
MANUAL

Release 09.2024

Training Cortex-M Tracing

Training Cortex-M Tracing

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Training ..

 Training Arm ETM ...

 Training Cortex-M Tracing ... 1

 History .. 4

 Cortex-M Trace .. 4

 Connectors 7

 Basic Trace Configuration 8

 Trace Buffer Management 10

 MTB Program Flow Trace ... 13

 ETM Program Flow Trace ... 14

 ETM Configuration 14

 Trace Capture 16

 ETM Stream Mode 17

 Displaying the Results 18

 Trace Searching 21

 Trace Filtering 24

 Tracing Certain Events 25

 Tracing Between Two Points 27

 Graphical Navigation 28

 Analyzing the Results 30

 Function Runtime 31

 Distribution 36

 Duration A to B 38

 Distance Trace Records 39

 Trace and Groups 40

 Grouping by Modules 41

 Grouping by Address Range 43

 Timing 45

 Trace Based Code Coverage 48

 Trace Based Debugging 49

 Off-line Analysis 53

 Data Watchpoint and Trace Unit 55

 PC Sampler 56

 Data Trace 58
Training Cortex-M Tracing | 2©1989-2024 Lauterbach

 Task/Thread switch Tracing 61

 Interrupt Trace 63

 ETM Trigger 65

 Instrumentation Trace Macrocell 66

 Software Generated Trace 67

 Using ITM for printf style output 70

 Time Stamping 72

 Stream Mode 73

 Pipe Mode 74
Training Cortex-M Tracing | 3©1989-2024 Lauterbach

Training Cortex-M Tracing

Version 05-Oct-2024

History

29-Sep-23 Table of optional trace blocks for member of the Cortex-M family updated.

06-Feb-18 Initial version of the manual.

Cortex-M Trace

This document should be read in conjunction with “Training Arm CoreSight ETM Tracing”
(training_arm_etm.pdf) which shows how to drive and interrogate the TRACE32 trace subsystems. Many of
the views and types of data collected will be similar to those shown in that document. It is assumed that the
reader will be familiar with the basic trace concepts, allowing this document to focus on Cortex-M specific
features.

Many of the debug components of Cortex-M based designs are optional IP blocks that may or may not have
been included in the design of the chip being debugged. Always check the chosen chips’ documentation.
Trace components may include:

Micro Trace Buffer (MTB)

This allows program flow data to be saved to internal SRAM. The data can be read via the JTAG or Serial
Wire Debug (SWD) interface. The amount of SRAM used and the location of the buffer are software
configurable. The size of the SRAM buffer limits the amount of program flow trace that can be captured.
Trace writes to SRAM take priority over system writes to the AHB-Lite interface, with one or more wait states
being inserted into AHB-Lite accesses if a trace write occurs simultaneously. This may affect the run-time
performance of the application being traced under high bus load situations. This optional IP block may not be
present in all devices.

Embedded Trace Macrocell (ETM)

This unit allows program flow data to be fed to the TPIU. There, it will be formatted for eventual delivery to
off-chip trace tools. The amount of trace data that can be captured is equal to the size of the buffer in the
external tools or, in the case of streaming, the size of the host PCs hard drive. This feature is an optional IP
block and may not be present in all devices.

Instrumentation Trace Macrocell (ITM)
Training Cortex-M Tracing | 4©1989-2024 Lauterbach

This unit provides three main features: software instrumented trace; integration of trace packets from the
DWT into the trace stream; timestamp generation for ITM and DWT trace packets. It is an optional feature
and may not be present in all devices.

Data Watchpoint and Trace (DWT)

This optional component provides a number of trace like features: Interrupt trace; Data Trace; ETM Trigger;
PC Sampler and Trigger. Each of these will be covered in more detail in a later section of this document. The
output from the DWT is fed into the ITM for formatting and inclusion into the trace stream.

Trace Port Interface Unit (TPIU)

This block is required to route the trace to its final destination: off-chip or on-chip. The TPIU can aggregate
trace from multiple sources into a single stream, allowing for tracing of multi-core designs. Two off-chip
modes are supported: Serial Wire Viewer (SWV) or Serial Wire Output (SWO); and parallel trace. SWV or
SWO is a single bit wide trace port designed for low speed trace – usually from the ITM/DWT – where this
option is selected the TPIU will silently ‘drop’ ETM packets and not transmit them. Where parallel trace is
selected all packets from all sources will be transmitted. The parallel port can be 1 to 4 bits wide and may be
clocked independently from the CPU.

The table below outlines the optional trace blocks that are available for members of the Cortex-M family.

Armv6-M

Cortex-M0 No trace options.

Cortex-M0+ Optional: MTB
Optional: Limited DWT may be included that supports data breakpoints
and PCSampler.

Cortex-M1 No trace options.

Armv7-M

Cortex-M3 Optional: ITM, DWT, ETMv3.

Cortex-M4 Optional: ITM, DWT, ETMv3.

Cortex-M7 Optional: ITM, DWT, ETMv4 (optional with full data trace).

Armv8-M

Cortex-M23 Optional: DWT.
Optional: ETMv3 or MTB. The two are mutually exclusive.

Cortex-M33 Optional: ITM, DWT, ETMv4, MTB. Designs can support both MTB and
ETM in the same device.

Cortex-M35P Optional: ITM, DWT, ETMv4, MTB. Designs can support both MTB and
ETM in the same device.

Cortex-M55 Optional: ITM, DWT, ETMv4.

Cortex-M85 Optional: ITM, DWT, ETMv4.

STAR Optional: ITM, DWT, ETMv4.
Training Cortex-M Tracing | 5©1989-2024 Lauterbach

A graphical overview of the Cortex-M (>= M23) debug components can be seen in the block diagram below.

This is the block diagram for Cortex-M0+ devices.
Training Cortex-M Tracing | 6©1989-2024 Lauterbach

Connectors

Two connectors are commonly used with Cortex-M based systems. The diagram below shows the pinouts
and which features are supported by each.

It is imperative to ensure that your development board has the correct connector for the debug features you
wish to use. Other connectors are possible.

MIPI10-

VREF

GND

GND

KEY

GND

1 2

3 4

5 6

7 8

9 10

TMS

nRESET

TDO

TDI

SWDIO

SWO

SWCLKTCK

Debug Port

Trace Port

4-1 bits wide + 1 pin
Off-chip ITM trace
Off-chip trace (ETM)

JTAG or SWD
ITM trace via SWV
On-chip trace

MIPI20-T

VREF

GND

GND

KEY

GND

1 2

3 4

5 6

7 8

9 10

TMS

nRESET

TDO

TDI

SWDIO

SWO

SWCLKTCK

GND

GND

GND

KEY

GND

11 12

13 14

15 16

17 18

19 20

TRACECLK

TRACE_D[1]

TRACE_D[2]

TRACE_D[0]

TRACE_D[3]
Training Cortex-M Tracing | 7©1989-2024 Lauterbach

Basic Trace Configuration

The trace system is configured using the Trace.state window, which can be accessed via the command line
or from the Trace menu.

Most of the features in this window are explained under “ETM Setup” in Training Arm CoreSight ETM
Tracing, page 6 (training_arm_etm.pdf). Here, we will concentrate on those that affect Cortex-M based
systems.

The generated trace data can be stored on-chip in a memory buffer or it can be streamed off-chip to a set of
trace tools. On-chip trace storage is often referred to as MTB or Embedded Trace Buffer (ETB). Whilst off-
chip trace storage is often referred to as ETM. These are historical and largely irrelevant as the same trace
data can be routed to either storage medium.

For off-chip trace (ETM, ITM), select Trace.METHOD CAnalayzer or Trace.METHOD Analyzer. If the tools
do not support one of these modes, it will be grayed out.

For on-chip trace (MTB), select Trace.METHOD Onchip.

For off-chip trace, the size will be automatically filled based upon the amount of storage for trace data there
is in the chip or the tools. This can be over-ridden for off-chip trace if a smaller amount of data is required,
simply type the new value into the field or use the command Trace.SIZE <n>. For on-chip trace (MTB), the
size must be specified.
Training Cortex-M Tracing | 8©1989-2024 Lauterbach

The Mode setting affects the way that the trace buffer is managed.

The Trace.CLOCK needs to be set to the core clock frequency.

The Trace.TDelay setting is used to position a trigger point somewhere other than the start (STACK of
LEASH mode) or end (FIFO mode) of the buffer. It takes either a percentage or a number of records to
capture after the trigger condition is reached. The trigger condition is a breakpoint of type TraceTrigger. This
does not stop the core but merely triggers the trace system; of course the action of the trigger may also be to
stop the core. More information can be found here (“Trace Buffer Management”, page 10.

The Trace.TSELect and Trace.TOut settings allow for an external trigger to be used. This can be the BusA
signal which is present on the PODBUS as well as the Trigger pin on the outside the TRACE32 debug
hardware. From left to right: Trigger pin, USB connector, (optional) Ethernet connector, power connector.

The Trigger pin is controlled via the Trigger Bus Window (TrBus). Selecting <trace>.TSELect BusA will use
the Trigger pin as the trace trigger event. Selecting <trace>.TOut BusA will trigger the pin when the trace
system triggers or stops tracing.

FIFO The trace data is stored in the buffer memory in the TRACE32 trace
hardware. When the buffer fills, earlier records are over-written with the
new data. When the trace sampling stops, the maximum amount of trace
history is available.

Stack The trace data is stored in the buffer memory in the TRACE32 trace
hardware. When the buffer is almost full, sampling stops but the target is
left running.

Leash The trace data is stored in the buffer memory in the TRACE32 trace
hardware. When the buffer is almost full, trace sampling stops and the
target is halted.

STREAM The buffer memory in the TRACE32 trace hardware is used as a large
FIFO and the trace data is streamed to a file on the host system’s hard
drive. The amount of trace captured is limited by either the size of the
hard disk partition, a user specified amount or (2^64)-1 frames.

PIPE The buffer memory in the TRACE32 trace hardware is used as a large
FIFO and the trace data is streamed to an application which reads a pipe
or FIFO on the host system. The trace stream must be processed in real-
time; no storage is performed. The trace stream can be effectively
unbounded.
Training Cortex-M Tracing | 9©1989-2024 Lauterbach

Trace Buffer Management

The trace buffer acts as storage for all of the information generated by the core. When the target stops, the
records in the trace buffer allow the user to look back into the past. It is impossible to look back beyond the
start of the trace buffer.

If the sampling is halted before the buffer fills a smaller amount of data is collected.

Once the buffer has filled, the time window moves forwards to accommodate new samples. When the trigger
occurs, the trace stops sampling. If more than a buffer’s worth of data had been generated some of it would
have been lost.

To capture more data:

• Use tools with a larger trace buffer. Eventually, this option will become exhausted.

• Stream the trace data to your local hard drive. More information can be found “ETM Stream
Mode”, page 17

• Stream the trace data to a local application for real-time processing. The trace data is not stored
by TRACE32. More information can be found here: “Pipe Mode”, page 74.

• Use the on chip features to filter the generated trace data to view only events of interest. More
information can be found here: “Trace Filtering”, page 24.
Training Cortex-M Tracing | 10©1989-2024 Lauterbach

The DWT can generate a Trigger packet which causes the trace tools to trigger on an event. The
Trace.TDelay option controls how the tools will react. It holds a portion of the trace buffer in reserve to be
filled up only after the trigger event occurs. Setting the value to 50% will place the trigger event in the middle
of the trace buffer, giving the user an equal amount of trace buffer dedicated to events before the trigger and
events after the trigger.

Setting the point to 10% will ‘reserve’ 10% of the buffer to store events that occurred after the trigger.

When the trigger event occurs, the trace state changes to “trigger”, as seen in the image below.

When the amount of trace that corresponds to the Trace.TDelay setting has been captured the trace will
stop sampling and the mode will change to break.
Training Cortex-M Tracing | 11©1989-2024 Lauterbach

The Trigger point can be located in the Trace.List window and adding the Time.TRIGGER column shows all
trace events timed relative to the trigger event: events after have a positive time index; events before have a
negative time index.
Training Cortex-M Tracing | 12©1989-2024 Lauterbach

MTB Program Flow Trace

The Micro Trace Buffer (MTB) provides basic program flow trace capabilities for cores with limited resources.
It is not designed to compete with ETM or PTM. The trace data is stored in a user configurable area of RAM
at runtime. External debug tools can be used to start or stop the trace. The size and location of the RAM
storage is configurable in software, allowing the resources to be reclaimed from a development build when
they are no longer needed. The MTB can be programmed by the debug tools to cause the processor to
enter a halt state when the buffer becomes full.

TRACE32 treats the MTB as an on chip trace buffer. The On Chip family of commands apply and
Trace.METHOD Onchip should be set.

TRACE32 needs to know the base address and size of the buffer. This is done with the commands:

• Onchip.TBADDRESS <address>

• Trace.SIZE <size>

The MTB is usually placed in a separate memory region in the linker control file. This makes it easy for
TRACE32 to locate the base address with something like this.

A list of all sections can be obtained with the command sYmbol.List.SECtion and my look like this.

Here, the base address of the .mtb section can be clearly seen.

There is no timing information available for the program flow trace; no statistical or analytical operations may
be performed.

Trace.TBADDRESS ADDRESS.OFFSET(sYmbol.SECADDRESS(.mtb))
Trace.SIZE 64.
Training Cortex-M Tracing | 13©1989-2024 Lauterbach

ETM Program Flow Trace

When most people think of trace, what they mean is ETM. This is a program flow trace that is generated by
the Cortex-M core. This section should be read in conjunction with .“Training Arm CoreSight ETM
Tracing” (training_arm_etm.pdf) which provides a more general overview of ETM and the kinds of analysis
that can be performed on the captured data.

ETM Configuration

ETM trace data requires a fully functional TPIU to be able to pass the data to the final destination (off-chip or
on-chip). The ETM features are configured in the ETM window. It can be accessed from the Trace menu,
from the Trace Configuration window or by using the command ETM.

It looks like this.
Training Cortex-M Tracing | 14©1989-2024 Lauterbach

Next, the TPIU may need to be configured. This can be accessed via:

• Selecting TPIU settings from the Trace menu

• Clicking the TPIU button in the Trace.state window

• Using the command TPIU.state

 The TPIU.PortSize value can be changed to 1bit wide, 2bits wide, 4bits wide or Serial Wire Viewer (SWV).
The default value of TPIU.SyncPeriod is every 1024 packets. This can be changed by the user and
configures how frequently synchronisation packets will be emitted by the target.

NOTE: Some devices lack enough pins to bring out all of the possible signals on the
chip. When this occurs, the user will need to ensure that the correct pin muxing
is enabled to route the TPIU signals from the chip to the debug header on the
board. Check your chipset documentation! Other things to check are:
• Your application does not use a set of chip features that prevent the cor-

rect multiplexing of the trace port pins.
• Any chosen RTOS does not re-multiplex the trace port pins as part of its

setup/boot procedures.
• Any third party libraries or drivers do not change the trace port pin multi-

plexing.
• Some devices multiplex the trace port pins with GPIO. Ensure the pin

direction is correctly set. Also, check the maximum possible speed of the
GPIO pins used; the trace will not emit data faster than this.
Training Cortex-M Tracing | 15©1989-2024 Lauterbach

Trace Capture

To capture Program Flow trace using ETM:

1. Set ETM.ON. Via command or GUI.

2. Set Trace.CLOCK.

3. Set either Trace.Method Analyzer or Trace.Method CAnalyzer. Unsupported variants will be
grayed out.

4. Set Trace.OFF.

5. Set Trace.AutoArm ON. This will cause the sampling to start and stop in synchronisation with
the target.

6. Set Trace.AutoInit ON. This will clear the existing buffer before sampling new data.

7. Set the desired Trace.Mode (Stack, FIFO or Leash). More information can be found here “Trace
Buffer Management”, page 10.

8. Start the target running. It can be halted manually or via a breakpoint.

Details on how to display the results can be found here “Displaying the Results”, page 18 and details on
analyzing the trace data can be found here “Analyzing the Results”, page 30.
Training Cortex-M Tracing | 16©1989-2024 Lauterbach

ETM Stream Mode

To capture trace data for extended periods of time may require storing more data than can be held in the
buffer in the tools. For example, the µTrace’s (MicroTrace) 128Mbyte buffer holds around 20-30seconds of
trace of a bare metal demo program running at 66MHz on a Cortex-M3.

Trace data can be streamed to a local file system for analysis.

This requires a 64bit host OS and a 64bit version of TRACE32. By default, the stream file is stored to the
temporary directory specified in the configuration file (usually ~~/config.t32). This can be found with the
command:

A new stream file can be set with Trace.STREAMFILE <file>

Set the Trace mode to STREAM and the used bar switches from white to yellow as seen in the picture,
below left.

The used bar is now used to show the fill level of the tools’ internal buffer. The buffer is now used as a large
FIFO to smooth out any peaks in the trace flow before streaming to the host PC. The number underneath is
the number of trace frames captured. The image (above, right) shows the state after around 5 and a half
minutes of trace capture.

When TRACE32 is closed any stream files are automatically deleted from the host file system. Captured
trace data can be saved using CAnalyzer.STREAMSAVE <file> so that it remains on the local file system
after TRACE32 has closed. When TRACE32 is re-started, the saved data can be re-loaded with
CAnalyzer.STREAMLOAD <file>. The data is saved in a raw format and it is not expected that users will be
able to interpret this. More information about working with loaded trace files can be found here “Off-line
Analysis”, page 53.

PRINT OS.PresentTemporaryDirectory()
Training Cortex-M Tracing | 17©1989-2024 Lauterbach

Displaying the Results

Once the trace data has been captured a list of all events can be obtained by using the Trace.List command
or by clicking the List button in the Trace configuration window. The results will look like this.

The columns shown are the default values and others can be added. See Trace.List for more information.

Along the top of the window is a series of buttons that give access to other features.

Setup Opens the Trace configuration window.

Goto Opens the Goto window which allows the user to jump to points of interest in
the trace listing. For more details on filtering “Trace Filtering”, page 24 and
searching “Trace Searching”, page 21.

Find Opens the search dialog and allows the user to search for events within the
trace buffer.
Training Cortex-M Tracing | 18©1989-2024 Lauterbach

More information on driving the Chart windows can be found here “Graphical Navigation”, page 28.

Chart Displays a graphical view of functions on the y-axis and time on the x-axis.
Bear in mind that: trace captured in FIFO mode will all have a negative time
index; if a Trigger has been used trace captured before the trigger event will
have a negative time index.
Training Cortex-M Tracing | 19©1989-2024 Lauterbach

Clicking the More or Less buttons will add or remove certain items from the display. In four steps, it moves
between showing all CPU cycles, including dummies, to just showing the HLL code.

Profile Shows a graphical representation of cpu usage by function over time. Small
time slices are used to calculate the percentage of cpu time used by each
function that occurs during the slice. See “Graphical Navigation”, page 28
for more information on interacting with this window. Each function is
represented by a colored block. Clicking on the colored block opens a pop-up
which displays more information about the item.

MIPS Provides a graphical representation of how many instructions per second
(over a given time slice) were used executing each function. “Graphical
Navigation”, page 28.
Training Cortex-M Tracing | 20©1989-2024 Lauterbach

Trace Searching

The Trace Goto dialog looks like this and can be accessed by clicking the “Goto” button on any trace view
window.

It provides a convenient way of jumping to certain points within the Trace.List window.

A user entered record number or time index can be entered. If a bookmark has been created this can be
located here too. More information about BookMarks can be found by following this link.

Jump to the First captured trace record.

Jump to the Trigger event. More information on the trigger can be found here: “Trace Buffer
Management”, page 10.

Jump to time index of zero. This is the first event in Stack or Leash mode and the last event in FIFO mode.
Right-clicking any trace window allows a user created zero point to be defined. This will be used as the zero
point in all future calculations. The command Trace.ZERO can also be used to set the marker.

Jump to the Last captured trace event.

Jump to a user created reference point. Right-clicking any trace display window will allow a reference point to
be manually created. The command Trace.REF may also be used to set the reference marker.

Selecting Track will jump to the last position that the user placed a cursor at in any trace window.

Any windows that are opened with the /Track option will also jump to the selected point.
Training Cortex-M Tracing | 21©1989-2024 Lauterbach

It is possible to search the contents of the trace using the Find window which can be accessed by clicking
the Find… button on the Trace.List window and looks like this.

For example, to find all occurrences of function iTIM4ISR, you would enter:

And click the Find All button. A list of all entries to the function iTIM4ISR are shown. The ti.back
column shows the time between calls to this function. More information on trace timing can be found here:
“Timing”, page 45.

Clicking any item in this window will cause the Trace.List window to jump to the same point within the trace
buffer.
Training Cortex-M Tracing | 22©1989-2024 Lauterbach

Cortex-M ETM trace is program flow trace only; there are no data trace items. These can be injected via the
DWT/ITM. More information can be found here: “Data Watchpoint and Trace Unit”, page 55. To search for
all task switches (writes to TASK.CONFIG(magic)) use:

Then click Find All. A list of task switches will be displayed. The values in the ti.back column show how long
each task or thread was running for before it was switched.

More information on tracing task or thread switches can be found here: “Task/Thread switch Tracing”,
page 61.

The Find window is a wrapper for the command Trace.FindAll. Follow the link for a detailed explanation.
Training Cortex-M Tracing | 23©1989-2024 Lauterbach

Trace Filtering

Events can be filtered by using the DWT. The DWT filtering takes place on the chip and is non-intrusive to
the target’s runtime performance. Filtering to capture only those events of interest can relieve pressure on
the internal FIFO in the chip and extend the length of time for which data can be captured.

The DWT comparators can be conveniently programmed by using the TRACE32 breakpoint features.
Several event filter types are available and can be assigned by using the Break.Set command or dialog.

The last five entries on the drop-down menu will affect how trace is generated.

By using a matching pair of TraceON and TraceOFF markers it is possible to restrict the trace to only an area
of interest and nothing else. This will extend the length of time for which meaningful data can be captured at
the expense of not capturing all events.

The Trigger packet causes the trace tools to trigger on an event. The Trace.TDelay option in the Trace
configuration window controls how the tools will react. It holds a portion of the trace buffer in reserve to be
filled up only after the trigger event occurs. Setting the value to 50% will place the trigger event in the middle
of the trace buffer, giving the user an equal amount of trace buffer dedicated to events before the trigger and
events after the trigger.

TraceEnable When a breakpoint of this type is set, a match will generate a trace packet
for this event only. All other ETM trace generation is suspended.

TraceData A match to this event will cause a DWT data trace packet to be emitted.

TraceON ETM trace will be switched on when this event matches.

TraceOFF ETM trace will no longer be generated when this event matches.

TraceTrigger When this event matches, a Trigger packet will be emitted.
Training Cortex-M Tracing | 24©1989-2024 Lauterbach

Tracing Certain Events

For example, the time taken between an Interrupt Service Routine executing and the task designed to
respond to that interrupt being scheduled.

When using Filters like this it is recommended to switch the timing mode to be cycle accurate
(ETM.TImeMode CycleAccurate. Some early Cortex-M cores do not support a cycle accurate timing
model. In these cases, set Trace.PortFilter ON.

Set a breakpoint on the ISR and the wake-up part of the task of type /TraceEnable. The list in the picture
below shows an example of marking two events.

Listing the contents of the trace buffer with Trace.List shows only the filtered events.

To show a histogram of distances between two points use the command
Trace.STATistic.AddressDURation. For example:

To measure the time between the last instruction of the ISR and the first instruction of the task that wakes to
deal with the ISR. All of the results are between 10.150 us and 10.350 us.
Training Cortex-M Tracing | 25©1989-2024 Lauterbach

Trace.STATistic.AddressDURation iTIM4ISR\3 tADC\84
Training Cortex-M Tracing | 26©1989-2024 Lauterbach

Tracing Between Two Points

A pair of breakpoints can be used: a breakpoint of type /TRACEON to start tracing at a particular event; and
a breakpoint of type /TRACEOFF to stop tracing at this event. For example: To trace the main loop of a task
(tMotor), set a pair of breakpoints to mark the on and off positions.

Run the target to collect the trace data and then view the results. As we can see from the image below, more
has been captured than just the task we were interested in.

By marking a start and stop point, all code executed between these two points will be sampled. This includes
interrupts, sub-functions, task switches, etc.

If the application is running as a small bare metal loop then this approach works very well. If the application
has an RTOS or scheduler then more data may be collected than anticipated.

Setting a ranged breakpoint does not help as the DWT will generate a trace event for each branch within the
range. This will result in a lot of FIFO overflows. To view only the code within the task of interest it is better to
use a group (see “Trace and Groups”, page 40) and filter on that afterwards. If the amount of trace is too
large to fit in the tools’ internal buffer, consider using Stream mode: “ETM Stream Mode”, page 17.
Training Cortex-M Tracing | 27©1989-2024 Lauterbach

Graphical Navigation

All graphical views of the trace data have some common navigation features.

Zoom/pan using the In/Out/Full buttons. Some can zoom in two dimensions, others in only one.

Click and drag to select an area. Click within the selected area to zoom that to full screen.
Training Cortex-M Tracing | 28©1989-2024 Lauterbach

Click and drag to time a region.

Click and use the mouse scroll wheel: scroll up to zoom in and scroll down to zoom out.

Double-click but don’t release the second mouse button press. Whilst holding the button, move the mouse
up to zoom in and down to zoom out. Move left and right to scroll through the window along the x-axis.

The Trace.Chart.sYmbol window can be ordered along the y-axis. Drag the row to the required position.

Adding the /Track option to any window showing trace data allows it to snap to a cursor placed in any other
trace display window.
Training Cortex-M Tracing | 29©1989-2024 Lauterbach

Analyzing the Results

The collected trace data can be analyzed to show a lot of performance information about the code running
on the target. This is handled by the PERFormance commands and more information can be found by
following the link. The features can also be accessed from the Perf menu; the highlighted features will be
discussed in this manual.

These items work with collected trace data.
Training Cortex-M Tracing | 30©1989-2024 Lauterbach

Function Runtime

The items in this menu deal with how long each function and/or sub-function takes to execute and how many
times it is called. A basic display looks like this:

This shows a list of functions that were sampled during the trace collection period and runtime statistics
(including min, max and mean) for each.

Many other columns can be added and the list can be sorted in a number of ways. Clicking the “Config”
button gives access to this dialog, which looks like this.
Training Cortex-M Tracing | 31©1989-2024 Lauterbach

Each line in the list has a right-click menu associated with it. This provides access to more detailed analyses.

The first section jumps to the first, last or maximum entry in the Trace.List window.

Linkage shows an analysis of all places that this function was called from along with runtime information.
This example shows all the places in the application where func1() is called from and for each it displays
the runtime measurements. It is a convenient method to access Trace.STATistic.LINKage.

Parents shows the call tree back to the entry point or root of the application, again with performance
information for each function in the tree. This is a convenient way to access Trace.STATistic.ParentTREE.
Training Cortex-M Tracing | 32©1989-2024 Lauterbach

Children shows the call tree starting at the selected function and traversing downwards through all of the
sub-functions with performance information for each node. This menu item provides an easy way to access
Trace.STATistic.ChildTREE.

Duration shows a histogram of runtimes for the selected function. TRACE32 allocates 16 appropriate
bucket sizes ad assigns the runtime values to each of these. These can be over-ridden by the user on the
command line by using Trace.STATistic.FuncDURation. The zoom buttons and scroll bar can be used to
navigate or display more or less details for a specific range.
Training Cortex-M Tracing | 33©1989-2024 Lauterbach

Findall Duration provides a convenient way of automatically searching for all entry and exit points for the
selected function. The yellow lines are function entries and the white lines are the corresponding exit. The
value in the ti.fore column shows the time for each event, so the top line shows that func2 took 2.20 µs to
execute and it was another 60.960µs before it was called again.

Distance Analysis shows the amount of time that elapsed between one call to a function and the next call
to that function. This is a convenient way of accessing the Trace.STATistic.AddressDIStance command.
Training Cortex-M Tracing | 34©1989-2024 Lauterbach

Findall Distance is an easy way to search for all entry points of the selected function. The ti.fore column
shows the time between calls to that function.
Training Cortex-M Tracing | 35©1989-2024 Lauterbach

Distribution

Distribution shows the values that have been assigned to a variable during the sampling period. This
requires data trace, which on Cortex-M requires the ITM/DWT to be configured correctly. Data trace packets
consume more trace bandwidth than program flow trace, so care should be taken when monitoring data
items not to cause overflows in the on chip FIFO of the target.

To monitor a variable, a breakpoint can be used to program the DWT to emit a data trace packet on reads,
writes or any access. To monitor writes to HLL variable flags[3], set a breakpoint like this:

The Var.ADDRESS() macro returns the address of the 4th element of array flags. It can be used on any
complex variable where a simple symbol table lookup will not find the address. The same breakpoint would
be set in the UI like this.

The ITM needs to be set for Data Trace: ITM.DataTrace ON or via the GUI. Start the target to collect trace
samples.

If the ETM trace is set to OFF (no ETM trace data generated) then the menu items under the Perf menu can
be used to analyze the data. If ETM is on (Program flow trace data also generated) then the analysis cannot
be performed by using the items under the Perf menu. When ETM is detected, the Perf will default to using
ETM trace for analysis. Instead, use the ITMTrace series of commands. Both commands will be shown in
the examples below. The generic Trace command can also be used.

Trace.STATisitc.DistriB Data

The image above shows that for 95.181% of the sampling time, the value of flags[3] was 0 and for
4.813% it was a 1. The (other) entry is the time at the start of the trace capture where the value of
flags[3] was unknown as no writes had yet been captured.

Clicking the Config button will open a dialog to allow the user to change the sorting order and to add or
remove different columns.

Break.Set Var.ADDRESS(flags[3]) /Write /TraceData
Training Cortex-M Tracing | 36©1989-2024 Lauterbach

Clicking the Chart button will show how the values of the variable changed over time in a graphical format.

Trace.Chart.DistriB Data
Training Cortex-M Tracing | 37©1989-2024 Lauterbach

Duration A to B

This feature uses the Trace.STATistic.DURation command to measure the time between two arbitrary
points; it is no longer constrained to function entry and the corresponding exit. For instruction timing
Trace.STATistic.AddressDURation is better.

To show how long a variable contains one value before it switches to another use something like:

Where <width> can be:

• B - byte (8bits), can be split into B0, B1, B2 or B3 to represent a single byte in a 32bit access

• W - Word (16bits)

• L - long (32bits)

• Q - Quad (64bits)

• T - Triple (128 bits)

To measure the time between a variable changing from a 0 to a 1:

1. Set a breakpoint on the variable to generate trace data, for example:
Break.Set Var.ADDRESS(flags[3]) /Write /TRACEDATA

2. Set ITM.ON

3. Set ITM.DataTrace ON

4. Collect trace data

5. Use Trace.STATistic.DURation /FilterA Data.B 0x00 /FilterB Data.B 0x01 to show the results

Trace.STATistic.DURation /FilterA Data.<width> <value> /FilterB Data.<width> <value>
Training Cortex-M Tracing | 38©1989-2024 Lauterbach

Distance Trace Records

This allows the user to time between two arbitrary points in the application code. This is done by using the
/Filter options to the <trace>.STATistic.DIStance command.

For example, if it is required to measure the distance between a call to func2() and the subsequent call to
func5():

Trace.STATistic.DIStance /Filter Address func2 /Filter Address func5

Filtering can also be performed using data values. Use the Data.<x> filter options instead of Address. For
example, to filter on a variable containing the value 0x63f4 and the next time it contains the value 0x6520
use the command:

Trace.STATistic.DIStance /Filter Data.W 0x63F4 /Filter Data.W 0x6520
Training Cortex-M Tracing | 39©1989-2024 Lauterbach

Trace and Groups

Trace data can be assigned to logical groups to aid analysis and filtering. Groups can be created with the
GROUP.Create command and viewed with GROUP.List. For an overview of the GROUP functionality, refer
to the GROUP command group.

Groups can be created around:

• Address Ranges

• Functions

• Modules

• Symbols

• Tasks

Grouping only affects the display of captured trace data, not the data itself.

When a group is created, TRACE32 automatically creates a base group called “other”. This contains
everything that is not a part of any defined group.

Grouping code into logical function blocks makes it easier to reduce the amount of trace data that users
need to analyze and allows them to focus on the regions or interactions of interest.
Training Cortex-M Tracing | 40©1989-2024 Lauterbach

Grouping by Modules

More than one item can be part of a group. In this example two object files will be allocated to a single group.
Both sets of code are involved with the motor control functions of the target so it makes sense to group them
logically like this.

GROUP.CreateTASK “Motor_Tasks” “\app_motor” “\app_rpm” /RED

GROUP.Create without any arguments will open the creation dialog. The image below shows it filled in to
create the same group as the command above. Clicking the blue ‘i’ button will open a module browser
window from which the user can select multiple modules.

GROUP.List now shows the new group and the default “other” group.

In the GROUP.List window, check the hide column for group “other”. Alternatively, use the command:

GROUP.HIDE “other”
Training Cortex-M Tracing | 41©1989-2024 Lauterbach

Now the trace view windows will suppress the display of anything that is marked as hidden.

With the “other” group hidden, the Trace.List window looks like this. Different groups are color coded and
the colors can be seen in the bar on the left side of the window. As control passes between groups a line is
added to the trace listing to show this. In the example below 75.459us were taken up processing group
“other” and before that 1.120us were spent processing in group “Motor_Tasks”.
Training Cortex-M Tracing | 42©1989-2024 Lauterbach

Grouping by Address Range

This example creates two groups: one for the application code and another for the kernel code. Multiple
entries can be added to the addressrange(s) field, as shown in the “Application” example below. Whereas,
the “kernel” entry only covers a single range.

The groups can be listed using the GROUP.List command:

 The “other” group is clearly visible here. The source view (List) windows now have an added color bar to
show which group the code being viewed belongs to.
Training Cortex-M Tracing | 43©1989-2024 Lauterbach

A trace listing window will show also show the groups color coded and will indicate where control passes
from one group to another.

One or more groups can be removed from the trace display windows by clicking the “hide” column in the
GROUP.List window or by using the command GROUP.HIDE <name>.

The “other” group is now suppressed from display.
Training Cortex-M Tracing | 44©1989-2024 Lauterbach

Timing

A very detailed set of analyses can be performed using the PERF commands (“Analyzing the Results”,
page 30) but measuring time from a significant event or between two points can be performed using the
timing columns in the Trace.List window.

The default Trace.List window includes the TIme.Back column. This is the time taken from the last trace
entry to this one. Additional timing columns can be added to any trace listing window, for example:

The most commonly used timing options are listed in the table below. Other, less common, options are
described in the documentation for Trace.List.

Also, bear in mind that some times can be negative as the item may have occurred before the timing point.

TIme.Back The time elapsed since the last entry.

TIme.Fore The time elapsed from this entry until the next entry.

TIme.REF The time elapsed since a user-defined reference point.

TIme.Zero The time elapsed since the debug session started or a user-defined Zero
point.

TIme.Trigger The time elapsed since the trace trigger event.
Training Cortex-M Tracing | 45©1989-2024 Lauterbach

Some marker points can be user-defined or moved by the user. To do this, right-click in any windows that
shows a view of the captured trace data and select the appropriate marker from the pop-up menu.

The two images below show how setting the TI.Zero marker in the Trace.Chart window will affect the timing
in the Trace.List window.

After setting the Zero point in the Chart window, the values in the TI.Zero column in the List window change
to show the timings relative to the new Zero point.
Training Cortex-M Tracing | 46©1989-2024 Lauterbach

Different markers are shown in different colors.

All three can be seen in the picture below.

A blue line represents a user placed cursor and is used for tracking between trace view windows.

Left-clicking anywhere in the Trace.Chart window will create a pop-up which shows the timing information:

Green Zero marker

Red User-defined REF marker

Yellow User-defined bookmarks.

C-T Current time (selected by cursor) to Trigger point.

C-R Current time (selected by cursor) to REF marker.

C-Z Current time (selected by cursor) to Zero point.
Training Cortex-M Tracing | 47©1989-2024 Lauterbach

Trace Based Code Coverage

The manual “Application Note for Trace-Based Code Coverage” (app_code_coverage.pdf) gives a
detailed introduction to the trace-based code coverage. However, the manual does not contain details about
the architecture-specific setups. Here is an overview of the setups for the ETM.

The following settings are recommended:

ETM.Trace ON ; Enable program flow trace

ETM.TImeMode External ; Enable tool timestamp

ITM.OFF ; Switch the ITM off
Training Cortex-M Tracing | 48©1989-2024 Lauterbach

Trace Based Debugging

Once a set of trace data has been captured it is possible to walk through the history of the recording, often
filling in missing details. The Context Tracking System (CTS) is used to perform these functions. CTS is
accessed from the Trace menu or via the command CTS.state.

More information about trace based debugging can be found here: “Trace-based Debugging” in General
Commands Reference Guide C, page 163 (general_ref_c.pdf).

Once the mode is set to ON (via the GUI or the command CTS.ON), the CTS system analyses the recorded
trace in more detail, often filling in missing data accesses and areas where FIFO overflows occurred. This
may take a few minutes depending upon the size of the captured trace and the speed of the host PC and
available RAM. It will look something like this:
Training Cortex-M Tracing | 49©1989-2024 Lauterbach

When CTS is active, the TRACE32 status bar and control icons in the List window change color to yellow.
New buttons appear in the List window tool bar, allowing the user to step forwards or backwards through the
code and to run back to a function entry point. Compare the two images below.

Stepping backwards or forwards through the code shown in the List window will cause any register, memory
or variable display windows to be updated to show the re-constructed values as they would have been at
that point in history.

The right-click menu also has new options added to allow users to go forwards or backwards to a point or
run forwards or backwards to an access on a variable.
Training Cortex-M Tracing | 50©1989-2024 Lauterbach

Clicking the List button in the CTS.state window opens the CTS.List window. This shows a nested view of
the code. Where possible, arguments and return values have been reconstructed using the current state of
the target and the captured trace data. Timing for each node is represented in the ti.back column. Each node
can be opened or closed to show more detail. Where a piece of data cannot be reconstructed a series of
??? will appear in all windows that show CTS data.
Training Cortex-M Tracing | 51©1989-2024 Lauterbach

In any trace display window, the right-click menu has a Set CTS option. Selecting this will cause the current
state to jump to that point in history with as much of the context reconstructed as possible. This allows the
use of high level tools such as chart windows to locate an issue and then zoom in to see in detail what
occurred at that time.

Once CTS is active, all trace analysis features will work with the reconstructed data. This is often better than
the captured data as any gaps may be filled in but will be no worse.
Training Cortex-M Tracing | 52©1989-2024 Lauterbach

Off-line Analysis

A set of trace data can be saved for later, off-line analysis. To save the trace data, use Trace.SAVE <file>. In
most cases only the /ZIP option is useful. Saved trace data files have the extension “.ad”.

Trace files can be re-load with Trace.Load <file>.

Normal trace analysis features work exactly as if they were using a recently captured “live” trace. The only
difference is that the trace display windows now contain a red “LOAD” mnemonic. These can be seen in the
image below.

A more detailed analysis may often be achieved if the contents of the RAM are saved along with the CPU
registers at the point where the trace had finished being captured. This can be done like this:

TRACE32 software can also be installed or configured as an instruction set simulator. In this way the saved
trace can be analyzed off-line.

To analyze saved trace data:

1. Start TRACE32 in simulator mode, set the CPU type and system mode to UP.

- SYStem.CPU

- SYStem.Up

2. Load the saved RAM contents.

- Data.LOAD.Binary <file> <address>

3. Load the saved CPU registers

- DO <save_reg_file>

4. Load application symbols

- Data.LOAD.Elf <symbol_file> /NoCODE

5. Load the saved trace file

Data.SAVE.Binary <file> <address_range>
STOre <file> Register
Training Cortex-M Tracing | 53©1989-2024 Lauterbach

- Trace.Load <file>.ad
Training Cortex-M Tracing | 54©1989-2024 Lauterbach

Data Watchpoint and Trace Unit

• The DWT provides some useful additions to the basic program flow trace, although not all will be
covered here as we will focus only on those features that provide a trace like output.

• PC Sampler

• Data Trace capability

• Interrupt Trace

• ETM Trigger

The block diagram below shows how the DWT is organized to inject trace packets into the ITM stream for
eventual spooling to the TPIU and then to the trace port (ETM or SWV). However, if the TPIU is configured
for SWV then it will not transmit ETM packets; only the ITM packets will be transmitted.

Each trace source is given a unique 7-bit Trace ID (ATID) so that the streams can be separated by the debug
tools.

For details on time stamping please refer to “Time Stamping”, page 72.
Training Cortex-M Tracing | 55©1989-2024 Lauterbach

PC Sampler

This feature is not a true program flow trace in the way that MTB or ETM will allow full capture of program
flow. The PC Sampler will periodically sample the Program Counter and emit the address as a trace packet
to the ITM. The sampled PC is emitted via the ITM which makes this technique ideal for systems which only
support the ITM or Serial Wire Viewer for trace as it can provide some data about program flow. The
program flow may not be 100% accurate; items that can complete in less than the selected number of cycles
to sample may not show in the data at all. The PC can be sampled every 64, 128, 256, 512, 1024, 2048,
4096, 8192, 16384 or 32768 clock cycles.

This feature is configured in the ITM.state window. There is no separate DWT configuration window as the
trace events from the DWT require the ITM block to also be present on the device or they cannot be emitted.
Since the two are so tightly linked, the ITM.state window allows the user to configure both the ITM and DWT
blocks of the Cortex-M device.

Set the frequency of the PCSampler (via the GUI or the ITM.PCSampler command) and enter the value of
the CPU clock to enable timing of the data.

Run the target to generate and sample the data then use the command Trace.List to show the results.
Training Cortex-M Tracing | 56©1989-2024 Lauterbach

Clicking the Chart button or using the command Trace.Chart.sYmbol will show the functions against time
and look like this.
Training Cortex-M Tracing | 57©1989-2024 Lauterbach

Data Trace

One of the features of the DWT is to be able to inject data trace events into the ITM for inclusion into the
trace stream. The data events are configured using the TRACE32 breakpoint interface. More information
can be found here: “On-chip Breakpoints”, page 84.

Set the ITM.DataTrace mode.

Several modes are supported:

OFF No Data Trace information will be generated.

Address If the data address matches a DWT comparator, address information
about the data access will be emitted as a trace packet.

Data If the data address matches a DWT comparator, the data value will be
emitted as a trace packet.

ON If the data address matches a DWT comparator, address and data
information about the data access will be emitted as a trace packet.

DataPC If the data address matches a DWT comparator, address and data
information about the data access will be emitted along with the address
of the instruction that issued the data access.

OnlyPC If the data address matches a DWT comparator, address of the instruction
that performed the data access will be emitted.

CorrelatedData Produces the same information as DataPC but the streams (ETM & ITM)
are merged in TRACE32.
Training Cortex-M Tracing | 58©1989-2024 Lauterbach

To generate data trace, set a TraceData breakpoint on the value to be traced.

Use: Break.Set ADC_Val /Write /TraceData

Run target to collect data. Show results:

The traced data values can be shown as a graph as the change against time. Use the command

Trace.DRAW.Var %DEFault ADC_Val
Training Cortex-M Tracing | 59©1989-2024 Lauterbach

to show this:

To see where in the code a data access came from:

1. Switch ITM.DataTrace DataPC

2. Set the breakpoint to ReadWrite

- Break.Set <var> /ReadWrite /TraceData

3. Run the target to collect the trace samples.

The results can be shown filtered by any kind of access: read, write or any. The command
Trace.STATistic.PsYmbol is used.

To show all accesses: Trace.STATistic.PsYmbol /Filter sYmbol <var>

To show only read accesses: Trace.STATistic.PsYmbol /Filter <var> Cycle READ

To show only write accesses: Trace.STATistic.PsYmbol /Filter <var> Cycle WRITE
Training Cortex-M Tracing | 60©1989-2024 Lauterbach

Task/Thread switch Tracing

If your design uses an RTOS, task switches can be traced. If the RTOS is supported by a TRACE32 OS
Awareness you can use the address TASK.CONFIG(magic). If your RTOS is not supported by TRACE32
you can use the address of the variable that holds the currently executing thread ID.

Configure ITM.DataTrace Data and set a breakpoint (Break.Set TASK.CONFIG(magic) /Write
/TraceData) and run the target to collect trace samples.

A list of all writes (all task switches) can be seen with ITMTrace.List.

The ti.back column shows how long each task or thread was running before it was switched out for a new
one.
Training Cortex-M Tracing | 61©1989-2024 Lauterbach

A more detailed view can be made using: ITMTrace.List List.TASK DEFault

To view how tasks or threads changed over time, use: Trace.Chart.TASK

To view run time information for each task, use Trace.STATistic.TASK
Training Cortex-M Tracing | 62©1989-2024 Lauterbach

Interrupt Trace

The DWT can be programmed to generate trace events for each interrupt entry and exit point.

Select InterruptTrace from the ITM configuration window or use the command ITM.InterruptTrace ON.

To reduce the likelihood of internal trace FIFO overflows, switch off all other trace sources (ProfilingTrace,
DataTrace and PCSampler). Run the target to sample the trace data. The results can be displayed using the
Trace.List command and look like this.

The ti.back column shows the time from the previous sample to this one, so iTIM4ISR was running for 7.340
us. – this is the difference between the entry marker and the exit marker. Clicking the Chart button (or using
the command Trace.Chart.sYmbol) will show a graphical representation of interrupt nesting against time
and may look like this. The “other” row is any code executing on the target that is not an interrupt service
routine.

Adding a breakpoint to generate a data trace packet on task switches will allow us to analyze which tasks or
threads were interrupted. Set:

ITM.InterruptTrace ON
ITM.DataTrace Data
Break.Set TASK.CONFIG(magic) /Write /TraceData
Training Cortex-M Tracing | 63©1989-2024 Lauterbach

The results can be displayed with: <trace>.Chart.TASKVSINTERRUPT

Or with Trace.STATistic.TASKVSINTERRUPT
Training Cortex-M Tracing | 64©1989-2024 Lauterbach

ETM Trigger

The DWT contains an ETM Trigger capability. This is hidden from the user and is accessed using the
/TraceTrigger breakpoint type. More information can be found in:

“Trace Filtering”, page 24

“Trace Control by Filter and Trigger” in Training Arm CoreSight ETM Tracing, page 91
(training_arm_etm.pdf)
Training Cortex-M Tracing | 65©1989-2024 Lauterbach

Instrumentation Trace Macrocell

The ITM organizes trace from three main areas:

1. Software Generated Trace

2. Integrates packets from DWT into the trace stream

3. Generates timestamp packets for insertion into the trace stream

If packets arrive simultaneously from more than one of these sources, the ITM is responsible for arbitration
and prioritizes them in the order represented by the list above.

The ITM is an optional component and may not be included in all designs (a read to a non-existent ITM
register will return 0x00000000). It also requires a TPIU to output any data.

Here is a list of important ITM registers. All registers are fully accessible in Privileged mode and all registers
can be read in user mode. If the corresponding bits in ITM_TPR are set then user mode also has write
access to ITM_STIM[31..0] and ITM_TER.

Before the ITM can be used it must be enabled and unlocked. TRACE32 will enable the ITM automatically
by setting the TRCENA bit in the Debug Exception and Monitor Control Register.

Unlocking is done by writing 0xC5ACCE55 to ITM_LAR.

0xE0000FF0 - 0xE0000FFC Component Identification Registers (CID[3..0])

0xE0000FD0 - 0xE0000FEC Peripheral Identification Registers (PID[7..0])

0xE0000FB0 Lock Access Register (ITM_LAR)

0xE0000E80 Trace Control Register (ITM_TCR)

0xE0000E40 Trace Privilege Register (ITM_TPR)

0xE0000E00 Trace Enable Register (ITM_TER)

0xE0000000 - 0xE000007C Stimulus Port Registers (ITM_STIM[31..0])
Training Cortex-M Tracing | 66©1989-2024 Lauterbach

Software Generated Trace

Writing a value to any of the ITM stimulus ports causes a data packet to be generated and fed to the TPIU
for inclusion into the trace stream. First, the ITM must be unlocked. An example is shown below.

The Cortex-M CMSIS includes functions for writing data to the ITM but macros are more efficient and reduce
the overhead of using the ITM at runtime.

Data is written to one of the 32 stimulus ports using the ITM_TRACE_D* macros. The Cortex-M makes no
assumptions about the contents of each stimulus port and leaves the assignment of them up to the user. For
example, one could use each port for a different thread or task within the embedded application.

static volatile unsigned int *ITM_BASE =
 (volatile unsigned int *)0xE0000000;

#define ITM_ENABLE_ACCESS { ITM_BASE[0x3EC]=0xC5ACCE55; }
#define ITM_TRACE_PRIV ITM_BASE[0x390]
#define ITM_TRACE_ENABLE ITM_BASE[0x380]

#define ITM_TRACE_D8(_channel_,_data_) { \
 volatile unsigned int *_ch_=ITM_BASE+(_channel_); \
 while (*_ch_ == 0); \
 (*((volatile unsigned char *)(_ch_)))=(_data_); \
}
#define ITM_TRACE_D16(_channel_,_data_) { \
 volatile unsigned int *_ch_=ITM_BASE+(_channel_); \
 while (*_ch_ == 0); \
 (*((volatile unsigned short *)(_ch_)))=(_data_); \
}
#define ITM_TRACE_D32(_channel_,_data_) { \
 volatile unsigned int *_ch_=ITM_BASE+(_channel_); \
 while (*_ch_ == 0); \
 *_ch_ = (_data_); \
}

int main()
{
 hardware_setup();
 ITM_ENABLE_ACCESS;
 ITM_TRACE_PRIV = 0;
 ITM_TRACE_ENABLE = 0xFFFFFFFF;
Training Cortex-M Tracing | 67©1989-2024 Lauterbach

The ITM can be configured from the main ITM window which can be opened using the menu item, clicking
the ITM button on the main trace configuration window or by using the ITM.state command. The window
looks like this.

To capture software generated trace:

1. Switch ITM.ON

2. Set Trace.CLOCK to the CPU clock frequency. More information about timing can be found
here:“Time Stamping”, page 72

3. In the main trace configuration window (Trace.state), set

- METHOD to either Analyzer or CAnalyzer. Only those options which the tools support will be
available.

- Set the state to OFF (Trace.OFF)

- Set AutoArm ON (Trace.AutoArm ON). This will start and stop trace sampling as the core
starts and stops.

- Set AutoInit ON (Trace.AutoInit ON). This will clear any existing trace data from the buffer
before capturing new data.

- Set Mode to FIFO, Stack or Leash. A discussion of how this affects the trace buffer can be
found here: “Trace Buffer Management”, page 10.

4. Start the target to capture trace data. The AutoArm option will ensure that capture starts and
stops with the target.

5. The target can be halted manually or via a breakpoint.
Training Cortex-M Tracing | 68©1989-2024 Lauterbach

Show the results with ITMTrace.List.

The individual channels can be split out for display by using the ITM.PortFilter command. For example, to
view data from just channel 1 use:

To view additional channels, use ITM.PortFilter with a binary value for the channels you wish to include.
TRACE32 uses 0yXXXXXXXX to indicate a binary value. For example:

ITM.PortFilter 0x01
ITMTrace.FLOWPROCESS
ITMTrace.List

ITM.PortFilter 0y0011010
ITMTrace.FLOWPROCESS
ITMTrace.List
Training Cortex-M Tracing | 69©1989-2024 Lauterbach

Using ITM for printf style output

A complete source code example can be found under:

~~/demo/arm/hardware/stm32/stm32f3/custom_itmprintf

An example itm_printf() function is shown below.

This function can be called in the application just like a regular printf().

#include <stdarg.h>
#include "itm_printf.h"

extern int vsprintf(char *buf, const char *fmt, va_list args);
void ITM_printf(const char *format,...)
{
 union {
 char c[100];
 unsigned int i[25];
 } line;
 unsigned int v;
 int i,j,l;
 va_list ap;
 va_start(ap, format);
 l=vsprintf(&(line.c[0]),format,ap);
 l++;
 l++;
 va_end(ap);
 i=0;
 j=0;
 while (i<l)
 {
 v=line.i[j];
 i+=4;
 j++;
 if (i>l)
 v&=(0xFFFFFFFF>>((i-l)*8));
 ITM_TRACE_D32(0,v);
 }
}

NOTE: The version of vsprintf() provided by your compiler MUST be thread safe
and re-entrant. If not, consider protecting it with a mutex or similar.

ITM_printf(“ADC: New ADC value %d”, new_ADC);
Training Cortex-M Tracing | 70©1989-2024 Lauterbach

With ITM set to collect data trace, a standard trace listing will look like this.

To display the results correctly, use PrintfTrace instead.

PrintfTrace.List MESSAGE List.NoDummy
Training Cortex-M Tracing | 71©1989-2024 Lauterbach

Time Stamping

To provide any kind of timing analysis the trace decoders need some time stamping information. There are
several options, each with its own set of advantages and drawbacks.

In most cases, the default options are the correct ones to choose.

ITM.TImeMode Controls the timing information used by the trace decoders.
Timestamps can be off, generated by the ITM or generated by the
TRACE32 hardware as each packet is decoded. An option exists
to combine internal and external timestamps to allow better
correlation with other trace sources.

ITM.CyclePrescaler This sets the divider from the core clock to generate the timestamp
clock for ITM messages. ITM.CLOCK still contains the core clock
value.

ITM.CycleAccurate If this option is enabled, the ITM will insert cycle count packets into
the trace stream. Timestamps are based upon the cycle count and
the value of the core clock.
If this option is not selected, TRACE32 hardware tools will
generate timestamps for packets as they are de-queued from the
trace interface.

ITM.TimeStampCLOCK This is the value of the global timestamp clock and is used for
multi-core systems.

ITM.TimeStampMode Determines whether the timestamp clock is derived form the CPU
clock or TPIU clock.

ITM.TimeStamps Enable global timestamp packets.

ITM.CLOCK This is the frequency of the cpu core clock. It is used in conjunction
with CycleAccurate mode to calculate how long between trace
events.

ITM.SyncPeriod Controls how frequently (number of clock cycles) a synch packet is
generated. The default is 1024.
Training Cortex-M Tracing | 72©1989-2024 Lauterbach

Stream Mode

ITM trace data can also be streamed to a file on the local hard drive. The configuration is very similar to that
of ETM which is explained here: “ETM Stream Mode”, page 17.

Trace data can also be streamed to a shared library for custom processing or handling. An example of this
can be found under ~~/demo/arm/hardware/xmc/xmc4500/custom_itmprintf. The full source
code for the DLL or shared library is in the DLL sub-directory, along with make files and instructions on how
to build for your host operating system. How to create a build such a DLL or shared library is beyond the
scope of this document.

To load a shared object for custom trace processing use the command

<trace>.CustomTraceLoad “name” <file>

To use, set Trace.Mode PIPE. The DLL is responsible for managing its own display of the data that it has
processed. The TRACE32 api allows for the creation of a custom command to display the data in text only
format in a window inside TRACE32. If a more complex display of the data then this is required it is the
responsibility of the DLL to do this. By using stream mode like this, the trace data is not stored but parsed on-
the-fly.
Training Cortex-M Tracing | 73©1989-2024 Lauterbach

Pipe Mode

The ITM trace data can be streamed to a pipe (Named pipe in Windows, pipe or FIFO in Linux or MacOS).
This allows for a host application to react in almost real-time to data being generated by the target. There is
no buffer to fill, so theoretically, the trace could be of unlimited duration.

An example of creating a Windows forms application with a named pipe using Visual Studio (tested on
Windows 7, 8 and 10 with Visual Studio 2015 and 2017) can be found under
~~/demo/arm/hardware/stm32/stm32f3/custom_itmprintf.

The script in this directory shows how to configure TRACE32 for streaming ITM data to a pipe.

To stream ITM data to a named pipe:

1. Set Trace.Mode PIPE

2. Launch the Host OS application that will create and open the pipe

3. Connect TRACE32 to the pipe with Trace.PipeWRITE "<pipe>"

4. Start the target

The ITM data is exported from TRACE32 to the pipe in a packet with the following format.

Up to 8 pipes can be simultaneously supported by TRACE32. Calling Trace.PipeWRITE without any
arguments will close all open pipes.

Byte Meaning

0 The size of the rest of the packet in bytes. This byte does not count
towards the total length.

1 - 8 Timestamp in Little Endian format

9 Message type:
data = 1 indicates there are 8 bits
data = 2 indicates there are 16 bits
data = 3 -indicates there are 32 bits

10 ITM Channel ID

11 - 14 Payload in Little Endian format.
Training Cortex-M Tracing | 74©1989-2024 Lauterbach

	Training Cortex-M Tracing
	History
	Cortex-M Trace
	Connectors
	Basic Trace Configuration
	Trace Buffer Management

	MTB Program Flow Trace
	ETM Program Flow Trace
	ETM Configuration
	Trace Capture
	ETM Stream Mode
	Displaying the Results
	Trace Searching
	Trace Filtering
	Tracing Certain Events
	Tracing Between Two Points

	Graphical Navigation
	Analyzing the Results
	Function Runtime
	Distribution
	Duration A to B
	Distance Trace Records

	Trace and Groups
	Grouping by Modules
	Grouping by Address Range

	Timing
	Trace Based Code Coverage
	Trace Based Debugging
	Off-line Analysis
	Data Watchpoint and Trace Unit
	PC Sampler
	Data Trace
	Task/Thread switch Tracing
	Interrupt Trace
	ETM Trigger

	Instrumentation Trace Macrocell
	Software Generated Trace
	Using ITM for printf style output
	Time Stamping
	Stream Mode
	Pipe Mode

