LAUTERBACH A

OS Awareness Manual
OSE Delta

Release 02.2025

OS Awareness Manual OSE Delta

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index
TRACE32 DOCUMENTS ciceeiiiiiiiemns s inisess s snnsss s s rassss e e s s e s ee e m s e e ea s m s e b e a s mn e e R e a s annn e nnnnnn =
OS Awareness ManUAISccccriiimiisssmiiiris s s e e n s s e e n e e e e nnnnn =
OS Awareness Manual OSE Deltacccciiiimiiismminisnins s s s s s sans s 1
L 1= (o

OVEIVIBW ...eeecccieiiiiciccsssssscec e e e s e e e e s s s s s s sssm e s s e e e s e e s ee s s s s s ssmmmmsEReseeeeasasasssssmmmmmnnnnssensasssassnnmnnnnsnnns
Terminology
Brief Overview of Documents for New Users
Supported Versions

ConfiguIration ... e
Manual Configuration
Automatic Configuration
Quick Configuration Guide
Hooks & Internals in OSE Delta

=T | DT =T
Terminal Emulation for dbgprintf

© © © o N NoOoOoOoO” OO0~ bH

Display of Kernel Resources

Task Stack Coverage 9
Task-Related Breakpoints 10
Task Context Display 11
MMU Support 12
MMU Declaration 12
SMP Support 15
Dynamic Task Performance Measurement 15
Task Runtime Statistics 16
Task State Analysis 17
Function Runtime Statistics 18
OSE Delta specific Menu 19
Debugging OSE Load Modules 20
Load Modules in OSE 4 20
Load Modules in OSE 5 21
Symbol Autoloader 23
OSE Delta COMMANAS eiiiiiiemririiimrs s smss s sssms s s ssmms s s s smms s s e samms s s s smmn s s e a s smmnnneas 25
TASK.DBIOS Display bios modules 25

©1989-2025 Lauterbach OS Awareness Manual OSE Delta | 2

TASK.DBLock Display blocks 25
TASK.DConf Display kernel configuration 26
TASK.DLoadMod Display load modules 26
TASK.DPOOL Display pools 27
TASK.DProc Display processes 28
TASK.DProGram Display loaded programs 29
TASK.MMU.SCAN Scan OSE MMU 30
TASK.RAMLOG Display ramlog 30
TASK.SYMbol Symbol handling of load modules 31
PRACTICE FUNCLIONScoiiiiiieiiiiiiieis s s s s s sssms s s ssmms s s samss e smms s e ssmmn s e ssmmnnnnas 32
TASK.CONFIG() OS Awareness configuration information 32
TASK.PG.ADDR() Segment address of program 32
TASK.PG.RELOC() Relocation address for program 33
TASK.LM.LIST() Next magic in load module list 33
TASK.LM.HANDLE() Install handle of load module 33
TASK.LM.FILENAME() File name for load module 34
TASK.LM.RELOCINFO() Relocation information for load module 34
TASK.LM.RELOCITER() Relocation information of index section 34
©1989-2025 Lauterbach OS Awareness Manual OSE Delta | 3

OS Awareness Manual OSE Delta

History

Version 13-Feb-2025

04-Feb-21

Overview

Removing legacy command TASK. TASKState.

/A Simulator [E=H =R 53
File Edit View Var Break Run CPU Misc Trace Pef Cov MPCHxx OSEDelta Window Help
Mw|ldee/rnjE e aoltuNscs @22
-
ofa B:TASK.DProc [= @ ||| &% B:TASK.DProc0xBC... [= |[= [57 |
agic 1d name state type [prio [in_g | own [block| magic 1d name |
DOOBFFCO |[00010010 |ose_heapd_cleanup |ready PRI | 31. | 0. 0. |main | |[?0OBCDAD [00010005 |ose_huntd -
O00BFC20 |0001000F |printProxy stopped |BG 0. 0. 0. [main
O00BFBED |0001000E |startUp_System stopped |PRI 16. 0. 0. [main [[4SEF num 0.
000BFSAQ |0001000D |phoneSwitch running |PRI | 15. | ©.| 0. |main | |[segment id: 0.
000BF280 (0001000C |check_number ready INT | 15. 0. 0. [main -1.
DOOBEFG0 |000L1000B |ose_heapd receive |PRI | 10. | 0. | 1. |main 00041C4C huntd
000ED740 (00010009 |main ready PRI 16. 0. 1. [main
DOOBECO0 (00010004 |ose_ticker ready INT 0.| 0.| 0.|osE 00010000
DOOBDLAD (00010007 |ose_ldm/ receive |PRI 1.| 0. 4.|0sE als awal any signal
DOOBDD40 (00010006 |ose_huntd -— PHA | 0.| 0.| o0.|ose |[|& signals in gueue: nane
ODDBCDAD (00010005 |ose_huns< noT 10 n n_lner [Fl _owned =ignals
DOOBCACO (00010004 |ose_tid . — = o
DODBCS20 (00010003 [ose_ sy o B:iTASK.DBLock ==& ht variables
0006DD1C |00010002 |idle agic identity |mode [user [procs [segid name
P DOOBDSED |00010008 |super | 0. | 7. |000DO0O00 |main .
DOOBC540 (00010001 |super | 0. | 7. |0000DODOO |OSE
Pyl B::Trace. CHART. TASK . o
v o P Ca ing pc ca ing
2591\1&.. 1ii Goups... || &R Config. |
-T0.000m= S oooms | ob BHTASK.DBIOS =l e =]
nge sy 1 1 agic id _ |mode [entry name |
ose_huntdi| T]] 11 1 . n 1 1 |00071B40 1. user |000491A0 |biosinstall
ose_sysdill 1 . | EEE] EN] B EN] NI I | |\00071E60 2. |user |000493B0 |biosOpen
ose_ldm/GH — EENEEEG—— |) . . . | |ooo71B80 | 3. |super 00043430 |biosUninstall
matn iy . . B . = = = = W o071EA0 4. |super (00049564 |biosRunlevel
ose_heapdfy| 00071BCO | 5. |user |000495EC |biosList
00071BED 6. |super |[DO0OSBED4 |zzcur_u
% BuTASK.STack 00071C00 | 7. |user |0002F5C4 |ose
e TTow & Towest —={ [00071C20 | 8. |user |0002A908 |HEAP
ose_heapd_cleanup [0D1B1EED 0% (00162880 0f |70071€40 | 9. |user [00022AA8 |dbgprintf il
printProxy |001B3720 0% (D01B48B0 O
startUp_System |001B4ACO 1% (D01B50BO 0Of | ¢ mn »
phoneswitch |001EBACO 1% [D01B9I0AS O
check_number
ose_heapd |001B56E0 10% |OD1B5F58 00000878 14% |
main |001B72C0 14% |001B76C0 00000400 33% |m—
ose_ticker
ose_ldm, [001B7ACO 13% |0D1B7F68 DO0D04AS 22%
ose_huntd
ose_huntd |001B82C0 8% [D01BB7FS 00000538 13% | -
4 2
E::TASK.|
[pproc][DBLock |[DPoOL || DHeap |[DBIOS |[DProGram| [DLoadMod]| | DConf | [TASKState| [other | [pravious
UP:00020030 ‘\\tutorial\pots\phoneSwitch phoneSwitch stopped at breakpoint MIX |UP

The OS Awareness for OSE Delta (aka “OSE”) contains special extensions to the TRACE32 Debugger. This
manual describes the additional features, such as additional commands and statistic evaluations.

©1989-2025 Lauterbach

OS Awareness Manual OSE Delta

4

Terminology

OSE Delta uses the term “process”, while TRACE32 uses the term “task”. Both are used interchangeably
throughout this manual.

Brief Overview of Documents for New Users

Architecture-independent information:

J “Debugger Tutorial” (debugger_tutorial.pdf): Get familiar with the basic features of a TRACE32
debugger.

J “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

. “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating

system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Architecture-specific information:

J “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

Supported Versions

Currently OSE Delta is supported and tested for the following versions:
J OSE Delta (aka “OSE”) for ARM, CPU32, MIPS, PowerPC;
. OSE Versions 3.0 to 5.x

©1989-2025 Lauterbach OS Awareness Manual OSE Delta |

Configuration

The TASK.CONFIG command loads an extension definition file called "osed.t32" (directory
"~~/demo/<processor>/kernel/osedelta"). It contains all necessary extensions.

Automatic configuration tries to locate the OSE Delta internals automatically. For this purpose all symbol
tables must be loaded and accessible at any time the OS Awareness is used.

If a system symbol is not available or if another address should be used for a specific system variable then
the corresponding argument must be set manually with the appropriate address. This can be done by
manual configuration which can require some additional arguments, too.

If you want to display the OS objects “On The Fly” while the target is running, you need to have access to
memory while the target is running. In case of ICD, you have to enable SYStem.MemAccess.

Manual Configuration

Manual configuration for the OS Awareness for OSE Delta can be used to explicitly define some memory
locations. It is recommended to use automatic configuration.

Format: TASK.CONFIG osed <magic_address> 0 <ose_kernel_struct>

<magic_address> Specifies a memory location that contains the current running task. This
address can be found at the location zzosvarp+0x2c. Use
“‘data.long (zzosvarp+2c)” as magic address.

<ose_kernel_struct> Specify the additional argument with the symbol for the OSE Delta kernel
structure pointer. This is normally “zzosvarp”.

Example for manual configuration:

TASK.CONFIG osed data.long(zzosvarp+2c) 0 zzosvarp

See Hooks & Internals for details on <ose_kernel_structure>.

See also the example "~~/demo/<processor>/kernel/osedelta/osed.cmm”.

©1989-2025 Lauterbach OS Awareness Manual OSE Delta | 6

Automatic Configuration

For system resource display and trace functionality, you can do an automatic configuration of the OS
Awareness. For this purpose it is necessary that all system internal symbols are loaded and accessible at
any time, the OS Awareness is used. Each of the TASK.CONFIG arguments can be substituted by '0', which
means that this argument will be searched and configured automatically. For a fully automatic configuration,
omit all arguments:

Format: TASK.CONFIG osed

If a system symbol is not available, or if another address should be used for a specific system variable, then
the corresponding argument must be set manually with the appropriate address (see Manual
Configuration).

See Hooks & Internals for details on the used symbols.

See also the example “~~/demo/<processor>/kernel/osedelta/osed.cmm”

Quick Configuration Guide

To get a quick access to the features of the OS Awareness for OSE Delta with your application,
follow this roadmap:

1. Copy the files “osed. t32” and “osed.men” to your project directory (from TRACES32 directory
“~~/demo/<processor>/kernel/osedelta”).

2. Start the TRACES32 Debugger.
3. Load your application as normal.

4. Execute the command:

TASK.CONFIG osed

See “Automatic Configuration”.

5. Execute the command:

MENU.ReProgram osed

See “OSE Delta Specific Menu’”.

6. Start your application.
Now you can access the OSE Delta extensions through the menu.

In case of any problems, please carefully read the previous Configuration chapters.

©1989-2025 Lauterbach OS Awareness Manual OSE Delta | 7

Hooks & Internals in OSE Delta

No hooks are used in the kernel.

For retrieving the kernel data and structures, the OS Awareness uses the global kernel symbols and
structure definitions. Ensure that access to those structures is possible every time when features of the OS

Awareness are used.

Be sure that your application is compiled and linked with debugging symbols switched on.

©1989-2025 Lauterbach OS Awareness Manual OSE Delta | 8

Features

The OS Awareness for OSE Delta supports the following features.

Terminal Emulation for dbgprintf

The terminal emulation window can be used as an output window for the “dbgprintf” function of OSE. The
communication via two memory buffers requires no external interface. See the TERM command group for a
description of the terminal emulation. Find an example dbgprintf implementation for the Terminal Emulation
in “~~/demo/<processors/kernel/osedelta/t32printf.c”.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following OSE
components can be displayed:

TASK.DBIOS BIOS modules
TASK.DBLock Blocks
TASK.DConf Configuration
TASK.DLoadMod Load modules
TASK.DPOOL Pools
TASK.DProc Processes
TASK.DProGram Loaded programs

For a description of the commands, refer to chapter “OSE Delta Commands”.

If your hardware allows memory access while the target is running, these resources can be displayed “On
The Fly”, i.e. while the application is running, without any intrusion to the application.

Without this capability, the information will only be displayed if the target application is stopped.

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this
command will open a window displaying with all active tasks. If you specify only a task magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command
TASK.STacK.PATtern (default value is zero).

©1989-2025 Lauterbach OS Awareness Manual OSE Delta | 9

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and
select the task from the TASK.STacK.* window.

It is recommended to display only the tasks you are interested in because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

b BuTASK.STack o -E =]

name | low high =p % [lowest spare max [0 10 20 30 |
ose_heapd_cTeanup [001E1EED O01EZBCO |00 [¥ 0% |001BE28B0 00000900 0% ~
printProxy (0013720 001B48C0 0% |001B48B0 000011590 0%
startUp_System (001B4ACO 001B50C0 |O01ESOED 1% |001B50B0 0QO0005F0 1% |+
phoneSwitch |001E8AC0 001E90C0 (001EI0E0 1% |001B90A8 000005SES 1% |+
check_number
ose_heapd |001B56E0 001B60CO [001ESFCO 10% |001B5F58 Q0000878 14% |e—

main |[001B72C0 001E78CO (001E77ES 14% (001B76CO 00000400 33%

ose_ticker

m

ose_ldm/ |001E7ACO 001BBOCO |O0LETFFO 13% (001B7F68 000004A8 22%
ose_huntd

ose_huntd |001E82C0 001E88C0 8% |001ES7FS Q0000538 135 |s—
ose_tickd

ose_sysd |001B32C0 001B38C0 (00
idle |001B9340 001B39CO |00

J 4 1 3

0 13% |001BS750 00000490 23%
0 12% |D01E99ED Q0000070 125 |se—m

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

I Break.Set <address>|<range> [I<option>] [TASK <task> Set task-related breakpoint.

o Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

. For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.

This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

NOTE: Task-related breakpoints impact the real-time behavior of the application.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

©1989-2025 Lauterbach OS Awareness Manual OSE Delta | 10

For example, on ARM architectures: Ifthe RTOS serves the Context ID register at task switches, and ifthe
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

Break.CONFIG.UseContextiD ON Enables the comparison to the whole Context ID register.
Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK.List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,
you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

a B::Break.List EI@

3K Delete Al | O Disable Al @ Enabie Al @ Init || Method... |52 Store... | 52 Load... | Ed Set...
method |[task |
SOFT "telephone™ y (& | makeCall

SOFT "phoneSwitch™ o [

SOFT "main” o [

C:00020744 (Program
C:0002138C |Program
C:000241C8 |Program

check_number
terminate

Task Context Display

You can switch the whole viewing context to a task that is currently not being executed. This means that all
register and stack-related information displayed, e.g. in Register, List.auto, Frame etc. windows, will refer
to this task. Be aware that this is only for displaying information. When you continue debugging the
application (Step or Go), the debugger will switch back to the current context.

To display a specific task context, use the command:

I Frame.TASK [<task>] Display task context.

J Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

o To switch back to the current context, omit all parameters.

©1989-2025 Lauterbach OS Awareness Manual OSE Delta | 11

To display the call stack of a specific task, use the following command:

I Frame /Task <task> Display call stack of a task.

If you'd like to see the application code where the task was preempted, then take these steps:

1. Open the Frame /Caller /Task <task> window.
2. Double-click the line showing the OS service call.
&' Br:Var.Frame /Locals /Caller /Task "telephone” EI@
t.Up | ["¥Down [MArgs [locals [caller Task: | "telephone” ~|

-002[[zzreceive_T1(asm)
-003||UP : 0xC50(asm)

—+ |exception
-004|(zzcommon_code (asm)

-005 [telephone()

#sig = 0x0

= pid = 4008636142
= number = 55

® anysig = (0)

{

nts are handled. We wait here until
call. OFF_HOOK means that this telep
_REQUEST is a signal indicating that
one

eor
* is calling this tel

710 sig = receive((SIGSELECT *lanySig);

-006 (c1ib_pointer (asm)
MMU Support

This chapter only applies to OSE versions since 5.0.

OSE uses virtual memory management for load modules. In order to provide full debugging capabilities on
load modules, the Debugger needs to know how virtual addresses are translated to physical addresses and
vice versa. Al MMU commands refer to this necessity.

MMU Declaration

To access the virtual and physical addresses correctly, the debugger needs to know the format of the MMU
tables in the target.

The following command is used to declare the basic format of MMU tables:

MMU.FORMAT <format> [<base_address> [<logical_kernel_address_range> Define MMU
<physical_kernel_address>]] table structure

©1989-2025 Lauterbach OS Awareness Manual OSE Delta | 12

<format> Options for ARM:

<format> Description
STD Standard format defined by the CPU
TINY MMU format using a tiny page size of only 1024 bytes

<format> Options for PowerPC:

<format> Description
OSE OSE format for load modules
STD Standard format defined by the CPU

<format> Options for RISC-V:

<format> Description

STD Automatic detection of the page table format from the SATP register.

SV32 32-bit page table format (for SV32 targets only)

SV32X4 Stage 2 (G-stage) 32-bit page table format for page tables translating
intermediate physical addresses. Not applicable to other page tables.

SV39 39-bit page table format (for SV64 targets only)

SV39X4 Stage 2 (G-stage) 39-bit page table format for page tables translating
intermediate physical addresses. Not applicable to other page tables.

Sv48 48-bit page table format (for SV64 targets only)

sSv4s8Xx4 Stage 2 (G-stage) 48-bit page table format for page tables translating
intermediate physical addresses. Not applicable to other page tables.

SV57 57-bit page table format (for SV64 targets only)

SV57X4 Stage 2 (G-stage) 57-bit page table format for page tables translating
intermediate physical addresses. Not applicable to other page tables.

©1989-2025 Lauterbach

OS Awareness Manual OSE Delta

13

<format> Options for x86:

<format> Description

EPT Extended page table format (type autodetected)

EPT4L Extended page table format (4-level page table)

EPT5L Extended page table format (5-level page table)

P32 32-bit format with 2 page table levels

PAE Format with 3 page table levels

PAE64 64-bit format with 4 page table levels

PAE64L5 64-bit format with 5 page table levels

STD Automatic detection of the page table format used by the CPU

<base_address>

<base_address> specifies the base address of the kernel translation table. This address can generally be
found at the label “hal_global_page_table”.

<logical_kernel_address_range>

<logical_kernel_address_range> specifies the virtual to physical address translation of the kernel address
range. Currently not necessary.

<physical_kernel_address>

<physical_kernel_address> specifies the physical start address of the kernel. Currently not necessary.

The kernel code and linked-in processes reside in a physical address space. See your OSE configuration file
(usually rtose5.conf) for the krn/log_mem entry with mapping type “SASE”. Create a debugger MMU entry
with TRANSIation.Create that corresponds to this entry.

E.qg. if your configuration file specifies:
krn/log_mem/RAM_SASE=base:0 size:32M mapping_type:SASE

then create the following debugger MMU entry with the virtual address range as first parameter and the
equally mapped physical base address as second parameter:

TRANSlation.Create 0x0--0x01ffffff 0xO0

Load modules get their own virtual address area when loaded. The debugger can use its own table walk to
resolve the virtual addresses to physical addresses. Enable the table walk with tRANSIation.TableWalk
ON.

Use TRANSIation.ON to enable the debugger’'s address translation.

©1989-2025 Lauterbach OS Awareness Manual OSE Delta | 14

A complete MMU declaration may look like this:

MMU.FORMAT OSE hal_global_page_table
TRANSlation.Create 0x0--0x01ffffff 0x0
TRANSlation.TableWalk ON
TRANSlation.ON

If the MMU format is not available, or for examination of the translation, you can scan the address translation
of a load module after loading them. Use the command TASK.MMU.SCAN to read the translation tables.

TRANSIation.List shows the setup of the MMU declaration and scanned translations.

SMP Support

The OS Awareness supports symmetric multiprocessing (SMP).

An SMP system consists of multiple similar CPU cores. The operating system schedules the threads that
are ready to execute on any of the available cores, so that several threads may execute in parallel.
Consequently an application may run on any available core. Moreover, the core at which the application runs
may change over time.

To support such SMP systems, the debugger allows a “system view”, where one TRACE32 PowerView GUI
is used for the whole system, i.e. for all cores that are used by the SMP OS. For information about how to set
up the debugger with SMP support, please refer to the Processor Architecture Manuals.

All core relevant windows (e.g. Register.view) show the information of the current core. The status bar of
the debugger indicates the current core. You can switch the core view with the CORE.select command.

Target breaks, be they manual breaks or halting at a breakpoint, halt all cores synchronously. Similarly, a Go
command starts all cores synchronously. When halting at a breakpoint, the debugger automatically switches
the view to the core that hit the breakpoint.

Because it is undetermined, at which core an application runs, breakpoints are set on all cores
simultaneously. This means, the breakpoint will always hit independently on which core the application
actually runs.

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the
PERF.METHOD used.

©1989-2025 Lauterbach OS Awareness Manual OSE Delta | 15

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.CONFIG.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide
P” (general_ref_p.pdf).

Task Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
LOGGER). For details, refer to “OS-aware Tracing” in TRACE32 Concepts,
page 36 (trace32_concepts.pdf).

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spent in
a task and display it statistically and graphically.

To evaluate the contents of the trace buffer, use these commands:

Trace.List List. TASK DEFault Display trace buffer and task switches

Trace.STATistic.TASK Display task runtime statistic evaluation

Trace.Chart.TASK Display task runtime timechart

Trace.PROfileSTATistic.TASK Display task runtime within fixed time intervals
statistically

Trace.PROfileChart.TASK Display task runtime within fixed time intervals as

colored graph

Trace.FindAll Address TASK.CONFIG(magic) Display all data access records to the “magic”
location

Trace.FindAll CYcle owner OR CYcle context Display all context ID records

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

©1989-2025 Lauterbach OS Awareness Manual OSE Delta | 16

ol B:Trace CHART.TASK =n| Wl <
[& stup.. || i Gougs... || B8 @nfig... (% Goto... | #3Find... |[4» In | p40ut|[MMFull
-10.000ms -5.000ms 0.00
range Ry 1 1 1 |
ose_huntdis[T i i L 1B E 01 | 1.
ose_sysdfy| 1 |) eI I Il I Il T Il
ose_Tdm/ Ry] . . . | A . . . | ! | |
mainy|)) E E N N N N EE N Imm =
ose_heapdfy| R L]
phoneSwitchy| | =
£ | B:Trace.STATistic. TASK total min max ratio bar EI@
[& setup... || 71 Groups... || 22 Gonfig... |[= | Detaiied | [Nesting][v{Chart || BProfie |
tasks: 9. total: 13.107ms

range total min max ratio® [|1% 2% 5% 10% 20% |
ose_huntd 1.028ms | 69.100us [191.800us | 7.B45%
ose_sysd 3.738ms 45.300us | 692, 800us | 28.519%
ose_ldm/ 2.899ms 2.899ms 2.899ms | 22.117%
main 3.716ms | 136.500us | 807.700us | 28.352%
ose_heapd | 716.800us 69.400us | 471.700us S A6 | —

»

4 [m

phoneSwitch 16.400us - 16.400us 0.125% |+
Task State Analysis
NOTE: This feature is only available, if your debug environment is able to trace task

switches and data accesses (program flow trace is not sufficient). It requires
either an on-chip trace logic that is able to generate a data trace, or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
LOGGER). For details, refer to “OS-aware Tracing” in TRACE32 Concepts,
page 36 (trace32_concepts.pdf).

The time different tasks are in a certain state (running, ready, suspended or waiting) can be evaluated
statistically or displayed graphically.

This feature requires that the following data accesses are recorded:

. All accesses to the status words of all tasks

J Accesses to the current task variable (= magic address)

Adjust your trace logic to record all data write accesses, or limit the recorded data to the area where all TCBs
are located (plus the current task pointer).

Example: This script assumes that the TCBs are located in an array named TCB_array and consequently
limits the tracing to data write accesses on the TCBs and the task switch.

Break.Set Var.RANGE (TCB_array) /Write /TraceData
Break.Set TASK.CONFIG(magic) /Write /TraceData

©1989-2025 Lauterbach OS Awareness Manual OSE Delta | 17

To evaluate the contents of the trace buffer, use these commands:

Trace.STATistic. TASKState Display task state statistic
Trace.Chart.TASKState Display task state timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

Function Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
LOGGER). For details, refer to “OS-aware Tracing” in TRACE32 Concepts,
page 36 (trace32_concepts.pdf).

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG (magic) /TraceData

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

To evaluate the contents of the trace buffer, use these commands:

Trace.ListNesting Display function nesting
Trace.STATistic.Func Display function runtime statistic
Trace.STATistic.TREE Display functions as call tree

©1989-2025 Lauterbach OS Awareness Manual OSE Delta | 18

Trace.STATistic.sYmbol /SplitTASK
Trace.Chart.Func

Trace.Chart.sYmbol /SplitTASK

Display flat runtime analysis
Display function timechart

Display flat runtime timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as

“(unknown)”
% B:Trace. CHART.FUNC = =R
2 senp... || §if Gous... | 38 Gonfig... | (A Goto...|| A Goto...|| F4Find... | O In |[»0¢ Out||EH Full
-13.000ms -12.500ms -12.000ms -11.500ms -11.04
rangehs 1 1 1 1 1 I
ATTRIBUTE_DBECR+0x4 84 BR A
return_from_i nt+0xAd ——-.——. - - - - - - - - - - - —a—— .
dbgprintf - -, .
—vsOutFmt e e
dbgprintfOutFoo N =
handler = = =
LOCK_PUSH S O P I S
T32PutBuffer .. - ., =
LOCK_POP B i | |
Croom) IR T S S SN S S S S S S S S PN Y
ATTRIBUTE_DBCR+0x484 L O ! A ISR I
makeCall I
(root) . e
bspIntMaskHarl==
check_ny =/ g:Trace STATistic. TREE task def = e |
B senp.. | jif Goups...| 58 Gonfig... | A Goto...|| = Detaked || Nesting| % Chart
funcs: 27. total: 13.107ms
ftask tree total min max avr count intern% 1% 2% 5% 10% 20% 1l
fteTephone = (root) 996. 800us - 996. 800us - - 0.388% [+ ~
itelephone = makeCall 945. 900us - 945. 900us - 1. 1.393% | m—
itelephone = direct_return_from_int.. | 602.500us - 602.500us - 1. 3.599%
itelephone l: bspIntMaskHandler 5.600us 2.800us 2.800us 2.800us 2. 0.042% |+
itelephone check_number 125.100us | 125.100us | 125.100us | 125.100us 1. 0.954% |+
itelephone = proxyPrintf 160.800us | 160.800us | 160.800us | 160.800us 1. 0.457% |+
itelephone = vsnprintf 100.800us | 100.800us | 100.800us | 100.800us 1. 0.040% |+
itelephone = _vsOutFmt 95.500us 95.500us 95.500us 95.500us 1. 0.259% |+
itelephone L— snprintfOutFoo 61.500us 4.400us 57.100us 30.750us 2. 0.469% |+
printProxy |2 (root) 5.023ms - 5.023ms - - | 30.258%
printProxy = direct_return_from_int+0.. 1.057ms - 1.057ms - 1. 2.455% | n—
printProxy {—= dbaprintf 729.000us | 165.000us | 206.400us | 182.250us 4. 2.078% | e—
printProxy = _vsOutFmt 456.600us 96.900us | 138.300us | 114.150us 4. 1.266% |mmm
printProxy = dbaprintfOutFoo 290. 600us 3.900us 82.400us 36.325us 8. 0.427% |+
printProxy = handler 234.600us 48.900us 72.300us 58.650us 4. 0.207% |+
printProxy LOCK_PUSH 6. 800us 1.700us 1.700us 1.700us 4. 0.051% |+
printProxy T32PutBuffer 194.600us 38.900us 62.300us 48.650us 4. 1.484% | mm—
printProxy LOCK_POP 6.000us 1.500us 1.500us 1.500us 4. 0.045% |+
printProxy — bspIntMaskHandler 5.600us 2.800us 2.800us 2.800us 2. 0.042% |+ e
< >

OSE Delta specific Menu

The menu file “osed.men” contains a menu with OSE Delta specific menu items. Load this menu with the

MENU.ReProgram command.

You will find a new menu called OSE Delta.

J The Display menu items launch the appropriate kernel resource display windows.

. The Stack Coverage submenu starts and resets the OSE Delta specific stack coverage and
provides an easy way to add or remove processes from the stack coverage window.

©1989-2025 Lauterbach

OS Awareness Manual OSE Delta | 19

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

. The Trace menu is extended. In the List submenu, you can choose if you want a trace list window

to show only task switches (if any) or task switches together with default display.

. The Perf menu contains additional submenus for task runtime statistics and statistics on task
states.
Jk Simulator — O *
File Edit View Var Break Run CPU Misc Trace Perf Cov MPCloo OSEDelta Window Help
MW A3 | > mn|iE] 28| D] uf eyl DisplayProcesses
~ = Display Blocks
El o Display Pools = || = | = |
Adding phoneline 50 magi c id name Display Bios Modules n_q | own block T
Adding phoneline 55 000E7EGD (00010017 [switch_man, . T . 0. 2. [main 4
Adding phoneline 60 000B7940 |00010016 |connectASid Display Configuration 0. 0. |main
Calling 55 from 50 000B7780 |00010015 |connectBSiy Dicplay P 0. 0. [main
calling... 000B73CO (00010014 |eventproce [y e [eTo s 0. | 0. |main
Call requested... 000BGDCO 00010013 |telephone Display Load Modules 0. 0. |main
. Connection established | [000B6980 |00010012 |telephone . - 0. | 1. |main
Calling 50 from &0 000BGG00 (00010011 |telephone Display Ramlog 0. 1. |main
Calli ngl-}- . 000BG2ED (00010010 |ose_heapd_d 0. 8 main
We are busy... D00B5F40 printProxy y | O . [main
 Line busy DOOBSCOD |DDOLOOOE |StartUp Syl —rock Coverage 0. | 11. |main
Calling 55 from 60 000B58CO (00010000 |phoneSwitcl 0. 0. [main
Calling... 000B55A0 |0001000C |check_numby Symbol Autoloader Y| oo.| 0. |main
We are busy... 000B5280 |000L000E |ose_heapd reCeETveE PRL TUT 0. 1. [main
Line busy 000B3AG0 (00010009 |main receive PRI 16. 0. 0. [main
000B4F20 |000L10004 |ose_ticker ready INT 0. 0. 0. |O5E
000B34C0O |00010007 |ose_Tldm/ receive PRI 1. 0. 4. |0SE W
< < >
‘B::TASK.
DProc DBLock DPOOL DHeap DBIOS DProGram | | DLoadMod DConf | TASKState other pravions
P D00332C \|ukorial| Global zzreceive 004 (tzsk) (2) telephone stopped HLL up

Debugging OSE Load Modules

OSE can load and link additional software parts, so-called “load modules”. Debugging of these load

modules is possible with the help of the OS Awareness for OSE.

The load modules are handled differently between the OSE versions.

Load Modules in OSE 4

If the load module is already loaded in the OSE4 system, you need to load the symbols into the debugger
and relocate them to the actually linked address. Use

TASK.SYMbol.LOAD <loadmodule>

or the “load” button in
TASK.DProGram

to load the symbols.

©1989-2025 Lauterbach

OS Awareness Manual OSE Delta

20

Alternatively, you can load the symbols manually and relocate them with TASK.SYMbol.RELOC.
Example:

Data.LOAD.El1f tutorial_Ilm.elf /NoCODE /NoClear /cygdrive
TASK.SYMbol .RELOC "tutorial_ lm.elf"

If you want to debug a load module from the beginning, you have to load the symbols into the debugger after
loading the module into your system, but before starting it.

Follow this roadmap:

1. Ensure that your system is running and the symbols for the monolith (only) are loaded.
2 Ensure that the OS Awareness for OSE is configured

3. Transfer your load module onto the target (if not already there

4 Use the OSE shell to load and link the module into the system:

pgload tutorial_lm.elf
Notice the “handle”.

5. In TRACE32, execute this command to stop the program run.

Break

Ensure with TASK.DProGram that the load module is listed there.

Load the symbols of the module as mentioned above.

Check with “symbol main”, which main function the module uses.

© ® N O

Set a breakpoint onto the main function:

Break.Set \\tutorial_ lm\osemain\main

10. Continue the program run with:

Go

11. Use the OSE shell to start the load module, using the handle given above:
pgstart 1

The debugger will halt the application at “main()”. You can now continue debugging the start of the load
module.

Load Modules in OSE 5

For load modules in OSES5, you need to define the MMU layout to the debugger or scan the MMU pages of
the load module area. See chapter MMU Support for this.

©1989-2025 Lauterbach OS Awareness Manual OSE Delta | 21

When a load module is already loaded in the OSES5 system, load the symbols into the debugger and
relocate them to the actually linked address. You can use the Symbol Autoloader to manage the loading of
symbol files or explicitly load symbols with TASK.SYMbol.LOAD. The “load” button in TASK.DProGram
triggers this command, too.

Alternatively, you can load the symbols manually and relocate them. Use the “/RELOCTYPE” option to load
the symbols of a load module. The symbol file name must be the same as the file name of the load module.
Example:

Data.LOAD.El1f pingpong_debug.elf /NoCODE /NoClear /RELOCTYPE 1

You can also use the relocation information of the task.Im.relocinfo() function to relocate the sections in a
script.
Example:

&reloc=task.lm.relocinfo ("pingpong")
Data.LOAD.El1f pingpong_debug.elf /NoCODE /NoClear &reloc

If you want to debug a load module from the beginning, you have to load the symbols into the debugger after
loading the module into your system, but before starting it.

Follow this roadmap:

1. Ensure that your system is running and the symbols for the monolith (only) are loaded.
2 Ensure that the OS Awareness for OSE is configured.

3. Transfer your load module onto the target (if not already there).

4 Use the OSE shell to load and link the module into the system:

pm_install pingpong /ram/pingpong_debug.elf
pm_create pingpong
Notice the “handle”.

5. In TRACE32, execute this command to stop the program run:

Break

Scan the load module MMU pages if necessary.
Ensure with TASK.DProGram that the load module is listed there.

Load the symbols of the module as mentioned above.

© ® N O

Check with “symbol .name main”, which main function the module uses.

10. Set a breakpoint onto the main function, e.g.:

Break.Set \\pingpong debug\pingpoing_main\main

©1989-2025 Lauterbach OS Awareness Manual OSE Delta | 22

11. Continue the program run with:

Go

12. Use the OSE shell to start the load module, using the handle given above, e.g.:
pm_start 1

The debugger will halt the application at “main()”. You can now continue debugging the start of the load
module.

Symbol Autoloader

The OS Awareness for OSE Delta contains an autoloader, which automatically loads symbol files. The
autoloader maintains a list of address ranges, corresponding OSE Delta load modules and the appropriate
load command. Whenever the user accesses an address within an address range specified in the
autoloader, the debugger invokes the appropriate command. The command is usually a call to a PRACTICE
script that loads the symbol file to the appropriate addresses.

The command sYmbol.AutoLOAD.List shows a list of all known address ranges/components and their
symbol load commands.

The autoloader must be enables with the TASK.SYMbol.Option AutoLoad command.
The autoloader reads the target’s tables for the load modules and fills the autoloader list with the modules

found on the target. All necessary information, such as load addresses, are retrieved from kernel-internal
information.

I sYmbol.AutoLOAD.CHECKCoMmanD " <action>"

<action> Action to take for symbol load, e.g. "DO autoload.cmm'

If an address is accessed that is covered by the autoloader list, the autoloader calls <action> and appends
the load addresses and the space ID of the component to the action. Usually, <action> is a call to a
PRACTICE script that handles the parameters and loads the symbols. Please see the example script
“autoload.cmm” in the ~~/demo directory.

The point in time when the component information is retrieved from the target can be set:

I sYmbol.AutoLOAD.CHECK [ON | OFF | ONGO]

(no argument) A single sYmbol.AutoLOAD.CHECK command refreshes the information
about the target.

ON The debugger automatically reads the information on every go/halt or
step cycle. This significantly slows down the debugger’s speed when
single stepping.

©1989-2025 Lauterbach OS Awareness Manual OSE Delta | 23

ONGO The debugger automatically reads the information on every go/halt cycle,
but not when single stepping.

OFF no automatic update of the autoloader table will be done, you have to
manually trigger the information read when necessary. To accomplish
that, execute the sYmbol.AutoLOAD.CHECK command without
arguments.

NOTE: The autoloader covers only components that are already started. Components that
are not in the current module table are not covered.

©1989-2025 Lauterbach OS Awareness Manual OSE Delta | 24

OSE Delta Commands

TASK.DBIOS Display bios modules

Format: TASK.DBIOS

Displays a table of all installed bios modules of OSE Delta.

o B:TASK.DBIOS =n| Wl <
magic 1d mode |class |entry name |
002CO5F& 1. |user 001985BC |biosinstall L
002C0618 2. |user 001987C0 |biosOpen

002C0638 3. |super 00198898 |biosUninstall

002C0658 4. |super 00198374 |biosRunlevel

002C06738 5. |user 001989EC |biosList

002C0698 6. |user 00174340 |ose

002C06ES3 7. |user 0018F9B4 |RAMLOG

002C06D0D3 8. |user 001471CC |SYSPARAM

002C06F8 9. |user 0016E3A8 |start_ose_test_agent
002C0718 10. |user 00139904 |HEAP

002C0738 11. |user |device |00107E68 |UD16550

002C0758 | 12. |user |device |00103B0C |EMAC

002C0778 13. |user 0013A9F8 |RTC

002C0798 14. |user 001BABFS |PTHREAD

002C07ES8 15. |user 0013FD43 |FAM

002C07D8 16. |user 00140E04 |PM

002C07F38 17. |user 00201C8C |IPCOM

002C08138 18. |user 001EB234 |IPLITE

4 i 3

TASK.DBLock Display blocks

Format: TASK.DBlock [<block>]

Displays the block table of OSE Delta or detailed information about one specific block.
Without any arguments, a table with all created blocks will be shown.

Specify a block name or magic number to display detailed information on that block.

o B:TASK.DBLock =n| Wl <
magic identit mode |user procs [segid name |
user 0. 2. |00010045 |pingpong ~
super 0. | 56. |0OOOODOO |main
super 0. 7. |00000000 |OSE
o B:TASK.DBLock 0x362100 =n| Wl <
magic identit mode |user procs [segid name

|
user | 0. 2. [00010045 [pingpong .

magic name
00366260 ose_heapcd_0x1
00364EEQ0 main

: 00010046
1: 00010046

1 }

“magic” is a unique ID, used by the OS Awareness to identify a specific block (address of the BCB).

©1989-2025 Lauterbach OS Awareness Manual OSE Delta | 25

TASK.DConf

The field “magic” and pool IDs are mouse sensitive, double clicking on them opens appropriate windows.

Display kernel configuration

Format: TASK.DConf

Displays the OSE Delta kernel configuration.

ofb B:TASK.DConf =n| Wl <
ose kernel configuration |
stack sizes: 256. 512. 1024. 2048. 4096. B8192. 16384. B5536.
buffer sizes: 31. 63, 127. 255. 511. 2047. B8191. 65535.
=ystem pool size: 2752512 bytes.
zupervisor stack: 2512 bytes.
tracebuffer size: 2048 bytes.
max processes: 200 processes.
max attach: 500 s=ignals.
tick length: 1000 microseconds.)
4 m 3
TASK.DLoadMod Display load modules
Format: TASK.DLoadMod [</oadmodule>]

Only available on OSES5 systems. For OSE4 systems, use TASK.DProGram.

Displays a table with all loaded load modules of OSE Delta or detailed information about one specific load
module.

Without any arguments, a table with all loaded load modules will be shown.
Specify the name or magic number of a load module to display detailed information on that load module.

&b B:TASK.DLoadMod

(=[O el

magic textbase |database [entr

install handle | |

2003B1F3 |00100000 |002A6000 |00000000 |core_module ~

2003C328 |20090000 |200A0000 (20091930 |pingpong

]
o B:TASK.DLM 0:2003C328 =n| Wl <
magic textbase |database |entry install handle |
2003C325 (20030000 [Z00A0000 (20091930 [pingpong ~
file name & format: =
/ram/pingpong_debug. elf, ELF
sections: 32
4 m 3

“magic” is a unique ID, used by the OS Awareness to identify a specific load module.

The fields “magic”, “textbase” and “entry" are mouse sensitive, double clicking on them opens appropriate
windows.

©1989-2025 Lauterbach

OS Awareness Manual OSE Delta | 26

TASK.DPOOL Display pools

Format: TASK.DPOOL [<pool>]

Displays the pool table of OSE Delta or detailed information about one specific pool.

o B:TASK.DPOOL El-@
m; #signals s1ze % |#stacks size %
0. 00000020 0% 2. 00001800 9% OOOOE?EO 90% 00010000
519. O000AAZG0 25% 51. 0004C100 11% |001AFCE0 63% |0029DFED
o B:TASK.DPOOL 0:2A86D0 El-@
magic 1d #signals s1ze % |#stacks size % |[free total
002AB6D0 |00010000| 519. ODDAAZE0 25% | 51. 0004C100 11% [D01A7CS0 63%|0029DFEO r_J

1b
1F

magic Ehl owner sender addressee size

002C6380 636F?265 00010003 00000000 00000000 19.

002C63E0 00007698 system 00010012 00010000 93,

002C64A0 6D61696E 00010003 00000000 QOO000000 5.

002C6500 6D61696E system 0ooo0000 00000000 8. &

4 I 2

<pool> Without any arguments, a table with all created pools will be shown.

Specify a pool magic number or ID to display detailed information on that
pool.

“magic” is a unique ID, used by the OS Awareness to identify a specific pool
(address of the pool control block).

The fields “magic” and “id” are mouse sensitive, double clicking on them opens appropriate windows.

©1989-2025 Lauterbach OS Awareness Manual OSE Delta | 27

TASK.DProc

Display processes

Format: TASK.DProc [<process>]
Displays the process table of OSE Delta or detailed information about one specific process.
o B:TASK.DProc =n| Wl <
magic 1d name state type [prio [in_g | own [block
00366260 [00010048 [ose_heapcd_Ox1 receive [PRI 31. 0. 1. [pingpong .
00364EEQ (00010047 |main running |BG 0. 0. 0. [pingpong
0035F760 (00010041 |ose_tftpd receive |BG 0. 0. 1. [main =
0035F0AD (00010040 |ose_telnetd receive |BG 0. 0. 1. [main
0035DBCO |000L003F |shell receive |PRI | 25 0. 3. [main
00350460 |0001003E |ose_glh_router receive |PRI 22 0. 1. [main
0035C300 |0001003D |ose_surfer receive |PRI | 26 0. 1. [main
0035AEAD (0001003C |ose_gws receive |[BG 0. 0. 2. [main
0035A7CO |0001003E |ose_ftpd receive |BG 0. 1. 1. [main
00357560 |0001003A |ose_Tmy
00356020 (00010039 |echo_ | 48 B:TASK.DProc 0x364EED == 5
002C89C0 100020000 |ose_og l@g'lc 1d name state type [prio [in_g | own [block
00354880 |00010038 |ose_loy = |
003543C0 (00010037 |ose_1nf| [PO364EED (00010047 [main [Funning IBJC: [0 7 0.7 0. Jpingpong .
00353420 |00010036 |ose_udy o
B .
1.
-1.
20091990 crt0_Tm
00010046
SUE: none
riables
ol address size
00010046 00572020 OOOQOOFED
current sp calling pc calling sp
running
] 1 ¢
<process> Without any arguments, a table with all created processes will be shown.

Specify a process name or magic number to display detailed information
on that process, including its signal queue.

“magic” is a unique ID, used by the OS Awareness to identify a specific

process (address of the PCB).

The fields “magic”, “name”, “pid”, “entrypoint” and “sender” are mouse sensitive, double clicking them opens

appropriate windows.

©1989-2025 Lauterbach

OS Awareness Manual OSE Delta

28

TASK.DProGram Display loaded programs

Format: TASK.DProGram [<program>]

Displays a table with all loaded programs of OSE Delta or detailed information about one specific program.

o B:TASK.DProGram =n| Wl <

magic rogpid state handle main proc |[debug symbols

Z002CEDE [00020044 |[started [pingpong 00010047 [Toaded reload L

2003B328 |00010008 |started |core_module |00010009

d o B:TASK.DPG 0:2002C8D8 =n| Wl <
magic rogpid state handle main proc |[debug symbols
Z002CEDE (00020044 [started [pingpong 00010047 [Toaded reload L

e path
/ram/pingpong_debug. elt

domai

omain segment pid main block main process
00000001 00010045 00020044 00010047

stack pool id base s1ze
00010046 00563000 00010000

signal pool id base size
00010046 00563000 00010000
heap ref
00355440
4 n 3
<program> Without any arguments, a table with all loaded programs will be shown.

Specify the name or magic number of a program to display detailed
information on that program.

“magic” is a unique ID, used by the OS Awareness to identify a specific load
module.

The fields “magic” and “name” are mouse sensitive, double clicking on them opens appropriate windows.

“debug symbols” shows if the appropriate debugging symbols are loaded into the debugger, and if relocation
is needed.

The button on the end of the line shows either load, relocate or reload, depending on the state of the
debugging symbols.

J load tries to load and relocate the debugging symbols, by executing TASK.SYMbol.LOAD.

J relocate appears, if symbols are loaded, but do not seem to fit to the addresses of the load
module. It then tries to relocate the symbols automatically, by executing TASK.SYMbol.RELOC.

J reload first removes the symbols of the load module, second reloads them with
TASK.SYMbol.RELOAD. Use this feature, if you changed your load module and reloaded it into
the OSE system, to get the new symbols.

©1989-2025 Lauterbach OS Awareness Manual OSE Delta | 29

TASK.MMU.SCAN Scan OSE MMU

Only available on OSE5 systems.

Format: TASK.MMU.SCAN [<address> [<size>]]

Scans the MMU tables of OSE Delta for load modules.

Load modules are subject to a virtual memory management. In order to handle this correctly, the debugger
needs to know the correct virtual to physical address translation for the load modules.

Without any argument, the debugger scans the whole address translation, which covers kernel, built-in
processes and all load modules. This can take a very long time. To reduce the time, specify the start address
and the size of your virtual address range (size defaults to 128MB if omitted). This range is defined in the
OSE configuration file as “SAS” mapping type. E.g. if your configuration file specifies:

krn/log_mem/RAM=base:512M size:32M mapping_type:SAS

then scan this virtual address range after loading your modules with the virtual base address as first
parameter and the size as second parameter:

TASK.MMU.SCAN 0x20000000 0x02000000

Check TRANSIation.List for the result.

See also chapter “MMU Support”.

TASK.RAMLOG Display ramlog

Format: TASK.RAMLOG

Displays the messages in the RAMLOG area of OSE.

o5 B:TASK.RAMLOG o -E =]
ramlog buffer |
| _RAMLOG_SESSTION_START_ ~

exec: Booting OSE5.7 (BL770317)

[ol 00:exec: using parameter setting krn/event_queue_full=action:error
000:exec: nested interrupts disabled

000 :cpu_hal_85xx: init_cpu

000 : L1C5RO0=0, L1CSR1=0

000 :ram: Pr0b1ng for end of RAM.

000:ram: Detected 1024M of RAM (max =ize).

m

000 :krn/ramdump,/dumps :base = 28573696 (0x1b40000)

000 :krn/ramdump,/dumps :size = 4194304 (0x400000)
:krn/ramdump/heap:base = 33226752 (0x1fb0000D)

000 :krn/ramdump/heap:size = 262144 (0x40000)

000:krn/ramlog:base = 16384 (0x4000)

000:krn/ramlog:size = 32768 (0Ox3000)

000:mm: max_domains:255 @ 49b0&0

000:init_boot_heap(0x01ff0000, O0x3FFEEEEE)

000:Initial range : OxolffOOOO O3]

000:curr_base : Ox40000000

000 : phys_frag : -
1 3

- DDDDDDDDDDDDDDDDD
COoO000000000000000.
[=} [=}

[=}

L=}

©1989-2025 Lauterbach OS Awareness Manual OSE Delta | 30

TASK.SYMbol Symbol handling of load modules

Format: TASK.SYMbol.<sub_cmd>

Specify the name in quotes, or the magic of the program, as listed in TASK.DProGram.

LOAD <program> Tries to load the symbols of the load module associated with the
specified program.
The debugger searches for a file with the name of the load module
and loads the symbols of this file. After this, the debugger tries to
relocate the symbols to the addresses, where the load module is
located. For a comfortable loading of symbols, configure the Symbol
Autoloader.

RELOAD <program> First removes the symbols of the specified program, before loading
and relocating them again.

RELOC <program> Tries to relocate the symbols of a program to the address, where the
associated lode module is located.

Option <option> <value> The <option>LOADCMD specifies, how the symbol file of a module is
to be loaded. This command is only used, if the Symbol Autoloader is
not configured.

The default load command is

Data.LOAD.ELF %s.%s /NoCODE /NoClear

where the first %s will be replaced by the program name, and the second %s by the file extension. You may
change this, e.g. if you want to add additional load options:

TASK.SYMbol .Option LOADCMD "d.load.elf %s.%s /NoCODE /NoClear /gnu"

Option <option> <value> The <option> AutoLoad [ON | OFF] enables or disables the Symbol
(cont.) Autoloader. When enabling, ensure that the Symbol Autoloader is
configured correctly.

©1989-2025 Lauterbach OS Awareness Manual OSE Delta | 31

PRACTICE Functions

There are special definitions for OSE Delta specific PRACTICE functions.

TASK.CONFIG() OS Awareness configuration information

Syntax: TASK.CONFIG(magic | magicsize | kernel)

Parameter and Description:

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

kernel Parameter Type: String (without quotation marks).
Returns the address of the kernel state variable.

Return Value Type: Hex value.

TASK.PG.ADDR() Segment address of program

Only OSE 4.x!

Syntax: TASK.PG.ADDR(<program=, [0I1])

Returns the segment address of the specified program.

Parameter and Description:

<program> Parameter Type: String (without quotation marks).

011 Parameter Type: Decimal or hex or binary value.
0 is program segment (P:) and 1 is data segment (D:).

Return Value Type: Hex value.

©1989-2025 Lauterbach OS Awareness Manual OSE Delta | 32

TASK.PG.RELOC() Relocation address for program

Only OSE 4.x!

Syntax: TASK.PG.RELOC(<program=>, [0I1])

Returns the relocation address for the specified program.

Parameter and Description:

<program> Parameter Type: String (without quotation marks).

011 Parameter Type: Decimal or hex or binary value.
0 is program segment (P:) and 1 is data segment (D:).

Return Value Type: Hex value.

TASK.LM.LIST() Next magic in load module list

Syntax: TASK.LM.LIST(</mmagic>)

Returns the next “magic” in the load module list. Specify zero for the first process. Returns zero if no further
load module is available.

Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

TASK.LM.HANDLE() Install handle of load module

Syntax: TASK.LM.HANDLE(</mmagic>)

Returns the “install handle” of the load module.
Parameter Type: Decimal or hex or binary value.

Return Value Type: String.

©1989-2025 Lauterbach OS Awareness Manual OSE Delta | 33

TASK.LM.FILENAME() File name for load module

Syntax: TASK.LM.FILENAME(" <loadmodule>")

Returns the file name for the specified load module.
Parameter Type: String (with quotation marks).

Return Value Type: String.

TASK.LM.RELOCINFO() Relocation information for load module
Only OSE 5.x!
Syntax: TASK.LM.RELOCINFO(" </loadmodule>")

Returns the relocation information for the specified load module, to be used with Data.LOAD.EIf.
Parameter Type: String (with quotation marks).

Return Value Type: String.

TASK.LM.RELOCITER() Relocation information of index section
Only OSE 5.x!
Syntax: TASK.LM.RELOCITER(" </loadmodule>", <index>)

Returns the relocation information of the <index> section for the specified load module, to be used with
Data.LOAD.EIf (relocinfo as iteration).

Parameter and Description:

<loadmodule> Parameter Type: String (with quotation marks).

<index> Parameter Type: Decimal or hex or binary value.

Return Value Type: String.

©1989-2025 Lauterbach OS Awareness Manual OSE Delta | 34

	OS Awareness Manual OSE Delta
	History
	Overview
	Terminology
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Manual Configuration
	Automatic Configuration
	Quick Configuration Guide
	Hooks & Internals in OSE Delta

	Features
	Terminal Emulation for dbgprintf
	Display of Kernel Resources
	Task Stack Coverage
	Task-Related Breakpoints
	Task Context Display
	MMU Support
	MMU Declaration

	SMP Support
	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Task State Analysis
	Function Runtime Statistics
	OSE Delta specific Menu
	Debugging OSE Load Modules
	Load Modules in OSE 4
	Load Modules in OSE 5
	Symbol Autoloader

	OSE Delta Commands
	TASK.DBIOS Display bios modules
	TASK.DBLock Display blocks
	TASK.DConf Display kernel configuration
	TASK.DLoadMod Display load modules
	TASK.DPOOL Display pools
	TASK.DProc Display processes
	TASK.DProGram Display loaded programs
	TASK.MMU.SCAN Scan OSE MMU
	TASK.RAMLOG Display ramlog
	TASK.SYMbol Symbol handling of load modules

	PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information
	TASK.PG.ADDR() Segment address of program
	TASK.PG.RELOC() Relocation address for program
	TASK.LM.LIST() Next magic in load module list
	TASK.LM.HANDLE() Install handle of load module
	TASK.LM.FILENAME() File name for load module
	TASK.LM.RELOCINFO() Relocation information for load module
	TASK.LM.RELOCITER() Relocation information of index section

