LAUTERBACH A

Training Cortex-M Tracing

Release 09.2024

Training Cortex-M Tracing

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 Trainingccccccrivssmmmmmsnsssssmnsssessssssssmsssssssssssssns
Training Arm ETM ... s
Training Cortex-M Tracingccccecrinssmmnnssnnssasnsssannnns

L 1= (o

CortexX-M TracCecccccciiriemeeiiirimeemesirrrersssssreresnnsaseeee

Connectors
Basic Trace Configuration
Trace Buffer Management

MTB Program Flow Tracecccccccmiimiiiiiiiiiissncnnnnnnns

ETM Program Flow Tracecccccvvvmmmmmnsvseenmnsssannenns

ETM Configuration
Trace Capture
ETM Stream Mode
Displaying the Results
Trace Searching
Trace Filtering
Tracing Certain Events
Tracing Between Two Points
Graphical Navigation
Analyzing the Results
Function Runtime
Distribution
Duration Ato B
Distance Trace Records
Trace and Groups
Grouping by Modules
Grouping by Address Range
Timing
Trace Based Code Coverage
Trace Based Debugging
Off-line Analysis
Data Watchpoint and Trace Unit
PC Sampler
Data Trace

©1989-2024 Lauterbach

Training Cortex-M Tracing

Task/Thread switch Tracing
Interrupt Trace
ETM Trigger

Instrumentation Trace Macrocell
Software Generated Trace
Using ITM for printf style output
Time Stamping
Stream Mode
Pipe Mode

61
63
65
66
67
70
72
73
74

©1989-2024 Lauterbach

Training Cortex-M Tracing

Training Cortex-M Tracing

Version 05-Oct-2024

History

29-Sep-23 Table of optional trace blocks for member of the Cortex-M family updated.

06-Feb-18 Initial version of the manual.

Cortex-M Trace

This document should be read in conjunction with “Training Arm CoreSight ETM Tracing”
(training_arm_etm.pdf) which shows how to drive and interrogate the TRACE32 trace subsystems. Many of
the views and types of data collected will be similar to those shown in that document. It is assumed that the
reader will be familiar with the basic trace concepts, allowing this document to focus on Cortex-M specific
features.

Many of the debug components of Cortex-M based designs are optional IP blocks that may or may not have
been included in the design of the chip being debugged. Always check the chosen chips’ documentation.
Trace components may include:

Micro Trace Buffer (MTB)

This allows program flow data to be saved to internal SRAM. The data can be read via the JTAG or Serial
Wire Debug (SWD) interface. The amount of SRAM used and the location of the buffer are software
configurable. The size of the SRAM buffer limits the amount of program flow trace that can be captured.
Trace writes to SRAM take priority over system writes to the AHB-Lite interface, with one or more wait states
being inserted into AHB-Lite accesses if a trace write occurs simultaneously. This may affect the run-time
performance of the application being traced under high bus load situations. This optional IP block may not be
present in all devices.

Embedded Trace Macrocell (ETM)
This unit allows program flow data to be fed to the TPIU. There, it will be formatted for eventual delivery to
off-chip trace tools. The amount of trace data that can be captured is equal to the size of the buffer in the

external tools or, in the case of streaming, the size of the host PCs hard drive. This feature is an optional IP
block and may not be present in all devices.

Instrumentation Trace Macrocell (ITM)

©1989-2024 Lauterbach Training Cortex-M Tracing | 4

This unit provides three main features: software instrumented trace; integration of trace packets from the
DWT into the trace stream; timestamp generation for ITM and DWT trace packets. It is an optional feature
and may not be present in all devices.

Data Watchpoint and Trace (DWT)

This optional component provides a number of trace like features: Interrupt trace; Data Trace; ETM Trigger;
PC Sampler and Trigger. Each of these will be covered in more detail in a later section of this document. The
output from the DWT is fed into the ITM for formatting and inclusion into the trace stream.

Trace Port Interface Unit (TPIU)

This block is required to route the trace to its final destination: off-chip or on-chip. The TPIU can aggregate
trace from multiple sources into a single stream, allowing for tracing of multi-core designs. Two off-chip
modes are supported: Serial Wire Viewer (SWV) or Serial Wire Output (SWO); and parallel trace. SWV or
SWO is a single bit wide trace port designed for low speed trace — usually from the ITM/DWT — where this
option is selected the TPIU will silently ‘drop’ ETM packets and not transmit them. Where parallel trace is
selected all packets from all sources will be transmitted. The parallel port can be 1 to 4 bits wide and may be
clocked independently from the CPU.

The table below outlines the optional trace blocks that are available for members of the Cortex-M family.

Armv6-M

Cortex-MO No trace options.

Cortex-M0O+ Optional: MTB
Optional: Limited DWT may be included that supports data breakpoints
and PCSampler.

Cortex-M1 No trace options.

Armv7-M

Cortex-M3 Optional: ITM, DWT, ETMv3.

Cortex-M4 Optional: ITM, DWT, ETMv3.

Cortex-M7 Optional: ITM, DWT, ETMv4 (optional with full data trace).

Armv8-M

Cortex-M23 Optional: DWT.
Optional: ETMv3 or MTB. The two are mutually exclusive.

Cortex-M33 Optional: ITM, DWT, ETMv4, MTB. Designs can support both MTB and
ETM in the same device.

Cortex-M35P Optional: ITM, DWT, ETMv4, MTB. Designs can support both MTB and
ETM in the same device.

Cortex-M55 Optional: ITM, DWT, ETMv4.

Cortex-M85 Optional: ITM, DWT, ETMv4.

STAR Optional: ITM, DWT, ETMv4.

©1989-2024 Lauterbach Training Cortex-M Tracing | 5

A graphical overview of the Cortex-M (>= M23) debug components can be seen in the block diagram below.

This is the block diagram for Cortex-M0+ devices.

Debugger
DAP

©1989-2024 Lauterbach Training Cortex-M Tracing | 6

Connectors

Two connectors are commonly used with Cortex-M based systems. The diagram below shows the pinouts

and which features are supported by each.

MIPI10-

VREF B s
GND B ek
GND B o
KEY B o
onD | B ResET

PO

'Cor{ex Debug

SWDIO
SWCLK
SWO

Debug Port

JTAG or SWD
ITM trace via SWV
On-chip trace

Trace Port

4-1 bits wide + 1 pin
Off-chip ITM trace
Off-chip trace (ETM)

VREF
GND
GND

KEY
GND
GND
GND
GND

KEY
GND

MIPI20-T

1] 2 IRLEEN
BB ek swoik
B ™o swo
7 || 7o

[9 [10 (=
BB Tracecik
13] 14 JRENHLY
15] 16 JRGICLT)
17| fB) | TRACE bp2]
19] 20 JRGICLTES

It is imperative to ensure that your development board has the correct connector for the debug features you
wish to use. Other connectors are possible.

©1989-2024 Lauterbach

Training Cortex-M Tracing

7

Basic Trace Configuration

The trace system is configured using the Trace.state window, which can be accessed via the command line
or from the Trace menu.

Trace Perf Cov STM32F10x & B Trace.state EI@
'
1 & CTS Settings... METHOD
ETM Settings... Analyzer @ CAnalyzer Onchip O ART O LoGGER (O SNOOPer O FDX OLa
Trigger Dialog... | OHanalyzer () Integrator (_ Probe IProbe
List v
| 20 Timing v state used ACCESS TDelay
Pyl Chart 4 (O DISable auto v 0. g Tronchip
— 5 ® OFF 0. 0% v 2 TPIU
| £& TPIU settings... O Arm SIZE CLOCK 2 M
i re—— Otrigger [268435456. || || || - TsELect @) BMC
= O break [JBusa
] g Load reference data ... o
SPY Mode THreshold
== @®Fifo TOut
commands O stack [JBusa
RESet O Leash TestFocus
@ Init (O STREAM ¥¥ AutoFocus
& SnapShot O PIPE
List RTS
[AutoArm
[AutoInit
[selfarm

Most of the features in this window are explained under “ETM Setup” in Training Arm CoreSight ETM
Tracing, page 6 (training_arm_etm.pdf). Here, we will concentrate on those that affect Cortex-M based
systems.

The generated trace data can be stored on-chip in a memory buffer or it can be streamed off-chip to a set of
trace tools. On-chip trace storage is often referred to as MTB or Embedded Trace Buffer (ETB). Whilst off-
chip trace storage is often referred to as ETM. These are historical and largely irrelevant as the same trace
data can be routed to either storage medium.

For off-chip trace (ETM, ITM), select Trace.METHOD CAnalayzer or Trace.METHOD Analyzer. If the tools
do not support one of these modes, it will be grayed out.

For on-chip trace (MTB), select Trace.METHOD Onchip.

For off-chip trace, the size will be automatically filled based upon the amount of storage for trace data there
is in the chip or the tools. This can be over-ridden for off-chip trace if a smaller amount of data is required,
simply type the new value into the field or use the command Trace.SIZE <n>. For on-chip trace (MTB), the
size must be specified.

©1989-2024 Lauterbach Training Cortex-M Tracing | 8

The Mode setting affects the way that the trace buffer is managed.

FIFO

Stack

Leash

STREAM

PIPE

The trace data is stored in the buffer memory in the TRACE32 trace
hardware. When the buffer fills, earlier records are over-written with the
new data. When the trace sampling stops, the maximum amount of trace
history is available.

The trace data is stored in the buffer memory in the TRACE32 trace
hardware. When the buffer is almost full, sampling stops but the target is
left running.

The trace data is stored in the buffer memory in the TRACES32 trace
hardware. When the buffer is almost full, trace sampling stops and the
target is halted.

The buffer memory in the TRACE32 trace hardware is used as a large
FIFO and the trace data is streamed to a file on the host system’s hard
drive. The amount of trace captured is limited by either the size of the
hard disk partition, a user specified amount or (264)-1 frames.

The buffer memory in the TRACE32 trace hardware is used as a large
FIFO and the trace data is streamed to an application which reads a pipe
or FIFO on the host system. The trace stream must be processed in real-
time; no storage is performed. The trace stream can be effectively
unbounded.

The Trace.CLOCK needs to be set to the core clock frequency.

The Trace.TDelay setting is used to position a trigger point somewhere other than the start (STACK of
LEASH mode) or end (FIFO mode) of the buffer. It takes either a percentage or a number of records to
capture after the trigger condition is reached. The trigger condition is a breakpoint of type TraceTrigger. This
does not stop the core but merely triggers the trace system; of course the action of the trigger may also be to
stop the core. More information can be found here (“Trace Buffer Management”, page 10.

The Trace.TSELect and Trace.TOut settings allow for an external trigger to be used. This can be the BusA
signal which is present on the PODBUS as well as the Trigger pin on the outside the TRACE32 debug
hardware. From left to right: Trigger pin, USB connector, (optional) Ethernet connector, power connector.

The Trigger pin is controlled via the Trigger Bus Window (TrBus). Selecting <trace>.TSELect BusA will use
the Trigger pin as the trace trigger event. Selecting <trace>.TOut BusA will trigger the pin when the trace
system triggers or stops tracing.

©1989-2024 Lauterbach

Training Cortex-M Tracing | 9

Trace Buffer Management

The trace buffer acts as storage for all of the information generated by the core. When the target stops, the
records in the trace buffer allow the user to look back into the past. It is impossible to look back beyond the
start of the trace buffer.

Past Future

v

Records in Trace Buffer

Now

If the sampling is halted before the buffer fills a smaller amount of data is collected.

) Future
Records i

Once the buffer has filled, the time window moves forwards to accommodate new samples. When the trigger
occurs, the trace stops sampling. If more than a buffer’s worth of data had been generated some of it would
have been lost.

v

Future

v

Records in Trace Buffer

) Future
Records in Trace Buffer

v

) Future
i Records in Trace Buffer >
|
Lost data Trigger
To capture more data:
J Use tools with a larger trace buffer. Eventually, this option will become exhausted.
. Stream the trace data to your local hard drive. More information can be found “ETM Stream
Mode”, page 17
J Stream the trace data to a local application for real-time processing. The trace data is not stored

by TRACES32. More information can be found here: “Pipe Mode”, page 74.

J Use the on chip features to filter the generated trace data to view only events of interest. More
information can be found here: “Trace Filtering”, page 24.

©1989-2024 Lauterbach Training Cortex-M Tracing | 10

The DWT can generate a Trigger packet which causes the trace tools to trigger on an event. The
Trace.TDelay option controls how the tools will react. It holds a portion of the trace buffer in reserve to be
filled up only after the trigger event occurs. Setting the value to 50% will place the trigger event in the middle
of the trace buffer, giving the user an equal amount of trace buffer dedicated to events before the trigger and
events after the trigger.

Future

v

i Records in Trace Buffer
|

Lost data Trigger

Setting the point to 10% will ‘reserve’ 10% of the buffer to store events that occurred after the trigger.

Future

v

i Records in Trace Buffer
I

Lost data Trigger

When the trigger event occurs, the trace state changes to “trigger”, as seen in the image below.

& BuTrace.state EI
— METHOD
Analyzer @ CAnalyzer O Onchip O ART O LoGGER (O SNOOPer O FDX OLa
OHanalyzer () Integrator (_ Probe IProbe
— state — used — ACCESS — TDelay
(O DISable . auto ~ 120795954, ZF Tronchip
O oFF 26018096. 90% ~ 2 TPIU
O Arm -~ SIZE — CLOCK 9 ETM
@ trigger [134217728. || | [72.0MHz || - TSELect &M
O break [Busa @ BMC
SPY — Mode — THreshold
@Fifo ~ TOut
— commands —— | O Stack [JBusa
RESet O Leash TestFocus
@ Init (O STREAM ¥¥ AutoFocus
& SnapShot O PIPE
2 List RTS
AutoArm
Autolnit
[selfarm

When the amount of trace that corresponds to the Trace.TDelay setting has been captured the trace will
stop sampling and the mode will change to break.

©1989-2024 Lauterbach Training Cortex-M Tracing | 11

The Trigger point can be located in the Trace.List window and adding the Time.TRIGGER column shows alll
trace events timed relative to the trigger event: events after have a positive time index; events before have a
negative time index.

B::Trace.List def titrigger
B setup... | 1 Goto... | #3Find... | feiChart | HProfile | IHMIPS * More Y Less

record run |address leycle |data |symbal [t1.back [ti.trigger =
252 0.160us -0.440us A
122 if(Step != HALT) 0.033us -0.407us
//Change the frequency of the pulse ~
125 AdjustPulse(vals Zone{. base + ((adc_val - vals[Zone].offs 0.095us -0.311lus J;
Arguments : INT16U - the new value to put in the ARR register
Returns : None
Notes Changes the timing values for Timerl driving the motor

PP LL T il i rre i NI

static void Ad ustPu'Ise(IN:I':l;Efo hewva'l)

146
TIM_TimeBaseInitTypeDe TIM_TimeBaseStructure;
149 if(newval = 0x2000) //Make we son't break the timer 0.024us 0.084us
151 TIM_TimeBaseStructInit (&TIM_TimeBaseStructure); 0.038us 0.122us
'.'-'III:met'ionlNanle 1 TIM_TimeBaseStructInit)))
* Description : Fills each TIM_TimeBaseInitStruct member with its default value.
* Input : - TIM_TimeBaseInitStruct : pointer to a TIM_TimeBaseInitTypeDef v
1< >

©1989-2024 Lauterbach Training Cortex-M Tracing | 12

MTB Program Flow Trace

The Micro Trace Buffer (MTB) provides basic program flow trace capabilities for cores with limited resources.
It is not designed to compete with ETM or PTM. The trace data is stored in a user configurable area of RAM
at runtime. External debug tools can be used to start or stop the trace. The size and location of the RAM
storage is configurable in software, allowing the resources to be reclaimed from a development build when
they are no longer needed. The MTB can be programmed by the debug tools to cause the processor to
enter a halt state when the buffer becomes full.

TRACER32 treats the MTB as an on chip trace buffer. The On Chip family of commands apply and
Trace.METHOD Onchip should be set.

TRACES32 needs to know the base address and size of the buffer. This is done with the commands:
J Onchip. TBADDRESS <address>

o Trace.SIZE <size>

The MTB is usually placed in a separate memory region in the linker control file. This makes it easy for
TRACES2 to locate the base address with something like this.

Trace.TBADDRESS ADDRESS.OFFSET (sYmbol .SECADDRESS (.mtb))
Trace.SIZE 64.

A list of all sections can be obtained with the command sYmbol.List.SECtion and my look like this.

2 Busymbol List.SECtion = =R

address path'section acc [1nit [physical i
D:1FFFEODO--1FFFE3FF [\\sTeve_ram_thumb_vém\.1sr_vector R—- |L-
P:1FFFE400--200008EF |‘\sieve_ram_thumb_vém'.text R-X |L-
D:200008F0--200004A37 |\\sieve_ram_thumb_vém'.rodata R—- |L-
D:20000A38--20000A9F [\\sieve_ram_thumb_vém\.data RW- |L-
D:20000AA0--20001408 |\\sieve_ram_thumb_vém\.bss RW- |—-
D:2000140C--2000160F |\\sieve_ram_thumb_vém'.stack RW- |—-
D:20001640--2000167F |\\sieve_ram_thumb_vem'.mth RW- |—-

Here, the base address of the . mtb section can be clearly seen.

There is no timing information available for the program flow trace; no statistical or analytical operations may
be performed.

©1989-2024 Lauterbach Training Cortex-M Tracing | 13

ETM Program Flow Trace

When most people think of trace, what they mean is ETM. This is a program flow trace that is generated by
the Cortex-M core. This section should be read in conjunction with .“Training Arm CoreSight ETM
Tracing” (training_arm_etm.pdf) which provides a more general overview of ETM and the kinds of analysis
that can be performed on the captured data.

ETM Configuration

ETM trace data requires a fully functional TPIU to be able to pass the data to the final destination (off-chip or
on-chip). The ETM features are configured in the ETM window. It can be accessed from the Trace menu,
from the Trace Configuration window or by using the command ETM.

Trace Perf Cov STM32F10x

& B:Trace.state EI@
& Configuration...
| 4B CTS Settings... RELOD
analyzer @ Canalyzer O Onchip O ART O LoGGER (O SNOOPer O FDX OLa
| Trigger Dialog... ‘ OHanalyzer | Integrator () Probe Probe
List L4 ‘
| 7 Tirming 4 state used ACCESS TDelay
!l Chart v O Disable - T v| | | [120795954, F Tronchip
IT™ , i ® oFF 85194192, 90% v 2 TP
&% TPIU settings... O Arm SIZE CLOCK 9 ETM
& w Ortrigger [134217728. || | [72.0MHz || - TSELect &M
| &b Sove trace data \ Obreak Oeusa & BMC
g Load reference data ...
| SPY Mode THreshold
Reset @ Fifo Tout
commands O stack [Busa
RESet O Leash TestFocus
@ Init (O STREAM ¥X AutoFocus
& SnapShot O PIPE
i List RTS
] AutoArm
M AutoInit
[selfarm
It looks like this.
&2 BETM = =R
etm control trace TImeMode resources SyncPeriod Tracelnclude
® oFF M Trace [eec External v AComp: | | | |
Oon [JpBGRQ CLOCK DComp: FifoLevel TraceExclude
CIsTAL CComp: | || 1] | =
commands trigger Counter: TracelD
RESet [PeudoDetaTrace [TimeStamps | | Seq:
@ CLEAR on/off TimeSampd.0XK ExtIn: TracePriority
" Register l:l ExtInBus:
&2 Trace level ExtOut: FunnelHoldTime
&TPIU Version: 3 i
| List counter
A advanced

©1989-2024 Lauterbach Training Cortex-M Tracing | 14

Next, the TPIU may need to be configured. This can be accessed via:

. Selecting TPIU settings from the Trace menu

. Clicking the TPIU button in the Trace.state window

. Using the command TPIU.state

The TPIU.PortSize value can be changed to 1bit wide, 2bits wide, 4bits wide or Serial Wire Viewer (SWV).

The default value of TPIU.SyncPeriod is every 1024 packets. This can be changed by the user and
configures how frequently synchronisation packets will be emitted by the target.

&2 BuTPIU.state = =R
tpiu PortSize SyncPeriod
ON PortMode
Continuous
commands SW\Prescaler
RESet 1
& CLEAR
" Register
&Trace
1 List
NOTE: Some devices lack enough pins to bring out all of the possible signals on the

chip. When this occurs, the user will need to ensure that the correct pin muxing
is enabled to route the TPIU signals from the chip to the debug header on the
board. Check your chipset documentation! Other things to check are:

. Your application does not use a set of chip features that prevent the cor-
rect multiplexing of the trace port pins.

. Any chosen RTOS does not re-multiplex the trace port pins as part of its
setup/boot procedures.

. Any third party libraries or drivers do not change the trace port pin multi-
plexing.

. Some devices multiplex the trace port pins with GPIO. Ensure the pin

direction is correctly set. Also, check the maximum possible speed of the
GPIO pins used; the trace will not emit data faster than this.

©1989-2024 Lauterbach Training Cortex-M Tracing | 15

Trace Capture

To capture Program Flow trace using ETM:
1. Set ETM.ON. Via command or GUI.
2. Set Trace.CLOCK.

3. Set either Trace.Method Analyzer or Trace.Method CAnalyzer. Unsupported variants will be
grayed out.

4. Set Trace.OFF.

5. Set Trace.AutoArm ON. This will cause the sampling to start and stop in synchronisation with
the target.

6. Set Trace.Autolnit ON. This will clear the existing buffer before sampling new data.

7. Set the desired Trace.Mode (Stack, FIFO or Leash). More information can be found here “Trace

Buffer Management”, page 10.

8. Start the target running. It can be halted manually or via a breakpoint.

Details on how to display the results can be found here “Displaying the Results”, page 18 and details on
analyzing the trace data can be found here “Analyzing the Results”, page 30.

©1989-2024 Lauterbach Training Cortex-M Tracing | 16

ETM Stream Mode

To capture trace data for extended periods of time may require storing more data than can be held in the
buffer in the tools. For example, the uTrace’s (MicroTrace) 128Mbyte buffer holds around 20-30seconds of
trace of a bare metal demo program running at 66MHz on a Cortex-M3.

Trace data can be streamed to a local file system for analysis.

This requires a 64bit host OS and a 64bit version of TRACES32. By default, the stream file is stored to the
temporary directory specified in the configuration file (usually ~~/config.t32). This can be found with the
command:

PRINT OS.PresentTemporaryDirectory ()

A new stream file can be set with Trace.STREAMFILE <file>

Set the Trace mode to STREAM and the used bar switches from white to yellow as seen in the picture,

below left.
& BuTrace &
METHOD METHOD
Analyzer @ Canalyzer O Onchip O analyzer @ Canalyzer O Onchip O ART
state used state used ACCE
(O DISable (O DISable [auto
® OFF 0. O OFF 1851347600.
O Arm SIZE ® Arm SIZE cLoc
O trigger [O trigger @
O break O break
O spy Mode O spy Mode THres
OFifo [OFifo [165
commands O stack commands O stack
RESet O Leash RESet O Leash Tes
@ Init ® STREAM @ Init ® STREAM AL
& SnapShot O PIPE & SnapShot O PIPE

The used bar is now used to show the fill level of the tools’ internal buffer. The buffer is now used as a large
FIFO to smooth out any peaks in the trace flow before streaming to the host PC. The number underneath is
the number of trace frames captured. The image (above, right) shows the state after around 5 and a half
minutes of trace capture.

When TRACES32 is closed any stream files are automatically deleted from the host file system. Captured
trace data can be saved using CAnalyzer.STREAMSAVE <file> so that it remains on the local file system
after TRACES32 has closed. When TRACEB32 is re-started, the saved data can be re-loaded with
CAnalyzer.STREAMLOAD <file>. The data is saved in a raw format and it is not expected that users will be
able to interpret this. More information about working with loaded trace files can be found here “Off-line
Analysis”, page 53.

©1989-2024 Lauterbach Training Cortex-M Tracing | 17

Displaying the Results

Once the trace data has been captured a list of all events can be obtained by using the Trace.List command
or by clicking the List button in the Trace configuration window. The results will look like this.

B:uTrace.List EI@

B setup... | 1 Goto... | #3Find... | feiChart | HProfile | IHMIPS + Mare Y Less
record run |address cycle |data symbaol ti.back i
else ”
Clock change
263 SPI1_CLK_XO v
ldr r5,0x8005 ol
movs ro,#0x20
str ré, [r5]
+ b 0xB0058F8
r Set Data
265 if (_Mask & _Data)
tst r2,rl
-0000000019 T:080058FC ptr drv_spil\5SPI1_TranserByte+0xCC 0. 000us
267 SPI1_MOSI_H();
ldr r5,0x8005978
movs r6,#0x80
str ré, [r5]
+ b 0x8005904A
273 for(volatile Int32U i = _SPI_Dev[_SPI1_Device].Delay; 1; i--);
ldr r5,0x8005970
ldrb r5,[r5]
ldr :
-0000000018 |BRK .drv_spil\5SPI1_TranserByte+0OxDE -0.000us v

The columns shown are the default values and others can be added. See Trace.List for more information.

Along the top of the window is a series of buttons that give access to other features.

Setup Opens the Trace configuration window.

Goto Opens the Goto window which allows the user to jump to points of interest in
the trace listing. For more details on filtering “Trace Filtering”, page 24 and
searching “Trace Searching”, page 21.

Find Opens the search dialog and allows the user to search for events within the
trace buffer.

©1989-2024 Lauterbach Training Cortex-M Tracing | 18

Chart Displays a graphical view of functions on the y-axis and time on the x-axis.
Bear in mind that: trace captured in FIFO mode will all have a negative time
index; if a Trigger has been used trace captured before the trigger event will
have a negative time index.

T
#u BrTrace.Chart.s¥Ymbol E=R[E=R 5

| & setup... | i Groups... | & Conﬂg .| A Goto... | A Goto... | §iFind... | 01 [rO0e0ut @3Full|
-6.000s -5.000s -4.000s -3.000s -2.000s -1.000s 0.|

\0S___ s=' OSSemPostEE
1 05_CPU_SR_Save |
\05_EventTaskRdy iy
OS EventTaskRemave |

\ 016\G1¢

'\ TIM C'IEarITFEndTn
210S_CPU_| FendSVHang'\erEE
PU PendSVHantﬂer _nosaveq|
' 05TaskSwHook i
se OSSemPendEE

-\.0S_CPU_! SysT'l ckHandTer 4
r(\J.o os_core'\0STimeTick iy

More information on driving the Chart windows can be found here “Graphical Navigation”, page 28.

©1989-2024 Lauterbach Training Cortex-M Tracing | 19

Profile

Shows a graphical representation of cpu usage by function over time. Small
time slices are used to calculate the percentage of cpu time used by each
function that occurs during the slice. See “Graphical Navigation”, page 28
for more information on interacting with this window. Each function is
represented by a colored block. Clicking on the colored block opens a pop-up
which displays more information about the item.

B B:Trace.PROfileChart.s¥mbol

& Setup... | jiiGroups... | 3% Config...| (3 Goto...
(other)
05_CPU_SR_Save
05_CPU_SR_Restore

10.000us | OSCtxSw

ratio L

-3.813400000s

=0 =
#4Find... | «In [»0eout DIFull| ©In | ©out [EFull| Fine | Coarse
iTIM4ISR 0sSemPost
05_EventTaskRdy 05_EventTaskRemove
05_Sched . . 05_SchedNew
TIM_ClearITPendingBit 0S_CPU_PendsvHandler

-3.813200000s -3.813000000s
1 1 |

140.0

1z20.0

100.

BO.

B0.

40.

20.

MIPS

Provides a graphical representation of how many instructions per second
(over a given time slice) were used executing each function. “Graphical
Navigation”, page 28.

B B:MIPS.PROfileChart.sYmbol

(other)
0S_CPU_SR_Save
05_CPU_SR_Restore
10.000us] OSCtxSw
00s
instr/sec

2 setup... | ifiGroups.. | 32 Config...| M1 Goto...

[E=N o =
#3Find... | @In [»Owout @Fulll| SIn | Sout | EFullll Fne | Coarse
iTIM4ISR 055emPost
0S_EventTaskRdy 05_EventTaskRemove
05_sche L 05_schednew
TIM_ClearITPendingBit 05_CPU_PendSvHandler

-3.813400000s -3.813200000s -3.813000000s
| 1 1 |

35.0e+6

30.0e+6

25.0e+6

20.0e+6

15.0e+6

10.0e+6

5000000.0

0.

o

Clicking the More or Less buttons will add or remove certain items from the display. In four steps, it moves
between showing all CPU cycles, including dummies, to just showing the HLL code.

©1989-2024 Lauterbach

Training Cortex-M Tracing | 20

Trace Searching

The Trace Goto dialog looks like this and can be accessed by clicking the “Goto” button on any trace view
window.

1} Trace Goto - O *

Record / Time / Bookmark

|| - Goto

Previous First Trigger Zero
Next Last Ref Track

Cancel

It provides a convenient way of jumping to certain points within the Trace.List window.

A user entered record number or time index can be entered. If a bookmark has been created this can be
located here too. More information about BookMarks can be found by following this link.

Jump to the First captured trace record.

Jump to the Trigger event. More information on the trigger can be found here: “Trace Buffer
Management”, page 10.

Jump to time index of zero. This is the first event in Stack or Leash mode and the last event in FIFO mode.
Right-clicking any trace window allows a user created zero point to be defined. This will be used as the zero
point in all future calculations. The command Trace.ZERO can also be used to set the marker.

Jump to the Last captured trace event.

Jump to a user created reference point. Right-clicking any trace display window will allow a reference point to
be manually created. The command Trace.REF may also be used to set the reference marker.

Selecting Track will jump to the last position that the user placed a cursor at in any trace window.

Any windows that are opened with the /Track option will also jump to the selected point.

©1989-2024 Lauterbach Training Cortex-M Tracing | 21

It is possible to search the contents of the trace using the Find window which can be accessed by clicking
the Find... button on the Trace.List window and looks like this.

j-j Trace Find

O Expert @ Cycle O Group O changes
O signal

address [expression

Cycle Data

Find Mext Find First Find Here | Find All Clear

O X

C)Up
® Down

$ | OHw

Cancel

For example, to find all occurrences of function 1 TIM4 ISR, you would enter:

j-j Trace Find —
O Expert @ Cycle O Group O changes
O signal
address [expression
[iTM41SR) v
Cycle Data
Find Mext | Find First| |Find Here | Find All Clear

O X

Oup
® Down

$ | OHw

Cancel

And click the Find All button. A list of all entries to the function iTIM4ISR are shown. The ti.back

column shows the time between calls to this function. More information on trace timing can be found here:

“Timing”, page 45.

§7 B:iTrace FindAll, Address iTIM4ISR

(o] 8 s

188 run address

data

symbo |

t1.back i

-0022301590
-0022199878
-0022083082
-0021966687
-0021849260
-0021733745
-0021617738
-0021500697
-0021383706
-0021266625
-0021151348
-0021034636
-0020918935
-0020719046
-0020490852
-0020262717
-0020146369
-0020029482
-0019913733
-0019797819
-0019680910
-0019564511
-0019447039
-0019331444
-0019215272

saaddddddaddddadddddaddddn

:08007DDC [
:08007DDC
:08007DDC
:08007DDC
:08007DDC

08007DDC
08007DDC
08007DDC
08007DDC
08007DDC
08007DDC
08007DDC
08007DDC
08007DDC
08007DDC
08007DDC
08007DDC
08007DDC
08007DDC
08007DDC
08007DDC

:08007DDC
:08007DDC
:08007DDC
:08007DDC

ptr
ptr
ptr
ptr
ptr
ptr
ptr
ptr
ptr
ptr
ptr
ptr
ptr
ptr
ptr
ptr
ptr
ptr
ptr
ptr
ptr
ptr
ptr

\,DDC2016%app_adc 1 TIM4ISR
YA\DDC2016%app_adc, iTIMAISR
YA\DDC2016%app_adc, iTIMAISR
YA\DDC2016%app_adc, iTIMAISR
YA\DDC2016%app_adc, iTIMAISR
YA\DDC2016%app_adc, iTIMAISR
YA\DDC2016%app_adc, iTIMAISR
YA\DDC2016%app_adc, iTIMAISR
YA\DDC2016%app_adc, iTIMAISR
YA\DDC2016%app_adc, iTIMAISR
YA\DDC2016%app_adc, iTIMAISR
YA\DDC2016%app_adc, iTIMAISR
YA\DDC2016%app_adc, iTIMAISR
YA\DDC2016%app_adc, iTIMAISR
YA\DDC2016%app_adc, iTIMAISR
YA\DDC2016%app_adc, iTIMAISR
YA\DDC2016%app_adc, iTIMAISR
YA\DDC2016%app_adc, iTIMAISR
YA\DDC2016%app_adc, iTIMAISR
YA\DDC2016%app_adc, iTIMAISR
YA\DDC2016%app_adc, iTIMAISR
YA\DDC2016%app_adc, iTIMAISR
YA\DDC2016%app_adc, iTIMAISR
YA\DDC2016%app_adc, iTIMAISR
“WA\DDC2016%app_adc, iTIMAISR

Ll
22.336ms
25.486ms
25.486ms
25.486ms ~
25.486ms
25.486ms
25.486ms
25.486ms
25.486ms
25.486ms
25.486ms
25.486ms
25.486ms
25.486ms
25.486ms
25.486ms
25.486ms
25.486ms
25.486ms
25.486ms
25.486ms
25.486ms
25.486ms
25.486ms v

Clicking any item in this window will cause the Trace.List window to jump to the same point within the trace

buffer.

©1989-2024 Lauterbach

Training Cortex-M Tracing

22

Cortex-M ETM trace is program flow trace only; there are no data trace items. These can be injected via the
DWT/ITM. More information can be found here: “Data Watchpoint and Trace Unit”, page 55. To search for
all task switches (writes to TASK.CONFIG(magic)) use:

j-j Trace Find

O

OUp
® Do

$ | OHw

x

wWin

O Expert @ Cycle O Group O changes
O signal

address [expression

| task.config(magic) v|

Cycle Data

[write “|] |

Find Mext| |Find First| Find Here | Find All Clear

Cancel

Then click Find All. A list of task switches will be displayed. The values in the ti.back column show how long
each task or thread was running for before it was switched.

j-j Bu:TraceFindAll, Address task.config(magic) CYcle Write EI@
286 run [address cycle [data symbo | t1.back i
-0000026356 D:2000265C wr-Tong 00000000 %\DDC2016%Global\OSTCECur A~
-0000026343 D:2000265C wr-long 00000000 \\DDC2016%Global\OSTCBCur 1.243ms
-0000026144 D:2000265C wr-long 20000BAS \\DDC2016%Global\OSTCBCur 5.788ms
-0000026037 D:2000265C wr-long 20000C04 \\DDC2016%Global\OSTCBCur 31.180us ¥
-0000025920 D:2000265C wr-long 20000C60 \\DDC2016%Global\WOSTCBCur 19.960us *
-0000025896 D:2000265C wr-long 20000B4C \\DDC2016%Global\WOSTCBCur 25.427ms
-0000025736 D:2000265C wr-long 20000C60 \\DDC2016%Global\WOSTCBCur 17.240us
-0000025713 D:2000265C wr-long 20000B4C \\DDC2016%Global\WOSTCBCur 25.469ms
-0000025547 D:2000265C wr-long 20000C60 \\DDC2016%Global\WOSTCBCur 17.220us
-0000025523 D:2000265C wr-long 20000B4C \\DDC2016%Global\WOSTCBCur 25.469ms
-0000025357 D:2000265C wr-long 20000C60 \\DDC2016%Global\WOSTCBCur 17.780us
-0000025334 D:2000265C wr-long 20000B4C \\DDC2016%Global\WOSTCBCur 25.468ms
-0000025175 D:2000265C wr-long 20000C60 \\DDC2016%Global\WOSTCBCur 17.160us
-0000025152 D:2000265C wr-long 20000B4C \\DDC2016%Global\WOSTCBCur 25.469ms
-0000024988 D:2000265C wr-long 20000C60 \\DDC2016%Global\WOSTCBCur 17.220us
-0000024964 D:2000265C wr-long 20000B4C \\DDC2016%Global\WOSTCBCur 25.469ms
-0000024801 D:2000265C wr-long 20000C60 \\DDC2016%Global\WOSTCBCur 17.160us
-0000024778 D:2000265C wr-long 20000B4C \\DDC2016%Global\WOSTCBCur 25.469ms
-0000024616 D:2000265C wr-long 20000C60 \\DDC2016%Global\WOSTCBCur 17.680us
-0000024593 D:2000265C wr-long 20000B4C \\DDC2016%Global\WOSTCBCur 25.468ms
-0000024434 D:2000265C wr-long 20000C60 \\DDC2016%Global\WOSTCBCur 17.280us
-0000024410 D:2000265C wr-long 20000B4C \\DDC2016%Global\WOSTCBCur 25.469ms
-0000024248 D:2000265C wr-long 20000C60 \\DDC2016%Global\WOSTCBCur 17.780us
-0000024216 D:2000265C wr-long 20000B4C \\DDC2016%Global\WOSTCBCur 25.468ms
-0000024053 D:2000265C wr-Tlong 20000C60 \\DDC2016%Global\OSTCBCur 17.160us v

More information on tracing task or thread switches can be found here: “Task/Thread switch Tracing”,

page 61.

The Find window is a wrapper for the command Trace.FindAll. Follow the link for a detailed explanation.

©1989-2024 Lauterbach

Training Cortex-M Tracing

23

Trace Filtering

Events can be filtered by using the DWT. The DWT filtering takes place on the chip and is non-intrusive to
the target’s runtime performance. Filtering to capture only those events of interest can relieve pressure on
the internal FIFO in the chip and extend the length of time for which data can be captured.

The DWT comparators can be conveniently programmed by using the TRACES32 breakpoint features.
Several event filter types are available and can be assigned by using the Break.Set command or dialog.

3 B:Break.Set - O *
address [expression

| v [&]0n
type options implementation
@® Program [EXclude [Temporary auto ~
O ReadWrite [InoMARK [Jpisable action

O Read [JpisableHIT

O wirite DATA

Add Delete

TraceEnable
TraceData

TraceON
TraceOFF
TraceTrigger

The last five entries on the drop-down menu will affect how trace is generated.

TraceEnable

TraceData
TraceON
TraceOFF

TraceTrigger

When a breakpoint of this type is set, a match will generate a trace packet
for this event only. All other ETM trace generation is suspended.

A match to this event will cause a DWT data trace packet to be emitted.

ETM trace will be switched on when this event matches.

ETM trace will no longer be generated when this event matches.

When this event matches, a Trigger packet will be emitted.

By using a matching pair of TraceON and TraceOFF markers it is possible to restrict the trace to only an area
of interest and nothing else. This will extend the length of time for which meaningful data can be captured at

the expense of not capturing all events.

The Trigger packet causes the trace tools to trigger on an event. The Trace.TDelay option in the Trace

configuration window controls how the tools will react. It holds a portion of the trace buffer in reserve to be
filled up only after the trigger event occurs. Setting the value to 50% will place the trigger event in the middle

of the trace buffer, giving the user an equal amount of trace buffer dedicated to events before the trigger and
events after the trigger.

©1989-2024 Lauterbach

Training Cortex-M Tracing

24

Tracing Certain Events

For example, the time taken between an Interrupt Service Routine executing and the task designed to
respond to that interrupt being scheduled.

When using Filters like this it is recommended to switch the timing mode to be cycle accurate
(ETM.TImeMode CycleAccurate. Some early Cortex-M cores do not support a cycle accurate timing
model. In these cases, set Trace.PortFilter ON.

Set a breakpoint on the ISR and the wake-up part of the task of type /TraceEnable. The list in the picture
below shows an example of marking two events.

a B::Break.List EI@
K Delete All| O Disable All| @ Enable All | @ Init || J&2Impl... | E2Store... | F2load... | EdSet...
address types imp]l action i

T:08007DZA]Program ONCHIP [TraceEnable | tADC'84

T:08007DDE ||Program ONCHIP |TraceEnable | iTIM4ISR\3

Listing the contents of the trace buffer with Trace.List shows only the filtered events.

Trace.List EI@

B setup... | 1 Goto... | #3Find... | feiChart | HProfile | IHMIPS + Mare Y Less

record run |address cycle |data symbaol ti.back i
—— TRACE ENABLE A
-0000000697 T:08007D2C ptrace “A\DDC2016%app_adc\ tADC+0x11C 10. 240us
ldr r0,0x8007DF8

—— TRACE ENABLE v
-0000000688 ‘ T:08007DDE ptrace “WA\DDC2016%app_adc, i TIMAISR+0x2 25.486ms ~

INTEU err;
171 err = 0SSemPost (sTIM4);
ldr r0,0x8007E00
TRACE ENAEBLE
-0000000678 T:08007D2C ptrace “A\DDC2016%app_adc\ tADC+0x11C 25.476ms
ldr r0,0x8007DF8

TRACE ENAEBLE
-0000000671 T:08007DDE ptrace “WA\DDC2016%app_adc, i TIMAISR+0x2 0.180us
INTEU err;

171 err = 0SSemPost (sTIM4);
ldr r0,0x8007E00

—— TRACE ENABLE
-0000000663 T:08007D2C ptrace “A\DDC2016%app_adc\ tADC+0x11C 10.220us
ldr r0,0x8007DF8

—— TRACE ENABLE
-0000000654 T:08007DDE ptrace “WA\DDC2016%app_adc, i TIMAISR+0x2 25.486ms
INTEU err;

To show a histogram of distances between two points use the command
Trace.STATistic.AddressDURation. For example:

To measure the time between the last instruction of the ISR and the first instruction of the task that wakes to
deal with the ISR. All of the results are between 10.150 us and 10.350 us.

©1989-2024 Lauterbach Training Cortex-M Tracing | 25

Trace.STATistic.AddressDURation iTIM4ISR\3 tADC\84
= Butrace.stat AddressDURation iTIM4ISR\3 tADC\84 = =R
B setup... | |yl Chart 21 Zoom = Zoom &l Full
samples: 97. avr: 10.316us min: 10.114us max: 19.965us
total: 2.447s dn: 1.001ms out: 2.446s ratio: 0.040%
up to |count ratio 1% 2% 5% 10% 20% 50% 100
9. 0. . ~
9.700us 0. 0.000%
9. 800us 0. 0.000%
9.900us 0. 0.000%
10.000us 0. 0.000%
10.100us 0. 0.000%
10.200us 31. | 31.958%
10.300us 65. | 67.010%
10.400us 0. 0.000%
10. 500us 0. 0.000%
10.600us 0. 0.000%
10.700us 0. 0.000%
10. 800us 0. 0.000%
10.900us 0. 0.000%
11.000us 0. 0.000%
11.100us 0. 0.000%
11.200us 0. 0.000%
> 1. 1.030% | v
I

©1989-2024 Lauterbach

Training Cortex-M Tracing

26

Tracing Between Two Points

A pair of breakpoints can be used: a breakpoint of type /TRACEON to start tracing at a particular event; and
a breakpoint of type /TRACEOFF to stop tracing at this event. For example: To trace the main loop of a task

(tMotor), set a pair of breakpoints to mark the on and off positions.

oot =) e =)
K Delete All| O Disable All @ Enable Al @ Init | & Impl... | 52 Store...| 52 Load... | EdlSet...
address types imp]l action i
T:080073DE [[Program ONCHIP TraceON tMotor' 33
T:080074E0 [[Program ONCHIP TraceQFF tMotor',82+0x24

Run the target to collect the trace data and then view the results. As we can see from the image below, more

has been captured than just the task we were interested in.

i Bi:Trace.Chart.s¥mbol EIIEI
J2Setup... | jiiGroups... | 38 Config...| (3 Goto... | (3 Goto... | #3Find... | «OrIn |»0«Out | EF Full
3.500s -3.000s -2.500s -2.000s
address i
(other“)<>|||||IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIA
EMotor [T e e ey 1 T
asmboxPend &R || 1 T

05_CPU_SR_Savely I
os_EvertTaskwai £ &1 VT O EEVDDCEEEECOECEEELEEEEEE TV EE L]

05 _CP USR5 01 &] —
os_sched QB[N CEEEEETE T U EEEH LT TR L

(015 S e lIN v |

QSCEXSwWEEI LT e e e e e e e e e e e ey
os_cru_pendsvHandTer &R[LLTHCICOTCEECCEEEEE D ECEECCEECEEECEE EEEEEEDEEEEEEEEEEEE LTI
Pu_PendsvHandTer_nosaveRB[ILTTLICHEEEOEEEEEE P CECEEEEEEEEEEREEELEEEEEEEEEELEE LT DEL T
osTaskSwHook BH[LHTCITCCCCCEEETEETEETE T EE D EEEIEEEE L LTI
App_TaskLCDRR|l [110 FEEE L Ll EE Tr] |
—aeabi_i2f@ 1
_dar_ui2fu|
__aeabi_f2dW|
__aeabi_ddivi
__aeabi_d2f |
GLCD_TextSetPos iy
GLCD_SetFont | |

|

| |
printf | | |) 1
_Pri ntFFu'l'l F I |) 1l |
_Mbtowe G| |) [N [B
< >« >

By marking a start and stop point, all code executed between these two points will be sampled. This includes

interrupts, sub-functions, task switches, etc.

If the application is running as a small bare metal loop then this approach works very well. If the application
has an RTOS or scheduler then more data may be collected than anticipated.

Setting a ranged breakpoint does not help as the DWT will generate a trace event for each branch within the
range. This will result in a lot of FIFO overflows. To view only the code within the task of interest it is better to
use a group (see “Trace and Groups”, page 40) and filter on that afterwards. If the amount of trace is too

large to fit in the tools’ internal buffer, consider using Stream mode: “ETM Stream Mode”, page 17.

©1989-2024 Lauterbach

Training Cortex-M Tracing

27

Graphical Navigation

All graphical views of the trace data have some common navigation features.

Zoom/pan using the In/Out/Full buttons. Some can zoom in two dimensions, others in only one.

B B:Trace. PROfileChart.sYmbol

B sSetup... || fifGroups... | 28 Config...| {1 Goto... | #3Find. drIn | out EEFull| SIn | Dout EFull| | Fine
10.000us [l (other) W iTIM4IER B OsSombost B oschul SR_Sar
0s -4.000s -3.000s -2.000s
ratio | ! I

Click and drag to select an area. Click within the selected area to zoom that to full screen.

¥l BiTrace.Chart.sYmbol = =R
B setup... || fiiGroups... | 38 Config...| (3 Goto... | [} Goto... | #3Find... <OrIn | »4Out| EXFull
-4.000s -3.000s -2.000s |
address iy |
NINRAES |||| _||||||||||||||||||| |||||||||||||||||||||||||A
TN R

IM C'IearITPEnd'ln Bt
21 05_CPU_PendSVHandler 4
PU PendSVHand'Ier _nosaveiy

_adc ADC_GetFlagStatus iy

ADC_GetConversionvalueds| [T L T T T
> < I I >
i BrTrace.Chart.sYmbol = =R
B setup... || fiiGroups... | 38 Config...| (3 Goto... | [} Goto... | #3Find... <OrIn | »4Out| EXFull
-4.100s -4.050s -4.000s -3.950s -3.900s |
I I I I I = |
N
B
| | | |
1 OS _CPU_SR_S ave 1000 000 00 0 0 0 0000 00 000 00 0 O
05_EventTaskRdy iy | | I |
05 EventTaskRemoveEH (i Il il

01 oba
1\ TIM C'IearITPend'ln Bt
1 0S_CPU_PendsvHandler i
PU PendSVHand'Ier _nosaveiy

D 01 adc
DC SoftwareStartConvemd ¥
aclc\ ADC_GetFlagStatus ¥
ADC_GetC onversionValue

©1989-2024 Lauterbach Training Cortex-M Tracing

28

Click and drag to time a region.

e Bi:Trace.Chart.s¥mbol

(o8)

-4.006268000s
address iy |

J2Setup... || iifGroups... | B8 Config...| (3 Goto... | (3 Goto... | FiFind...

A0 In |4 Out || EW Full
-4.006266000s

-4.006264000s

(other) k¥

TIMATISR 4|

055emPost K|
05_CPU_SR_Savel| 1
05_EventTaskRdy |
05_EventTaskRemove iy
05_CPU_SR_Restorel)|
05_Schediy|

05_SchedNewHy|

0SCtXSwiy|
TIM_ClearITPendingBithy|
05_CPU_PendSvHandler 4y
PU_PendSvHandler_nosave iy
05TaskSwHook [y

05SemPend [y
TADC 4| I—
DC_SoftwareStartConvCmd Ry
ADC_GetFlagStatus iy
ADC_GetConversionvaluely|

Click and use the mouse scroll wheel: scroll up to zoom in and scroll down to zoom out.

Double-click but don’t release the second mouse button press. Whilst holding the button, move the mouse
up to zoom in and down to zoom out. Move left and right to scroll through the window along the x-axis.

The Trace.Chart.sYmbol window can be ordered along the y-axis. Drag the row to the required position.

f! B:Trace.ChartsYmbol [] ! B Trace.Chart.sYmbol = 5|
& setup... || fifGroups... |28 Config...| 3 Goto... | A Goto... | #3Find... | »In | »O0ut | BB Full & setup... | iiiGroups... | &2 Config...| A Goto... | (1 Goto... | $3Find... | {»In | vDOut| B Full
-4.006268000s -4.006266000s -4.006268000s -4.0086266000s
address ¥ | L address ¥ L | I
(other) 4y I TADC </ I— . . oA
ATIMATSRAH (other) & : : :
0SSemPost 4K iTIMATSREY : :
0S_CPU_SR_Save | 0SSemPost {y : :
0S_EventTaskRdy 1| 05_CPU_SR_Saveky 1 : N
0S_EventTaskRemove 4y 05_Event TaskRdy i T B
0S_CPU_SR_Restoresy| 05_EventTaskRemoveky) - :
0S_sched | 05_CPU_SR_Restareky '}
0S_SchedNewXH| 05_sched n
OSCTxSwWAH| 05_SchedNewiy |
TIM_ClearITPendingBit sk 0SCtxSwiy
0S_CPU_PendsVHand ler 4| TIM_Clear ITPendingBit iy
PU_PendSvHandler_nosave | 05_CPU_PendsvHandler 4
0STaskSwHook 4 PU_PendsvHandler_nosave
0SSemPend K| 05TaskSwHook ¥
T ADC 4| I— 0sSemPendHy
DC_Sof twareStartConvCmd 4y DC_softwar estartCanvCmd)
ADC_GetF lagStatus i : v ADC_GetF lagStatus iy v
<> < > <> < >

Adding the /Track option to any window showing trace data allows it to snap to a cursor placed in any other

trace display window.

= = |[= [52 | | ! BsTrace.Chart.s¥mbol [= =)
Zsetup... | A Goto... | FiFind.. | MviChart | EProfle = EEMIPS & More X Less Zsetup... || fifGroups... | 2 Config... M Goto... | 3 Goto... | FiFind... | B In | Oeout| @Full
record |run |address cycle |data symbol ti -4.006268000s -4.006266000s
729 I = address i i |
Check the parameters * [TADC 4] =
731 assert_param(IS_ADC_ALL_PERTPH(ADCxX)) ; (other) &
= ATIMATISR
Return the se ed ADC conversion value 2 0SSemPost 4
734 return (ul6) ADCx->Df 0S_CPU_SR_Save 4 [] 1
Tdr r0, [r0,#0x4cC] 0S_Event TaskRdy 4| I .
0S_EventTaskRemove & -)
0S_CPU_SR_Restore |’ |)
—0018515655 05_sched | n
05_SchedNew| [
114 0SCExSw
TIM_ClearITPendingBit ¥
0S_CPU_PendsvHandler &
PU_PendSVHandler_nosave iy
-0018515654 T:08007D4C ptrace “\DDC2016\app_adc\tADC+0x13C 0STaskSwHook 4
{ 0sSemPend 4|
116 if(demoTrace == 2 || demoTrace == 3 DC_Sof twar eStartConvCmd |
Tdr r0,0x8007E04 v ADC_GetFlagStatus & L
< > <> < >

©1989-2024 Lauterbach

Training Cortex-M Tracing | 29

Analyzing the Results

The collected trace data can be analyzed to show a lot of performance information about the code running
on the target. This is handled by the PERFormance commands and more information can be found by
following the link. The features can also be accessed from the Perf menu; the highlighted features will be
discussed in this manual.

Perf Cov STM32F10x uC/05 Wi

& Perf Configuration...
= Perf List
Perf List Dynamic

Function Runtime L4
Distribution L4
Duration Ato B L4
Distance trace records L4
Task Runtime L4
Task Function Runtime L4
Task Status L4

&3 Benchmark Counters

Reset

These items work with collected trace data.

©1989-2024 Lauterbach Training Cortex-M Tracing | 30

Function Runtime

The items in this menu deal with how long each function and/or sub-function takes to execute and how many
times it is called. A basic display looks like this:

£ BxTrace STATistic FUNC o)==
& setup... | iiiGroups... | 1% Config...| R Goto... | £ |Detailed lesting | % Chart
funcs: 35. total: 5.026s
range |total min max avr count intern% 1% 2% 5% 10% 20% 50% 100
root) 5.026s - 5.026s - - <0.001% [¢
main 5.026s - 5.026s - 1.(0/1) | 8.894%
func_sin | 660.788us | 660.788us | 660.788us | 660.788us 1. 0.006% |+
int_sin| 325.554us 0.128us 0.697us 0.518us 628. 0.006% |+
func2 | 198.485ms 2.044us 2.763us 2.508us 79135. 3.438%
funcl 63.609ms. 0.017us 0. 236us 0.115us 553446. 1. 265% |mmm
func2a | 106.252ms 1.188us 1.455us 1.343us 79135. 2.114% |e—
func2b 93.355ms. 1.039us 1.360us 1.180us 79135. 1. 857% |m—
unc2d | 102.119ms 1.163us 1.396us 1.290us 79135. 2. 031% | me—
initLinkedList | 355.464ms 4.328us 4.640us 4.492us 79135. 7. 0725 | e—
func4 | 59.626ms 0.492us 1.021us 0.753us 79135. 1.186% jmm
func3 5.478ms 0.033us 0.144us 0.06%us 79135. 0.108% |«
funcs 7.148ms 0.034us 0.118us 0.030us 79135. 0.142% |«
funcg | 299.043ms 3.671us 3.932us 3.77%s 79135. 5.950%
func9 | 148.041ms 1.775us 1.975us 1.871us 79135. 2.190%
funclo 1.508s 18.916us 19.135us 19.052us 79135. 29.998%
funcll 27.270ms. 0.231us 0.462us 0. 345us 79135. 0.542% |+
funcl3 | 162.132ms 0.150us 2.166us 1.180us 316538. (0/2) 3. 225% |m—
funcl4 7.191ms 0. 060us 0.127us 0.091us 79134, 0.143% |+
funcls 7.780ms 0.048us 0.159us 0.098us 79134. 0.154% |+
funclé 7.734ms 0.043us 0.167us 0.098us 79134. 0.153% |«
funcl? 7.327ms 0.040us 0.120us 0.093us 79134, 0.145% [+
funcld 7.568ms 0.067us 0.124us 0.096us 79134, 0.150% [«
funcl9 7.265ms 0.058us 0.114us 0.092us 79134. 0.144% |«
func20 8.583ms 0.063us 0.140us 0.108us 79134, 0.170% |+
func2l 8.320ms 0.070us 0.138us 0.105us 79134, 0.165% |+
func22 8.271ms 0.070us 0.170us 0.104us 79134, 0.164% |+
func23 9.904ms. 0.035us 0. 218us 0.125us 79134, 0.197% |+
func24 5.024ms 0.028us 0.140us 0.0863us 79134, 0.099% |+
func2s 4.846ms 0.022us 0.122us 0.086lus 79134, 0.096% |+
func26 4. 345ms 0.021us 0.104us 0.055us 79134. 0.086% [+
func28 | 25.705ms 0.245us 0.470us 0.325us 79134. 0.511% |«
encode | 571.106ms 7.048us 7.338us 7.217us 79134, 6.480%
subst | 245.390ms 0.016us 0.521us 0.310us 791340. 4.882%
sieve | 815.137ms | 10.20lus | 10.363us| 10.30lus 79134. 16.218%

This shows a list of functions that were sampled during the trace collection period and runtime statistics

(including min, max and mean) for each.

Many other columns can be added and the list can be sorted in a number of ways. Clicking the “Config”

button gives access to this dialog, which looks like this.

=R Statistic Config

Sort

@® OFF

O Nesting
O GROUP
O Address
(O s¥mbol
(O InternalRatio
O TotalRatio
O Ratio

O Count

O TotalMAX
O RatioMAX

Al windows

Sort visible
@® Global
O window
Sort core
(®) CoreTogether
O CoreSeparated

available

GROUP

TASK
TotalRatio
TotalBAR.LOG
TotalBAR.LIN
Internal
IAVeRage
MIN

IMAX
InternalBAR.LI
External
EAVeRage
EMIN

NAME ~

EMAX &7

-

- O X

selected

Total

MIN

MAX

AVeRage

Count
InternalRatio
InternalBAR.LOG

©1989-2024 Lauterbach

Training Cortex-M Tracing

31

Each line in the list has a right-click menu associated with it. This provides access to more detailed analyses.

= | BTrace STATistic. FUNC =N =]
2 Setup... || fifGroups... | 2 Config... | (A Goto... | |Detailed | iEiNesting | % Chart
funcs: 32. total: 14.865s

range total min max avr count intern¥%

subst | 725.006ms 0.016us 0.521us 0.310us 2340558. (1/0) 4.877%

%ncod§ l.gggs 7.027us Z.gggus 7.219us 234056. (1/0) g.ggg%

root ; s — ; s — — ; p;
‘“Mdemo_sram\sievel\sieve . 10. 299us 234056. 16.215%
func? | 588.452ms Statistic .765us 2.514us 234056. 3.440%

funcl | 188.901ms & List First .235us 0.115us 1637893. 1.270%

func2a | 313.085ms s it | aet .455us 1.338us 234056. 2.106%

func2b | 276.292ms i .327us 1.180us 234056. 1.858%

func2d | 302.647ms & ListMax .397us 1.293us 234056. 2.035%
initLinkedList 1.051s |} Goto Max .640us 4.490us 234056. 7.069%
funcd | 177.079ms | Bookmark Max .021us 0.757us 234056. 1.191%

func3 16.449ms .143us 0.070us 234056. 0.110%
funch 21.299ms | Linkage .119us 0.091us 234056. 0.143%
func8 | 884.002ms | parents .903us 3.777us 234056. 5.946%
func9 | 437.010ms = cidren .975us 1.867us 234056. 2.187%
funcl0 4.459s |© .135us 19.051us 234056. (0/1) | 29.997%
funcll 81.532ms =| buration Analysis .426us 0.348us 234055. 0.548%
funcl3 | 479.372ms . 0 .166us 1.185us 936220. 3.224%
funcld 21 508m<3?'ha vration .156us 0.092us 234055. 0.144%
funcl5 23.068mg E| Distance Analysis .157us 0.099us 234055. 0.155%
funcl6 23.120ms # Findall Distance .167us 0.099us 234055. 0.155%
funcl? 21.506ms .120us 0.092us 234055. 0.144%
funcl8 22.673mg here. Y 1.120us 0.097us 234055. 0.152%
funcl9 21.535ms 0.058us 0.114us 0.092us 234055. 0.144%
func20 24.873ms 0.063us 0.125us 0.106us 234055. 0.167%
func2l 24.735ms 0.070us 0.133us 0.106us 234055. 0.166%
func2? 24.605ms 0.070us 0.133us 0.105us 234055. 0.165%
func23 29.060ms 0.108us 0.165us 0.124us 234055. 0.195%
func24 14.171ms 0.038us 0.140us 0.060us 234055. 0.095%

£

The first section jumps to the first, last or maximum entry in the Trace.List window.

Linkage shows an analysis of all places that this function was called from along with runtime information.
This example shows all the places in the application where funci () is called from and for each it displays
the runtime measurements. It is a convenient method to access Trace.STATistic.LINKage.

= | BTrace STAT.LINKage T:0:x20000086 = =R
2 Setup... || fifGroups... | 2 Config... | (A Goto... | |Detailed | iEiNesting | % Chart
funcs: 2. total: 63.609ms
range [total min max avr count total¥% 1% 2% i
funcZ 25.676ms 0.017us 0.212us 0.108us 236906. 40, 365% | —
func9 37.933ms 0.027us 0.236us 0.120us 316540. 59.634% | n————————

Parents shows the call tree back to the entry point or root of the application, again with performance
information for each function in the tree. This is a convenient way to access Trace.STATistic.ParentTREE.

£ | BuTrace.STAT.ParentTREE T:0x20000086

ol

[sl

&setup... | iiiGroups... | iF Config...| (3 Goto...

funcs: 7. total:

range [tree

£ |Detailed | {EiMesting | % Chart

63.609ms

total

min

total%

Funcl [= funcl
func2 ||-= func2

main = main
(root) “— (root)
func9 |- func9
—Emain

— (root)

main
(root)

63.609ms.
25.676ms
25.676ms.
25.676ms,
37.933ms
37.933ms
37.933ms

0.017us
0.017us
0.017us
0.017us
0.027us
0.027us
0.027us

0.236us
0.212us
0.212us
0.212us
0.236us
0.236us
0.236us

0.115us
0.108us
0.108us
0.108us
0.120us
0.120us
0.120us

316540.

100. 000%
40.365%
40.365%
40.365%
59.634%
59.634%
59.634%

=
®
i3
© Ed

©1989-2024 Lauterbach

Training Cortex-M Tracing |

32

Children shows the call tree starting at the selected function and traversing downwards through all of the
sub-functions with performance information for each node. This menu item provides an easy way to access
Trace.STATistic.ChildTREE.

= | B Trace STAT.Child TREE T:0x2000002E =NE=R~=
& Setup... | iiiGroups... | 3% Config... | M Goto... | =|Detailed | {FiNesting | % Chart
funcs: 2. total: 198.485ms
range [tree total min max avr count intern% [1% 2%
func? |5 func? 198.485ms 2.044us 2.763us 2.508us 79135. 87.004% |ee—
funcl [— funcl 25. 676ms 0.017us 0.212us 0.108us 236906. 12.935%
< >

Duration shows a histogram of runtimes for the selected function. TRACES2 allocates 16 appropriate
bucket sizes ad assigns the runtime values to each of these. These can be over-ridden by the user on the
command line by using Trace.STATistic.FuncDURation. The zoom buttons and scroll bar can be used to
navigate or display more or less details for a specific range.

= | B:Trace STAT.FuncDURation P:0x2000002E = =R
B setup... | |yl Chart 1 Zoom I Zoom &l Full
samples: 79135. avr: 2.508us min: 2.044us max: 2.763us
total: 5.026s din: 198.485ms out: 4.827s ratio: 3.949%
up to |count ratio 1% 2% 5% 10% 20% 50% 100 |

< 2.200us 268. 0.338% |+

2.250us 1. 0.001% |+

2.300us 9. 0.011% |+

2.350us 1387. 1.752% |s—

2.400us 6806. 8.600%

2.450us 13376. | 16.902%

2.500us 21977. | 27.771%

2.550us 10986. | 13.882%

2.600us 8476. | 10.710%

2.650us 12314, | 15.560%

2.700us 3060. 3. 866 |———

2.750us 463. 0.585% |+

2.800us 12. 0.015% |+

2.850us 0. 0.000%

2.900us 0. 0.000%

2.950us 0. 0.000%

3.000us 0. 0.000%
> 0. 0.000%

©1989-2024 Lauterbach Training Cortex-M Tracing | 33

Findall Duration provides a convenient way of automatically searching for all entry and exit points for the
selected function. The yellow lines are function entries and the white lines are the corresponding exit. The
value in the ti.fore column shows the time for each event, so the top line shows that func2 took 2.20 ps to

execute and it was another 60.960us before it was called again.

#1 BxTrace FindAll, Address.CODE P:0x2000002E||P:0x200000E4 /List Address sYmbol Tim... [= || = |[5]
158270 laddress symbo | ti.fore
-0028807885 T:2000008E lemo_sram\s1eve\func2 2.200us

-0028807872 T:200000E4 ‘\demo_sram'sieve'func2+0x56 60. 960us
-0028807527 T:2000008E \\demo_sram\sieve\func2 2.080us
-0028807514 T:200000E4 ‘\demo_sram'sieve'func2+0x56 60.89%us ¥
-0028807164 T:2000008E \\demo_sram\sieve\func2 2.304us ~
-0028807151 T:200000E4 ‘\demo_sram'sieve'func2+0x56 61.120us
-0028806801 T:2000008E \\demo_sram\sieve\func2 2.060us
-0028806788 T:200000E4 ‘\demo_sram'sieve'func2+0x56 61.140us
-0028806445 T:2000008E \\demo_sram\sieve\func2 2.060us
-0028806432 T:200000E4 ‘\demo_sram'sieve'func2+0x56 61.120us
-0028806075 T:2000008E \\demo_sram\sieve\func2 2.040us
-0028806062 T:200000E4 ‘\demo_sram'sieve'func2+0x56 61.000us
-0028805711 T:2000008E \\demo_sram\sieve\func2 2.040us
-0028805698 T:200000E4 ‘\demo_sram'sieve'func2+0x56 61.160us
-0028805351 T:2000008E \\demo_sram\sieve\func2 2.040us
-0028805338 T:200000E4 ‘\demo_sram'sieve'func2+0x56 60. 896us
-0028804994 T:2000008E \\demo_sram\sieve\func2 2.304us
-0028804979 T:200000E4 ‘\demo_sram'sieve'func2+0x56 60. 896us
-0028804636 T:2000008E \\demo_sram\sieve\func2 2.344us
-0028804617 T:200000E4 ‘\demo_sram'sieve'func2+0x56 60. 808us
-0028804270 T:2000008E \\demo_sram\sieve\func2 2.292us
-0028804253 T:200000E4 ‘\demo_sram'sieve'func2+0x56 60. 960us
-0028803903 T:2000008E \\demo_sram\sieve\func2 2.080us
-0028803891 T:200000E4 ‘\demo_sram'sieve'func2+0x56 61.120us
-0028803545 T:2000008E \\demo_sram\sieve\func2 2.120us v

Distance Analysis shows the amount of time that elapsed between one call to a function and the next call
to that function. This is a convenient way of accessing the Trace.STATistic.AddressDIStance command.

| BTrace STAT.AddressDIStance P:0x20000086 = =R
B setup... | |yl Chart 1 Zoom I Zoom &l Full
samples: 553445, awvr: 9.080us min: 0.050us max: 45.360us
total: 5.026s in: 5.025s out: 768.427us ratio: 99.984%
up to |count ratio 1% 2% 5% 10% 20% 50% 100
< 0.000us 0. 0.000%
5.000us 395176, | 71.402%

10.000us 0. 0.000%

15.000us 0. 0.000%

20.000us 79135, | 14.298%

25.000us 0. 0.000%

30.000us 0. 0.000%

35.000us 0. 0.000%

40.000us 0. 0.000%

45.000us 3893. 0.703% |+

50.000us 75241, | 13.595%

55.000us 0. 0.000%

60.000us 0. 0.000%

65.000us 0. 0.000%

70.000us 0. 0.000%

75.000us 0. 0.000%

80.000us 0. 0.000%
> 0. 0.000%

©1989-2024 Lauterbach

Training Cortex-M Tracing

34

Findall Distance is an easy way to search for all entry points of the selected function. The ti.fore column

shows the time between calls to that function.

§9 BiiTraceFindAll, Address. CODE P:0x2000008E /List Address sYmbol Time.Back = =R
79135 |address symbo | t1.back
-0028807885 T:2000008E V. \demo_sram'sieve\funcz ~

-0028807527 T:2000008E ‘\\demo_sram'sieve‘\func2 63.160us
-0028807164 T:2000008E ‘\\demo_sram'sieve‘\func2 62.976us
-0028806801 T:2000008E ‘\\demo_sram'sieve‘\func2 63.424us ¥
-0028806445 T:2000008E ‘\\demo_sram'sieve‘\func2 63.200us ~
-0028806075 T:2000008E ‘\\demo_sram'sieve‘\func2 63.180us
-0028805711 T:2000008E ‘\\demo_sram'sieve‘\func2 63.040us
-0028805351 T:2000008E ‘\\demo_sram'sieve‘\func2 63.200us
-0028804994 T:2000008E ‘\\demo_sram'sieve‘\func2 62.936us
-0028804636 T:2000008E ‘\\demo_sram'sieve‘\func2 63.200us
-0028804270 T:2000008E ‘\\demo_sram'sieve‘\func2 63.152us
-0028803903 T:2000008E ‘\\demo_sram'sieve‘\func2 63.252us
-0028803545 T:2000008E ‘\\demo_sram'sieve‘\func2 63.200us
-0028803181 T:2000008E ‘\\demo_sram'sieve‘\func2 63.240us
-0028802810 T:2000008E ‘\\demo_sram'sieve‘\func2 62.960us
-0028802452 T:2000008E ‘\\demo_sram'sieve‘\func2 63.088us
-0028802087 T:2000008E ‘\\demo_sram'sieve‘\func2 63.292us
-0028801718 T:2000008E ‘\\demo_sram'sieve‘\func2 63.036us
-0028801357 T:2000008E ‘\\demo_sram'sieve‘\func2 63.364us
-0028800993 T:2000008E ‘\\demo_sram'sieve‘\func2 63.300us
-0028800626 T:2000008E ‘\\demo_sram'sieve‘\func2 62.852us
-0028800267 T:2000008E ‘\\demo_sram'sieve‘\func2 63.288us
-0028799904 T:2000008E ‘\\demo_sram'sieve‘\func2 62.976us
-0028799541 T:2000008E ‘\\demo_sram'sieve‘\func2 63.404us
-0028799183 T:2000008E ‘\\demo_sram'sieve‘func2 63.260us +

©1989-2024 Lauterbach

Training Cortex-M Tracing

35

Distribution

Distribution shows the values that have been assigned to a variable during the sampling period. This
requires data trace, which on Cortex-M requires the ITM/DWT to be configured correctly. Data trace packets
consume more trace bandwidth than program flow trace, so care should be taken when monitoring data
items not to cause overflows in the on chip FIFO of the target.

To monitor a variable, a breakpoint can be used to program the DWT to emit a data trace packet on reads,
writes or any access. To monitor writes to HLL variable f1ags [31], set a breakpoint like this:

Break.Set Var.ADDRESS (flags([3]) /Write /TraceData

The Var.ADDRESS() macro returns the address of the 4th element of array flags. It can be used on any
complex variable where a simple symbol table lookup will not find the address. The same breakpoint would
be set in the Ul like this.

l‘a B::Break.Set - O *
Start a capture with the selected settings. -

|ﬂags[3] V| : MaL O=
type options method
O Program [EXclude [Temporary auto ~
O ReadWrite [InoMark [Jpisable action
O Read [p1sableHIT TraceData
@® write DATA
O default l:l ~ ¥ advanced
Add Delete Cancel

The ITM needs to be set for Data Trace: ITM.DataTrace ON or via the GUI. Start the target to collect trace
samples.

If the ETM trace is set to OFF (no ETM trace data generated) then the menu items under the Perf menu can
be used to analyze the data. If ETM is on (Program flow trace data also generated) then the analysis cannot
be performed by using the items under the Perf menu. When ETM is detected, the Perf will default to using
ETM trace for analysis. Instead, use the ITMTrace series of commands. Both commands will be shown in
the examples below. The generic Trace command can also be used.

Trace.STATisitc.DistriB Data

£ | B Trace STATistic. DistriB Data [E=NEER (==
B setup... | I8 Config... | (3 Goto... | =|Detailed | Aeichart | EEProfile
items: 3. total: 1.614s samples: 50820.
class |[total min max avr count ratio% [1% 2% 5% 10% 20% 50% 100
(other) 86.600us | B86.600us | 86,600us - 0

25410. (1/0)
25410, (0/1)

data=0x1| 77.686ms
data=0x0 1.536s

2.980us
60. 260us

3. 200us
60. 540us

3.057us

0.005% ‘(—
60.462us

95.181% |

The image above shows that for 95.181% of the sampling time, the value of £1ags[3] was 0 and for
4.813% it was a 1. The (other) entry is the time at the start of the trace capture where the value of
flags[3] was unknown as no writes had yet been captured.

Clicking the Config button will open a dialog to allow the user to change the sorting order and to add or
remove different columns.

©1989-2024 Lauterbach Training Cortex-M Tracing | 36

Clicking the Chart button will show how the values of the variable changed over time in a graphical format.

Trace.Chart.DistriB Data

e B::Trace.CHART.DistriB Data

B setup... || {ifGroups... | 38 Config... | (3 Goto... | {1 Goto...
-1.109000000s
class iy |

FFind...

4 In

M4 Out | [Full
-1.108000000s
I |

data=0xFZ48 M
data=0xF20C ¥
data=0x63F4HM _
data=0x64304 HE
data=0x646C M [
data=0x64A8 M
data=0x64E4 WM
data=0x6520H
data=0x655CH _ _ _
data=0x6598Hy _ _ mm
data=0x6504 HM
data=0x6610H
data=0x664C M
data=0x6688 M
data=0x66C4 WM
data=0x67 00 M
data=0x67 3CHM
data=0x677 8 M
data=0x67B4 WM
data=0x67FO M

©1989-2024 Lauterbach

Training Cortex-M Tracing

37

Duration Ato B

This feature uses the Trace.STATistic.DURation command to measure the time between two arbitrary
points; it is no longer constrained to function entry and the corresponding exit. For instruction timing
Trace.STATistic.AddressDURation is better.

To show how long a variable contains one value before it switches to another use something like:

I Trace.STATistic.DURation /FilterA Data.<width> <value> [FilterB Data.<width> <value>

Where <width> can be:

J B - byte (8bits), can be split into BO, B1, B2 or B3 to represent a single byte in a 32bit access
. W - Word (16bits)

. L - long (32bits)

. Q - Quad (64bits)

. T - Triple (128 bits)

To measure the time between a variable changing froma0Oto a 1:

1. Set a breakpoint on the variable to generate trace data, for example:
Break.Set Var. ADDRESS(flags[3]) /Write /TRACEDATA
2. Set ITM.ON
3. Set ITM.DataTrace ON
4, Collect trace data
5. Use Trace.STATistic.DURation /FilterA Data.B 0x00 /FilterB Data.B 0x01 to show the results
= | B:Trace STATistic.DURation /FilterA Data.B 0x00 /FilterB Data.B 0x01 = =R
B setup... | |yl Chart 21 Zoom = Zoom [&] Full
samples: 27982. avr: 60.424us min: 60.200us max: 60.540us
total: 1.778s 1in: 1.691s out: 86.854ms ratio: 95.114%
up to |count ratio 1% 2% 5% 10% 20% 50% 100 |
< 60.150us 0. | 0.000%
60. 200us 32. | 0.114% [«
60. 250us 169. | 0.603% |¢
60. 300us 1335. | 4.770%
60. 350us 3059. | 10.932%
60. 400us 4223. | 15.091%
60. 450us 8863. | 31.673%
60. 500us 6465. | 23.104%
60. 550us 3836. | 13.708%
60. 600us 0. | 0.000%
60. 650us 0. | 0.000%
60.700us 0. | 0.000%
60.750us 0. | 0.000%
60. 800us 0. | 0.000%
60. 850us 0. | 0.000%
60. 900us 0. | 0.000%
60. 950us 0. | 0.000%
> 0. | 0.000%

©1989-2024 Lauterbach Training Cortex-M Tracing | 38

Distance Trace Records

This allows the user to time between two arbitrary points in the application code. This is done by using the
[Filter options to the <trace>.STATistic.DIStance command.

For example, if it is required to measure the distance between a call to func2 () and the subsequent call to
func5():

Trace.STATistic.DIStance /Filter Address func?2 /Filter Address funcb

= | Butrace.stat.distance /Filter Address func2 /Filter Address func5 EI@
B setup... | |yl Chart 1 Zoom I Zoom &l Full
samples: 16687. avr: 63.519%s min: 63.300us max: 63.700us
total: 1.061s 1in: 1.060s out: 579.080us ratio: 99.945%
up to |count ratio 1% 2% 5% 10% 20% 50% 100 |

< 63.250us 0. 0.000%

63.300us 41. 0.245% |+

63.350us 195. 1.168% |mm

63.400us 931. 5.579%

63.450us 1142. 6.843%

63. 500us 3603. | 21.591%

63.550us 5064. | 30.346%

63. 600us 3014. | 18.061%

63.650us 1728. | 10.355%

63.700us 965. 5.782%

63.750us 4. 0.023% |+

63. 800us 0. 0.000%

63. 850us 0. 0.000%

63.900us 0. 0.000%

63.950us 0. 0.000%

64.000us 0. 0.000%

64.050us 0. 0.000%
> 0. 0.000%

Filtering can also be performed using data values. Use the Data.<x> filter options instead of Address. For
example, to filter on a variable containing the value 0x63f4 and the next time it contains the value 0x6520
use the command:

Trace.STATistic.DIStance /Filter Data.W 0x63F4 /Filter Data.W 0x6520

| Butracestat.distance /Filter Data.W 0x63f4 /Filter Data.W 0x6520 = =R
B setup... | |yl Chart 1 Zoom I Zoom &l Full
samples: 37. avr: 30.997ms min: 1.270ms max: 62.121ms
total: 1.234s in: 1.147s out: B87.432ms ratio: 92.916%
up to |count ratio 1% 2% 5% 10% 20% 50% 100 |
< 0.000us 0. 0.000%
5.000ms 15. | 40.540%
10.000ms 4. | 10.810%
15.000ms 0. 0.000%
20.000ms 0. 0.000%
25.000ms 0. 0.000%
30.000ms 0. 0.000%
35.000ms 0. 0.000%
40.000ms 0. 0.000%
45.000ms 0. 0.000%
50.000ms 0. 0.000%
55.000ms 0. 0.000%
60. 000ms 9. | 24.324%
65.000ms 9. | 24.324%
70.000ms 0. 0.000%
75.000ms 0. 0.000%
80. 000ms 0. 0.000%
> 0. 0.000%

©1989-2024 Lauterbach Training Cortex-M Tracing | 39

Trace and Groups

Trace data can be assigned to logical groups to aid analysis and filtering. Groups can be created with the
GROUP.Create command and viewed with GROUP.List. For an overview of the GROUP functionality, refer
to the GROUP command group.

Groups can be created around:

J Address Ranges
. Functions

J Modules

J Symbols

. Tasks

Grouping only affects the display of captured trace data, not the data itself.

When a group is created, TRACE32 automatically creates a base group called “other”. This contains
everything that is not a part of any defined group.

Grouping code into logical function blocks makes it easier to reduce the amount of trace data that users
need to analyze and allows them to focus on the regions or interactions of interest.

©1989-2024 Lauterbach Training Cortex-M Tracing | 40

Grouping by Modules

More than one item can be part of a group. In this example two object files will be allocated to a single group.
Both sets of code are involved with the motor control functions of the target so it makes sense to group them

logically like this.

GROUP.CreateTASK “Motor_Tasks” “\app_motor” “\app_rpm” /RED

GROUP.Create without any arguments will open the creation dialog. The image below shows it filled in to
create the same group as the command above. Clicking the blue i’ button will open a module browser

window from which the user can select multiple modules.

fii B:GROUP.Create

name

- O

*

| Motor_Tasks

addressrange(s)

| \app_motor \app_rpm

options

[Enable [Hide

Set

[Omerge

Delete

RED

Cancel

GROUP.List now shows the new group and the default “other” group.

111 B:GROUP.List

(o] 8)

X Reset || O Disable All| @ Enable All| O Hide All | @ Show All| 52 Store... | 52 Load... | fif Create...| fif CefeTak.
group enable |hide |merge |color i
= "Motor_Tasks" W RED
\app_motor W RED
app_rpm W RED
"other" W

In the GROUP.List window, check the hide column for group “other”. Alternatively, use the command:

GROUP.HIDE “other”
111 B::Group.List EI@
K Reset | O Disable All| @ Enable All| O Hide All | @ Show All | E2 Store... | 52 Load... | fif Create...| jifCatTa.
group enable |hide |merge |color i
= "Motor_Tasks" W RED
\app_motor W RED
app_rpm W RED
"other" W W

©1989-2024 Lauterbach

Training Cortex-M Tracing

41

Now the trace view windows will suppress the display of anything that is marked as hidden.

i Bi:Trace.Chart.s¥mbol

(o8)

3 Goto...
-4, 000s

B setup... || {iiGroups... | 38 Config... | (3 Goto...
-5.000s
address i

(other) i

"other" (B

tMotor | Ky

SetStepl iy

AdjustPulsel [

FFind...

4 In
-3.000s

M4 Out | [Full

-2.000s -1.000s 0.

With the “other” group hidden, the Trace.List window looks like this. Different groups are color coded and

the colors can be seen in the bar on the left side of the window. As control passes between groups a line is

added to the trace listing to show this. In the example below 75.459us were taken up processing group

“other” and before that 1.120us were spent processing in group “Motor_Tasks”.

BxTrace List oo s
B setup... | 1 Goto... | #3Find... | feiChart | HProfile | IHMIPS & Mare Y Less
record |run |address cycle |data symbaol ti.back
drh r0,[r0,r8,TsT #0x3] A~
uxth r7,r7
add rl,sp,#0x4
adds rl,rl,r8,1s1 #0x3 v
ldrh rl,[rl,#0x2] 2
subs rl,r7,rl
add r2,sp,#0x4
adds r2,r2,r8,1s1 #0x3
Tdr r2,[r2,#0x4]
mla rl,r2,rl,r0
-0023457549 T:08006E1A ptrace ..DDC2016% app_motortMotor+0x15A 0.000us
ldr r0,0x8007018
b bl 0x800721cC
group "other" 1.120us
group "Motor_Tasks" 75.46%us
Lhb 0x8006D1E
78 while(DEF_TRUE)
80 msg = 0SMboxPend (MotorMbox, 0, &err); //wait for ever for a messag
add r2,sp,#0x0
movs rl,#0x0
ldr r0,0x8007008
Tdr r0, [ro]
b bl 0xB8007082 v
< >

©1989-2024 Lauterbach

Training Cortex-M Tracing

42

Grouping by Address Range

This example creates two groups: one for the application code and another for the kernel code. Multiple

entries can be added to the addressrange(s) field, as shown in the “Application” example below. Whereas,

the “kernel” entry only covers a single range.

iii B:GROUP.Create - O X iii Bugroup.create O *

name name

|App|icati0n | | Kernel |
addressrange(s) addressrange(s)

[0x08006CC0-0x08007005 0x08008118—-0x0800848D V| [& | 0x08002B40--0x08003A5F V| [&

options options

[Enable [THide [IMerge BLUE v [Enable [THide [IMerge RED v

Set Delete Cancel Set Delete Cancel

The groups can be listed using the GROUP.List command:

iii B:GROUP List = =R
X Reset || O Disable All| @ Enable All| O Hide All | @ Show All| 52 Store... | 52 Load... | fif Create...| fif CefeTak.
qrou enable |hide |merge |color

Ep'l'lcat'l on” W BELUE
\app_motor . " BLUE
(\ apﬁ:\ma'l n)--(iPALDOISRY12+0x1) W BLUE
= "Kernel" . W RED
(0SEventNameSet)—-(770STmr_Ta W RED
"other" W

The “other” group is clearly visible here. The source view (List) windows now have an added color bar to

show which group the code being viewed belongs to.

=1 [BuList tRPM] EI@
M Step ® Over | JAyDiverge | « Return ¢ up b Go Il Break | !%Mode & t.
addr/1line |source
45 it (demoTrace == 2 || demoTrace ==
46 ™ pr"lr1t1c "RPM: New Clock ua'lue c‘601",0,”“ clk);
47 else it (demoTrace == 1)
48 ITM_TRACE_D16(2,cur_clk);
50 if (err == OS_NO_ERR)
53 'i'F (old_cTk > cur_clk) Counter has wrapped
55 cur_ticks = (0 - old_cTk} + cur_clk;
Y/ /A
e'Ise
59 cur_ticks = cur_clk - old_clk;
1/ /else
62 if (cur_ticks > 0) Can't divide by zero so catch it v
< >

©1989-2024 Lauterbach

Training Cortex-M Tracing

43

A trace listing window will show also show the groups color coded and will indicate where control passes

from one group to another.

7 BuTrace.List EI@
B setup... | 1 Goto... | #3Find... | feiChart | HProfile | IHMIPS & Mare Y Less
record |run |address cycle |data symbaol ti.back
94 MSR PRIMASK, RO A
msr primask,r0
95 BX LR
bx ri4 v
-0004219106 | _T:08002C8A ptrace ..DDC2016%os_corel0SIntExit+0x92 0.040us »
675 I y
pop {r4,pc}
-0004219102 | T:080036B4 ptrace u_ch05_CPU_SysTickHandler+0x20 0.120us
338 ¥
I pop {r4,pc}
-0004219097 | T:080058F8 ptrace drv_spil\5SPI1_TranserByte+0xC8 0. 600us
group "other"
r '/ Set Data)
265 if (_Mask & _Data)
tst r2,rl
> beq 0x8005904
é]se
271 " SPI1_MOSI_L()
ldr r5,0x80059
movs r6,#0x80
str _r6,[r5]
i b4
= >

One or more groups can be removed from the trace display windows by clicking the “hide” column in the

GROUP.List window or by using the

command GROUP.HIDE <name>.

iii B:GROUP List = =R
X Reset || O Disable All| @ Enable All| O Hide All | @ Show All| 52 Store... | 52 Load... | fif Create...| fif CefeTak.
group enable |hide |merge |color
[=] ”AEp11cat1on” W BELUE
\app_motor Y BLUE
(\apq\main)——(iPAlOISR\12+Oxl) W BLUE
= "Kernel" W RED
(0SEventNameSet)—-(770STmr_Ta W RED
"other" W W
The “other” group is now suppressed from display.
}| BuTrace.List EI@
B setup...|| 1 Goto... | FyFind... | el Chart | EProfile | I MIPS & Mare Y Less
record |run |address cycle |data symbaol ti.back
113 CPSID I A
cpsid 1
114 BX LR
4 bx ri4 v
0001336034 | T:080059E6 ptrace Bhdrv_spiliAtomicExchange+0x0A 0.160us »
group "other" 0.020us
group "Kernel" 0.120us
CPU_SR_Restore ; See Note #2.
118 MSR PRIMASK, RO
msr primask,r0
119 BX LR
4 bx ri4
0001336032 | T:080059F4 ptrace Bhdrv_spiliAtomicExchange+0x18 0.280us
group "other" 0.160us
group "Kernel" 3. 385us
CP|.|_C|i:_:C;‘\L_EX:_Z::Z: * CPU_SR_Re
v
1< >

©1989-2024 Lauterbach

Training Cortex-M Tracing

44

Timing

A very detailed set of analyses can be performed using the PERF commands (“Analyzing the Results”,
page 30) but measuring time from a significant event or between two points can be performed using the
timing columns in the Trace.List window.

The default Trace.List window includes the TIme.Back column. This is the time taken from the last trace
entry to this one. Additional timing columns can be added to any trace listing window, for example:

B:Trace.List TIME.BACK TIME.ZERO DEFAULT [s

record [ti.back

B setup... | 1 Goto... | #3Find... | feiChart | HProfile | IHMIPS + Mare Y Less

298 0.044us

304 0.044us
305 0.220us

310 0.176us

863 0.070us

ti.zero run |address cycle |data symbaol
= -
: 1) Interrupts or 1ot be ENABLED during thi
x v
#if (0S_CPU_HOOKS_EN > 0) && (OS_TIME_TICK_HOOK_EN > 0) A
void 0STimeTickHook (void)
4.647ks .
#if OS_APP_HOOKS_EN > 0
App_TimeTickHook () ;
#endif
#if OS_TMR_EN > 0
4.647ks OSTmrCtr++;)
4.647ks j‘F (0STmrCtr >= (OS_TICKS_PER_SEC / OS_TMR_CFG_TICKS_PER_SEC)
?erd%f
4.647ks b
#endif
#if OS_TIME_GET_SET_EN > 0

4.647ks 0S_ENTER_CRITICAL(); = Upd

The most commonly used timing options are listed in the table below. Other, less common, options are
described in the documentation for Trace.List.

TIme.Back
TIme.Fore
Time.REF

Time.Zero

Time.Trigger

The time elapsed since the last entry.
The time elapsed from this entry until the next entry.
The time elapsed since a user-defined reference point.

The time elapsed since the debug session started or a user-defined Zero
point.

The time elapsed since the trace trigger event.

Also, bear in mind that some times can be negative as the item may have occurred before the timing point.

©1989-2024 Lauterbach

Training Cortex-M Tracing | 45

Some marker points can be user-defined or moved by the user. To do this, right-click in any windows that

shows a view of the captured trace data and select the appropriate marker from the pop-up menu.

05TaskSwHook [y

05SemPend [y

TADC 43
DC_SoftwareStartConvCmd [y
ADC_GetFlagstatus iy

4 First in Statistic

) BuTrace.Chart.s¥mbol EI@
J2 Setup... || fif Groups... | 38 Config... | (¥ Goto... | (3 Goto... | #3Find... | «In |»0«Out | & Full
-3.529260000s -3.529250000s -3.529240000s
address i | | ! i
(other) k¥ e L o o A
ATIMAISRAY 1 | n o
0SSemPostiyl HER | | 1 L o
OS_CPU_SR_Savel[I B | I . i
05_EventTaskRdy | N e - S|
05_EventTaskRemovefy| | AN
OS_CPU_SR_Restﬁrso_I 1 R b Set Ref P N Bl B
05_Schedqy 11 .
05_schedNewly| 2y Set Zero _Imi
0SCEXSwhy| [l Teggle Bookmark D
TIM_ClearITPendingBitiy| a4 Set CTS IR
05_CPU_PendsvHandTer | L
PU_PendSVHandler_nosave iy |1

The two images below show how setting the Tl.Zero marker in the Trace.Chart window will affect the timing

in the Trace.List window.

>

B setup...| 1 Goto... | F3Find...

| Chart

B Profile

record [ti.back

ti.zero run |address

Y less
symbaol

* More
data

H MIPS
cycle

05_CPU_SR_5ave

89 0.020us
90 0.020us
91 0.020us
0.030us

0.097us

0.152us
0.172us
0.192us BX
0.222us

0.31%us

* Note

MRS
CP5SID

(void)0S_EventTaskRdy(pevent, pmsg,

* Returns

RO, PRIMASK
I
LR

if (pevent-=0SEventGrp != 0) {

. none

: This function is INTERNAL to uC/05-II

ee
e

M
o

ad

OS_STAT_MBOX, 0OS_

and your ¥
>

e Bi:Trace.Chart.s¥mbol

(o8)

2 Setup... || fifGroups... | 28 Config..

address i

.| 1} Goto...
00000s

3 Goto.

=25

$3Find... | <D In | »04Out | EXFull
326580000s

-2.326560000s

(other) &¥

05_TaskIdleqy
05_CPU_SR_Restorely
FTIM4 ISR

055emPost i
05_CPU_SR_Savely
05_EventTaskRdy iy
05_EventTaskRemove iy
05_SchedHy
05_SchedNewHH

OSCEXSw i
TIM_ClearITPendingBit M
05_CPU_PendsSvHand]er i
PU_PendSvHand]er_nosave iy
05TaskSwHook Wy
055emPend {H

After setting the Zero point in the Chart window, the values in the Tl.Zero column in the List window change
to show the timings relative to the new Zero point.

©1989-2024 Lauterbach

Training Cortex-M Tracing

46

Different markers are shown in different colors.

Green Zero marker
Red User-defined REF marker
Yellow User-defined bookmarks.

All three can be seen in the picture below.

e Bi:Trace.Chart.s¥mbol EI@

J2Setup...| iifGroups... | 3a Config... | (3 Goto... | (3 Goto... | F4Find... | O In | »0«Out | EH Full
-2.3265750

address i | |

(other) 1]] .) ~

05_TaskIdleqy _ _ _ _

05_CPU_SR_Restorely _ _ _ ‘m

FTIM4 ISR

055emPost i))))

05_CPU_SR_Saveliy i _ _ onm

05_EventTaskRdy iy | I . _

05_EventTaskRemove iy |)] _

05_SchedHy ;)) mnm

05_SchedNewHH

OSCEXSw i

TIM_ClearITPendingBit M

05_CPU_PendsSvHand]er i

PU_PendSvHand]er_nosave iy

05TaskSwHook Wy | _ _ _

055emPend {H | _ _ _ v

A blue line represents a user placed cursor and is used for tracking between trace view windows.

Left-clicking anywhere in the Trace.Chart window will create a pop-up which shows the timing information:

e Bi:Trace.Chart.s¥mbol EI@
J2Setup...| iifGroups... | 3a Config... | (3 Goto... | (3 Goto... | F4Find... | O In | »0«Out | EH Full
-2.3265750
address iy | |
(other) ¥]]]] =
05_TaskIdleqy _ _ _ _
05_CPU_SR_Restorely _ _ _ ‘m
FTIM4 ISR
055emPost i)
05_CPU_SR_Savely 1
05_EventTaskRdy iy
05_EventTaskRemove iy
05_SchedHy
05_SchedNewHH
OSCEXSw i

TIM_ClearITPendingBit M
05_CPU_PendsSvHand]er i
PU_PendSvHand]er_nosave iy

05TaskSwHook Wy |)))
0SSemPend 4 | _)) v
1 £ > £ >
C-T Current time (selected by cursor) to Trigger point.
C-R Current time (selected by cursor) to REF marker.
C-Z Current time (selected by cursor) to Zero point.

©1989-2024 Lauterbach Training Cortex-M Tracing | 47

Trace Based Code Coverage

The manual “Application Note for Trace-Based Code Coverage” (app_code_coverage.pdf) gives a
detailed introduction to the trace-based code coverage. However, the manual does not contain details about
the architecture-specific setups. Here is an overview of the setups for the ETM.

& B:ETM
etm control
O oFF M Trace
®on [JpBGRQ
commands trigger
RESet
@ CLEAR on/off
#® Register
B Trace level
TP
counter

trace
(f:i:le
[mimeSampsTrace

STALL

[PeeudoDetaTrace

TImeMode
External ~
CLOCK

[]

[TimeStamps
TimeSampdOXK

[]

The following settings are recommended:

ETM.Trace ON

ETM.TImeMode External

ITM.OFF

(=N HoR >
resources
AComp: 0.
DComp: 0.
CComp: 0.
2 BalTM =N =R =
itm trace TImeMode SyncPeriod
® oFF [OinterruptTrace External bt l:l
Oon [OprofilingTrace CydePrescaler TracelD
DataTrace 1f1 i
commands ON ~ [Ocydeacarate TracePriority
RESet PCSampler CLOCK 2.
@ CLEAR OFF v
#® Register TimeStampMode
S ITMTrace 1/8192 ~
TP [TimeStamps
£ List TimeSampdOXK
©anc []

; Enable program flow trace

; Enable tool timestamp

; Switch the ITM off

©1989-2024 Lauterbach

Training Cortex-M Tracing | 48

Trace Based Debugging

Once a set of trace data has been captured it is possible to walk through the history of the recording, often
filling in missing details. The Context Tracking System (CTS) is used to perform these functions. CTS is
accessed from the Trace menu or via the command CTS.state.

a Bu:CTS.state EI@
state progress options
® OFF M usesmm
Oon Cusevm
warnings [JuseConst
commands [Jusememary
RESet fifofulls [JuseRregister
@ Init UseCACHE
TAKEOVER [“UseReadCyde
6% PROCESS Mode [useWriteCyde
&R List ® Full [SmartTrace
B Trace O Memary [(JsELectiveTrace
8 CACHE O CACHE [MCremental

More information about trace based debugging can be found here: “Trace-based Debugging” in General
Commands Reference Guide C, page 163 (general_ref_c.pdf).

Once the mode is set to ON (via the GUI or the command CTS.ON), the CTS system analyses the recorded
trace in more detail, often filling in missing data accesses and areas where FIFO overflows occurred. This
may take a few minutes depending upon the size of the captured trace and the speed of the host PC and
available RAM. It will look something like this:

L L N U D
a Bu:CTS.state EI@ k += primz;
state progress options i
OoFF | M usesmm
®on shown: 1.615% | | [JUsevM
warnings [JuseConst
commands [Jusememary
RESet fifofulls [JuseRregister
L @ Init UseCACHE
TAKEOVER [“UseReadCyde 0000t
6% PROCESS Mode [useWriteCyde 0000
&R List ® Full [SmartTrace
B Trace O Memary [(JsELectiveTrace LEEE
8 CACHE O CACHE [MCremental 0000t
B::
components trace Data Var List FPERF SYStem Step Go Bre
UT:1FFFF968 \\rtosdemo_pic_thumb_ii_v7Zm\midi\sieve+0x4C (CTS) [0x200015C0 CTS (0.) busy

©1989-2024 Lauterbach Training Cortex-M Tracing | 49

When CTS is active, the TRACES2 status bar and control icons in the List window change color to yellow.

New buttons appear in the List window tool bar, allowing the user to step forwards or backwards through the
code and to run back to a function entry point. Compare the two images below.

4 Balist o -E- s
M Step W Over || JMADiverge ¢ Return ¢ up » Go Il Break | % Mode Find: sieve.c
addr/1ine |source |

® 389 for (v9 =0 ; v9 < 3 ; v9++) ~

4 Balist o -E- s
Step Over || ! Diverge Return Up Step|| - Over| - Entry| | Off Y% &2f| t. "3 | Find: sieve.c
addr/1ine |source |

704 vshortrecord = func28(vshortrecord); ~

Stepping backwards or forwards through the code shown in the List window will cause any register, memory

or variable display windows to be updated to show the re-constructed values as they would have been at

that point in history.

The right-click menu also has new options added to allow users to go forwards or backwards to a point or

run forwards or backwards to an access on a variable.

=} [BuList] =} [BuList]
Step Over || w: Diverge Return Up Step Over Entry Off |19 Step Over || e Diverge Return
addr/1ine |source addr/1ine |source
738 count = 0;
@ 740 for (i =0 ; i <= sIZE ; flags[i4
@ 740 for (i =0 ;
S -
743 Brogram Address ags[11) 1 742 or (i =10; 1
744 Go Back Till prime = i + i + 3; 743 i (R
745 Go Till k =1 + prime; 744 prime
® 746 while (k <= SIZE) { 745 k 16
747) flags[k] = ® 746 whildg
748 @ Breakpoints T THES 747 i
ios| Display Memory 1 748 I
750 P Bookmark... count++; 1 !
M Toggle Bookmark 750) count g

©1989-2024 Lauterbach

Training Cortex-M Tracing

50

Clicking the List button in the CTS.state window opens the CTS.List window. This shows a nested view of
the code. Where possible, arguments and return values have been reconstructed using the current state of
the target and the captured trace data. Timing for each node is represented in the ti.back column. Each node
can be opened or closed to show more detail. Where a piece of data cannot be reconstructed a series of
?7? will appear in all windows that show CTS data.

& B:CTSList [o][&S]
2 setup...| Z4cTS... | A Goto... | #3Find... | =|TREE | rfChart | % Chart | % More | X Less
record ti.back i
a =777 ~
c =777
e = 777
return = 11266 v
-0062822147 funcl3+0x56 av—— 0.402us »
return = 777
-0062822145 funcl3+0x56 awv—— 1.039%s
return = 777
-0062822143 funcl3+0x56 awv—— 1.719us
return = 777
-0062822140 funcl3+0x56 awv—— 2.532us
-0062822139 sieve midi.c 184——a w—— 7.367us
-0062822090 51 eve+0x5C awv—— 7.367us
—— group "RTOS"
-0062822090 l:xTaskGetT'i ckCount freertositasks.c ‘1761 av—— 0.112us
-0062822086 xTaskGetTickCount+0xE av—— 0.112us
— group "other" 0.112us
-0062822083 =] func2 midi.c ‘45——a w—— 2.201lus
-0062822082 funcl midi.c ‘\l——awv—— 0.222us
|:'i_ntptr = 0x00010101
-0062822079 funcl+0x1A avwv—— 0.222us
-0062822079 funcl midi.c “\l——aw—— 0.231lus
|:'i_ntptr = 0x00010101
-0062822076 funcl+0x1A awv—— (0.231us
-0062822069 funcl midi.c “\1l——aw—— 0.107us
|:'i_ntptr = 0x00010101
-0062822065 funcl+0x1A av—— (0.107us v

©1989-2024 Lauterbach Training Cortex-M Tracing | 51

In any trace display window, the right-click menu has a Set CTS option. Selecting this will cause the current
state to jump to that point in history with as much of the context reconstructed as possible. This allows the

use of high level tools such as chart windows to locate an issue and then zoom in to see in detail what

occurred at that time.

i Bi:Trace.Chart.s¥mbol

(o] 8)

address i

0000s

2 setup... | if Goups...| 38 @nfig... (A Goto... (3 Goto...| #3Find... < In

Uil

B0 Full

-8.019980000s

vTaskSetTimeQutState] ¥
xTaskCheckFor TimeOut || iy

\.-'Ta\skli’ﬁJ

rvIsQueueEmpty
aceOnEventList
vListInsert
prvUnlockQueue
SieveDemo
func_sin
int_sin

xTaskGetTickCount]
.F

unc2
funcl
func?

M
M
M
M
M
M

funcl3 Gy

sieve ¥
xPortSysTickHand]er | &M
xTaskIncrementTick | ¥
xQueueGenericSend|| ¥
prvCopyDataToQueue] 4y
memcpy ¥
askRemoveFromEventList | &M

T []
Trace

R+ Set Ref
z+ Set Zero
[] Toggle Bookmark

Ll

4 First in Statistic
< | & Lastin Statistic

A Lol Chmbickin

£ [= &= @ (===
Step|| i Over || ! Diege| .. Retum Up hr = e N RO 0 R8 L 29 _S| _stack
addr/line |source | 7L R9 FFFFD
- RZ sl R10
143 £ e al R3 R1L
unc_sin(); o R4 R1Z
b R5 R13
.._‘_.h'l'le.__TRUE__. 0 _ Rr6 R4 LEEEESOQ
147 nCurrentTick = xTaskGetTick J_;' - R EE‘P 1FFFF808
. - - 3 CONTROL MsP
149 it (monHook) il z
150 monHook () ; — PAULTH 0 PSP 30
151 if (watchdogTrigger)
152 watchdogTrigger ();
154 mstaticl = 12;
155 mstatic2 = 34; I
156 mcount++; e =EnEE
158 vtriplearray[0][0][0] = 1; SieveDemo(
159 vtriplearray[1][0][0] = 2; pvParameters = 0x00010101)
160 vtriplearray[0][1][0] = 3; = nLastTickFast = 65793
161 vtriplearray[0][0][1] = 4; - nLastTickSlow = 65793
163 func2();
165 func9();
v
1< >

Once CTS is active, all trace analysis features will work with the reconstructed data. This is often better than
the captured data as any gaps may be filled in but will be no worse.

©1989-2024 Lauterbach

Training Cortex-M Tracing

52

Off-line Analysis

A set of trace data can be saved for later, off-line analysis. To save the trace data, use Trace.SAVE <file>. In
most cases only the /ZIP option is useful. Saved trace data files have the extension “.ad”.

Trace files can be re-load with Trace.Load <file>.

Normal trace analysis features work exactly as if they were using a recently captured “live” trace. The only
difference is that the trace display windows now contain a red “LOAD” mnemonic. These can be seen in the

image below.
i BuTrace.List EI@
B Setup... | 1 Goto... | FiFind... | o Chart | B Profile | B MIPS & Mare Y Less
record |run |address cycle |data symbaol i
"~
60 for (regvar = 0; regvar < 5 ; regvar++)
adds r4,#0x1
cmp r4,#0x4 v
A ble Ox1FFFF5CA ~
61 r mstaticl += regvar*autovar;
Tdr r3,[r7,#0x4]
muT r2,r3,r4
-00000026 T:1FFFF5D0 ptrace c_thumb_ii_v7m\midi®
ldr r3,0x1FFFF620
add r3,r3,pc
Tdr r3, [rEH
add r3,r3,r2
ldr r2,0x1FFFF624
dd r2,r2,pc
[TaTaYaTa Vot Yo BRE T:1FFFFsDA —7M8M8M8M — ”:_—_.-_.--_-,_-i-i__.‘.-- midih
< >

A more detailed analysis may often be achieved if the contents of the RAM are saved along with the CPU
registers at the point where the trace had finished being captured. This can be done like this:

Data.SAVE.Binary <file> <address_range>
STOre <file> Register

TRACE32 software can also be installed or configured as an instruction set simulator. In this way the saved
trace can be analyzed off-line.

To analyze saved trace data:
1. Start TRACES2 in simulator mode, set the CPU type and system mode to UP.
- SYStem.CPU
- SYStem.Up
2. Load the saved RAM contents.
- Data.LOAD.Binary <file> <address>
3. Load the saved CPU registers
- DO <save_reg_file>
4. Load application symbols
- Data.LOAD.EIf <symbol_file> /INoCODE

5. Load the saved trace file

©1989-2024 Lauterbach Training Cortex-M Tracing | 53

- Trace.Load <file>.ad

©1989-2024 Lauterbach Training Cortex-M Tracing | 54

Data Watchpoint and Trace Unit

J The DWT provides some useful additions to the basic program flow trace, although not all will be
covered here as we will focus only on those features that provide a trace like output.

J PC Sampler

J Data Trace capability

. Interrupt Trace

. ETM Trigger

The block diagram below shows how the DWT is organized to inject trace packets into the ITM stream for

eventual spooling to the TPIU and then to the trace port (ETM or SWV). However, if the TPIU is configured
for SWV then it will not transmit ETM packets; only the ITM packets will be transmitted.

[Software Trace]

To external Trace
ITM capture tools

I
DWT — l TPIU \

Timestamp
Generator

Trace Packets
From ETM

Each trace source is given a unique 7-bit Trace ID (ATID) so that the streams can be separated by the debug
tools.

For details on time stamping please refer to “Time Stamping”, page 72.

©1989-2024 Lauterbach Training Cortex-M Tracing | 55

PC Sampler

This feature is not a true program flow trace in the way that MTB or ETM will allow full capture of program

flow. The PC Sampler will periodically sample the Program Counter and emit the address as a trace packet
to the ITM. The sampled PC is emitted via the ITM which makes this technique ideal for systems which only

support the ITM or Serial Wire Viewer for trace as it can provide some data about program flow. The

program flow may not be 100% accurate; items that can complete in less than the selected number of cycles
to sample may not show in the data at all. The PC can be sampled every 64, 128, 256, 512, 1024, 2048,

4096, 8192, 16384 or 32768 clock cycles.

This feature is configured in the ITM.state window. There is no separate DWT configuration window as the

trace events from the DWT require the ITM block to also be present on the device or they cannot be emitted.
Since the two are so tightly linked, the ITM.state window allows the user to configure both the ITM and DWT
blocks of the Cortex-M device.

& Bu:ITM.state EI@
itm trace TImeMode SyncPeriod
® oFF [OinterruptTrace External bt l:l
Oon [OprofilingTrace CydePrescaler TracelD
DataTrace 1f1 i
commands ON ~ [Ocydeacarate TracePriority
RESet PCSampler CLOCK 2.
@ CLEAR OFF ~ 72.0MHz
#® Register TimeStampMode
1/64
2 ITMTrace 1128 /8192 ~
& TP 1/256 (I TimeStamps
4 List 1/512 TineSamp.OkK
1/1024
@ BMC 1/2048 []
1/4096
1/8192
1/16384
1/32768

Set the frequency of the PCSampler (via the GUI or the ITM.PCSampler command) and enter the value of
the CPU clock to enable timing of the data.

Run the target to generate and sample the data then use the command Trace.List to show the results.

:Trace.List EI@
ﬁsatup... M Goto... | #3Find... | yichart | EProfile M MIPS & More X Less

record run |address cycle data symbol ti.back
-01079821 T:08003298 fetch \\DDC2016N\os_core\05_TaskIdle+0x18 7.100us ~
-01079816 T:080035EC fetch \\DDC2016\os_cpu_ch\osTaskIdleHook 7.120us
-01079810 T:08003544 fetch \\DDC2016\Global\0S_CPU_SR_save+0x4 7.120us v
-01079805 T:08003292 fetch \\DDC2016N\os_core\05_TaskIdle+0x12 7.100us o
-01079799 T:0800329C fetch \\DDC2016N\os_core\0os_TaskIdle+0x1C 7.120us
-01079793 T:08003286 fetch \A\DDC2016N\os_core\os_TaskIdle+0x6 7 .100us
-01079788 T:08003290 fetch \\DDC2016N\os_core\05_TaskIdle+0x10 7.120us
-01079783 T:0800354C fetch \\DDC2016\Global\0S_CPU_SR_Restore+0x4 7.100us
-01079775 T:080032A0 fetch \A\DDC2016\os_core\os_TaskIdle+0x20 7.120us
-01079770 T:0800328C fetch \\DDC2016N\os_core\05_TaskIdle+0x0C 7.100us
-01079765 T:0800354C fetch \\DDC2016\Global\0S_CPU_SR_Restore+0x4 7.120us
-01079759 T:080032A0 fetch \A\DDC2016\os_core\os_TaskIdle+0x20 7.120us
-01079754 T:0800328A fetch \\DDC2016N\os_core\05_TaskIdle+0x0A 7.100us
-01079749 T:08003298 fetch \\DDC2016N\os_core\0os_TaskIdle+0x18 7.120us
-01079743 T:080035eC fetch \A\DDC2016\os_cpu_c\0sTaskIdleHook 7 .100us
-01079738 T:08003544 fetch \\DDC2016\Global\0S_CPU_SR_Save+0x4 7.120us
-01079733 T:08003292 fetch \\DDC2016N\os_core\0os_TaskIdle+0x12 7.100us
-01079727 T:0800329C fetch \A\DDC2016N\os_core\os_TaskIdle+0x1C 7.120us
-01079722 T:08003286 fetch \\DDC2016N\os_core\0o5S_TaskIdle+0xb 7.100us
-01079715 T:08003292 fetch \\DDC2016N\os_core\0os_TaskIdle+0x12 7.120us
-01079709 T:0800329C fetch \A\DDC2016N\os_core\os_TaskIdle+0x1C 7 .100us
-01079704 T:080032A0 fetch \\DDC2016N\os_core\05_TaskIdle+0x20 7.120us
-01079699 T:0800328C fetch \\DDC2016N\os_core\0os_TaskIdle+0x0C 7.100us
-01079693 T:0800354C fetch \A\DDC2016\Global\0S_CPU_SR_Restore+0x4 7.120us
-01079688 T:080032A0 fetch \\DDC2016N\os_core\05_TaskIdle+0x20 7.120us v

©1989-2024 Lauterbach Training Cortex-M Tracing | 56

Clicking the Chart button or using the command Trace.Chart.sYmbol will show the functions against time
and look like this.

i BiTrace.Chart.s¥mbol [=] -EI-E—
.|| iiiGroups... | 5 Config... R Goto... | A Goto... | #iFind... | @I |vlcout |EDFul
-2.000s -1.500s -1.000s -500.000ms 0.0

I I I I =
~

addressﬁﬂ

\DDC 1Olo\ app_adc\ tADCHY
Olo\os cor e\DS SchedNewEE
016\ app_motor\ConfigPwMy|
[\RCC_APB1PeriphResetCmd4y|
l=_core\0S_EventTaskwaitH

Tobal\05. _CPU_SR_Restore 4|
Ic2016\05_core\OSIntExitHy |

| spil\sPIl_chi pDese'I ectHy|
os_cpu_c\0STimeTickHook 4y|
[L0x_gpi o\,GPID_Res etBits
_acdc\ADC_GetFlagStatus 4y
DC2016%0s_=em\0SSemPost 4y
DC2016% 05 _=em’\ 0SSemPend 4y
PU_PendsvHandler_nosave 4
Ic2016\os_tmr\OSTmr_LockHy

NDDC2016\G1obaTl\OSCtXSWHH|

©1989-2024 Lauterbach Training Cortex-M Tracing | 57

Data Trace

One of the features of the DWT is to be able to inject data trace events into the ITM for inclusion into the
trace stream. The data events are configured using the TRACES32 breakpoint interface. More information

can be found here: “On-chip Breakpoints”, page 84.

Set the ITM.DataTrace mode.

& Bu:ITM.state
itm
® OFF
Oon

commands
RESet
@ CLEAR
#® Register
&ITMTrace

TP

£ List

(=N HoR >

trace TImeMode SyncPeriod
[interruptTrace External v l:l
[OprofilingTrace CydePrescaler TracelD
DataTrace 1f1 i

[Ocydeacarate TracePriority

- cLock 2.

72.0MHz

TimeStampMode

1/8192 i
CorrelatedData LI TimeStamps

TimeSampdOXK

]

Several modes are supported:

OFF

No Data Trace information will be generated.

Address

Data

ON

DataPC

OnlyPC

CorrelatedData

If the data address matches a DWT comparator, address information
about the data access will be emitted as a trace packet.

If the data address matches a DWT comparator, the data value will be
emitted as a trace packet.

If the data address matches a DWT comparator, address and data
information about the data access will be emitted as a trace packet.

If the data address matches a DWT comparator, address and data
information about the data access will be emitted along with the address
of the instruction that issued the data access.

If the data address matches a DWT comparator, address of the instruction
that performed the data access will be emitted.

Produces the same information as DataPC but the streams (ETM & ITM)
are merged in TRACE32.

©1989-2024 Lauterbach

Training Cortex-M Tracing | 58

To generate data trace, set a TraceData breakpoint on the value to be traced.

| &
address [expression
[ApC_val v [&]0n
type options implementation
O Program [Jexclude [Temporary auto v
O ReadWrite [InoMARK [Jpisable action
O Read [p1sableHIT TraceData
@® write DATA
O default l:l ~ ¥ advanced
Add Delete Cancel

Use: Break.Set ADC_Val /Write /TraceData

Run target to collect data. Show results:

7 BuTrace. List EI@
B setup...|| 1 Goto... | FyFind... | el Chart | EProfile | I MIPS & Mare Y Less

record |run |address cycle |data symbaol ti.back i
0000000264 D:20002600 wr-Tong OO0D00FFF %\\DDC2016%Global\ADC_Vval 25.486ms A
0000000235 D:20002600 wr-long 00000EQ4 \\DDC2016%Global‘ADC_val 407.773ms
0000000228 D:20002600 wr-long 00000C53 “\\DDC2016%Global‘ADC_val 25.486ms
0000000221 D:20002600 wr-long 00000449 “\\DDC2016%Global‘ADC_val 25.486ms ¥
0000000213 D:20002600 wr-long 00000884 \\DDC2016%Global‘ADC_val 25.486ms
0000000206 D:20002600 wr-long 00000712 “\DDC2016%Global‘ADC_val 25.486ms
0000000190 D:20002600 wr-long 000005ES \\DDC2016%Global‘ADC_val 25.485ms
0000000183 D:20002600 wr-long 00000489 \\DDC2016%Global‘ADC_val 25.486ms
0000000176 D:20002600 wr-long 0000035F “\\DDC2016%Global‘ADC_val 25.486ms
0000000168 D:20002600 wr-long 00000241 “\\DDC2016%Global‘ADC_val 25.486ms
0000000161 D:20002600 wr-long 00000218 \\DDC2016%Global‘ADC_val 25.486ms
0000000154 D:20002600 wr-long 000001CO “\\DDC2016%Global‘ADC_val 25.491ms
0000000146 D:20002600 wr-long 0000014E \\DDC2016%Global‘ADC_val 25.481ms
0000000139 D:20002600 wr-long 0000011A \\DDC2016%Global‘ADC_val 25.486ms
0000000132 D:20002600 wr-long 00000102 “\DDC2016%Global‘ADC_val 25.485ms
0000000116 D:20002600 wr-long 000000F0 \\DDC2016%Global‘ADC_val 25.486ms
0000000109 D:20002600 wr-long 000000CF \\DDC2016%Global‘ADC_val 25.486ms
0000000101 D:20002600 wr-long 000000AD “\\DDC2016%Global‘ADC_val 25.486ms
0000000094 D:20002600 wr-long 00000088 \\DDC2016%Global‘ADC_val 25.485ms
0000000087 D:20002600 wr-long 00000078 \\DDC2016%Global‘ADC_val 25.486ms
0000000079 D:20002600 wr-long 00000062 \\DDC2016%Global‘ADC_val 25.486ms
0000000072 D:20002600 wr-long 00000045 “\DDC2016%Global‘\ADC_val 25.486ms
0000000065 D:20002600 wr-long 00000036 \\DDC2016%Global‘ADC_val 25.486ms
0000000057 D:20002600 wr-long 00000011 “\\DDC2016%Global‘ADC_val 25.486ms
0000000042 D:20002600 wr-Tlong 00000000 %\DDC2016%Global‘ADC_val 25.486ms v

The traced data values can be shown as a graph as the change against time. Use the command

Trace.DRAW.Var %DEFault ADC_Val

©1989-2024 Lauterbach

Training Cortex-M Tracing

59

to show this:
¢l BaTMCAnalyzer,DRAW.Var %DEFault ADC_Val =N =R

&sSetup... | (3 Goto... | F3Find... | AdcChart | «PIn | »04Out ERFull| S1n | S out [Ful
00s -5.000s -4.000s -3.000s -2.000s -1.000s 0.0
1 1 1

3500.{ - - -
3000. 4. . .

2500.

2000. 1)
1500.

1000. - - -

To see where in the code a data access came from:
1. Switch ITM.DataTrace DataPC
2. Set the breakpoint to ReadWrite

- Break.Set <var>/ReadWrite /TraceData

3. Run the target to collect the trace samples.

The results can be shown filtered by any kind of access: read, write or any. The command
Trace.STATistic.PsYmbol is used.

To show all accesses: Trace.STATistic.PsYmbol /Filter sYmbol <var>

£ | B/ TMCAnalyzer STATistic.PsYmbol /Filter sYmbol ast []
& setup... | iiiGroups... | IE Config...| M Goto... | =|Detailed| £ |Tree i Chart | I Profile
items: 3. total: 2.698s samples: 10908.
address [total min max avr count ratio¥% 1% 2% 5% 10% 20% 50% 100 |
(other) 1.500us 1.500us 1.500us - 0. <0.001% [+
initLinkedList | 302.06lms | 81.920us | 83.960us | 83.075us 3636. 11.195% I
main 2.396s 9.420us | 650.280us | 329.476us 7272. 88. 804% |

To show only read accesses: Trace.STATistic.PsYmbol /Filter <var> Cycle READ

£ | B:ITMCAnalyzer STATistic.PsYmbol /Filter sYmbol ast Cycle READ: (=N~
& setup... | ifiGroups.. | 35 Config... M Goto... | =|Detailed| =|Tree i Chart | I Profile
items: 2. total: 2.698s samples: 3636.
address total vr count ratio% (1% 2% 5% 10% 20% 50% 100
: - : 0.003% [
main 2.698s | 741.420us | 743.660us | 742.005us 3636. 99.997% |

min max a
(other)J 83.460us | 83.460us | 83.460us

To show only write accesses: Trace.STATistic.PsYmbol /Filter <var> Cycle WRITE

£ | B:ITMCAnalyzer STATistic.PsYmbol /Filter sYmbol ast Cycle WRITE (=N~
& setup... | ifiGroups.. | 35 Config... M Goto... | =|Detailed| =|Tree i Chart | I Profile
items: 3. total: 2.698s samples: 7272.

address total min max avr count ratio% (1% 2% 5% 10% 20% 50% 100
1.500us 1.500us - . <0.001% |«
91.860us | 93.900us | 93.256us 3636. 12.567% |
main 2.359s | ©48.020us | 650.280us | 648.771us 3636. 87.432% |

.. (other 1.500us
initLinkedList | 339.081ms

©1989-2024 Lauterbach Training Cortex-M Tracing | 60

Task/Thread switch Tracing

If your design uses an RTOS, task switches can be traced. If the RTOS is supported by a TRACE32 OS

Awareness you can use the address TASK.CONFIG(magic). If your RTOS is not supported by TRACE32
you can use the address of the variable that holds the currently executing thread ID.

Configure ITM.DataTrace Data and set a breakpoint (Break.Set TASK.CONFIG(magic) /Write
[MraceData) and run the target to collect trace samples.

Rfﬁ B::Break.5et
Start a capture with the selected settings.
— address [expression

| task.config(magic) v|
type options

O Program [Exclude [JTemporary
(O Readwrite [nomark [Jpisable

O Read [JpisableHIT
@® write DATA

Add Delete

- O *
: | Owe O=
method
auto i
action

TraceData

O default l:l ~ ¥ advanced

Cancel

A list of all writes (all task switches) can be seen with ITMTrace.List.

B:TMTrace.List = =R
B setup... | 1 Goto... | #3Find... | feiChart | HProfile | IHMIPS & Mare Y Less
record run |address cycle |data symbaol ti.back i
-0000001831 D:2000265C wr-Tlong 20000C60 “\DDC2016%Global\OSTCBCur 15.460us
-0000001818 D:2000265C wr-long 20000B4C \\DDC2016%Global\WOSTCBCur 25.445ms
-0000001720 D:2000265C wr-long 20000BAS \\DDC2016%Global\OSTCBCur 24.880us
-0000001604 D:2000265C wr-long 20000C60 \\DDC2016%Global\WOSTCBCur 15.680us ¥
-0000001583 D:2000265C wr-long 20000B4C \\DDC2016%Global\WOSTCBCur 25.445ms
-0000001482 D:2000265C wr-long 20000BAS \\DDC2016%Global\OSTCBCur 25.440us
-0000001370 D:2000265C wr-long 20000C60 \\DDC2016%Global\WOSTCBCur 15.560us
-0000001358 D:2000265C wr-long 20000B4C \\DDC2016%Global\WOSTCBCur 25.445ms
-0000001262 D:2000265C wr-long 20000BAS \\DDC2016%Global\OSTCBCur 24.900us
-0000001149 D:2000265C wr-long 20000C60 \\DDC2016%Global\WOSTCBCur 15.440us
-0000001136 D:2000265C wr-long 20000B4C \\DDC2016%Global\WOSTCBCur 25.445ms
-0000001040 D:2000265C wr-long 20000BAS \\DDC2016%Global\OSTCBCur 25.440us
-0000000923 D:2000265C wr-long 20000C60 \\DDC2016%Global\WOSTCBCur 15.220us
-0000000910 D:2000265C wr-long 20000B4C \\DDC2016%Global\WOSTCBCur 25.445ms
-0000000814 D:2000265C wr-long 20000BAS \\DDC2016%Global\OSTCBCur 24.880us
-0000000702 D:2000265C wr-long 20000C60 \\DDC2016%Global\WOSTCBCur 15.340us
-0000000690 D:2000265C wr-long 20000B4C \\DDC2016%Global\WOSTCBCur 25.446ms
-0000000588 D:2000265C wr-long 20000BAS \\DDC2016%Global\OSTCBCur 24.900us
-0000000476 D:2000265C wr-long 20000C60 \\DDC2016%Global\WOSTCBCur 15.660us
-0000000464 D:2000265C wr-long 20000B4C \\DDC2016%Global\WOSTCBCur 25.445ms
-0000000364 D:2000265C wr-long 20000BAS \\DDC2016%Global\OSTCBCur 24.900us
-0000000245 D:2000265C wr-long 20000C60 \\DDC2016%Global\WOSTCBCur 15.560us
-0000000232 D:2000265C wr-long 20000B4C \\DDC2016%Global\WOSTCBCur 25.445ms
-0000000132 D:2000265C wr-long 20000BAS \\DDC2016%Global\OSTCBCur 25.440us
-0000000018 D:2000265C wr-Tlong 20000C60 \\DDC2016%Global\OSTCBCur 15.560us v

The ti.back column shows how long each task or thread was running before it was switched out for a new

one.

©1989-2024 Lauterbach

Training Cortex-M Tracing

61

A more detailed view can be made using: ITMTrace.List List. TASK DEFault

B TMCAnalyzer.List List. TASK DEFault = =R
B setup... | 1 Goto... | #3Find... | feiChart | HProfile | IHMIPS & Mare Y Less
record run |address cycle |data symbaol ti.back i
-0000000923 [D:2000265C wr-Tong 20000C60 “\\DDC2016\GToba T \OSTCBCur 15.220us
--- TASK magic = 20000B4C, name = ADC Reader ---
-0000000910 | D:2000265C wr- Tong 20000B4C \\DDCZOIG\G]oba1\OSTCBCur 25.445ms
--- TASK magic = 20000BAB, name = Motor Ctrl --- v
-0000000814 | D:2000265C wr- Tong ZOOOOBAS \\DDCZOIG\G]oba1\OSTCBCur 24.880us ~
--- TASK magic = 20000C60, name = LCD Disp ---
-0000000702 | D:2000265C wr- 1ong 20000C60 “\DDC2016%Global \OSTCBCur 15.340us
--- TASK magic = 20000B4C, name = ADC Reader ---
-0000000690 | D:2000265C wr- Tong 20000B4C \\DDCZOIG\G]oba1\OSTCBCur 25.446ms
--- TASK magic = 20000BAB, name = Motor Ctrl ---
-0000000588 | D:2000265C wr- long 20000BAB \\DD(ZOIG\G'loba'l\OSTCBCur“ 24.900us
--- TASK magic = 20000C60, name = LCD Disp ---
-0000000476 | D:2000265C wr- 1ong 20000C60 “\DDC2016%Global \OSTCBCur 15.660us
--- TASK magic = 20000B4C, name = ADC Reader ---
-0000000464 | D:2000265C wr- Tong 20000B4C \\DD(ZOIG\G'loba'l\OSTCBCur“ 25.445ms
--- TASK magic = 20000BAB, name = Motor Ctrl ---
-0000000364 | D:2000265C wr- Tong ZOOOOBAS \\DD(ZOIG\G'loba'l\OSTCBCur“ 24.900us
--- TASK magic = 20000C60, name = LCD Disp ---
-0000000245 | D:2000265C wr- 1ong 20000C60 “\DDC2016%Global \OSTCBCur 15.560us
--- TASK magic = 20000B4C, name = ADC Reader ---
-0000000232 | D:2000265C wr- Tong 20000B4C \\DD(ZOIG\G'loba'l\OSTCBCur“ 25.445ms
--- TASK magic = 20000BAB, name = Motor Ctrl ---
-0000000132 | D:2000265C wr- Tong ZOOOOBAS \\DD(ZOIG\G'loba'l\OSTCBCur“ 25.440us
--- TASK magic = 20000C60, name = LCD Disp ---
-0000000018 | D:2000265C wr- 1ong 20000C60 “\DDC2016%G1obal \0OSTCBCur 15.560us +
To view how tasks or threads changed over time, use: Trace.Chart.TASK
¥l BiTrace CHART.TASK = o <
¥ Setup... || if Groups... | 38 Config...| (3 Goto... | (3 Goto... | #4Find... | 40 In | »0+ Out| EH Full
lot}s -5.000s ~4.000s ~3.000s ~2.000s ~1.000s 0.0
rangedn | | | | | | |
(unknoﬁju
ADC Reader X¥ i
LCD DisphkM R IR RN R RTRT R RTOREARTRTERURTERAIRRRATRITANN
uC/0S-II Tmr {¥
uC/05-I1 Statfp
uC/0S-1T Tdleky
Motor Ctrlhy
L4 >

To view run time information for each task, use Trace.STATistic.TASK

F | B:Trace STATistic. TASK =] -E]
B setup... | jif Groups... | 3% Config...| =|Detailed | & Nesting | M chart | EE Frofile
tasks: 7. total: 5.760s
range [total min max avr count ratio¥% 1% 2% 5% 10% 20% 50% 100
Cunknown) 0.000us 0.000us - - 0. 0. 000%
ADC Reader 4.676ms | 17.100us | 35.120us| 20.510us 228. 0.081% |+
LCD Disp 4.058s 547.220us | 25.473ms | 25.048ms 162, 70.443%
uC/0S-II Tmr | 602.15%us | 13.660us | 227. 560us 31.693us 19. 0.010% |+
uC/05-1I1 Stat 7.100us 7.100us 7.100us 7.100us 1. <0.001% |«
uC/05-11 1Idle 1.696s 653.440us 25.475ms 19.952ms 85. 29.441%
Motor Ctrl 1.329ms | 12.880us | 25.340us | 15.631lus 85. 0.023% |+

©1989-2024 Lauterbach Training Cortex-M Tracing | 62

Interrupt Trace

The DWT can be programmed to generate trace events for each interrupt entry and exit point.
Select InterruptTrace from the ITM configuration window or use the command ITM.InterruptTrace ON.

To reduce the likelihood of internal trace FIFO overflows, switch off all other trace sources (ProfilingTrace,
DataTrace and PCSampler). Run the target to sample the trace data. The results can be displayed using the
Trace.List command and look like this.

BulTMTrace.List = =R
B setup... | 1 Goto... | #3Find... | feiChart | HProfile | IHMIPS + Mare Y Less
record |run |address cycle data symbol ti.back

-00005901 eturn) 0.040us
-00005896 T:08007960 -« / \\DDC2016\app_adc\iTIM4ISR 988.600us
-00005893 T:08007960 -« \\DDC2016\app_adc\iTIM4ISR 7.340us
-00005890 T:0800357A « .16\Global\05S_CPU_PendsvHandler 0.100us
-00005887 T:0800357A « .16\Global\0S_CPU_PendsvHandler 1.120us
-00005883 T:08003694 « ..05_Cpu_c\OS_CPU_SysTickHandler 0.100us
-00005880 T:08003694 « ..05_Cpu_c\O5_CPU_SysTickHandler 9.680us
-00005877 r n) 0.040us
-00005874 T:0800357A « / .16\Global\0S_CPU_PendsvHandler 15.960us
-00005871 T:0800357A « .16\Global\0S_CPU_PendsvHandler 1.100us
-00005867 r n) 0.060us
-00005862 T:08003694 « / .05_cpu_ch\OS_CPU_SysTickHandler 966.480us
-00005859 T:08003694 « ..05_Cpu_c\O5_CPU_SysTickHandler 9.560us
-00005856 r n 0.120us
-00005851 T:08003694 « / .05_cpu_ch\OS_CPU_SysTickHandler 990.080us
-00005843 T:08003694 « ..05_Cpu_c\O5_CPU_SysTickHandler 9.560us
-00005840 r n 0.100us
-00005835 T:08003694 &r .05_Cpu_c\OS_CPU_SysTickHandler 990.220us ~

The ti.back column shows the time from the previous sample to this one, so iTIM4ISR was running for 7.340
us. — this is the difference between the entry marker and the exit marker. Clicking the Chart button (or using
the command Trace.Chart.sYmbol) will show a graphical representation of interrupt nesting against time
and may look like this. The “other” row is any code executing on the target that is not an interrupt service

routine.
" BuTrace.Chart.s¥Ymbol EI@
J2 Setup... || fif Groups... | 38 Config... | (¥ Goto... | (3 Goto... | #3Find... | «In |»0«Out | & Full
77450000s -3.977400000s -3.9773
address i
(other) /I I N
ITIMAISR AN

|
05_CPU_PendsvHand]er on

. | | [
05_CPU_SysTickHandTer [y

Adding a breakpoint to generate a data trace packet on task switches will allow us to analyze which tasks or
threads were interrupted. Set:

ITM. InterruptTrace ON
ITM.DataTrace Data

Break.Set TASK.CONFIG (magic) /Write /TraceData

©1989-2024 Lauterbach Training Cortex-M Tracing | 63

The results can be displayed with: <trace>.Chart. TASKVSINTERRUPT

=2¢ BulTMCanalyzer,Chart. TASKVSINTERRUPT
& Setup... | jifGroups... | 2% Config... | A Goto... || (3 Goto... | #IFind... | «In | #1Out EHFul
-2.036050000s -2.036000000s
range«» | 1
__(none) P
ATIM4ISR i
0S_CPU_PendsVHandler g
05_CPU_PendSvHandler 4 i X X I
(none) i I
0S_CPU_PendsvHandler 4 | —_
(none) i - +— I —
0S_CPU_PendSvHandler R[S I |
. (none) « v/ I —+ —
0S_CPU_SysTickHandler S)
3 1TIMATISR i |
0S_CPU_SysTickHandler S))
0S_CPU_SysTickHandler S _
d< > < >
Or with Trace.STATistic. TASKVSINTERRUPT
B:ITMCAnalyzer. STATistic. TASKVSINTERRUPT
setup... | fiiGroups... | 3% Config...| =|Detailed | {ENesting | Avichart | HProfile
funcs: 11. total: 2.696s
range [total min max avr count intern¥ (1% 2% 5% 10% 20% 50% 100
(none) - - - - - 0. 000%
0S_CPU_PendsvHandler 119.579us 1.100us 1.180us 1.128us 107. (1/1) 0.004% |¢
nane 2.668ms - 2.668ms - - 0.093% |+
0S_CPU_PendsvHandler 114.980us 1.040us 1.180us 1.116us 104.(1/1) 0.004% |+
none 1.618ms - 1.618ms - - 0.055% |+
05_CPU_PendSvHandler 121.741us 1.000us 1.240us 1.157us 106. (1/0) 0.004% |+
(none) 2.692s - 2.692s - - 98.847%
0S_CPU_SysTickHandler 25. 890ms 9.540us | 11.120us 9.617us 2692. 0. 960% |+
iTIM4ISR 778.041us 7.320us 7.460us 7.410us 105. 0.028% ¢
0S_CPU_SysTickHand]ler 28.800us 9. 560us 9.680us 9.600us 3. 0. 00L% |«
0S_CPU_SysTickHandler 19.220us 9. 560us 9.660us 9.610us 2. <0.001% |+

©1989-2024 Lauterbach

Training Cortex-M Tracing

64

ETM Trigger

The DWT contains an ETM Trigger capability. This is hidden from the user and is accessed using the
/TraceTrigger breakpoint type. More information can be found in:

“Trace Filtering”, page 24

“Trace Control by Filter and Trigger” in Training Arm CoreSight ETM Tracing, page 91
(training_arm_etm.pdf)

©1989-2024 Lauterbach Training Cortex-M Tracing | 65

Instrumentation Trace Macrocell

The ITM organizes trace from three main areas:

1. Software Generated Trace

2. Integrates packets from DWT into the trace stream

3. Generates timestamp packets for insertion into the trace stream

If packets arrive simultaneously from more than one of these sources, the ITM is responsible for arbitration

and prioritizes them in the order represented by the list above.

The ITM is an optional component and may not be included in all designs (a read to a non-existent ITM

register will return 0x00000000). It also requires a TPIU to output any data.

Here is a list of important ITM registers. All registers are fully accessible in Privileged mode and all registers
can be read in user mode. If the corresponding bits in ITM_TPR are set then user mode also has write

access to ITM_STIM[31..0] and ITM_TER.

0xE0000FFO - 0xEOO000FFC

0xE0000FDO - 0xXEOOOOFEC
0xE0000FBO

0xEO000ES80

0xEO0000E40

0xEO0000EO00

0xE0000000 - 0xE000007C

Before the ITM can be used it must be ena

Component Identification Registers (CID[3..0])
Peripheral Identification Registers (PID[7..0])
Lock Access Register (ITM_LAR)

Trace Control Register (ITM_TCR)

Trace Privilege Register (ITM_TPR)

Trace Enable Register (ITM_TER)

Stimulus Port Registers (ITM_STIM[31..0])

bled and unlocked. TRACES32 will enable the ITM automatically

by setting the TRCENA bit in the Debug Exception and Monitor Control Register.

#® [B:per, "Core Registers (Cortex-M3),Debug”

=)

Ll

o [=]= L

0

Y No reset

Not runmning
Halted

¥ Not read

o [=]= L

0
Not sleeping
Available

ET Enabled

nit (FpB

Disabled Not masked
No step Halted
Enabled
RO2000XX REGWNE REGSE
R 02000000
R OL0007FLf T Enabled | 0
- e e Disabled WvC_| ERR Enabled
Enabied v Enabled wvC_ . Enabled
Enabled RR Enabled I R Enabled

Unlocking is done by writing 0xxc5ACCES5 to ITM_LAR.

©1989-2024 Lauterbach

Training Cortex-M Tracing | 66

Software Generated Trace

Writing a value to any of the ITM stimulus ports causes a data packet to be generated and fed to the TPIU
for inclusion into the trace stream. First, the ITM must be unlocked. An example is shown below.

The Cortex-M CMSIS includes functions for writing data to the ITM but macros are more efficient and reduce
the overhead of using the ITM at runtime.

static volatile unsigned int *ITM_BASE =
(volatile unsigned int *)0xE0000000;

#define ITM_ENABLE_ACCESS { ITM_BASE[0x3EC]=0xC5ACCE55; }
#define ITM TRACE_PRIV ITM BASE[0x390]
#define ITM TRACE_ENABLE ITM BASE[0x380]

#define ITM_TRACE_DS8(_channel ,_data_) { \
volatile unsigned int *_ch_=ITM_BASE+ (_channel_); \
while (*_ch_ == 0); \
(*((volatile unsigned char *) (_ch_)))=(_data_); \
}
#define ITM_TRACE_D16 (_channel_,_data_) { \
volatile unsigned int *_ch_=ITM_BASE+ (_channel_); \
while (*_ch_ == 0); \
(*((volatile unsigned short *) (_ch_)))=(_data_); \
}
#define ITM_TRACE_D32 (_channel_,_data_) { \

volatile unsigned int *_ch_=ITM_BASE+ (_channel_); \
while (*_ch_ == 0); \
* ch_ = (_data_); \

int main ()
{
hardware_setup () ;
ITM_ENABLE_ACCESS;
ITM_TRACE_PRIV 0;
ITM_TRACE_ENABLE = OxFFFFFFFF;

Data is written to one of the 32 stimulus ports using the ITM_TRACE_D* macros. The Cortex-M makes no
assumptions about the contents of each stimulus port and leaves the assignment of them up to the user. For
example, one could use each port for a different thread or task within the embedded application.

©1989-2024 Lauterbach Training Cortex-M Tracing | 67

The ITM can be configured from the main ITM window which can be opened using the menu item, clicking
the ITM button on the main trace configuration window or by using the ITM.state command. The window

looks like this.
& Bu:ITM.state EI@
itm trace TImeMode SyncPeriod
O oFF [OinterruptTrace External bt l:l
®on [OprofilingTrace CydePrescaler TracelD
DataTrace 1f1 i
commands ON ~ [Ocydeacarate TracePriority

RESet

@ CLEAR OFF v 72.0MHz

" Register TimeStampMode
B ITMTrace 1/8192 ~
B TPIU [TimeStamps
2 List TimeStarpO0
©mc]

PCSampler CLOCK 2.

To capture software generated trace:

1.
2.

Switch ITM.ON

Set Trace.CLOCK to the CPU clock frequency. More information about timing can be found
here:“Time Stamping”, page 72

In the main trace configuration window (Trace.state), set

METHOD to either Analyzer or CAnalyzer. Only those options which the tools support will be
available.

Set the state to OFF (Trace.OFF)

Set AutoArm ON (Trace.AutoArm ON). This will start and stop trace sampling as the core
starts and stops.

Set Autolnit ON (Trace.Autolnit ON). This will clear any existing trace data from the buffer
before capturing new data.

Set Mode to FIFO, Stack or Leash. A discussion of how this affects the trace buffer can be
found here: “Trace Buffer Management”, page 10.

Start the target to capture trace data. The AutoArm option will ensure that capture starts and
stops with the target.

The target can be halted manually or via a breakpoint.

©1989-2024 Lauterbach Training Cortex-M Tracing | 68

Show the results with ITMTrace.List.

2 TMTrace.List EI@
B setup... | 1 Goto... | #3Find... | feiChart | HProfile | IHMIPS & Mare Y Less
record run |address cycle |data symbaol ti.back i
-0000000133 C:EQD0000C wr-byte 1 11.660us »
-0000000128 C:E0000004 wr-word 015C 25.474ms
-0000000125 C:EQD0000C wr-byte 00 11.660us
-0000000121 C:E0000004 wr-word 01BA 25.474ms ¥
-0000000118 C:EQD0000C wr-byte 01 11.780us »
-0000000114 C:E0000004 wr-word 01D0 25.475ms
-0000000111 C:EQD0000C wr-byte 01 11.660us
-0000000094 C:E0000004 wr-word 01BED 25.474ms
-0000000089 C:EQD0000C wr-byte 01 11.780us
-0000000085 C:E0000004 wr-word 01BE 25.474ms
-0000000082 C:EQD0000C wr-byte 01 11.780us
-0000000077 C:E0000004 wr-word 021E 25.474ms
-0000000074 C:EQD0000C wr-byte 01 11.660us
-0000000070 C:E0000004 wr-word 01BA 25.474ms
-0000000067 C:EQD0000C wr-byte 01 11.760us
-0000000063 C:E0000004 wr-word 01cD 25.474ms
-0000000060 C:EQD0000C wr-byte 01 11.780us
-0000000050 C:E0000004 wr-word 0218 25.474ms
-0000000047 C:EQD0000C wr-byte 01 11.780us
-0000000043 C:E0000004 wr-word 0166 25.475ms
-0000000040 C:EQD0000C wr-byte 00 11.780us
-0000000036 C:E0000004 wr-word 01BED 25.474ms
-0000000032 C:EQD0000C wr-byte 01 11.760us
-0000000028 C:E0000004 wr-word 01D5 25.474ms
-0000000025 C:EQD0000C wr-byte 01 11.680us v

The individual channels can be split out for display by using the ITM.PortFilter command. For example, to
view data from just channel 1 use:

ITM.PortFilter 0x01
ITMTrace.FLOWPROCESS
ITMTrace.List

To view additional channels, use ITM.PortFilter with a binary value for the channels you wish to include.

TRACE32 uses OyXXXXXXXX to indicate a binary value. For example:

IT™M.PortFilter 0y0011010
ITMTrace.FLOWPROCESS
ITMTrace.List

©1989-2024 Lauterbach

Training Cortex-M Tracing

69

Using ITM for printf style output

A complete source code example can be found under:
~~/demo/arm/hardware/stm32/stm32f3/custom_itmprintf
An example itm_printf () function is shown below.

#include <stdarg.h>
#include "itm_printf.h"

extern int vsprintf (char *buf, const char *fmt, va_list args);
void ITM_printf (const char *format,...)
{
union {
char c[100];
unsigned int i[25];
} line;
unsigned int v;
int i,3,1;
va_list ap;
va_start (ap, format);
l=vsprintf (& (line.c[0]), format, ap) ;
l++;
1++;
va_end(ap) ;
1=07
j=0;
while (i<1)
{
v=1line.i[Jj];
i+=4;
3
if (i>1)
v&= (0OXFFFFFFFF>> ((1-1) *8)) ;
ITM_TRACE_D32(0,v) ;

NOTE: The version of vsprintf () provided by your compiler MUST be thread safe
and re-entrant. If not, consider protecting it with a mutex or similar.

This function can be called in the application just like a regular printf().

IT™ printf (“*ADC: New ADC value %d”, new_ ADC) ;

©1989-2024 Lauterbach Training Cortex-M Tracing | 70

With ITM set to collect data trace, a standard trace listing will look like this.

Buitmtrace.list EIIEI

B setup... | 1 Goto... | #3Find... | feiChart | HProfile | IHMIPS & Mare Y Less
record run |address cycle |data symbaol ti.back
-0000000165 C:EQD000000 wr-Tong GEEF5AZ0 0.560us
-0000000160 C:EQ000000 wr-long 203D2065 0.560us
-0000000155 C:EQ000000 wr-long 00000031 0.560us
-0000000147 C:EQD00000 wr-long 3A544F4D 77.780us
-0000000142 C:EQD00000 wr-long 77654E20 0. 540us
-0000000137 C:EQD00000 wr-long 6C755020 0.440us
-0000000131 C:EQ000000 wr-long 31206573 0.560us
-0000000126 C:EQ000000 wr-long 37313739 0.560us
-0000000121 C:EQ000000 wr-long 00000000 0.560us
-0000000113 C:EQD00000 wr-long 3A434441 25.328ms
-0000000108 C:EQD00000 wr-long 77654E20 0.560us
-0000000103 C:EQD00000 wr-long 43444120 0.560us
-0000000097 C:EQ000000 wr-long 6CE15620 0.560us
-0000000092 C:EQD00000 wr-long 35206575 0.560us
-0000000086 C:EQ000000 wr-long 00003033 0. 540us
-0000000078 C:EQD00000 wr-long 3A544F4D 77.560us
-0000000073 C:EQD00000 wr-long GEEF5A20 0.560us
-0000000068 C:EQ000000 wr-long 203D2065 0.560us
-0000000062 C:EQ000000 wr-long 00000031 0. 540us
-0000000055 C:EQD00000 wr-long 3A544F4D 77.680us
-0000000050 C:EQD00000 wr-long 77654E20 0. 540us
-0000000044 C:EQD00000 wr-long 6C755020 0.560us
-0000000039 C:EQD00000 wr-long 32206573 0.440us
-0000000034 C:EQD00000 wr-long 33393534 0.560us
-0000000028 C:EQ000000 wr-long 00000000 0.560us
To display the results correctly, use PrintfTrace instead.
PrintfTrace.List MESSAGE List.NoDummy
Buprintftrace.list MESSAGE list.nodummy EIIEI

2 Setup...| 1} Goto...

FIFind... | fw Chart

record [message

B Profile | B MIPS

* More

Y less

-0000001559 [ADC:
-0000001525 MOT:
-0000001502 MOT:
-0000001464 (ADC:
-0000001430 MOT:
-0000001406 MOT:
-0000001367 (ADC:
-0000001333 MOT:
-0000001310 MOT:
-0000001272 (ADC:
-0000001238 MOT:
-0000001215 MOT:
-0000001180 (ADC:
-0000001146 MOT:
-0000001124 MOT:
-0000001088 (ADC:
-0000001054 MOT:
-0000001031 MOT:
-0000000996 (ADC:
-0000000962 MOT:
-0000000939 MOT:
-0000000896 (ADC:
-0000000862 MOT:
-0000000839 MOT:
<

New ADC Value 336
Zone = 0

New Pulse 36937
New ADC Value 516
Zone = 1

New Pulse 23949
New ADC Value 442
Zone = 1

New Pulse 20545
New ADC Value 428
Zone = 1

New Pulse 19901
New ADC Value 332
Zone = 0

New Pulse 36685
New ADC Value 425
Zone = 1

New Pulse 19763
New ADC Value 432
Zone = 1

New Pulse 20085
New ADC Value 452
Zone = 1

New Pulse 21005

©1989-2024 Lauterbach

Training Cortex-M Tracing

71

Time Stamping

To provide any kind of timing analysis the trace decoders need some time stamping information. There are
several options, each with its own set of advantages and drawbacks.

& Bu:ITM.state EI@
itm trace TImeMode SyncPeriod
O oFF [OinterruptTrace External bt l:l
®on [OprofilingTrace CydePrescaler T1ave i
DataTrace 1f1 i
commands ON ~ [Ocydeacarate TracePriority

RESet PCSampler CLOCK 2.
@ CLEAR OFF v 72.0MHz

" Register TimeStampMode
B ITMTrace 1/8192 ~
B TPIU [TimeStamps
) List TineSEmpA.0kK
©amc []
ITM.TImeMode Controls the timing information used by the trace decoders.

Timestamps can be off, generated by the ITM or generated by the
TRACES2 hardware as each packet is decoded. An option exists
to combine internal and external timestamps to allow better
correlation with other trace sources.

ITM.CyclePrescaler This sets the divider from the core clock to generate the timestamp
clock for ITM messages. ITM.CLOCK still contains the core clock
value.

ITM.CycleAccurate If this option is enabled, the ITM will insert cycle count packets into

the trace stream. Timestamps are based upon the cycle count and
the value of the core clock.

If this option is not selected, TRACES32 hardware tools will
generate timestamps for packets as they are de-queued from the
trace interface.

ITM.TimeStampCLOCK This is the value of the global timestamp clock and is used for
multi-core systems.

ITM.TimeStampMode Determines whether the timestamp clock is derived form the CPU
clock or TPIU clock.

ITM.TimeStamps Enable global timestamp packets.

ITM.CLOCK This is the frequency of the cpu core clock. It is used in conjunction
with CycleAccurate mode to calculate how long between trace
events.

ITM.SyncPeriod Controls how frequently (number of clock cycles) a synch packet is

generated. The default is 1024.

In most cases, the default options are the correct ones to choose.

©1989-2024 Lauterbach Training Cortex-M Tracing | 72

Stream Mode

ITM trace data can also be streamed to a file on the local hard drive. The configuration is very similar to that
of ETM which is explained here: “ETM Stream Mode”, page 17.

Trace data can also be streamed to a shared library for custom processing or handling. An example of this
can be found under ~~/demo/arm/hardware/xmc/xmc4500/custom_itmprintf. The full source
code for the DLL or shared library is in the DLL sub-directory, along with make files and instructions on how
to build for your host operating system. How to create a build such a DLL or shared library is beyond the
scope of this document.

To load a shared object for custom trace processing use the command
<trace>.CustomTracelLoad “name” <file>

To use, set Trace.Mode PIPE. The DLL is responsible for managing its own display of the data that it has
processed. The TRACE32 api allows for the creation of a custom command to display the data in text only
format in a window inside TRACES2. If a more complex display of the data then this is required it is the
responsibility of the DLL to do this. By using stream mode like this, the trace data is not stored but parsed on-
the-fly.

©1989-2024 Lauterbach Training Cortex-M Tracing | 73

Pipe Mode

The ITM trace data can be streamed to a pipe (Named pipe in Windows, pipe or FIFO in Linux or MacOS).
This allows for a host application to react in almost real-time to data being generated by the target. There is
no buffer to fill, so theoretically, the trace could be of unlimited duration.

An example of creating a Windows forms application with a named pipe using Visual Studio (tested on
Windows 7, 8 and 10 with Visual Studio 2015 and 2017) can be found under
~~/demo/arm/hardware/stm32/stm32£f3/custom_itmprintf.

The script in this directory shows how to configure TRACES32 for streaming ITM data to a pipe.

To stream ITM data to a named pipe:

1. Set Trace.Mode PIPE

2. Launch the Host OS application that will create and open the pipe
3. Connect TRACE32 to the pipe with Trace.PipeWRITE "<pipe>"

4. Start the target

The ITM data is exported from TRACES2 to the pipe in a packet with the following format.

Byte Meaning

0 The size of the rest of the packet in bytes. This byte does not count
towards the total length.

1-8 Timestamp in Little Endian format
9 Message type:
data = 1 indicates there are 8 bits
data = 2 indicates there are 16 bits
data = 3 -indicates there are 32 bits

10 ITM Channel ID

11-14 Payload in Little Endian format.

Up to 8 pipes can be simultaneously supported by TRACE32. Calling Trace.PipeWRITE without any
arguments will close all open pipes.

©1989-2024 Lauterbach Training Cortex-M Tracing | 74

	Training Cortex-M Tracing
	History
	Cortex-M Trace
	Connectors
	Basic Trace Configuration
	Trace Buffer Management

	MTB Program Flow Trace
	ETM Program Flow Trace
	ETM Configuration
	Trace Capture
	ETM Stream Mode
	Displaying the Results
	Trace Searching
	Trace Filtering
	Tracing Certain Events
	Tracing Between Two Points

	Graphical Navigation
	Analyzing the Results
	Function Runtime
	Distribution
	Duration A to B
	Distance Trace Records

	Trace and Groups
	Grouping by Modules
	Grouping by Address Range

	Timing
	Trace Based Code Coverage
	Trace Based Debugging
	Off-line Analysis
	Data Watchpoint and Trace Unit
	PC Sampler
	Data Trace
	Task/Thread switch Tracing
	Interrupt Trace
	ETM Trigger

	Instrumentation Trace Macrocell
	Software Generated Trace
	Using ITM for printf style output
	Time Stamping
	Stream Mode
	Pipe Mode

