used to turn a breakpoint into a watchpoint. The core stops the program execution at
the watchpoint, updates the screen and restarts the program execution automatically. Each stop takes
50 … 100 ms depending on the speed of the debug interface and the amount of information displayed on
the screen.

Example: Update the screen whenever the program executes the instruction sieve\11.
Training Basic Debugging | 102©1989-2024 Lauterbach

Break.Set sieve\11 /Spot

spotted indicates a breakpoint with the action Spot
Training Basic Debugging | 103©1989-2024 Lauterbach

Options

Temporary OFF: Set a permanent breakpoint (default).
ON: Set a temporary breakpoint. All temporary breakpoints are deleted
the next time the core(s) stops the program execution.

DISable OFF: Breakpoint is enabled (default).
ON: Set breakpoint, but disabled.

DISableHIT ON: Disable the breakpoint after the breakpoint was hit.

Options
Training Basic Debugging | 104©1989-2024 Lauterbach

Example for the Option Temporary

Temporary breakpoints are usually not set via the Break.Set dialog, but they are often used while
debugging.

Examples:

• Go Till

Go <address> [<address> …]

; set a temporary Program breakpoint to
; the entry of the function func4
; and start the program execution
Go func4

; set a temporary Program breakpoints to
; the entries of the functions func4, func8 and func9
; and start the program execution
Go func4 func8 func9
Training Basic Debugging | 105©1989-2024 Lauterbach

• Go Till -> Write

Var.Go <hll_expression> [/Write]

; set a temporary write breakpoint to the variable
; vtripplearray[0][1][0] and start the program execution
Var.Go vtripplearray[0][1][0] /Write
Training Basic Debugging | 106©1989-2024 Lauterbach

• Go.Return and similar commands

Go.Return

; first Go.Return
; set a temporary breakpoint to the start of the function epilogue
; and start the program execution
Go.Return
; stopping at the function epilog first has the advantage that the
; local variables are still valid at this point.

; second Go.Return
; set a temporary breakpoint to the function return
; and start the program execution
Go.Return
Training Basic Debugging | 107©1989-2024 Lauterbach

DATA Breakpoints

The DATA field offers the possibility to combine a Read/Write breakpoint with a specific data value.

• DATA breakpoints are implemented as real-time breakpoints if the core supports Data Value
Breakpoints (for details on your core refer to “Onchip Breakpoints by Processor Architecture”,
page 76).

TRACE32 PowerView indicates a real-time breakpoints by a full red bar.

TRACE32 PowerView allows inverted data values if this is supported by the on-chip break logic.

• DATA breakpoints are implemented as intrusive breakpoints if the core does not support Data
Value Breakpoints. For details on the intrusive DATA breakpoints refer to the description of the
Break.Set command.

TRACE32 PowerView indicates an intrusive breakpoint by a hatched red bar.

TRACE32 PowerView allows inverted data values for intrusive DATA breakpoints.
Training Basic Debugging | 108©1989-2024 Lauterbach

Example: Stop the program execution if a 1 is written to flags[3].

Var.Break.Set flags[3] /Write /DATA.auto 1.
Training Basic Debugging | 109©1989-2024 Lauterbach

Example: Stop the program execution if another value then 1 is written to flag[3].

Var.Break.Set flags[3] /Write /DATA.auto !1.
Training Basic Debugging | 110©1989-2024 Lauterbach

If an HLL expression is used TRACE32 PowerView gets the information if the data is written via a byte, word
or long access from the symbol information.

If an address or symbol is used the user has to specify the access width, so that the correct number of bits is
compared.

Break.Set 0x11dcf /Write /DATA.Word 1234.
Training Basic Debugging | 111©1989-2024 Lauterbach

Advanced Breakpoints

If the advanced button is pushed

Advanced breakpoint input fields

additional input fields are provided
Training Basic Debugging | 112©1989-2024 Lauterbach

TASK-aware Breakpoints

If OS-aware debugging is configured (refer to “OS-aware Debugging” in TRACE32 Concepts, page 34
(trace32_concepts.pdf)), TASK-aware breakpoints allow to stop the program execution at a breakpoint if the
specified task/process is running.

TASK-aware breakpoints are implemented on most cores as intrusive breakpoints. A few cores support real-
time TASK-aware breakpoints (e.g. ARM/Cortex). For details on the real-time TASK-aware breakpoints refer
to the description of the Break.Set command.

Intrusive TASK-aware Breakpoint

Processing:

Each stop at the TASK-aware breakpoint takes at least 1.ms. This is why the red S is displayed in the
TRACE32 PowerView state line whenever the breakpoint is hit.

Program execution stops at TASK-aware
breakpoint

No
Continue with
program execution

Keep stop of program execution

Yes

Specified
task

running?
Training Basic Debugging | 113©1989-2024 Lauterbach

Example: Stop the program execution at the entry to the function EE_oo_TerminateTask only if the
task/process “Task3” is running.

Break.Set EE_oo_TerminateTask /Program /TASK "Task3"
Training Basic Debugging | 114©1989-2024 Lauterbach

The red S indicates that an
intrusive breakpoint is used
Training Basic Debugging | 115©1989-2024 Lauterbach

Real-time TASK-aware Breakpoint

Example for ARM9: Stop the program execution at the entry to the function Func_2 only if the taskF “main” is
running (Onchip breakpoint).
Training Basic Debugging | 116©1989-2024 Lauterbach

COUNTer

Counters allow to stop the program execution on the n th hit of a breakpoint.

Software Counter

If the on-chip break logic of the core does not provide counters or if a Software breakpoint is used, counters
are implemented as software counters.

Processing:

Each stop at a Counter breakpoint takes at least 1.ms. This is why the red S is displayed in the TRACE32
PowerView state line whenever the breakpoint is hit.

Program execution stops at
a breakpoint with counter

No Continue with
program execution

Keep stop of program execution

Yes

Counter
reached final

value?

Increment
counter
Training Basic Debugging | 117©1989-2024 Lauterbach

Example: Stop the program execution after the function sieve was entered 1000. times.

Break.Set sieve /COUNT 1000.
Training Basic Debugging | 118©1989-2024 Lauterbach

The red S indicates an
intrusive breakpoint

The current counter
value is displayed
in the Break.List
window
Training Basic Debugging | 119©1989-2024 Lauterbach

On-chip Counter

The on-chip break logic of some cores e.g. MPC55xx provides counters. They are used together with
Onchip breakpoints.

Example: Stop the program execution after the function sieve was entered 1000. times.

The counters run completely in real-time. No current counter value can be displayed while the program
execution is running. As soon as the counter reached its final value, the program execution is stopped.

Break.Set sieve /COUNT 1000. /Onchip
Training Basic Debugging | 120©1989-2024 Lauterbach

CONDition

The program execution is stopped at the breakpoint only if the specified condition is true.

CONDition breakpoints are always intrusive.

Processing:

Each stop at a CONDition breakpoint takes at least 1.ms. This is why the red S is displayed in the TRACE32
PowerView state line whenever the breakpoint is hit.

Program execution stops
at a breakpoint with condition

No
Continue with

Keep stop of program execution

Yes

Condition
is

true?

Verify
condition

program execution

AfterStep
check box

Yes

Perform assembler
 single step

No

ON?
Training Basic Debugging | 121©1989-2024 Lauterbach

Example: Stop the program execution on a write to flags[3] only if flags[12] is equal to 0 when the
breakpoint is hit.
Training Basic Debugging | 122©1989-2024 Lauterbach

Var.Break.Set flags[3] /Write /VarCONDition flags[12]==0

The red S indicates
an intrusive breakpoint
Training Basic Debugging | 123©1989-2024 Lauterbach

Example: “Break-before-make” Read/Write breakpoints only

Stop the program execution at a write access to the variable mstatic1 only if flags[12] is equal to 0 and
mstatic1 is greater 0.

Perform an assembler single step because the processor architecture stops before the write access is
performed.

Var.Break.Set mstatic1 /Write /VarCONDition (flags[12]==0)&&(mstatic1>0)
/AfterStep

AfterStep checked
Training Basic Debugging | 124©1989-2024 Lauterbach

The red S indicates
an intrusive breakpoint
Training Basic Debugging | 125©1989-2024 Lauterbach

Conditions not in HLL Syntax

It is also possible to write register-based or memory-based conditions.

Examples: Stop the program executions on a write to the address flags if Register R11 is equal to 1.

; stop the program execution at a write to the address flags if the
; register R11 is equal to 1
Break.Set flags /Write /CONDition Register(R11)==0x1

; stop program execution at a write to the address flags if the long
; at address D:0x1000 is larger then 0x12345
Break.Set flags /Write /CONDition Data.Long(D:0x1000)>0x12345

Switch HLL OFF ->
TRACE32 syntax can be used
to specify the condition
Training Basic Debugging | 126©1989-2024 Lauterbach

Example: Stop the program execution if an register-indirect call calls the function func3.

Break.Set main\31+0x8 /CONDition Register(PC)==ADDRESS.OFFSET(func3)
/AfterStep
Training Basic Debugging | 127©1989-2024 Lauterbach

Training Basic Debugging | 128©1989-2024 Lauterbach

CMD

The field CMD allows to specify one or more commands that are executed when the breakpoint is hit.

Example: Write the contents of flags[12] to a file whenever the write breakpoint at the variable flags[12] is
hit.

OPEN #1 outflags.txt /Create ; open the file for writing

Var.Break.Set flags[12] /Write /CMD "WRITE #1 ""flags[12]="" %Decimal
Var.VALUE(flags[12])" /RESUME

The specified command(s) is executed
whenever the breakpoint is hit. With RESUME
ON the program execution will continue after
the execution of the command(s) is finished.

The cmd field in the Break.List window
informs the user which command(s) is
associated with the breakpoint. R indicates
that RESUME is ON.
Training Basic Debugging | 129©1989-2024 Lauterbach

It is recommended to set RESUME to OFF, if CMD

• starts a PRACTICE script with the command DO

• commands are used that open processing windows like
Trace.STATistic.Func, Trace.Chart.sYmbol or CTS.List

because the program execution is restarted before these commands are
completed.

CLOSE #1 ; close the file when you are done

The state of the debugger toggles between
running and stopped
Training Basic Debugging | 130©1989-2024 Lauterbach

Display the result:
Training Basic Debugging | 131©1989-2024 Lauterbach

memory/register/var

The on-chip break logic of some cores allows to combine data accesses and instructions to form a complex
breakpoint (e.g. ARM or PowerArchitecture).

Preconditions

• Harvard architecture.

• The on-chip break logic supports a logical AND between Program and Read/Write breakpoints.

Advantageous

• Program breakpoints on address ranges are possible.

• Read/Write breakpoints on address ranges are possible.
Training Basic Debugging | 132©1989-2024 Lauterbach

Example: Stop the program execution when the function sieve writes a 1 to variable flags[3]. (If your core
does not support this feature, the radio buttons (MemoryWrite, MemoryRead etc.) are grey.)

 Var.Break.Set sieve /VarWrite flags[3] /DATA.auto 1.

1. Define the address (range) of the
instructions here

2. Select MemoryWrite

3. Define the address (range) for the
MemoryWrite accesses

4. Define the data value for the
MemoryWrite accesses
Training Basic Debugging | 133©1989-2024 Lauterbach

Exclude (Advanced users only, not available on all cores)

The breakpoint is inverted.

• by the inverting logic of the on-chip break logic

• by setting the specified breakpoint type to the following
2 address ranges
0x0--(start_of_breakpoint_range-1)
(end_of_breakpoint_range+1)--end_of_memory

The EXclude option applies only to Onchip breakpoints.

If the on-chip breakpoint logic does not provide an inverting logic, the
core has to provide the facility to set the specified breakpoint type on
2 address ranges.
Training Basic Debugging | 134©1989-2024 Lauterbach

Example for the Option EXclude

Stop the program execution when code outside of the function sieve writes 1 to the variable flags[3].

 Var.Break.Set sieve /VarWrite flags[3] /DATA.auto 1. /EXclude
Training Basic Debugging | 135©1989-2024 Lauterbach

The following command allows to check how the option EXclude is implemented.

Inverting logic of on-chip break logic:

Two address range breakpoints:

If your TRACE32 PowerView does not accept the option EXclude, delete all other Onchip breakpoints, to
make sure that enough resources are available.

Break.List /Onchip

The function sieve is marked with Exclude memoryWrite breakpoints
Training Basic Debugging | 136©1989-2024 Lauterbach

Display a List of all Set Breakpoints

address Address of the breakpoint

types Type of the breakpoint

impl Implementation of the breakpoint or disabled

action Action selected for the breakpoint (if not stop)

options Option defined for the breakpoint

data Data value that has to be read/written to stop the program execution by
the breakpoint

count Current value/final value of the counter that is combined with a
breakpoint

condition

A (AfterStep)

Condition that has to be true to stop the program execution by the
breakpoint
A ON: Perform an assembler single step before condition is evaluated

cmd (command)
R (resume)

Commands that are executed after the breakpoint hit
R ON: continue the program execution after the specified commands
were executed

task Name of the task for a task-aware breakpoint

Symbolic address of the breakpoint

Break.List [/<option>] List all breakpoints
Training Basic Debugging | 137©1989-2024 Lauterbach

Delete Breakpoints

Enable/Disable Breakpoints

Break.Delete <address>|<address_range> [/<type>] [/<implem.>] [/<option>] Delete breakpoint

Var.Break.Delete <hll_expression> [/<type>] [/<implem.>] [/<option>] Delete HLL breakpoint

Break.ENable [<address>|<address_range>] [/<option>] Enable breakpoint

Break.DISable [<address>|<address_range>] [/<option>] Disable breakpoint
Training Basic Debugging | 138©1989-2024 Lauterbach

Store Breakpoint Settings

// AndT32 Fri Jul 04 13:17:41 2003

 B::

 Break.RESet
 Break.Set func4 /Program /DISableHIT
 Break.Set sieve /Program
 Var.Break.Set \\diabp555\Global\flags[3]; /Write /DATA.Byte 0x1;

 ENDDO

STOre <filename> Break Generate a script for breakpoint settings
Training Basic Debugging | 139©1989-2024 Lauterbach

Debugging

Debugging of Optimized Code

A video tutorial about debugging optimized code can be found here:

support.lauterbach.com/kb/articles/debugging-optimized-code-in-trace32

HLL mode and MIX mode debugging is simple, if the compiler generates a continuous block of assembler
code for each HLL code line.

If compiler optimization flags are turned on, it is highly likely that two or more detached blocks of assembler
code are generated for individual HLL code lines. This makes debugging laboriously.

TRACE32 PowerView displays a tree button, whenever two or more detached blocks of assembler code are
generated for an HLL code line.

The following background information is fundamental if you want to debug optimized code:

• In HLL debug mode, the HLL code lines are displayed as written in the compiled program (source
line order).

• In MIX debug mode, the target code is disassembled and the HLL code lines are displayed
together with their assembler code blocks (target line order). This means if two or more detached
blocks of assembler code are generated for an HLL code line, this HLL code line is displayed
more than once in a MIX mode source listing.

tree button
Training Basic Debugging | 140©1989-2024 Lauterbach

https://support.lauterbach.com/kb/articles/debugging-optimized-code-in-trace32

The expansion of the tree button shows how many detached blocks of assembler code are generated for the
HLL line (e.g. two in the example below).

List.Hll Display source listing, display HLL code lines only.

List.Mix /Track Display source listing, display disassembled code and the assigned
HLL code lines.

The blue cursor in the MIX mode display follows the cursor movement
of the HLL mode display (Track option).
Training Basic Debugging | 141©1989-2024 Lauterbach

To keep track when debugging optimized code, it is recommended to work with an HLL mode and a MIX
mode display of the source listing in parallel.

Please be aware of the following:

If a Program breakpoint is set to an HLL code line for which two or more detached blocks of assembler code
are generated, a Program breakpoint is set to the start address of each assembler block.

List.Hll

List.Mix /Track
Training Basic Debugging | 142©1989-2024 Lauterbach

Basic Debug Control

Step Single stepping (command: Step)

Over Step over call (command Step.Over).

Diverge Exit loops or fast forward to not yet stepped code lines. Step.Over is performed
repeatedly.

There are local buttons in the List window for all basic debug commands
Training Basic Debugging | 143©1989-2024 Lauterbach

More details on Step.Diverge

TRACE32 maintains a list of all assembler/HLL lines which were already reached by a Step. These reached
lines are marked with a slim grey line in the List window.

The following command allows you to get more details:

List.auto /DIVERGE
Training Basic Debugging | 144©1989-2024 Lauterbach

Column layout

s Step type performed on this line
a: Step on assembler level was started from this code line
h: Step on HLL level was started from this code line

state done: code line was reached by a Step and a Step was started from
this code line.
hit: code line was reached by a Step.
target: code line is a possible destination of an already started Step,
but was not reached yet (mostly caused by conditional branches).

stop: program execution stopped at code line.

i indirect branch taken
(return instructions are not marked).

Drag this handle to see the DIVERGE details
Training Basic Debugging | 145©1989-2024 Lauterbach

Example 1: Diverge through function sieve.

1. Run program execution until entry to function sieve.

2. Start a Step.Diverge command.
L

stop indicates that the
program execution was
stopped at this code line

h indicates that a Step

started in this line

hit indicates that this
code line was reached by

command in HLL mode was

Step command

Training Basic Debugging | 146©1989-2024 Lauterbach

3. Continue with Step.Diverge.

done indicates that the
code line was reached by
a Step command and that
a Step command was
started from this code line
Training Basic Debugging | 147©1989-2024 Lauterbach

4. Continue with Step.Diverge.

The tree button
indicates that two or
more detached blocks of
assembler code are
generated for an HLL
code line

The drill-down tree is
expanded and the HLL
code line representing
the reached block of
assembler code is marked as hit
Training Basic Debugging | 148©1989-2024 Lauterbach

5. Continue with Step.Diverge.

This HLL code line includes a
conditional branch

The reached code line is
marked as hit

The not-reached code line is
marked as target
Training Basic Debugging | 149©1989-2024 Lauterbach

6. Continue with Step.Diverge (several times).

7. Continue with Step.Diverge.

When all reachable code lines are marked as done, the following message is displayed:

All code lines are now
either marked as done,
hit or target

A code line former marked
as target changes to hit
when it is reached
Training Basic Debugging | 150©1989-2024 Lauterbach

The DIVERGE marking is cleared when you use the Go.direct command without address or the Break
command while the program execution is stopped.
Training Basic Debugging | 151©1989-2024 Lauterbach

Example 2: Exit a loop.

DIVERGE marking is
done whenever you
single step.

If all code lines of
a loop are marked as
done/hit, a
Step.Diverge will
exit the loop
Training Basic Debugging | 152©1989-2024 Lauterbach

Return Return sets a temporary breakpoint to the last instruction of a function and then
starts the program execution.

Up This command is used to return to the function that called the current function.
For this a temporary breakpoint is set to the instruction directly after the function
call. Afterwards the program execution is started.

Display the HLL stack to
check the function nesting
Training Basic Debugging | 153©1989-2024 Lauterbach

Step [<count>] Single step

Step.Change <expression> Step until <expression> changes

Step.Till <condition> Step until <condition> becomes true,
<condition> written in TRACE32 syntax

Var.Step.Change <hll_expression> Step until <hll_expression> changes

Var.Step.Till <hll_condition> Step until <hll_condition> becomes true,
<hll_condition> as allowed in used programming
language

Step 10.

Step.Change Register(R11)

Step.Till Register(R11)>0xAA

Var.Step.Change flags[3]

Var.Step.Till flags[3]==1

Step.Over Step over call

Go [<address>|<label>] Start program execution

Go.Next Set a temporary breakpoint to the next code line
and start the program execution

Go.Return Set a temporary breakpoint to the return
instruction and start the program execution

Go.Up [<level>|<address>] Run program until it returns to the caller function
Training Basic Debugging | 154©1989-2024 Lauterbach

Sample-based Profiling

Program Counter Sampling

Task: get the percentage of time used by a high-level language function.

Measurement procedure: The Program Counter is sampled periodically. This is implemented in two ways.

• Snoop: Processor architecture allows to read the Program Counter while the program execution
is running.

• StopAndGo: The program execution is stopped shortly in order to read the Program Counter.
Training Basic Debugging | 155©1989-2024 Lauterbach

Standard Procedure

Steps to be taken:

1. Open the PERF configuration window.

The PERF METHOD Snoop is automatically selected, if the processor architecture supports reading
the Program Counter while the program execution is running.

The default METHOD for all other processor architectures is StopAndGo.

PERF.state Display PERF configuration window
Training Basic Debugging | 156©1989-2024 Lauterbach

Remarks on the StopAndGo method

StopAnd Go means that the core is stopped periodically in order to get the actual Program Counter.

The display of a red S in the TRACE32 state line indicates that the program execution is periodically
interrupted by the sample-based profiling.

TRACE32 tunes the sampling rate so that more the 99% of the run-time is retained for the actual
program run (runtime). The smallest possible sampling rate is nevertheless 10 (snoops/s).

STREAM ON The software running on the TRACE32 debug hardware
initiates the periodic stops. This has the following advantages:

• Low intrusive (approx. 50. to 100.us)

• More samples per second are possible

STREAM OFF The software running on the host initiates the periodic stops.

• More intrusive (1 ms in a worst case scenario)

• Less samples per second are possible
Training Basic Debugging | 157©1989-2024 Lauterbach

2. Enable the sample-based profiling by selecting the OFF state.

3. Open a result window by pushing the ListFunc button.

PERF.OFF Enable the sample-based profiling

PERF.ListFunc Open an HLL function profiling window
Training Basic Debugging | 158©1989-2024 Lauterbach

4. Start the program execution and the sampling.
Training Basic Debugging | 159©1989-2024 Lauterbach

Details

In-depth Result

Push the Detailed button, to get more detailed information on the result.

PERF.ListFunc ALL Open a detailed HLL function profiling window

name Function name

time Time in function

watchtime Time the function is observed

ratio Ratio of time spent by the function in percent

dratio Similar to Ratio, but only for the last second

address Function´s address range

hits Number of samples taken for the function
Training Basic Debugging | 160©1989-2024 Lauterbach

(other)

TRACE32 assigns all samples that can not be assigned to a high-level language function to (other).
Especially if the ratio for (other) is quite high, it might be interesting what code is running there. In this case
pushing the button ListLABEL is recommended.

PERF.ListLABEL Open a window for label-based profiling
Training Basic Debugging | 161©1989-2024 Lauterbach

TASK Sampling

If OS-aware debugging is configured (refer to “OS-aware Debugging” in TRACE32 Concepts, page 34
(trace32_concepts.pdf)), TASK information can be sampled.

Steps to be taken:

1. Open the PERF configuration window.
Training Basic Debugging | 162©1989-2024 Lauterbach

2. Select Mode TASK.

Since every OS has a variable that contains the information which task/process is currently running,
this variable has to be sampled while the program execution is running in order to perform TASK
sampling.

TRACE32 fills the following fields when TASK mode is selected:

- the SnoopAddress field with the address of the variable.

- the SnoopSize field with the size of the variable.

The PERF METHOD Snoop is automatically selected, if the processor architecture supports reading
physical memory while the program execution is running. For details refer to “Run-time Memory
Access” in TRACE32 Concepts, page 45 (trace32_concepts.pdf)).

The default METHOD for all other processor architectures is StopAndGo.

PERF.Mode TASK
Training Basic Debugging | 163©1989-2024 Lauterbach

3. Enable sample-based profiling by switching to OFF state and open the result window by
pushing the ListTask button.

4. Start the program execution and the sampling.

PERF.OFF Enable the sample-based profiling

PERF.ListTASK
Training Basic Debugging | 164©1989-2024 Lauterbach

	Training Basic Debugging
	System Concept
	On-chip Debug Interface
	Debug Features
	TRACE32 Tools

	On-chip Debug Interface plus On-chip Trace Buffer
	On-chip Debug Interface plus Trace Port
	NEXUS Interface

	Starting a TRACE32 PowerView Instance
	Basic TRACE32 PowerView Parameters
	Configuration File
	Standard Parameters
	Examples for Configuration Files
	Additional Parameters

	Application Properties (Windows only)
	Configuration via T32Start (Windows only)
	About TRACE32
	Version Information
	Prepare Full Information for a Support Email

	TRACE32 PowerView
	TRACE32 PowerView Components
	Main Menu Bar and Accelerators
	Main Tool Bar
	Window Area
	Command Line
	Message Line
	Softkeys
	State Line

	Registers
	Core Registers
	Display the Core Registers
	Colored Display of Changed Registers
	Modify the Contents of a Core Register

	Special Function Register
	Display the Special Function Registers
	Details about a Single Special Function Register
	Modify a Special Function Register
	The PER Definition File

	Memory Display and Modification
	The Data.dump Window
	Display the Memory Contents
	Modify the Memory Contents
	Run-time Memory Access
	Colored Display of Changed Memory Contents

	The List Window
	Displays the Source Listing Around the PC
	Displays the Source Listing of a Selected Function

	Breakpoints
	Breakpoint Implementations
	Software Breakpoints in RAM
	Software Breakpoints in FLASH
	Onchip Breakpoints in NOR Flash
	Onchip Breakpoints on Read/Write Accesses
	Onchip Breakpoints by Processor Architecture
	ETM Breakpoints for ARM or Cortex-A/-R

	Breakpoint Types
	Program Breakpoints
	Read/Write Breakpoints

	Breakpoint Handling
	Breakpoint Setting at Run-time
	Real-time Breakpoints vs. Intrusive Breakpoints
	Break.Set Dialog Box
	The HLL Check Box - Function Name
	The HLL Check Box - Program Line Number
	The HLL Check Box - Variable
	The HLL Check Box - HLL Expression
	Implementations
	Actions
	Options
	DATA Breakpoints

	Advanced Breakpoints
	TASK-aware Breakpoints
	Intrusive TASK-aware Breakpoint

	COUNTer
	Software Counter

	CONDition
	CMD
	memory/register/var

	Display a List of all Set Breakpoints
	Delete Breakpoints
	Enable/Disable Breakpoints
	Store Breakpoint Settings

	Debugging
	Debugging of Optimized Code
	Basic Debug Control

	Sample-based Profiling
	Program Counter Sampling
	Standard Procedure
	Details

	TASK Sampling

