
MANUAL

Release 02.2025

OS Awareness Manual Zephyr

OS Awareness Manual Zephyr

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 OS Awareness Manuals .. 

 OS Awareness Manual Zephyr .. 1

 History .. 4

 Overview .. 4

 Terminology 5

 Brief Overview of Documents for New Users 5

 Supported Versions 6

 Configuration ... 6

 Quick Configuration Guide 7

 Hooks & Internals in Zephyr 7

 Features ... 9

 Display of Kernel Resources 9

 Task Stack Coverage 10

 Task-Related Breakpoints 11

 Dynamic Task Performance Measurement 12

 Task Runtime Statistics 12

 Function Runtime Statistics 13

 Zephyr specific Menu 14

 Zephyr Commands for v1.0 .. 15

 TASK.Context Display contexts 15

 TASK.Event Display microkernel events 15

 TASK.Fiber Display fibers 16

 TASK.FIFO Display microkernel FIFOs 16

 TASK.MailBoX Display microkernel mailboxes 17

 TASK.Map Display microkernel maps 17

 TASK.MuTeX Display microkernel mutexes 18

 TASK.NanoFifo Display nanokernel FIFOs 18

 TASK.NanoLifo Display nanokernel LIFOs 19

 TASK.NanoSem Display nanokernel semaphores 19

 TASK.NanoSTacK Display nanokernel stacks 20

 TASK.PIPE Display microkernel pipes 21

 TASK.Pool Display microkernel pools 21
OS Awareness Manual Zephyr | 2©1989-2025 Lauterbach

 TASK.Semaphore Display microkernel semaphores 22

 TASK.Task Display tasks 22

 TASK.TIMer Display microkernel timers 23

 Zephyr Commands for v1.7 .. 24

 TASK.ALERT Display alerts 24

 TASK.MailBOX Display mailboxes 24

 TASK.MEMSLAB Display memslabs 25

 TASK.MSGQ Display msgqs 25

 TASK.MUTEX Display mutexes 25

 TASK.SEMaphore Display semaphores 26

 TASK.THREAD Display threads 26

 TASK.TIMER Display timers 27

 TASK.PIPE Display pipes 27

 TASK.QUEUE Display queues 27

 TASK.ZSTACK Display zstacks 28

 Zephyr PRACTICE Functions ... 29

 TASK.CONFIG() OS Awareness configuration information 29
OS Awareness Manual Zephyr | 3©1989-2025 Lauterbach

OS Awareness Manual Zephyr

Version 13-Feb-2025

History

28-Aug-18 The title of the manual was changed from “RTOS Debugger for <x>” to “OS Awareness
Manual <x>”.

Overview

The OS Awareness for Zephyr contains special extensions to the TRACE32 Debugger. This manual
describes the additional features, such as additional commands and statistic evaluations.
OS Awareness Manual Zephyr | 4©1989-2025 Lauterbach

Terminology

Zephyr v1.0 uses the terms “fibers” and “tasks”. If not otherwise specified, the TRACE32 term “task”
corresponds to Zephyr fibers and tasks.

Zephyr v1.7 onwards uses the term “threads”. If not otherwise specified, the TRACE32 term “task”
corresponds to Zephyr threads.

Brief Overview of Documents for New Users

Architecture-independent information:

• “Debugger Tutorial” (debugger_tutorial.pdf): Get familiar with the basic features of a TRACE32
debugger.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

• “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• Linux Debugging Reference Card (support.lauterbach.com/downloads/reference-cards)
OS Awareness Manual Zephyr | 5©1989-2025 Lauterbach

https://support.lauterbach.com/downloads/files/linux-reference-card-pdf-2

Supported Versions

Currently Zephyr is supported for the following versions:

• Zephyr 1.0 on ARM and x86.

• Zephyr 1.7 on ARM and x86.
Special configuration options must be set to the kernel - see Hooks & Internals.

• Zephyr 1.14 on ARM and x86

• Zephyr 2.1 to 2.5 on ARM, RISC-V and x86

• Zephyr 2.6 to 2.7 on ARM, RISC-V and x86.
Object tables other than threads are not supported, because the OS lacks the information for
this.

• Zephyr 2.8 onwards on ARM, RISC-V and x86.
Special configuration options must be set to the kernel - see Hooks & Internals.

• Zephyr 3.x on ARC, ARM, RISC-V and x86.
Special configuration options must be set to the kernel - see Hooks & Internals.

Configuration

The TASK.CONFIG command loads an extension definition file called “zephyr.t32” (directory
“~~/demo/<arch>/kernel/zephyr/<version>”). It contains all necessary extensions.

Automatic configuration tries to locate the Zephyr internals automatically. For this purpose all symbol tables
must be loaded and accessible at any time the OS Awareness is used. Some Zephyr versions need special
settings to allow automatic detection of object lists. Please see “Hooks & Internals”.

If you want to display the OS objects “On The Fly” while the target is running, you need to have access to
memory while the target is running. In case of ICD, you have to enable SYStem.MemAccess.

For system resource display, you can do an automatic configuration of the OS Awareness. For this purpose
it is necessary that all system internal symbols are loaded and accessible at any time, the OS Awareness is
used. Each of the TASK.CONFIG arguments can be substituted by '0', which means that this argument will
be searched and configured automatically. For a fully automatic configuration omit all arguments:

See also “Hooks & Internals” for details on the used symbols and how to load object names.

Format: TASK.CONFIG zephyr
OS Awareness Manual Zephyr | 6©1989-2025 Lauterbach

Quick Configuration Guide

To get a quick access to the features of the OS Awareness for Zephyr with your application, follow the
following roadmap:

1. Copy the files zephyr.t32 and zephyr.men to your project directory
(from TRACE32 directory “~~/demo/<arch>/kernel/zephyr/<version>”)

2. Start the TRACE32 Debugger.

3. Load your application as normal.

4. Execute the command TASK.CONFIG zephyr.t32
(See “Configuration”).

5. Execute the command MENU.ReProgram zephyr.men
(See “Zephyr Specific Menu”).

6. Start your application.

Now you can access the Zephyr extensions through the menu.

In case of any problems, please carefully read the previous Configuration chapter.

Hooks & Internals in Zephyr

No hooks are used in the kernel.

For retrieving the kernel data structures, the OS Awareness uses the global kernel symbols and structure
definitions. Ensure that access to those structures is possible every time when features of the OS
Awareness are used. The Zephyr kernel must be compiled with debug information.

Zephyr v1.7:
To be able to support all features mentioned herein, the kernel must be configured with the following options:

Zephyr v2.8:
To be able to support all features mentioned herein, the kernel must be configured with the following options:

CONFIG_THREAD_MONITOR=y
CONFIG_THREAD_STACK_INFO=y
CONFIG_OBJECT_TRACING=y

CONFIG_THREAD_MONITOR=y
CONFIG_THREAD_STACK_INFO=y
CONFIG_INIT_STACKS=y
CONFIG_OBJECT_TRACING=y
CONFIG_TRACING_OBJECT_TRACKING=y
OS Awareness Manual Zephyr | 7©1989-2025 Lauterbach

Zephyr v3.x:
To be able to support all features mentioned herein, the kernel must be configured with the following options:

CONFIG_THREAD_MONITOR=y
CONFIG_THREAD_STACK_INFO=y
CONFIG_INIT_STACKS=y
CONFIG_TRACING=y
CONFIG_TRACING_OBJECT_TRACKING=y
CONFIG_TRACING_SYSCALL=y
CONFIG_TRACING_THREAD=y
CONFIG_TRACING_WORK=y
CONFIG_TRACING_ISR=y
CONFIG_TRACING_SEMAPHORE=y
CONFIG_TRACING_MUTEX=y
CONFIG_TRACING_CONDVAR=y
CONFIG_TRACING_QUEUE=y
CONFIG_TRACING_FIFO=y
CONFIG_TRACING_LIFO=y
CONFIG_TRACING_STACK=y
CONFIG_TRACING_MESSAGE_QUEUE=y
CONFIG_TRACING_MAILBOX=y
CONFIG_TRACING_PIPE=y
CONFIG_TRACING_HEAP=y
CONFIG_TRACING_MEMORY_SLAB=y
CONFIG_TRACING_TIMER=y
CONFIG_TRACING_EVENT=y
OS Awareness Manual Zephyr | 8©1989-2025 Lauterbach

Features

The OS Awareness for Zephyr supports the following features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources.

In Zephyr 1.0, information on the following components can be displayed:

For a description of the commands, refer to chapter “Zephyr Commands v1.0”.

In Zephyr 1.7 onwards, information on the following components can be displayed:

NOTE: The display command listed here apply only for Zephyr 1.0.
Zephyr 1.7 uses different objects and commands which are not yet
documented.

TASK.Context Contexts

TASK.Event Microkernel Events

TASK.Fiber Nanokernel Fibers

TASK.FIFO Microkernel Fifos

TASK.MailBoX Microkernel Mailboxes

TASK.Map Microkernel Memory Maps

TASK.NanoFifo Nanokernel Fifos

TASK.NanoLifo Nanokernel Lifos

TASK.NanoSem Nanokernel Semaphores

TASK.NanoSTacK Nanokernel Stacks

TASK.PIPE Microkernel Pipes

TASK.Pool Microkernel Memory Pools

TASK.Semaphore Microkernel Semaphores

TASK.Task Microkernel Tasks

TASK.TIMer Microkernel Timers

TASK.ALERT Alerts

TASK.MailBOX Mailboxes

TASK.MEMSLAB Memory Slabs

TASK.MSGQ Message Queues

TASK.MUTEX Mutexes
OS Awareness Manual Zephyr | 9©1989-2025 Lauterbach

For a description of the commands, refer to chapter “Zephyr Commands v1.7”.

If your hardware allows memory access while the target is running, these resources can be displayed “On
The Fly”, i.e. while the application is running, without any intrusion to the application.

Without this capability, the information will only be displayed if the target application is stopped.

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this
command will open a window displaying with all active tasks. If you specify only a task magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command
TASK.STacK.PATtern (default value is zero).

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and
select the task from the TASK.STacK.* window.

It is recommended to display only the tasks you are interested in because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

TASK.SEMaphore Semaphores

TASK.THREAD Threads

TASK.TIMER Timers

TASK.PIPE Pipes

TASK.QUEUE Queues

TASK.ZSTACK Zephyr Stacks
OS Awareness Manual Zephyr | 10©1989-2025 Lauterbach

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

• Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

• For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.
This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

For example, on ARM architectures: If the RTOS serves the Context ID register at task switches, and if the
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,
you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

Break.Set <address>|<range> [/<option>] /TASK <task> Set task-related breakpoint.

NOTE: Task-related breakpoints impact the real-time behavior of the application.

Break.CONFIG.UseContextID ON Enables the comparison to the whole Context ID register.

Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK.List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.
OS Awareness Manual Zephyr | 11©1989-2025 Lauterbach

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the
PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.CONFIG.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide
P” (general_ref_p.pdf).

Task Runtime Statistics

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spent in
a task and display it statistically and graphically.

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
LOGGER). For details, refer to “OS-aware Tracing” in TRACE32 Concepts,
page 36 (trace32_concepts.pdf).

Trace.List List.TASK DEFault Display trace buffer and task switches

Trace.STATistic.TASK Display task runtime statistic evaluation

Trace.Chart.TASK Display task runtime timechart

Trace.PROfileSTATistic.TASK Display task runtime within fixed time intervals
statistically

Trace.PROfileChart.TASK Display task runtime within fixed time intervals as
colored graph

Trace.FindAll Address TASK.CONFIG(magic) Display all data access records to the “magic”
location

Trace.FindAll CYcle owner OR CYcle context Display all context ID records
OS Awareness Manual Zephyr | 12©1989-2025 Lauterbach

Function Runtime Statistics

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
LOGGER). For details, refer to “OS-aware Tracing” in TRACE32 Concepts,
page 36 (trace32_concepts.pdf).

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG(magic) /TraceData

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

Trace.ListNesting Display function nesting

Trace.STATistic.Func Display function runtime statistic

Trace.STATistic.TREE Display functions as call tree

Trace.STATistic.sYmbol /SplitTASK Display flat runtime analysis

Trace.Chart.Func Display function timechart

Trace.Chart.sYmbol /SplitTASK Display flat runtime timechart
OS Awareness Manual Zephyr | 13©1989-2025 Lauterbach

Zephyr specific Menu

The menu file “zephyr.men” contains a menu with Zephyr specific menu items. Load this menu with the
MENU.ReProgram command.

You will find a new menu called Zephyr.

• The Display menu items launch the kernel resource display windows.

• The Stack Coverage submenu starts and resets the Zephyr specific stack coverage and provides
an easy way to add or remove tasks from the stack coverage window.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

• The Trace menu is extended. In the List submenu, you can choose if you want a trace list window
to show only task switches (if any) or task switches together with the default display.

• The Perf menu contains additional submenus for task runtime statistics.
OS Awareness Manual Zephyr | 14©1989-2025 Lauterbach

Zephyr Commands for v1.0

TASK.Context Display contexts

Displays the context table of Zephyr.

“magic” is a unique ID, used by the OS Awareness to identify a specific context (address of the context
control structure).

The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

TASK.Event Display microkernel events

Displays the event table of Zephyr Microkernel.

“magic” is a unique ID, used by the OS Awareness to identify a specific event (address of the event control
structure). The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right
clicking on it will show a local menu.

Format: TASK.Context

Format: TASK.Event
OS Awareness Manual Zephyr | 15©1989-2025 Lauterbach

TASK.Fiber Display fibers

Displays the fiber table of Zephyr.

“magic” is a unique ID, used by the OS Awareness to identify a specific fiber (address of the fiber control
structure).

The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

TASK.FIFO Display microkernel FIFOs

Displays the FIFO table of Zephyr Microkernel.

“magic” is a unique ID, used by the OS Awareness to identify a specific FIFO (address of the FIFO control
structure).

The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

Format: TASK.Fiber

Format: TASK.FIFO
OS Awareness Manual Zephyr | 16©1989-2025 Lauterbach

TASK.MailBoX Display microkernel mailboxes

Displays the mailbox table of Zephyr Microkernel.

“magic” is a unique ID, used by the OS Awareness to identify a specific mailbox (address of the mailbox
control structure).

The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

TASK.Map Display microkernel maps

Displays the memory map table of Zephyr Microkernel.

“magic” is a unique ID, used by the OS Awareness to identify a specific memory map (address of the map
control structure).

The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

Format: TASK.MailBoX

Format: TASK.Map
OS Awareness Manual Zephyr | 17©1989-2025 Lauterbach

TASK.MuTeX Display microkernel mutexes

Displays the mutex table of Zephyr Microkernel.

“magic” is a unique ID, used by the OS Awareness to identify a specific mutex (address of the mutex control
structure).

The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

TASK.NanoFifo Display nanokernel FIFOs

Displays FIFOs of Zephyr Nanokernel. Specify the symbol name of a FIFO to display its contents.

Optional Parameters:

“magic” is a unique ID, used by the OS Awareness to identify a specific FIFO (address of the FIFO control
structure).

The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

Format: TASK.MuTeX

Format: TASK.NanoFifo <symbol> [/Struct | /Ptr | /Array <size>]

Struct <symbol> refers to a variable holding a NANO_FIFO structure (default)

Ptr <symbol> is a pointer to a NANO_FIFO structure

Array <size> <symbol> is an array with <size> NANO_FIFO entries
OS Awareness Manual Zephyr | 18©1989-2025 Lauterbach

TASK.NanoLifo Display nanokernel LIFOs

Displays LIFOs of Zephyr Nanokernel. Specify the symbol name of a LIFO to display its contents.

Optional Parameters:

“magic” is a unique ID, used by the OS Awareness to identify a specific LIFO (address of the LIFO control
structure).

The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

TASK.NanoSem Display nanokernel semaphores

Displays semaphores of Zephyr Nanokernel. Specify the symbol name of a semaphore to display its
contents.

Format: TASK.NanoLifo <symbol> [/Struct | /Ptr | /Array <size>]

Struct <symbol> refers to a variable holding a NANO_LIFO structure (default)

Ptr <symbol> is a pointer to a NANO_LIFO structure

Array <size> <symbol> is an array with <size> NANO_LIFO entries

Format: TASK.NanoSem <symbol> [/Struct | /Ptr | /Array <size>]
OS Awareness Manual Zephyr | 19©1989-2025 Lauterbach

Optional Parameters:

“magic” is a unique ID, used by the OS Awareness to identify a specific semaphore (address of the
semaphore control structure).

The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

TASK.NanoSTacK Display nanokernel stacks

Displays stacks of Zephyr Nanokernel. Specify the symbol name of a stack to display its contents.

Optional Parameters:

“magic” is a unique ID, used by the OS Awareness to identify a specific stack (address of the stack control
structure).

Struct <symbol> refers to a variable holding a NANO_SEM structure (default)

Ptr <symbol> is a pointer to a NANO_SEM structure

Array <size> <symbol> is an array with <size> NANO_SEM entries

Format: TASK.NanoSTacK <symbol> [/Struct | /Ptr | /Array <size>]

Struct <symbol> refers to a variable holding a NANO_STACK structure (default)

Ptr <symbol> is a pointer to a NANO_STACK structure

Array <size> <symbol> is an array with <size> NANO_STACK entries
OS Awareness Manual Zephyr | 20©1989-2025 Lauterbach

The fields “magic”and “base” are mouse sensitive. Double-clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

TASK.PIPE Display microkernel pipes

Displays the pipe table of Zephyr Microkernel.

“magic” is a unique ID, used by the OS Awareness to identify a specific pipe (address of the pipe control
structure).

The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

TASK.Pool Display microkernel pools

Displays the memory pool table of Zephyr Microkernel.

“magic” is a unique ID, used by the OS Awareness to identify a specific pool (address of the pool control
structure).

The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

Format: TASK.PIPE

Format: TASK.Pool
OS Awareness Manual Zephyr | 21©1989-2025 Lauterbach

TASK.Semaphore Display microkernel semaphores

Displays the semaphore table of Zephyr Microkernel.

“magic” is a unique ID, used by the OS Awareness to identify a specific semaphore (address of the
semaphore control structure).

The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

TASK.Task Display tasks

Displays the task table of Zephyr.

“magic” is a unique ID, used by the OS Awareness to identify a specific task (address of the task control
structure).

The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

Format: TASK.Semaphore

Format: TASK.Task
OS Awareness Manual Zephyr | 22©1989-2025 Lauterbach

TASK.TIMer Display microkernel timers

Displays the timer table of Zephyr Microkernel.

“magic” is a unique ID, used by the OS Awareness to identify a specific timer (address of the timer control
structure).

The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

Format: TASK.TIMer
OS Awareness Manual Zephyr | 23©1989-2025 Lauterbach

Zephyr Commands for v1.7

TASK.ALERT Display alerts

Displays the alert table of Zephyr.

TASK.MailBOX Display mailboxes

Displays the mailbox table of Zephyr.

Format: TASK.ALERT

Format: TASK.MailBOX
OS Awareness Manual Zephyr | 24©1989-2025 Lauterbach

TASK.MEMSLAB Display memslabs

Displays the memory slab table of Zephyr.

TASK.MSGQ Display msgqs

Displays the message queue table of Zephyr.

TASK.MUTEX Display mutexes

Displays the mutex table of Zephyr.

Format: TASK.MEMSLAB

Format: TASK.MSGQ

Format: TASK.MUTEX
OS Awareness Manual Zephyr | 25©1989-2025 Lauterbach

TASK.SEMaphore Display semaphores

Displays the semaphore table of Zephyr.

TASK.THREAD Display threads

Displays the thread table of Zephyr.

Format: TASK.SEMaphore

Format: TASK.THREAD
OS Awareness Manual Zephyr | 26©1989-2025 Lauterbach

TASK.TIMER Display timers

Displays the timer table of Zephyr.

TASK.PIPE Display pipes

Displays the pipe table of Zephyr.

TASK.QUEUE Display queues

Displays the queue table of Zephyr.

Format: TASK.TIMER

Format: TASK.PIPE

Format: TASK.QUEUE
OS Awareness Manual Zephyr | 27©1989-2025 Lauterbach

TASK.ZSTACK Display zstacks

Displays the Zephyr stack table.

Format: TASK.ZSTACK
OS Awareness Manual Zephyr | 28©1989-2025 Lauterbach

Zephyr PRACTICE Functions

There are special definitions for Zephyr specific PRACTICE functions.

TASK.CONFIG() OS Awareness configuration information

Parameter and Description:

Return Value Type: Hex value.

Syntax: TASK.CONFIG(magic | magicsize)

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).
OS Awareness Manual Zephyr | 29©1989-2025 Lauterbach

	OS Awareness Manual Zephyr
	History
	Overview
	Terminology
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Quick Configuration Guide
	Hooks & Internals in Zephyr

	Features
	Display of Kernel Resources
	Task Stack Coverage
	Task-Related Breakpoints
	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Function Runtime Statistics
	Zephyr specific Menu

	Zephyr Commands for v1.0
	TASK.Context Display contexts
	TASK.Event Display microkernel events
	TASK.Fiber Display fibers
	TASK.FIFO Display microkernel FIFOs
	TASK.MailBoX Display microkernel mailboxes
	TASK.Map Display microkernel maps
	TASK.MuTeX Display microkernel mutexes
	TASK.NanoFifo Display nanokernel FIFOs
	TASK.NanoLifo Display nanokernel LIFOs
	TASK.NanoSem Display nanokernel semaphores
	TASK.NanoSTacK Display nanokernel stacks
	TASK.PIPE Display microkernel pipes
	TASK.Pool Display microkernel pools
	TASK.Semaphore Display microkernel semaphores
	TASK.Task Display tasks
	TASK.TIMer Display microkernel timers

	Zephyr Commands for v1.7
	TASK.ALERT Display alerts
	TASK.MailBOX Display mailboxes
	TASK.MEMSLAB Display memslabs
	TASK.MSGQ Display msgqs
	TASK.MUTEX Display mutexes
	TASK.SEMaphore Display semaphores
	TASK.THREAD Display threads
	TASK.TIMER Display timers
	TASK.PIPE Display pipes
	TASK.QUEUE Display queues
	TASK.ZSTACK Display zstacks

	Zephyr PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information

