
MANUAL

Release 09.2024

OS Awareness Manual PikeOS

OS Awareness Manual PikeOS

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents ..

 OS Awareness Manuals ..

 OS Awareness Manual PikeOS ... 1

 History .. 5

 Overview .. 5

 Terminology 6

 Brief Overview of Documents for New Users 6

 Supported Versions 6

 Configuration ... 7

 Quick Configuration Guide 7

 Hooks and Internals in PikeOS 8

 Features ... 9

 Display of Kernel Resources 9

 Task Stack Coverage 9

 Task-Related Breakpoints 10

 Task Context Display 12

 MMU Support 14

 Space IDs 14

 MMU Declaration 14

 Scanning System and Processes 17

 Symbol Autoloader 17

 SMP Support 19

 POSIX Personality 19

 APEX Personality 20

 Linux Personality 20

 Dynamic Task Performance Measurement 20

 Task Runtime Statistics 21

 Function Runtime Statistics 22

 PikeOS specific Menu 23

 Debugging PikeOS Components ... 24

 PikeOS Kernel 24

 Downloading the PikeOS Image 24

 Debugging the Kernel Startup 25
OS Awareness Manual PikeOS | 2©1989-2024 Lauterbach

 Debugging the Kernel 25

 System Extensions 25

 System Extensions in V3.x 25

 System Extensions in V4.x 26

 User Tasks 26

 Debugging the Task 27

 Start Debugging a Task from main 27

 Debugging PikeOS Threads 28

 POSIX 28

 Configuring POSIX Awareness 28

 Multiple POSIX Personalities with multiple awareness 29

 APEX 30

 Configuring APEX Awareness 30

 Multiple APEX Personalities with multiple awareness 31

 Multiple APEX Personalities with combined awareness 31

 ELinOS 33

 Linux Kernel 34

 Linux Kernel Modules 34

 Linux Processes 35

 Linux Libraries 35

 PikeOS Commands ... 36

 EXTension.AXInfo Display APEX information 36

 EXTension.AXProcess Display APEX processes 36

 EXTension.ELModule Display ELinOS modules 37

 EXTension.ELProcess Display ELinOS processes 37

 EXTension.ELThread Display ELinOS threads 37

 EXTension.PXThread Display POSIX threads 38

 TASK.DrvList Display system information 39

 TASK.INFO Display system information 40

 TASK.Option Set awareness options 40

 TASK.ResPart Display resource partitions 41

 TASK.TaskAdspace Display task address space 41

 TASK.TaskFile.ADD Map file name to task name 41

 TASK.TaskFile.view Display file name to task name mapping 42

 TASK.TaskList Display ‘PikeOS’ tasks 43

 TASK.ThrliSt Display threads 44

 PikeOS PRACTICE Functions .. 45

 TASK.CONFIG() OS Awareness configuration information 45

 TASK.TASK.MAGIC() magic number of task 45

 TASK.TASK.ID() ID of task 45

 TASK.TASK.NAME() Name of task 46

 TASK.TASK.ID2NAME() Convert task ID to name 46

 TASK.TASKNAME2ID() Convert task name to ID 46
OS Awareness Manual PikeOS | 3©1989-2024 Lauterbach

 TASK.TASKFILE() Symbol file name of task 46

 EXT.AXPROCESS.THREAD() PikeOS thread of APEX process 47

 EXT.AXPROCESS.THREAD2() PikeOS thread of APEX process 47

 EXT.ELINOS.SPACEID() Space ID of ELinOS personality 47

 EXT.ELPROCESS.NAME() Name of ELinOS process 47

 EXT.ELLIBRARY.ADDRESS() Load address of ELinOS library 48

 EXT.ELLIBRARY.SPACEID() Space ID of ELinOS library 48

 EXT.ELLIBRARY.NAME() Name of ELinOS library 48

 EXT.ELMODULE.MAGIC() Module magic number of ELinOS module 48

 EXT.ELMODULE.NAME() Name of ELinOS module 49

 EXT.ELMODULE.SECADDR() Section address of ELinOS module 49
OS Awareness Manual PikeOS | 4©1989-2024 Lauterbach

OS Awareness Manual PikeOS

Version 05-Oct-2024

History

Nov-2021 New command: TASK.TaskAdspace.

Overview

The OS Awareness for PikeOS contains special extensions to the TRACE32 Debugger. This manual
describes the additional features, such as additional commands and statistic evaluations.
OS Awareness Manual PikeOS | 5©1989-2024 Lauterbach

Terminology

The PikeOS kernel uses the term “task” for a collection of threads in an address space, and “thread” for an
execution unit (a PikeOS “task” refers to a “process” in PSSW). If not otherwise specified, the TRACE32
term “task” corresponds to PikeOS “threads”, while a PikeOS “task” corresponds to a “space ID” in
TRACE32. Please consider carefully the different meanings of “task” in both environments.

Brief Overview of Documents for New Users

Architecture-independent information:

• “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.

• “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently PikeOS is supported for the following versions:

• PikeOS 1.4, 2.2, 3.1 on PowerPC
These versions are supported with a previous PikeOS awareness not covered by this document.
Contact Lauterbach for more information.

• PikeOS 3.3, 3.4 and 3.5 on ARM, PowerPC and x86

• PikeOS 4.0, 4.1 and 4.2 on ARM, PowerPC and x86

• PikeOS 5.0 and 5.1 on ARM and PowerPC
OS Awareness Manual PikeOS | 6©1989-2024 Lauterbach

Configuration

The TASK.CONFIG command loads an extension definition file called “pikeos.t32” (directory
“~~/demo/<arch>/kernel/pikeos”). It contains all necessary extensions.

Automatic configuration tries to locate the PikeOS internals automatically. For this purpose, the kernel
symbols must be loaded and accessible at any time the OS Awareness is used (see also “Hooks &
Internals”).

If you want to display the OS objects “On The Fly” while the target is running, you need to have access to
memory while the target is running. In case of ICD, you have to enable SYStem.MemAccess or
SYStem.CpuAccess (CPU dependent).

For system resource display and trace functionality, you can do an automatic configuration of the OS
Awareness. For this purpose it is necessary that all system internal symbols are loaded and accessible at
any time the OS Awareness is used. Each of the TASK.CONFIG arguments can be substituted by '0', which
means that this argument will be searched and configured automatically. For a fully automatic configuration
omit all arguments:

(Note: “~~” refers to the TRACE32 installation directory)

Note that the symbols of the PikeOS kernel must be loaded into the debugger. See Hooks & Internals for
details on the used symbols. See also the examples in the demo directories
“~~/demo/<arch>/kernel/pikeos”.

Quick Configuration Guide

To fully configure the OS Awareness for PikeOS, please use one of the demo startup scripts as template.
Find the templates in the directory ~~/demo/<arch>/kernel/pikeos.

“pikeos.cmm” shows a small setup for a simple static PikeOS system, based on the “hello” demo project.
“pikeos-ipc.cmm” shows a setup for a dynamic PikeOS system, based on the “inter-partition-
communication” demo project.
“pikeos-linux.cmm” shows a setup for a PikeOS system with ELinOS partition.

Follow this roadmap:

1. Carefully read the demo start-up scripts (~~/demo/<arch>/kernel/pikeos).

2. Make a copy of the appropriate script. Modify the file according to your application.

3. Run the modified version in your application. This should allow you to display the kernel
resources and use the trace functions (if available).

Now you can access the PikeOS extensions through the menu.

In case of any problems, please carefully read the previous Configuration chapters.

TASK.CONFIG ~~/demo/<arch>/kernel/pikeos/<version>/pikeos.t32
OS Awareness Manual PikeOS | 7©1989-2024 Lauterbach

Hooks and Internals in PikeOS

No hooks are used in the kernel.

For retrieving the kernel data structures, the OS Awareness uses the global kernel symbols of the PSP
kernel. This means that every time, when features of the OS Awareness are used, the symbols of the kernel
must be available and accessible.

PikeOS version 3:

You can find the kernel symbol files in the directory $(PIKEOS_PSP_DIR)/$(PIKEOS_PSP)/objects of your
PikeOS installation. Use the kernel file that your integration project refers to in “project.xml.conf”. If e.g.
“Ukernel” equaled “smp-tracesys”, then use the file “psp-kernel-smp-tracesys”. Load the symbols with the
command:

PikeOS version 4 and 5:

You can find the kernel symbol files in the PikeOS installation directory, subdirectory
target/<arch>/<proc>/object/bsp/<board>. Check the BSP directory in the “project.mk” file of your integration
project, settings “PIKEOS_TARGET_FILES” and “PIKEOS_DTS_DIR”. Use the kernel file that your
integration project refers to in “project.rbx”. See the “psp” attribute of the “romimage” element. If e.g. “psp”
refers to “kernel-nodebug-tracesys-smp.bin”, then load the according ELF file with the command:

Please also look at the demo startup script pikeos.cmm, how to load the kernel symbols and the symbols of
your application.

Data.LOAD.Elf <path_to_psp>/objects/psp-kernel-smp-tracesys /NoCODE /NoClear

Data.LOAD.Elf <path_to_board>/kernel-nodebug-tracesys-smp.elf /NoCODE /NoClear
OS Awareness Manual PikeOS | 8©1989-2024 Lauterbach

Features

The OS Awareness for PikeOS supports the following features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following
PikeOS components can be displayed:

For a description of the commands, refer to chapter “PikeOS Commands”.

If your hardware allows memory access while the target is running, these resources can be displayed “On
The Fly”, i.e. while the application is running, without any intrusion to the application.

Without this capability, the information will only be displayed if the target application is stopped.

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this
command will open a window displaying with all active tasks. If you specify only a task magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command
TASK.STacK.PATtern (default value is zero).

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and
select the task from the TASK.STacK.* window.

It is recommended to display only the tasks you are interested in because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

TASK.INFO System information

TASK.ResPart Resource partitions

TASK.TaskList Tasks

TASK.ThrliSt Threads
OS Awareness Manual PikeOS | 9©1989-2024 Lauterbach

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

• Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

• For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.
This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

NOTE: PikeOS does not save the user space stack address and range.
The TASK.STacK.view command by default only shows the system stack range for
the PikeOS threads.

Usually the user stack range is specified with the P4_STACK macro to the
p4_thread_arg() call. If you want to cover this stack range, you have to initialize the
stack with a predefined pattern (usually zero) and add the stack range manually
using the TASK.STacK.Add command.

PikeOS does not initialize the system stack with a predefined pattern. It is up to the
system integrator or application programmer to ensure stack initialization for a
proper stack coverage analysis.

Break.Set <address>|<range> [/<option>] /TASK <task> Set task-related breakpoint.

NOTE: Task-related breakpoints impact the real-time behavior of the application.
OS Awareness Manual PikeOS | 10©1989-2024 Lauterbach

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

For example, on ARM architectures: If the RTOS serves the Context ID register at task switches, and if the
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,
you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

Break.CONFIG.UseContextID ON Enables the comparison to the whole Context ID register.

Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK.List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.
OS Awareness Manual PikeOS | 11©1989-2024 Lauterbach

Example for a task-related breakpoint, equivalent to the Break.Set <function> /TASK <task> command:

Task Context Display

You can switch the whole viewing context to a task that is currently not being executed. This means that all
register and stack-related information displayed, e.g. in Register, List.auto, Frame etc. windows, will refer
to this task. Be aware that this is only for displaying information. When you continue debugging the
application (Step or Go), the debugger will switch back to the current context.

To display a specific task context, use the command:

• Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

• To switch back to the current context, omit all parameters.

To display the call stack of a specific task, use the following command:

If you’d like to see the application code where the task was preempted, then take these steps:

Frame.TASK [<task>] Display task context.

Frame /Task <task> Display call stack of a task.

name of function

name of thread

breakpoint is set on

related to this breakpoint

click on “advanced”
to get more options
OS Awareness Manual PikeOS | 12©1989-2024 Lauterbach

1. Open the Frame /Caller /Task <task> window.

2. Double-click the line showing the OS service call.

Call stack frame of a thread,
showing the calling line and
local variables.
OS Awareness Manual PikeOS | 13©1989-2024 Lauterbach

MMU Support

To provide full debugging possibilities, the Debugger has to know, how virtual addresses are translated to
physical addresses and vice versa. All MMU and TRANSlation commands refer to this necessity.

Space IDs

Different PikeOS Tasks may use identical virtual addresses. To distinguish those addresses, the debugger
uses an additional identifier, the so-called space ID (memory space ID) that specifies to which virtual
memory space the address refers. The command SYStem.Option.MMUSPACES ON enables the use of
the space ID. For all PikeOS Tasks using the kernel address space, the space ID is zero. For Tasks using
their own address space, the space ID corresponds to the task ID. Threads of a particular task use the
memory space of the invoking task. Consequently threads have the same space ID as the task they belong
to.

You may scan the whole system for space IDs using the command TRANSlation.ScanID. Use
TRANSlation.ListID to get a list of all recognized space IDs.

The function task.taskid(“<task>”) returns the ID for a given PikeOS Task.

MMU Declaration

To access the virtual and physical addresses correctly, the debugger needs to know the format of the MMU
tables in the target.

The following command is used to declare the basic format of MMU tables:

<format> Options for ARM:

MMU.FORMAT <format> [<base_address> [<logical_kernel_address_range>
 <physical_kernel_address>]]

Define MMU
table structure

<format> Description

STD Standard format defined by the CPU

TINY MMU format using a tiny page size of only 1024 bytes
OS Awareness Manual PikeOS | 14©1989-2024 Lauterbach

<format> Options for PowerPC:

<format> Options for RISC-V:

<format> Description

PIKEOS.E500 PIKEOS specific format for PowerPC e500 core with 128-bit PTEs
(formerly named PIKEOSE5).Works for PikeOS 4.1 and older. For e500
cores with PikeOS 4.2 and newer use E500MC format.*/

PIKEOS.E500MC PIKEOS specific format for PowerPC e500mc core (PPC64 only)with 32-
bit PTEs.Can also be used with PikeOS 4.2 and newer on PPC32 e500
cores.*/

PIKEOS.E500MC4G PIKEOS specific format for PowerPC e500mc core addressing 4GB of
memory.Has no common address range with 32-bit PTEs.*/

PIKEOS.E5500 PIKEOS specific format for PowerPC e5500 core with 64-bit PTEs

PIKEOS.OEA PIKEOS specific format for PowerPC core (formerly named PIKEOS)for
the OEA architecture */

STD Standard format defined by the CPU

<format> Description

STD Automatic detection of the page table format from the SATP register.

SV32 32-bit page table format (for SV32 targets only)

SV32X4 Stage 2 (G-stage) 32-bit page table format for page tables translating
intermediate physical addresses. Not applicable to other page tables.

SV39 39-bit page table format (for SV64 targets only)

SV39X4 Stage 2 (G-stage) 39-bit page table format for page tables translating
intermediate physical addresses. Not applicable to other page tables.

SV48 48-bit page table format (for SV64 targets only)

SV48X4 Stage 2 (G-stage) 48-bit page table format for page tables translating
intermediate physical addresses. Not applicable to other page tables.

SV57 57-bit page table format (for SV64 targets only)

SV57X4 Stage 2 (G-stage) 57-bit page table format for page tables translating
intermediate physical addresses. Not applicable to other page tables.
OS Awareness Manual PikeOS | 15©1989-2024 Lauterbach

<format> Options for x86:

<base_address>

<base_address> is currently unused. Specify zero.

<logical_kernel_address_range>

<logical_kernel_address_range> specifies the virtual to physical address translation of the kernel address
range.

<physical_kernel_address>

<physical_kernel_address> specifies the physical start address of the kernel.

The kernel code, which resides in the kernel space, can be accessed by any PikeOS Task, regardless of the
current space ID. Use the command TRANSlation.COMMON to define the complete address range that is
addressed by the kernel as commonly used area.

Enable the debugger’s table walk with TRANSlation.TableWalk ON, and switch on the debugger’s MMU
translation with TRANSlation.ON.

Example: RAM at physical address 0x0, a typical MMU declaration looks like:

Please see also the sample scripts in the ~~/demo directory.

<format> Description

EPT Extended page table format (type autodetected)

EPT4L Extended page table format (4-level page table)

EPT5L Extended page table format (5-level page table)

P32 32-bit format with 2 page table levels

PAE Format with 3 page table levels

PAE64 64-bit format with 4 page table levels

PAE64L5 64-bit format with 5 page table levels

STD Automatic detection of the page table format used by the CPU

MMU.FORMAT PIKEOS 0 0x80000000--0xbfffffff 0x0
TRANSlation.COMMON 0x80000000--0xffffffff ; common area
TRANSlation.TableWalk ON
TRANSlation.ON
OS Awareness Manual PikeOS | 16©1989-2024 Lauterbach

Scanning System and Processes

To access the different process spaces correctly, the debugger needs to know the address translation of
every virtual address it uses. You can either scan the MMU tables and place a copy of them into the
debugger’s address translation table, or you can use a table walk, where the debugger walks through the
MMU tables each time it accesses a virtual address.

The command MMU.SCAN only scans the contents of the current processor MMU settings. Use the
command MMU.SCAN ALL to go through all space IDs and scan their MMU settings. Note that on some
systems, this may take a long time. In this case you may scan a single PikeOS Task (see below).

To scan the address translation of a specific PikeOS Task, use the command MMU.SCAN TaskPageTable
<task_id>. . This command scans the space ID of the specified task. To scan the kernel space, use:

TRANSlation.List shows the address translation table for all scanned space IDs.

If you set TRANSlation.TableWalk ON, the debugger tries first to look up the address translation in its own
table (TRANSlation.List). If this fails, it walks through the target MMU tables to find the translation for a
specific address. This feature eliminates the need of scanning the MMU each time it changes, but walking
through the tables for each address may result in a very slow reading of the target. The address translations
found with the table walk are only temporarily valid (i.e. not stored in TRANSlation.List), and are invalidated
at each Go or Step.

See also chapter “Debugging PikeOS Kernel and User Processes”.

Symbol Autoloader

The OS Awareness for PikeOS contains a “Symbol Autoloader”, which automatically loads symbol files
corresponding to executed tasks or libraries. The autoloader maintains a list of address ranges,
corresponding to PikeOS components and the appropriate load command. Whenever the user accesses an
address within an address range specified in the autoloader (e.g. via List.auto), the debugger invokes the
command necessary to load the corresponding symbols to the appropriate addresses (including relocation).
This is usually done via a PRACTICE script.

In order to load symbol files, the debugger needs to be aware of the currently loaded components. This
information is available in the kernel data structures and can be interpreted by the debugger. The command
sYmbol.AutoLOAD.CHECK defines, when these kernel data structures are read by the debugger (only on
demand or after each program execution).

The loaded components can change over time, when processes are started and stopped and libraries are
loaded or unloaded. The command sYmbol.AutoLOAD.CHECK configures the strategy, when to “check”
the kernel data structures for changes in order to keep the debugger’s information regarding the
components up-to-date.

MMU.SCAN TaskPageTable 0.

sYmbol.AutoLOAD.CHECK [ON | OFF | ONGO]
OS Awareness Manual PikeOS | 17©1989-2024 Lauterbach

Without parameters, the sYmbol.AutoLOAD.CHECK command immediately updates the component
information by reading the kernel data structures. This information includes the component name, the load
address and the space ID and is used to fill the autoloader list (shown via sYmbol.AutoLOAD.List).

With sYmbol.AutoLOAD.CHECK ON, the debugger automatically reads the component information each
time the target stops executing (even after assembly steps), having to assume that the component
information might have changed. This significantly slows down the debugger which is inconvenient and often
superfluous, e.g. when stepping through code that does not load or unload components.

With the parameter ONGO, the debugger checks for changed component info like with ON, but not when
performing single steps.

With sYmbol.AutoLOAD.CHECK OFF, no automatic read is performed. In this case, the update has to be
triggered manually when considered necessary by the user.

When configuring the OS Awareness for PikeOS, set up the symbol autoloader with the following command:

The command sYmbol.AutoLOAD.CHECKPIKEOS is used to define which action is to be taken, for
loading the symbols corresponding to a specific address. The action defined is invoked with specific
parameters (see below). With PikeOS, the pre-defined action is to call the script
~~/demo/<arch>/kernel/pikeos/<version>/autoload.cmm.

Note that defining this action, does not cause its execution. The action is executed on demand, i.e. when the
address is actually accessed by the debugger e.g. in the List.auto or Trace.List window. In this case the
autoloader executes the <action> appending parameters indicating the name of the component, its type
(process, library), the load address and space ID.

For checking the currently active components use the command sYmbol.AutoLOAD.List. Together with the
component name, it shows details like the load address, the space ID, and the command that will be
executed to load the corresponding object files with symbol information. Only components shown in this list
are handled by the autoloader.

NOTE: The autoloader covers only components that are already started. Components that
are not in the current task or library table are not covered.

sYmbol.AutoLOAD.CHECKPIKEOS "<action>"

<action> to take for symbol load, e.g. "DO autoload.cmm "

NOTE: The action parameter needs to be written with quotation marks (for the parser it is a
string).
OS Awareness Manual PikeOS | 18©1989-2024 Lauterbach

In PikeOS, task names are often different from their (symbol) file names. For the symbol autoloader to
automatically find the appropriate symbol file for a task, you can map task names to file names with the
command TASK.TaskFile.ADD.

SMP Support

The OS Awareness supports symmetric multiprocessing (SMP).

An SMP system consists of multiple similar CPU cores. The operating system schedules the threads that
are ready to execute on any of the available cores, so that several threads may execute in parallel.
Consequently an application may run on any available core. Moreover, the core at which the application runs
may change over time.

To support such SMP systems, the debugger allows a “system view”, where one TRACE32 PowerView GUI
is used for the whole system, i.e. for all cores that are used by the SMP OS. For information about how to set
up the debugger with SMP support, please refer to the Processor Architecture Manuals.

All core relevant windows (e.g. Register.view) show the information of the current core. The state line of the
debugger indicates the current core. You can switch the core view with the CORE.select command.

Target breaks, be they manual breaks or halting at a breakpoint, halt all cores synchronously. Similarly, a Go
command starts all cores synchronously. When halting at a breakpoint, the debugger automatically switches
the view to the core that hit the breakpoint.

Because it is undetermined, at which core an application runs, breakpoints are set on all cores
simultaneously. This means, the breakpoint will always hit independently on which core the application
actually runs.

POSIX Personality

The OS Awareness for PikeOS contains an additional awareness for a POSIX Personality. For a detailed
description see the chapter “Debugging PikeOS Components”, “POSIX”.

NOTE: The GNU compiler generates different code if an application is built with debug info
(option “-g”), even if the optimization level is the same. Ensure that you always use
the debug version on both sides, the target where you start the application, and the
debugger where you load the symbol file.
OS Awareness Manual PikeOS | 19©1989-2024 Lauterbach

APEX Personality

The OS Awareness for PikeOS contains an additional awareness for an APEX Personality. For a detailed
description see the chapter “Debugging PikeOS Components”, “APEX”.

Linux Personality

The OS Awareness for PikeOS has a built-in detection and an additional awareness for a Linux Personality
based on ELinOS. For a detailed description see the chapter “Debugging PikeOS Components”, “ELinOS”.

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the
PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide
P” (general_ref_p.pdf).
OS Awareness Manual PikeOS | 20©1989-2024 Lauterbach

Task Runtime Statistics

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spent in
a task and display it statistically and graphically.

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

On ARM architectures, PikeOS serves the ContextID register. In PikeOS version up to 3.4, only the address
space ID (ASID) of the process is written. This allows tracking the program flow of the processes and
evaluation of the process switches. But it does not provide performance information of threads. In PikeOS
versions since 3.5, the kernel writes the ASID and the thread ID into the ContextID register. This is sufficient
for thread runtime analysis as well as function runtime analysis.

If your PikeOS version does not write the thread ID into the ContextID register, inform the PikeOS
awareness about this by switching off the THRCTX option:

TASK.Option THRCTX OFF ; for PikeOS versions up to 3.4

All kernel activities up to the thread switch are added to the calling thread.

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” in TRACE32 Concepts, page
36 (trace32_concepts.pdf).

Trace.List List.TASK DEFault Display trace buffer and task switches

Trace.STATistic.TASK Display task runtime statistic evaluation

Trace.Chart.TASK Display task runtime timechart

Trace.PROfileSTATistic.TASK Display task runtime within fixed time intervals
statistically

Trace.PROfileChart.TASK Display task runtime within fixed time intervals as
colored graph

Trace.FindAll Address TASK.CONFIG(magic) Display all data access records to the “magic”
location

Trace.FindAll CYcle owner OR CYcle context Display all context ID records
OS Awareness Manual PikeOS | 21©1989-2024 Lauterbach

Function Runtime Statistics

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” in TRACE32 Concepts, page
36 (trace32_concepts.pdf).

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG(magic) /TraceData

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

Trace.ListNesting Display function nesting

Trace.STATistic.Func Display function runtime statistic

Trace.STATistic.TREE Display functions as call tree

Trace.STATistic.sYmbol /SplitTASK Display flat runtime analysis

Trace.Chart.Func Display function timechart

Trace.Chart.sYmbol /SplitTASK Display flat runtime timechart
OS Awareness Manual PikeOS | 22©1989-2024 Lauterbach

PikeOS specific Menu

The menu file “pikeos.men” contains a menu with PikeOS specific menu items. Load this menu with the
MENU.ReProgram command.

You will find a new menu called PikeOS.

• The Display menu items launch the kernel resource display windows. See chapter “Display of
Kernel Resources”.

• The Stack Coverage submenu starts and resets the PikeOS specific stack coverage and
provides an easy way to add or remove tasks from the TASK.STacK.view window.

• Use the Symbol Autoloader submenu to configure the symbol autoloader.
See also chapter “Symbol Autoloader”.

- List Components opens a sYmbol.AutoLOAD.List window showing all components
currently active in the autoloader.

- Check Now! performs a sYmbol.AutoLOAD.CHECK and reloads the autoloader list.

- Set Loader Script allows you to specify the script that is called when a symbol file load is
required. You may also set the automatic autoloader check.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

• The Trace menu is extended. In the List submenu, you can choose if you want a trace list
window to show only thread switches (if any) or thread switches together with default display.

• The Perf menu contains additional submenus for task runtime statistics, task-related function
runtime statistics or statistics on task states, if a trace is available. See also chapter “Task
Runtime Statistics”.
OS Awareness Manual PikeOS | 23©1989-2024 Lauterbach

Debugging PikeOS Components

PikeOS runs on virtual address spaces. The kernel uses a static address translation. Each user task gets its
own user address space when loaded, mapped to any physical RAM area that is currently free. Due to this
address translations, debugging the PikeOS kernel and the user tasks requires some settings to the
debugger.

To distinguish those different memory mappings, TRACE32 uses space IDs, defining individual address
translations for each ID. The kernel itself is attached to the space ID zero. Each PikeOS Task that has its own
memory space gets a space ID that corresponds to its task ID. Threads get the space ID of the task they
belong to.

See also chapter “MMU Support”.

PikeOS Kernel

The PikeOS system builder generates an image that contains the startup code, the kernel and any given
application. The file format depends on the system settings, usually it is in ELF or binary format.

Additionally, the PikeOS Awareness needs the symbols of the kernel. Please see section “Hooks &
Internals” how to find the symbol files of the kernel.

Downloading the PikeOS Image

If you start the PikeOS image from Flash, or if you download the image using a bootloader, do this as you
are doing it without debugging.

If you want to download the PikeOS image using the debugger, you have to watch about the file format. If the
generated image is in ELF format, simply download this to the target. If the image is in binary format, you
have to tell the debugger at which address to download it. Please also see the example scripts.

Examples:

To create the image in ELF format, configure the “PikeOS boot strategy” in the integration project to “ELF”.

When downloading the kernel via the debugger, remember to set startup parameters that the kernel
requires, before booting the kernel. Usually the bootloader passes these parameters to the image.

Data.Load.Elf ipc-mpc8641hpcn-elf ; downloading ELF image

Data.Load.Binary ipc-mpc8641hpcn 0x00100000 ; downloading binary
OS Awareness Manual PikeOS | 24©1989-2024 Lauterbach

Debugging the Kernel Startup

The kernel image starts with MMU switched off, i.e. the processor operates on physical addresses. However,
all symbols of the kernel file are virtual addresses. If you want to debug this (tiny) startup sequence, you
have to load the kernel symbols and relocate them to physical address.

As soon as the processor MMU is switched on, you have to reload the symbol to its virtual addresses. See
the next chapter on how to debug the kernel in the virtual address space.

Debugging the Kernel

For debugging the kernel itself, and for using the PikeOS awareness, you have to load the virtual addressed
symbols of the kernel into the debugger. The kernel symbol file contains all addresses in virtual format, so
it’s enough to simply load the file, e.g.:

See also “Hooks & Internals” how to find the correct kernel symbol file for your image.

System Extensions

“System Extensions” are functional extensions linked to the PikeOS base software (PSSW), which runs as a
separate task with ID 1. Debugging system extensions depends on the used PikeOS version.

System Extensions in V3.x

In PikeOS V3.x, system extensions are dynamically loaded and linked to the PSSW when booting.
Unfortunately, there is no way to determine the load address from the started PikeOS image. To get the start
address, you have to examine the startup log.

In the integrator project, open the <project.rbx> file and add

<tag key="UK_LOG_LEVEL" value="5"/>

to enable debug logging of the PSSW. Please note that this file is generated each time you modify your
integrator project, so check this setting after each project modification.

When PSSW starts, it prints out a lot of debug info. Watch for the loading of the system extension.
For example:

<SSW DEBUG INFO> System Extension "simple-pp" resides at virtual base 0x46A260

Data.Load.Elf psp-kernel-smp-tracesys /NoCODE
OS Awareness Manual PikeOS | 25©1989-2024 Lauterbach

Use this address to load the symbols of the system extension. The demo directory contains a script
“loadse.cmm” that helps loading the symbol file of a system extension. Call this script with the load address
mentioned in the debug log.

E.g.:

System Extensions in V4.x

In PikeOS V4.x, system extensions are statically linked to the PSSW when building a fusion project. To
debug system extensions, simply load the symbols of the newly built PSSW.

If you want to debug startup routines of the system extensions (e.g. the install routine), load the symbols of
the PSSW before it starts (to space ID 1) and set an onchip breakpoint onto the routine. E.g.:

After PikeOS booted, the symbol autoloader may be used to load the PSSW symbols and to debug the
system extension routines:

User Tasks

Each user task in PikeOS gets its own virtual memory space. To distinguish the different memory spaces,
the debugger assigns a “space ID”, which correlates to the task ID. Using this space ID, it is possible to
address a unique memory location, even if several PikeOS use the same virtual address.

Note that at every time the PikeOS awareness is used, it needs the kernel symbols. Please see the chapters
above on how to load them. Hence, load all task symbols with the option /NoClear to preserve the kernel
symbols.

Ensure that you load the symbol file containing debug information, i.e. the “unstripped” version.

DO ~~/demo/<arch>/kernel/pikeos/<version>/loadse.cmm \
 <system_extension> <load_address>

DO ~~/demo/powerpc/kernel/pikeos/v3.x/loadse.cmm \
 myworkspace/simple-pp.unstripped 0x46A260

Data.LOAD.Elf myworkspace/myfusionproject/mypssw1-normal.unstripped \
 1:0 /NoCODE /NoClear /name PSSW
Go simple_pp_install /Onchip

sYmbol.SourcePATH myworkspace/myfusionproject
TASK.TaskFile.ADD "PSSW" "mypssw1-normal"
sYmbol.AutoLOAD.CHECK
sYmbol.AutoLOAD.TOUCH "PSSW"
OS Awareness Manual PikeOS | 26©1989-2024 Lauterbach

Debugging the Task

To correlate the symbols of a user task with the virtual addresses of this task, it is necessary to load the
symbols into this space ID.

Manually Load Task Symbols:

For example, if you’ve got a a task called “hello” with the task ID 12 (the dot specifies a decimal number!):

The task ID of a task may also be calculated by using the PRACTICE function TASK.TASKID() (see chapter
“PikeOS PRACTICE Functions”).

Using the Symbol Autoloader:

If the symbol autoloader is configured (see chapter “Symbol Autoloader”), the symbols will be
automatically loaded when accessing an address inside the process. You can also force the loading of the
symbols of a process with

In PikeOS, task names are often different from their (symbol) file names. For the symbol autoloader to
automatically find the appropriate symbol file for a task, you can map task names to file names with the
command TASK.TaskFile.ADD.

Using the Menus:

Select “Display Tasks”, right click on the “magic” of a process, and select “Load task symbols”.

Start Debugging a Task from main

If you want to debug your task right from the beginning at “p4_main(), you have to load the symbols before
starting the process. This is a tricky thing because you have to know the space ID, which is assigned first at
the task startup.

The script “app_debug.cmm” in the ~~/demo directory automates this step. Call the script with the task
name first, then start the Task within PikeOS. The scripts waits for the task to be started, loads the symbols
and halts the task at p4_main(). If the symbol file name is different to the task name, you can add the symbol
file name as a second parameter. Examples:

Data.LOAD.Elf hello.unstripped 12.:0 /NoCODE /NoClear

sYmbol.AutoLOAD.CHECK
sYmbol.AutoLOAD.TOUCH "hello"

; wait for "hello" to be started and load symbol file:
DO ~~/demo/<arch>/kernel/pikeos/<version>/app_debug hello

; wait for "hello" and load "filehello" as symbol file:
DO ~~/demo/<arch>/kernel/pikeos/<version>/app_debug hello filehello
OS Awareness Manual PikeOS | 27©1989-2024 Lauterbach

Debugging PikeOS Threads

PikeOS threads share the same virtual memory of the parent task. The OS Awareness for PikeOS assigns
one space ID for all threads that belong to a specific task. It is sufficient, to load the debug information of this
task only once (onto its space ID) to debug all threads of this task. See chapter “Debugging the Task” for
loading the tasks symbols.

The TASK.ThrliSt window shows which thread is currently running (marked with a star).

POSIX

The OS Awareness for PikeOS contains an additional awareness for a POSIX Personality. It allows to view
POSIX threads and their states.

Configuring POSIX Awareness

To configure the POSIX awareness:

• Load the symbols of the PikeOS task that contains the POSIX personality.

• Load the POSIX awareness specifying the task ID.

Example:

The above sequence is put into a helper script ~~/demo/<arch>/kernel/pikeos/<version>/load_posix.cmm.
Specify the PikeOS task name as parameter to the script.

Example: Load POSIX awareness for PikeOS task named “scheduling”:

; Load the symbols of the PikeOS task with the POSIX personality,
; e.g. "scheduling"
sYmbol.AutoLOAD.TOUCH "scheduling"

; read the task ID of the POSIX personality
&posixid=task.taskid("scheduling")

; load the POSIX awareness, e.g. for ARM architecture
EXTension.LOAD ~~/demo/arm/kernel/pikeos/posix/posix.t32 &posixid
Menu.ReProgram ~~/demo/arm/kernel/pikeos/posix/posix.men

DO ~~/demo/arm/kernel/pikeos/v5.x/load_posix.cmm scheduling
OS Awareness Manual PikeOS | 28©1989-2024 Lauterbach

It is necessary to compile the POSIX application with debug information enabled for the POSIX code.
In your application’s Makefile, add “POSIX_CFLAGS += -g -O0”.
“-g” is required for the debug information, “-O0” is recommended to disable optimization and easier
debugging.

If the “POSIX_DEBUG” option is set to “true” in your project configuration, the “debug” libraries of POSIX are
used which usually also contain a GDB agent. This agent may set a “breakpoint interrupt” at startup of a
POSIX personality that can cause a shutdown of the personality. As TRACE32 doesn’t need this GDB
breakpoint, patch it to do nothing, right at the entry point. E.g. in ARM environments, you can use:

After loading the POSIX awareness, you’ve got additional features for the POSIX personality:

An additional “POSIX” menu provides easy access to the features.

Debugging POSIX threads works the same way as debugging standard PikeOS applications.

Multiple POSIX Personalities with multiple awareness

If you have multiple POSIX Personalities simply use the loading script for several personalties.

Example: Load POSIX awareness for PikeOS tasks named “posix” and “scheduling”:

You will get an own menu for each of the personalities, named like the task name. These menus provide
easy access to the individual personalities.

Access the individual commands with an infix to the EXTension command:

Data.Assemble gdb_breakpoint bx r14

EXTension.PXThread Show all POSIX threads of the POSIX personality

DO ~~/demo/arm/kernel/pikeos/v5.x/load_posix.cmm posix
DO ~~/demo/arm/kernel/pikeos/v5.x/load_posix.cmm scheduling

EXTen-
sion.<name>.PXThread

Show all POSIX thread of the POSIX personality <name>
OS Awareness Manual PikeOS | 29©1989-2024 Lauterbach

APEX

The OS Awareness for PikeOS contains an additional awareness for an APEX Personality. It allows to view
APEX processes and their states.

Configuring APEX Awareness

To configure the APEX awareness:

• Load the symbols of the PikeOS task that contains the APEX personality.

• Load the symbol file of the used APEX OS library to the space ID of the PikeOS task containing
the APEX personality (same as task ID). The used APEX OS can be read out of your project4.rbx
file, e.g. “apex_os_devel”. The symbols must be renamed to “apex_os”.

• Load the APEX awareness specifying the task ID.

Example:

The above sequence is put into a helper script ~~/demo/<arch>/kernel/pikeos/<version>/load_apex.cmm.
Specify the PikeOS task name and kernel type as parameter to the script.

Example: Load APEX awareness for PikeOS task named “apex” with kernel type “devel”:

After loading the APEX awareness, you’ve got additional features for the APEX personality:

An additional “APEX” menu provides easy access to the features.

Debugging APEX processes works the same way as debugging standard PikeOS applications.

; Load the symbols of the PikeOS task with the APEX personality,
; e.g. "apex"
sYmbol.AutoLOAD.TOUCH "apex"

; read the task ID of the APEX personality
&apexid=task.taskid("apex")

; load the symbols of the used APEX OS library
Data.LOAD.Elf apex_os_devel.unstripped &apexid:0 /name apex_os \
 /NoCODE /NoClear

; load the APEX awareness, e.g. with PikeOS v5 on ARM architecture
EXTension.LOAD ~~/demo/arm/kernel/pikeos/v5.x/apex/apex.t32 &apexid
Menu.ReProgram ~~/demo/arm/kernel/pikeos/v5.x/apex/apex.men

DO ~~/demo/arm/kernel/pikeos/v5.x/load_apex.cmm apex devel

EXTension.AXProcess Show all APEX processes of the APEX personality
OS Awareness Manual PikeOS | 30©1989-2024 Lauterbach

Multiple APEX Personalities with multiple awareness

If you have multiple APEX Personalities simply use the loading script for several personalties.

Example: Load APEX awareness for PikeOS tasks named “apex” and “suspend” with kernel type “devel”:

You will get an own menu for each of the personalities, named like the task name. These menus provide
easy access to the individual personalities.

Access the individual commands with an infix to the EXTension command:

Multiple APEX Personalities with combined awareness

If several APEX personalities use the same APEX OS library, one awareness can serve for multiple APEX
personalities. To configure the APEX awareness for multiple personalities:

• Load the symbols of the PikeOS tasks that contain the APEX personalities

• Load the symbol file of the used APEX OS library to all space IDs of the PikeOS tasks containing
the APEX personalities (same as task IDs). The used APEX OS can be read out of your
project4.rbx file, e.g. “apex_os_devel”. The symbols must be renamed to “apex_os”.

• Load the APEX awareness specifying the task IDs of the APEX personalities.

DO ~~/demo/arm/kernel/pikeos/v5.x/load_apex.cmm apex devel
DO ~~/demo/arm/kernel/pikeos/v5.x/load_apex.cmm suspend devel

EXTension.<name>.AXPro-
cess

Show all APEX processes of the APEX personality <name>
OS Awareness Manual PikeOS | 31©1989-2024 Lauterbach

Example:

An additional “APEX” menu provides easy access to the features.

; Load the symbols of the PikeOS task with the APEX personality,
; e.g. "apex" and "suspend"
sYmbol.AutoLOAD.TOUCH "apex"
sYmbol.AutoLOAD.TOUCH "suspend"

; read the task IDs of the APEX personality
&apexid1=task.taskid("apex")
&apexid2=task.taskid("suspend")

; load the symbols of the used APEX OS library to all used IDs
Data.LOAD.Elf apex_os_devel.unstripped &apexid1:0 /name apex_os \
 /NoCODE /NoClear
Data.LOAD.Elf apex_os_devel.unstripped &apexid2:0 /name apex_os \
 /NoCODE /NoClear

; load the APEX awareness, e.g. with PikeOS v5 on ARM architecture
EXTension.LOAD ~~/demo/arm/kernel/pikeos/v5.x/apex/apex.t32 \
 &apexid1 &apexid2
Menu.ReProgram ~~/demo/arm/kernel/pikeos/v5.x/apex/apex.men
OS Awareness Manual PikeOS | 32©1989-2024 Lauterbach

ELinOS

The OS Awareness for PikeOS contains an automatic detection and an additional awareness for an ELinOS
Linux Personality. It enables debugging the Linux kernel, kernel modules, user processes and libraries.

To configure the ELinOS awareness, load the symbols of the PikeOS task that contains the ELinOS
personality. After this, load the ELinOS awareness files:

The ELinOS awareness can only work on one ELinOS personality at a time. If you have several ELinOS
personalities and want to work on a different personality, reload the ELinOS awareness with the appropriate
task ID.

After loading the ELinOS awareness, you’ve got additional features for the ELinOS personality:

; Load the symbols of the PikeOS task with the ELinOS personality
; named "P4Linux"

sYmbol.AutoLOAD.TOUCH "P4Linux"

; read the task ID of the ELinOS personality

&elinosid=task.taskid ("P4Linux")

; and load the ELinOS awareness, e.g. for ARM architecture

EXTension.LOAD ~~/demo/arm/kernel/pikeos/elinos/elinos.t32 &elinosid
Menu.ReProgram ~~/demo/arm/kernel/pikeos/elinos/elinos.men

; re-check the symbol autoloader to recognize Linux processes

sYmbol.AutoLOAD.CHECK

Debugging the Linux kernel

Debugging Linux kernel modules

Debugging Linux processes

Debugging Linux libraries

EXTension.ELProcess Show processes of the ELinOS personality

EXTension.ELThread Show threads of the ELinOS personality

EXTension.ELModule Show kernel modules of the ELinOS personality
OS Awareness Manual PikeOS | 33©1989-2024 Lauterbach

Linux Kernel

The Linux kernel itself runs as a PikeOS task named “P4Linux”. In order to debug the kernel (or contents of
it like built-in drivers), you need to load the symbols of the Linux kernel. Ensure that you built the kernel with
full debug info enabled (CONFIG_DEBUG_INFO=y). The symbol file then is named “vmlinux” and resides in
the linux directory of your ELinOS project. Use the symbol autoloader to load this file as symbol file for the
P4Linux task.

After loading the symbols of the “P4Linux” task, you can debug the Linux kernel as any other PikeOS task.

Linux Kernel Modules

To debug already loaded kernel modules, open an EXTension.ELModule window and right-click on the
“magic” of the module. Select “Load module symbols” from the local menu to load the symbol file of the
selected module. After this, you can debug and access the functions and variables of the modules with the
symbol browser.

Alternatively to the local menu, you can load the symbols of a kernel module by running the
“el_autoload.cmm” script with the module name and parameter “3”.
E.g. for a module named “mymodule” on ARM architecture:

If you want to debug the initialization routine of a kernel module, select the menu item “ELinOS” -> “Debug
Module on init...” before you load the kernel module in Linux. Specify the module name in the upcoming
dialog, then load the kernel module in Linux. The debugger then automatically halts at the module init
routine.

Alternatively to the menu, you can initiate the catching of the module’s init routine by running the
“el_mod_debug.cmm” script with the module name as parameter.

DO ~~/demo/arm/kernel/pikeos/elinos/el_autoload.cmm "mymodule" 3
OS Awareness Manual PikeOS | 34©1989-2024 Lauterbach

E.g. for a module named “mymodule” on ARM architecture:

Linux Processes

Linux processes run as a PikeOS task. PikeOS reserves several tasks for Linux processes (“linux
userspace”). As soon as a process runs, it gets one of these task slots. The TASK.TaskList window then
shows the Linux processes as PikeOS task named “P4LinuxUser:<name>”.

Debugging a Linux process then works as simple as debugging a PikeOS task. Just load the symbols of the
process (using the symbol autoloader) and start debugging. You can also use the local menus of
EXTension.ELProcess or EXTension.ELThread (right click on the “magic”) to load the symbols of an
ELinOS process.

If you want to debug the Linux process right from the beginning at “main()”, select the menu item “ELinOS” -
> “Debug Process on enit...” before you start the process within Linux. Specify the process name in the
upcoming dialog, then start the process in Linux. The debugger then automatically halts at the process at
main().

Alternatively to the menu, you can initiate the catching of the process’ main routine by running the
“el_app_debug.cmm” script with the process name as parameter.
E.g. for a process named “myprocess” on ARM architecture:

Linux Libraries

To debug user libraries, open an EXTension.ELProcess window and double-click on the “magic” of the
process that contains the library to debug. Expand the “code files” tree. Right-click on the library to debug
and select “Load library symbols” from the local menu to load the symbol file of the selected library. After
this, you can debug and access the functions and variables of the library with the symbol browser.

DO ~~/demo/arm/kernel/pikeos/elinos/el_mod_debug.cmm mymodule

DO ~~/demo/arm/kernel/pikeos/elinos/el_app_debug.cmm myprocess
OS Awareness Manual PikeOS | 35©1989-2024 Lauterbach

PikeOS Commands

EXTension.AXInfo Display APEX information

Displays information about the APEX awareness and the used APEX personality.

The APEX awareness must be loaded and configured for this command. See APEX.

EXTension.AXProcess Display APEX processes

Displays a table of all processes created in the APEX personality.

Without any arguments, a table with all created processes will be shown.
Specify a process magic number, ID or name to display detailed information on that process.
When multiple personalities are configured, the <space_id> may specify the space ID (= PikeOS task ID) of
the requested process.

The APEX awareness must be loaded and configured for this command. See APEX.

Format: EXTension.AXInfo

Format: EXTension.AXProcess <process> <space_id>
OS Awareness Manual PikeOS | 36©1989-2024 Lauterbach

EXTension.ELModule Display ELinOS modules

Displays a table of all kernel modules created in the ELinOS personality.

The field “magic” is mouse sensitive. Double-clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

The ELinOS awareness must be loaded and configured for this command. See ELinOS.

EXTension.ELProcess Display ELinOS processes

Displays a table of all processes created in the ELinOS personality.

The field “magic” is mouse sensitive. Double-clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

The ELinOS awareness must be loaded and configured for this command. See ELinOS.

EXTension.ELThread Display ELinOS threads

Displays a table of all processes and threads created in the ELinOS personality, or detailed information
about one specific process or thread.

Without any arguments, a table with all created threads will be shown.

Format: EXTension.ELModule

Format: EXTension.ELProcess

Format: EXTension.ELThread [<thread>]
OS Awareness Manual PikeOS | 37©1989-2024 Lauterbach

Specify a thread magic number, ID or name to display detailed information on that thread.

The field “magic” is mouse sensitive. Double-clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

The ELinOS awareness must be loaded and configured for this command. See ELinOS.

EXTension.PXThread Display POSIX threads

Displays a table of all threads created in the POSIX personality.

The POSIX awareness must be loaded and configured for this command. See POSIX.

Format: EXTension.PXThread
OS Awareness Manual PikeOS | 38©1989-2024 Lauterbach

TASK.DrvList Display system information

Displays a table of kernel drivers loaded in PikeOS.

Format: TASK.DrvList
OS Awareness Manual PikeOS | 39©1989-2024 Lauterbach

TASK.INFO Display system information

Displays information about the awareness and the used PikeOS kernel.

TASK.Option Set awareness options

Sets various options to the awareness.

Format: TASK.INFO

Format: TASK.Option <option>

<option>: THRCTX [ON | OFF]

THRCTX Set the context ID type that is recorded with the real-time trace (e.g. ETM).
If set to on, the context ID in the trace contains thread ID. If set to off, the
context ID only contains the ASID.
See Task Runtime Statistics.
OS Awareness Manual PikeOS | 40©1989-2024 Lauterbach

TASK.ResPart Display resource partitions

Displays a table of resource partitions defined in PikeOS.

TASK.TaskAdspace Display task address space

Only available on PikeOS for MPU.

Displays the address table of one task.

TASK.TaskFile.ADD Map file name to task name

Maps a file name to a task name.

In PikeOS, task names are often different from their (symbol) file names. For the symbol autoloader to
automatically find the appropriate symbol file for a task, use this command to map task names to file names.

Format: TASK.ResPart

Format: TASK.TaskAdspace <task>

Format: TASK.TaskFile.ADD "<task_name>" "<file>"
OS Awareness Manual PikeOS | 41©1989-2024 Lauterbach

TASK.TaskFile.view Display file name to task name mapping

Show task name to file name mappings. See TASK.TaskFile.ADD.

Format: TASK.TaskFile.view
OS Awareness Manual PikeOS | 42©1989-2024 Lauterbach

TASK.TaskList Display ‘PikeOS’ tasks

Displays the task table of PikeOS or detailed information about one specific task.

Without any arguments, a table with all created tasks will be shown.
Specify a task magic number, ID or name to display detailed information on that task.

“magic” is a unique ID used by the OS Awareness to identify a specific task (address of the task struct).

The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

Format: TASK.TaskList [<task>]
OS Awareness Manual PikeOS | 43©1989-2024 Lauterbach

TASK.ThrliSt Display threads

Displays the thread table of PikeOS or detailed information about one specific thread.

Without any arguments, a table with all created threads will be shown.
Specify a thread magic number, ID or name to display detailed information on that thread.

“magic” is a unique ID used by the OS Awareness to identify a specific thread (address of the thread struct).

The field “magic” is mouse sensitive. Double-clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

Format: TASK.ThrliSt [<thread>]
OS Awareness Manual PikeOS | 44©1989-2024 Lauterbach

PikeOS PRACTICE Functions

There are special definitions for PikeOS specific PRACTICE functions.

TASK.CONFIG() OS Awareness configuration information

Parameter and Description:

Return Value Type: Hex value.

TASK.TASK.MAGIC() magic number of task

Returns the magic number of the given task.

Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

TASK.TASK.ID() ID of task

Returns the ID of the given task.

Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

Syntax: TASK.CONFIG(magic | magicsize)

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

Syntax: TASK.TASK.MAGIC("<task_name>")

Syntax: TASK.TASK.ID(<task_magic>)
OS Awareness Manual PikeOS | 45©1989-2024 Lauterbach

TASK.TASK.NAME() Name of task

Returns the name of the given task.

Parameter Type: Decimal or hex or binary value.

Return Value Type: String.

TASK.TASK.ID2NAME() Convert task ID to name

Returns the name of the given task ID.

Parameter Type: Decimal or hex or binary value.

Return Value Type: String.

TASK.TASKNAME2ID() Convert task name to ID

Returns the ID of the given task.

Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

TASK.TASKFILE() Symbol file name of task

Returns the symbol file name of the given task, defined with TASK.TaskFile.ADD.

Parameter Type: String (with quotation marks).

Return Value Type: String.

Syntax: TASK.TASK.NAME(<task_magic>)

Syntax: TASK.TASK.ID2NAME(<task_ID>)

Syntax: TASK.TASKNAME2ID("<task_name>")

Syntax: TASK.TASKFILE("<task_name>")
OS Awareness Manual PikeOS | 46©1989-2024 Lauterbach

EXT.AXPROCESS.THREAD() PikeOS thread of APEX process

Returns the magic of the PikeOS thread of the APEX process based on the specified process magic
number.

Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value..

EXT.AXPROCESS.THREAD2() PikeOS thread of APEX process

Returns the magic of the PikeOS thread of the APEX process based on the specified process magic
number and space ID of APEX personality.

Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value..

EXT.ELINOS.SPACEID() Space ID of ELinOS personality

Returns the space ID of the ELinOS personality.

Return Value Type: Hex value.

EXT.ELPROCESS.NAME() Name of ELinOS process

Returns the name of the ELinOS process based on the specified process magic number.

Parameter Type: Decimal or hex or binary value.

Return Value Type: String.

Syntax: EXT.AXPROCESS.THREAD(<process_magic>)

Syntax: EXT.AXPROCESS.THREAD2(<process_magic>,<space_id>)

Syntax: EXT.ELINOS.SPACEID()

Syntax: EXT.ELPROCESS.NAME(<process_magic>)
OS Awareness Manual PikeOS | 47©1989-2024 Lauterbach

EXT.ELLIBRARY.ADDRESS() Load address of ELinOS library

Returns the load address of the ELinOS library based on the specified library magic number.

Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

EXT.ELLIBRARY.SPACEID() Space ID of ELinOS library

Returns the space ID for the specified ELinOS library magic number.

Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

EXT.ELLIBRARY.NAME() Name of ELinOS library

Returns the library name for the specified ELinOS library magic number.

Parameter Type: Decimal or hex or binary value.

Return Value Type: String.

EXT.ELMODULE.MAGIC() Module magic number of ELinOS module

Returns the module magic number for the specified ELinOS module name.

Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

Syntax: EXT.ELLIBRARY.ADDRESS(<library_magic>)

Syntax: EXT.ELLIBRARY.SPACEID(<library_magic>)

Syntax: EXT.ELLIBRARY.NAME(<library_magic>)

Syntax: EXT.ELMODULE.MAGIC("<module_name>")
OS Awareness Manual PikeOS | 48©1989-2024 Lauterbach

EXT.ELMODULE.NAME() Name of ELinOS module

Returns the name of the ELinOS module based on the specified module magic number.

Parameter Type: Decimal or hex or binary value.

Return Value Type: String.

EXT.ELMODULE.SECADDR() Section address of ELinOS module

Returns the section address of the ELinOS module based on the specified module magic number and
the indexed section number.

Parameter and Description:

Return Value Type: Hex value.

Syntax: EXT.ELMODULE.NAME(<module_magic>)

Syntax: EXT.ELMODULE.SECADDR(<module_magic>,<index>)

<module_magic> Parameter Type: Decimal or hex or binary value.

<index> Parameter Type: Decimal or hex or binary value.
OS Awareness Manual PikeOS | 49©1989-2024 Lauterbach

	OS Awareness Manual PikeOS
	History
	Overview
	Terminology
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Quick Configuration Guide
	Hooks and Internals in PikeOS

	Features
	Display of Kernel Resources
	Task Stack Coverage
	Task-Related Breakpoints
	Task Context Display
	MMU Support
	Space IDs
	MMU Declaration
	Scanning System and Processes

	Symbol Autoloader
	SMP Support
	POSIX Personality
	APEX Personality
	Linux Personality
	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Function Runtime Statistics
	PikeOS specific Menu

	Debugging PikeOS Components
	PikeOS Kernel
	Downloading the PikeOS Image
	Debugging the Kernel Startup
	Debugging the Kernel

	System Extensions
	System Extensions in V3.x
	System Extensions in V4.x

	User Tasks
	Debugging the Task
	Start Debugging a Task from main
	Debugging PikeOS Threads

	POSIX
	Configuring POSIX Awareness
	Multiple POSIX Personalities with multiple awareness

	APEX
	Configuring APEX Awareness
	Multiple APEX Personalities with multiple awareness
	Multiple APEX Personalities with combined awareness

	ELinOS
	Linux Kernel
	Linux Kernel Modules
	Linux Processes
	Linux Libraries

	PikeOS Commands
	EXTension.AXInfo Display APEX information
	EXTension.AXProcess Display APEX processes
	EXTension.ELModule Display ELinOS modules
	EXTension.ELProcess Display ELinOS processes
	EXTension.ELThread Display ELinOS threads
	EXTension.PXThread Display POSIX threads
	TASK.DrvList Display system information
	TASK.INFO Display system information
	TASK.Option Set awareness options
	TASK.ResPart Display resource partitions
	TASK.TaskAdspace Display task address space
	TASK.TaskFile.ADD Map file name to task name
	TASK.TaskFile.view Display file name to task name mapping
	TASK.TaskList Display ‘PikeOS’ tasks
	TASK.ThrliSt Display threads

	PikeOS PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information
	TASK.TASK.MAGIC() magic number of task
	TASK.TASK.ID() ID of task
	TASK.TASK.NAME() Name of task
	TASK.TASK.ID2NAME() Convert task ID to name
	TASK.TASKNAME2ID() Convert task name to ID
	TASK.TASKFILE() Symbol file name of task
	EXT.AXPROCESS.THREAD() PikeOS thread of APEX process
	EXT.AXPROCESS.THREAD2() PikeOS thread of APEX process
	EXT.ELINOS.SPACEID() Space ID of ELinOS personality
	EXT.ELPROCESS.NAME() Name of ELinOS process
	EXT.ELLIBRARY.ADDRESS() Load address of ELinOS library
	EXT.ELLIBRARY.SPACEID() Space ID of ELinOS library
	EXT.ELLIBRARY.NAME() Name of ELinOS library
	EXT.ELMODULE.MAGIC() Module magic number of ELinOS module
	EXT.ELMODULE.NAME() Name of ELinOS module
	EXT.ELMODULE.SECADDR() Section address of ELinOS module

