
MANUAL

Release 02.2025

OS Awareness Manual
OSE Delta

OS Awareness Manual OSE Delta

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 OS Awareness Manuals .. 

 OS Awareness Manual OSE Delta .. 1

 History .. 4

 Overview .. 4

 Terminology 5

 Brief Overview of Documents for New Users 5

 Supported Versions 5

 Configuration ... 6

 Manual Configuration 6

 Automatic Configuration 7

 Quick Configuration Guide 7

 Hooks & Internals in OSE Delta 8

 Features ... 9

 Terminal Emulation for dbgprintf 9

 Display of Kernel Resources 9

 Task Stack Coverage 9

 Task-Related Breakpoints 10

 Task Context Display 11

 MMU Support 12

 MMU Declaration 12

 SMP Support 15

 Dynamic Task Performance Measurement 15

 Task Runtime Statistics 16

 Task State Analysis 17

 Function Runtime Statistics 18

 OSE Delta specific Menu 19

 Debugging OSE Load Modules 20

 Load Modules in OSE 4 20

 Load Modules in OSE 5 21

 Symbol Autoloader 23

 OSE Delta Commands .. 25

 TASK.DBIOS Display bios modules 25
OS Awareness Manual OSE Delta | 2©1989-2025 Lauterbach

 TASK.DBLock Display blocks 25

 TASK.DConf Display kernel configuration 26

 TASK.DLoadMod Display load modules 26

 TASK.DPOOL Display pools 27

 TASK.DProc Display processes 28

 TASK.DProGram Display loaded programs 29

 TASK.MMU.SCAN Scan OSE MMU 30

 TASK.RAMLOG Display ramlog 30

 TASK.SYMbol Symbol handling of load modules 31

 PRACTICE Functions .. 32

 TASK.CONFIG() OS Awareness configuration information 32

 TASK.PG.ADDR() Segment address of program 32

 TASK.PG.RELOC() Relocation address for program 33

 TASK.LM.LIST() Next magic in load module list 33

 TASK.LM.HANDLE() Install handle of load module 33

 TASK.LM.FILENAME() File name for load module 34

 TASK.LM.RELOCINFO() Relocation information for load module 34

 TASK.LM.RELOCITER() Relocation information of index section 34
OS Awareness Manual OSE Delta | 3©1989-2025 Lauterbach

OS Awareness Manual OSE Delta

Version 13-Feb-2025

History

04-Feb-21 Removing legacy command TASK.TASKState.

Overview

The OS Awareness for OSE Delta (aka “OSE”) contains special extensions to the TRACE32 Debugger. This
manual describes the additional features, such as additional commands and statistic evaluations.
OS Awareness Manual OSE Delta | 4©1989-2025 Lauterbach

Terminology

OSE Delta uses the term “process”, while TRACE32 uses the term “task”. Both are used interchangeably
throughout this manual.

Brief Overview of Documents for New Users

Architecture-independent information:

• “Debugger Tutorial” (debugger_tutorial.pdf): Get familiar with the basic features of a TRACE32
debugger.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

• “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

Supported Versions

Currently OSE Delta is supported and tested for the following versions:

• OSE Delta (aka “OSE”) for ARM, CPU32, MIPS, PowerPC;

• OSE Versions 3.0 to 5.x
OS Awareness Manual OSE Delta | 5©1989-2025 Lauterbach

Configuration

The TASK.CONFIG command loads an extension definition file called "osed.t32" (directory
"~~/demo/<processor>/kernel/osedelta"). It contains all necessary extensions.

Automatic configuration tries to locate the OSE Delta internals automatically. For this purpose all symbol
tables must be loaded and accessible at any time the OS Awareness is used.

If a system symbol is not available or if another address should be used for a specific system variable then
the corresponding argument must be set manually with the appropriate address. This can be done by
manual configuration which can require some additional arguments, too.

If you want to display the OS objects “On The Fly” while the target is running, you need to have access to
memory while the target is running. In case of ICD, you have to enable SYStem.MemAccess.

Manual Configuration

Manual configuration for the OS Awareness for OSE Delta can be used to explicitly define some memory
locations. It is recommended to use automatic configuration.

Example for manual configuration:

See Hooks & Internals for details on <ose_kernel_structure>.

See also the example "~~/demo/<processor>/kernel/osedelta/osed.cmm".

Format: TASK.CONFIG osed <magic_address> 0 <ose_kernel_struct>

<magic_address> Specifies a memory location that contains the current running task. This
address can be found at the location zzosvarp+0x2c. Use
“data.long(zzosvarp+2c)” as magic address.

<ose_kernel_struct> Specify the additional argument with the symbol for the OSE Delta kernel
structure pointer. This is normally “zzosvarp”.

TASK.CONFIG osed data.long(zzosvarp+2c) 0 zzosvarp
OS Awareness Manual OSE Delta | 6©1989-2025 Lauterbach

Automatic Configuration

For system resource display and trace functionality, you can do an automatic configuration of the OS
Awareness. For this purpose it is necessary that all system internal symbols are loaded and accessible at
any time, the OS Awareness is used. Each of the TASK.CONFIG arguments can be substituted by '0', which
means that this argument will be searched and configured automatically. For a fully automatic configuration,
omit all arguments:

If a system symbol is not available, or if another address should be used for a specific system variable, then
the corresponding argument must be set manually with the appropriate address (see Manual
Configuration).

See Hooks & Internals for details on the used symbols.

See also the example “~~/demo/<processor>/kernel/osedelta/osed.cmm”

Quick Configuration Guide

To get a quick access to the features of the OS Awareness for OSE Delta with your application,
follow this roadmap:

1. Copy the files “osed.t32” and “osed.men” to your project directory (from TRACE32 directory
“~~/demo/<processor>/kernel/osedelta”).

2. Start the TRACE32 Debugger.

3. Load your application as normal.

4. Execute the command:

See “Automatic Configuration”.

5. Execute the command:

See “OSE Delta Specific Menu”.

6. Start your application.

Now you can access the OSE Delta extensions through the menu.

In case of any problems, please carefully read the previous Configuration chapters.

Format: TASK.CONFIG osed

TASK.CONFIG osed

MENU.ReProgram osed
OS Awareness Manual OSE Delta | 7©1989-2025 Lauterbach

Hooks & Internals in OSE Delta

No hooks are used in the kernel.

For retrieving the kernel data and structures, the OS Awareness uses the global kernel symbols and
structure definitions. Ensure that access to those structures is possible every time when features of the OS
Awareness are used.

Be sure that your application is compiled and linked with debugging symbols switched on.
OS Awareness Manual OSE Delta | 8©1989-2025 Lauterbach

Features

The OS Awareness for OSE Delta supports the following features.

Terminal Emulation for dbgprintf

The terminal emulation window can be used as an output window for the “dbgprintf” function of OSE. The
communication via two memory buffers requires no external interface. See the TERM command group for a
description of the terminal emulation. Find an example dbgprintf implementation for the Terminal Emulation
in “~~/demo/<processor>/kernel/osedelta/t32printf.c”.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following OSE
components can be displayed:

For a description of the commands, refer to chapter “OSE Delta Commands”.

If your hardware allows memory access while the target is running, these resources can be displayed “On
The Fly”, i.e. while the application is running, without any intrusion to the application.

Without this capability, the information will only be displayed if the target application is stopped.

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this
command will open a window displaying with all active tasks. If you specify only a task magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command
TASK.STacK.PATtern (default value is zero).

TASK.DBIOS BIOS modules

TASK.DBLock Blocks

TASK.DConf Configuration

TASK.DLoadMod Load modules

TASK.DPOOL Pools

TASK.DProc Processes

TASK.DProGram Loaded programs
OS Awareness Manual OSE Delta | 9©1989-2025 Lauterbach

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and
select the task from the TASK.STacK.* window.

It is recommended to display only the tasks you are interested in because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

• Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

• For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.
This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

Break.Set <address>|<range> [/<option>] /TASK <task> Set task-related breakpoint.

NOTE: Task-related breakpoints impact the real-time behavior of the application.
OS Awareness Manual OSE Delta | 10©1989-2025 Lauterbach

For example, on ARM architectures: If the RTOS serves the Context ID register at task switches, and if the
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,
you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

Task Context Display

You can switch the whole viewing context to a task that is currently not being executed. This means that all
register and stack-related information displayed, e.g. in Register, List.auto, Frame etc. windows, will refer
to this task. Be aware that this is only for displaying information. When you continue debugging the
application (Step or Go), the debugger will switch back to the current context.

To display a specific task context, use the command:

• Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

• To switch back to the current context, omit all parameters.

Break.CONFIG.UseContextID ON Enables the comparison to the whole Context ID register.

Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK.List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.

Frame.TASK [<task>] Display task context.
OS Awareness Manual OSE Delta | 11©1989-2025 Lauterbach

To display the call stack of a specific task, use the following command:

If you’d like to see the application code where the task was preempted, then take these steps:

1. Open the Frame /Caller /Task <task> window.

2. Double-click the line showing the OS service call.

MMU Support

This chapter only applies to OSE versions since 5.0.

OSE uses virtual memory management for load modules. In order to provide full debugging capabilities on
load modules, the Debugger needs to know how virtual addresses are translated to physical addresses and
vice versa. All MMU commands refer to this necessity.

MMU Declaration

To access the virtual and physical addresses correctly, the debugger needs to know the format of the MMU
tables in the target.

The following command is used to declare the basic format of MMU tables:

Frame /Task <task> Display call stack of a task.

MMU.FORMAT <format> [<base_address> [<logical_kernel_address_range>
 <physical_kernel_address>]]

Define MMU
table structure
OS Awareness Manual OSE Delta | 12©1989-2025 Lauterbach

<format> Options for ARM:

<format> Options for PowerPC:

<format> Options for RISC-V:

<format> Description

STD Standard format defined by the CPU

TINY MMU format using a tiny page size of only 1024 bytes

<format> Description

OSE OSE format for load modules

STD Standard format defined by the CPU

<format> Description

STD Automatic detection of the page table format from the SATP register.

SV32 32-bit page table format (for SV32 targets only)

SV32X4 Stage 2 (G-stage) 32-bit page table format for page tables translating
intermediate physical addresses. Not applicable to other page tables.

SV39 39-bit page table format (for SV64 targets only)

SV39X4 Stage 2 (G-stage) 39-bit page table format for page tables translating
intermediate physical addresses. Not applicable to other page tables.

SV48 48-bit page table format (for SV64 targets only)

SV48X4 Stage 2 (G-stage) 48-bit page table format for page tables translating
intermediate physical addresses. Not applicable to other page tables.

SV57 57-bit page table format (for SV64 targets only)

SV57X4 Stage 2 (G-stage) 57-bit page table format for page tables translating
intermediate physical addresses. Not applicable to other page tables.
OS Awareness Manual OSE Delta | 13©1989-2025 Lauterbach

<format> Options for x86:

<base_address>

<base_address> specifies the base address of the kernel translation table. This address can generally be
found at the label “hal_global_page_table”.

<logical_kernel_address_range>

<logical_kernel_address_range> specifies the virtual to physical address translation of the kernel address
range. Currently not necessary.

<physical_kernel_address>

<physical_kernel_address> specifies the physical start address of the kernel. Currently not necessary.

The kernel code and linked-in processes reside in a physical address space. See your OSE configuration file
(usually rtose5.conf) for the krn/log_mem entry with mapping type “SASE”. Create a debugger MMU entry
with TRANSlation.Create that corresponds to this entry.

E.g. if your configuration file specifies:

krn/log_mem/RAM_SASE=base:0 size:32M mapping_type:SASE

then create the following debugger MMU entry with the virtual address range as first parameter and the
equally mapped physical base address as second parameter:

Load modules get their own virtual address area when loaded. The debugger can use its own table walk to
resolve the virtual addresses to physical addresses. Enable the table walk with tRANSlation.TableWalk
ON.

Use TRANSlation.ON to enable the debugger’s address translation.

<format> Description

EPT Extended page table format (type autodetected)

EPT4L Extended page table format (4-level page table)

EPT5L Extended page table format (5-level page table)

P32 32-bit format with 2 page table levels

PAE Format with 3 page table levels

PAE64 64-bit format with 4 page table levels

PAE64L5 64-bit format with 5 page table levels

STD Automatic detection of the page table format used by the CPU

TRANSlation.Create 0x0--0x01ffffff 0x0
OS Awareness Manual OSE Delta | 14©1989-2025 Lauterbach

A complete MMU declaration may look like this:

If the MMU format is not available, or for examination of the translation, you can scan the address translation
of a load module after loading them. Use the command TASK.MMU.SCAN to read the translation tables.

TRANSlation.List shows the setup of the MMU declaration and scanned translations.

SMP Support

The OS Awareness supports symmetric multiprocessing (SMP).

An SMP system consists of multiple similar CPU cores. The operating system schedules the threads that
are ready to execute on any of the available cores, so that several threads may execute in parallel.
Consequently an application may run on any available core. Moreover, the core at which the application runs
may change over time.

To support such SMP systems, the debugger allows a “system view”, where one TRACE32 PowerView GUI
is used for the whole system, i.e. for all cores that are used by the SMP OS. For information about how to set
up the debugger with SMP support, please refer to the Processor Architecture Manuals.

All core relevant windows (e.g. Register.view) show the information of the current core. The status bar of
the debugger indicates the current core. You can switch the core view with the CORE.select command.

Target breaks, be they manual breaks or halting at a breakpoint, halt all cores synchronously. Similarly, a Go
command starts all cores synchronously. When halting at a breakpoint, the debugger automatically switches
the view to the core that hit the breakpoint.

Because it is undetermined, at which core an application runs, breakpoints are set on all cores
simultaneously. This means, the breakpoint will always hit independently on which core the application
actually runs.

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the
PERF.METHOD used.

MMU.FORMAT OSE hal_global_page_table
TRANSlation.Create 0x0--0x01ffffff 0x0
TRANSlation.TableWalk ON
TRANSlation.ON
OS Awareness Manual OSE Delta | 15©1989-2025 Lauterbach

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.CONFIG.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide
P” (general_ref_p.pdf).

Task Runtime Statistics

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spent in
a task and display it statistically and graphically.

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
LOGGER). For details, refer to “OS-aware Tracing” in TRACE32 Concepts,
page 36 (trace32_concepts.pdf).

Trace.List List.TASK DEFault Display trace buffer and task switches

Trace.STATistic.TASK Display task runtime statistic evaluation

Trace.Chart.TASK Display task runtime timechart

Trace.PROfileSTATistic.TASK Display task runtime within fixed time intervals
statistically

Trace.PROfileChart.TASK Display task runtime within fixed time intervals as
colored graph

Trace.FindAll Address TASK.CONFIG(magic) Display all data access records to the “magic”
location

Trace.FindAll CYcle owner OR CYcle context Display all context ID records
OS Awareness Manual OSE Delta | 16©1989-2025 Lauterbach

Task State Analysis

The time different tasks are in a certain state (running, ready, suspended or waiting) can be evaluated
statistically or displayed graphically.

This feature requires that the following data accesses are recorded:

• All accesses to the status words of all tasks

• Accesses to the current task variable (= magic address)

Adjust your trace logic to record all data write accesses, or limit the recorded data to the area where all TCBs
are located (plus the current task pointer).

Example: This script assumes that the TCBs are located in an array named TCB_array and consequently
limits the tracing to data write accesses on the TCBs and the task switch.

NOTE: This feature is only available, if your debug environment is able to trace task
switches and data accesses (program flow trace is not sufficient). It requires
either an on-chip trace logic that is able to generate a data trace, or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
LOGGER). For details, refer to “OS-aware Tracing” in TRACE32 Concepts,
page 36 (trace32_concepts.pdf).

Break.Set Var.RANGE(TCB_array) /Write /TraceData
Break.Set TASK.CONFIG(magic) /Write /TraceData
OS Awareness Manual OSE Delta | 17©1989-2025 Lauterbach

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

Function Runtime Statistics

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

To evaluate the contents of the trace buffer, use these commands:

Trace.STATistic.TASKState Display task state statistic

Trace.Chart.TASKState Display task state timechart

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
LOGGER). For details, refer to “OS-aware Tracing” in TRACE32 Concepts,
page 36 (trace32_concepts.pdf).

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG(magic) /TraceData

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

Trace.ListNesting Display function nesting

Trace.STATistic.Func Display function runtime statistic

Trace.STATistic.TREE Display functions as call tree
OS Awareness Manual OSE Delta | 18©1989-2025 Lauterbach

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

OSE Delta specific Menu

The menu file “osed.men” contains a menu with OSE Delta specific menu items. Load this menu with the
MENU.ReProgram command.

You will find a new menu called OSE Delta.

• The Display menu items launch the appropriate kernel resource display windows.

• The Stack Coverage submenu starts and resets the OSE Delta specific stack coverage and
provides an easy way to add or remove processes from the stack coverage window.

Trace.STATistic.sYmbol /SplitTASK Display flat runtime analysis

Trace.Chart.Func Display function timechart

Trace.Chart.sYmbol /SplitTASK Display flat runtime timechart
OS Awareness Manual OSE Delta | 19©1989-2025 Lauterbach

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

• The Trace menu is extended. In the List submenu, you can choose if you want a trace list window
to show only task switches (if any) or task switches together with default display.

• The Perf menu contains additional submenus for task runtime statistics and statistics on task
states.

Debugging OSE Load Modules

OSE can load and link additional software parts, so-called “load modules”. Debugging of these load
modules is possible with the help of the OS Awareness for OSE.

The load modules are handled differently between the OSE versions.

Load Modules in OSE 4

If the load module is already loaded in the OSE4 system, you need to load the symbols into the debugger
and relocate them to the actually linked address. Use

TASK.SYMbol.LOAD <loadmodule>

or the “load” button in

TASK.DProGram

to load the symbols.
OS Awareness Manual OSE Delta | 20©1989-2025 Lauterbach

Alternatively, you can load the symbols manually and relocate them with TASK.SYMbol.RELOC.
Example:

If you want to debug a load module from the beginning, you have to load the symbols into the debugger after
loading the module into your system, but before starting it.

Follow this roadmap:

1. Ensure that your system is running and the symbols for the monolith (only) are loaded.

2. Ensure that the OS Awareness for OSE is configured

3. Transfer your load module onto the target (if not already there

4. Use the OSE shell to load and link the module into the system:
pgload tutorial_lm.elf
Notice the “handle”.

5. In TRACE32, execute this command to stop the program run.

6. Ensure with TASK.DProGram that the load module is listed there.

7. Load the symbols of the module as mentioned above.

8. Check with “sYmbol main”, which main function the module uses.

9. Set a breakpoint onto the main function:

10. Continue the program run with:

11. Use the OSE shell to start the load module, using the handle given above:
pgstart 1

The debugger will halt the application at “main()”. You can now continue debugging the start of the load
module.

Load Modules in OSE 5

For load modules in OSE5, you need to define the MMU layout to the debugger or scan the MMU pages of
the load module area. See chapter MMU Support for this.

Data.LOAD.Elf tutorial_lm.elf /NoCODE /NoClear /cygdrive
TASK.SYMbol.RELOC "tutorial_lm.elf"

Break

Break.Set \\tutorial_lm\osemain\main

Go
OS Awareness Manual OSE Delta | 21©1989-2025 Lauterbach

When a load module is already loaded in the OSE5 system, load the symbols into the debugger and
relocate them to the actually linked address. You can use the Symbol Autoloader to manage the loading of
symbol files or explicitly load symbols with TASK.SYMbol.LOAD. The “load” button in TASK.DProGram
triggers this command, too.

Alternatively, you can load the symbols manually and relocate them. Use the “/RELOCTYPE” option to load
the symbols of a load module. The symbol file name must be the same as the file name of the load module.
Example:

You can also use the relocation information of the task.lm.relocinfo() function to relocate the sections in a
script.
Example:

If you want to debug a load module from the beginning, you have to load the symbols into the debugger after
loading the module into your system, but before starting it.

Follow this roadmap:

1. Ensure that your system is running and the symbols for the monolith (only) are loaded.

2. Ensure that the OS Awareness for OSE is configured.

3. Transfer your load module onto the target (if not already there).

4. Use the OSE shell to load and link the module into the system:
pm_install pingpong /ram/pingpong_debug.elf
pm_create pingpong
Notice the “handle”.

5. In TRACE32, execute this command to stop the program run:

6. Scan the load module MMU pages if necessary.

7. Ensure with TASK.DProGram that the load module is listed there.

8. Load the symbols of the module as mentioned above.

9. Check with “sYmbol.name main”, which main function the module uses.

10. Set a breakpoint onto the main function, e.g.:

Data.LOAD.Elf pingpong_debug.elf /NoCODE /NoClear /RELOCTYPE 1

&reloc=task.lm.relocinfo("pingpong")
Data.LOAD.Elf pingpong_debug.elf /NoCODE /NoClear &reloc

Break

Break.Set \\pingpong_debug\pingpoing_main\main
OS Awareness Manual OSE Delta | 22©1989-2025 Lauterbach

11. Continue the program run with:

12. Use the OSE shell to start the load module, using the handle given above, e.g.:
pm_start 1

The debugger will halt the application at “main()”. You can now continue debugging the start of the load
module.

Symbol Autoloader

The OS Awareness for OSE Delta contains an autoloader, which automatically loads symbol files. The
autoloader maintains a list of address ranges, corresponding OSE Delta load modules and the appropriate
load command. Whenever the user accesses an address within an address range specified in the
autoloader, the debugger invokes the appropriate command. The command is usually a call to a PRACTICE
script that loads the symbol file to the appropriate addresses.

The command sYmbol.AutoLOAD.List shows a list of all known address ranges/components and their
symbol load commands.

The autoloader must be enables with the TASK.SYMbol.Option AutoLoad command.

The autoloader reads the target’s tables for the load modules and fills the autoloader list with the modules
found on the target. All necessary information, such as load addresses, are retrieved from kernel-internal
information.

If an address is accessed that is covered by the autoloader list, the autoloader calls <action> and appends
the load addresses and the space ID of the component to the action. Usually, <action> is a call to a
PRACTICE script that handles the parameters and loads the symbols. Please see the example script
“autoload.cmm” in the ~~/demo directory.

The point in time when the component information is retrieved from the target can be set:

Go

sYmbol.AutoLOAD.CHECKCoMmanD "<action>"

<action> Action to take for symbol load, e.g. "DO autoload.cmm "

sYmbol.AutoLOAD.CHECK [ON | OFF | ONGO]

(no argument) A single sYmbol.AutoLOAD.CHECK command refreshes the information
about the target.

ON The debugger automatically reads the information on every go/halt or
step cycle. This significantly slows down the debugger’s speed when
single stepping.
OS Awareness Manual OSE Delta | 23©1989-2025 Lauterbach

ONGO The debugger automatically reads the information on every go/halt cycle,
but not when single stepping.

OFF no automatic update of the autoloader table will be done, you have to
manually trigger the information read when necessary. To accomplish
that, execute the sYmbol.AutoLOAD.CHECK command without
arguments.

NOTE: The autoloader covers only components that are already started. Components that
are not in the current module table are not covered.
OS Awareness Manual OSE Delta | 24©1989-2025 Lauterbach

OSE Delta Commands

TASK.DBIOS Display bios modules

Displays a table of all installed bios modules of OSE Delta.

TASK.DBLock Display blocks

Displays the block table of OSE Delta or detailed information about one specific block.

Without any arguments, a table with all created blocks will be shown.

Specify a block name or magic number to display detailed information on that block.

“magic” is a unique ID, used by the OS Awareness to identify a specific block (address of the BCB).

Format: TASK.DBIOS

Format: TASK.DBlock [<block>]
OS Awareness Manual OSE Delta | 25©1989-2025 Lauterbach

The field “magic” and pool IDs are mouse sensitive, double clicking on them opens appropriate windows.

TASK.DConf Display kernel configuration

Displays the OSE Delta kernel configuration.

TASK.DLoadMod Display load modules

Only available on OSE5 systems. For OSE4 systems, use TASK.DProGram.

Displays a table with all loaded load modules of OSE Delta or detailed information about one specific load
module.

Without any arguments, a table with all loaded load modules will be shown.
Specify the name or magic number of a load module to display detailed information on that load module.

“magic” is a unique ID, used by the OS Awareness to identify a specific load module.

The fields “magic”, “textbase” and “entry" are mouse sensitive, double clicking on them opens appropriate
windows.

Format: TASK.DConf

Format: TASK.DLoadMod [<loadmodule>]
OS Awareness Manual OSE Delta | 26©1989-2025 Lauterbach

TASK.DPOOL Display pools

Displays the pool table of OSE Delta or detailed information about one specific pool.

The fields “magic” and “id” are mouse sensitive, double clicking on them opens appropriate windows.

Format: TASK.DPOOL [<pool>]

<pool> Without any arguments, a table with all created pools will be shown.
Specify a pool magic number or ID to display detailed information on that
pool.
“magic” is a unique ID, used by the OS Awareness to identify a specific pool
(address of the pool control block).
OS Awareness Manual OSE Delta | 27©1989-2025 Lauterbach

TASK.DProc Display processes

Displays the process table of OSE Delta or detailed information about one specific process.
.

The fields “magic”, “name”, “pid”, “entrypoint” and “sender” are mouse sensitive, double clicking them opens
appropriate windows.

Format: TASK.DProc [<process>]

<process> Without any arguments, a table with all created processes will be shown.
Specify a process name or magic number to display detailed information
on that process, including its signal queue.
“magic” is a unique ID, used by the OS Awareness to identify a specific
process (address of the PCB).
OS Awareness Manual OSE Delta | 28©1989-2025 Lauterbach

TASK.DProGram Display loaded programs

Displays a table with all loaded programs of OSE Delta or detailed information about one specific program.

The fields “magic” and “name” are mouse sensitive, double clicking on them opens appropriate windows.

“debug symbols” shows if the appropriate debugging symbols are loaded into the debugger, and if relocation
is needed.

The button on the end of the line shows either load, relocate or reload, depending on the state of the
debugging symbols.

• load tries to load and relocate the debugging symbols, by executing TASK.SYMbol.LOAD.

• relocate appears, if symbols are loaded, but do not seem to fit to the addresses of the load
module. It then tries to relocate the symbols automatically, by executing TASK.SYMbol.RELOC.

• reload first removes the symbols of the load module, second reloads them with
TASK.SYMbol.RELOAD. Use this feature, if you changed your load module and reloaded it into
the OSE system, to get the new symbols.

Format: TASK.DProGram [<program>]

<program> Without any arguments, a table with all loaded programs will be shown.
Specify the name or magic number of a program to display detailed
information on that program.
“magic” is a unique ID, used by the OS Awareness to identify a specific load
module.
OS Awareness Manual OSE Delta | 29©1989-2025 Lauterbach

TASK.MMU.SCAN Scan OSE MMU
Only available on OSE5 systems.

Scans the MMU tables of OSE Delta for load modules.

Load modules are subject to a virtual memory management. In order to handle this correctly, the debugger
needs to know the correct virtual to physical address translation for the load modules.

Without any argument, the debugger scans the whole address translation, which covers kernel, built-in
processes and all load modules. This can take a very long time. To reduce the time, specify the start address
and the size of your virtual address range (size defaults to 128MB if omitted). This range is defined in the
OSE configuration file as “SAS” mapping type. E.g. if your configuration file specifies:

krn/log_mem/RAM=base:512M size:32M mapping_type:SAS

then scan this virtual address range after loading your modules with the virtual base address as first
parameter and the size as second parameter:

Check TRANSlation.List for the result.

See also chapter “MMU Support”.

TASK.RAMLOG Display ramlog

Displays the messages in the RAMLOG area of OSE.

Format: TASK.MMU.SCAN [<address> [<size>]]

TASK.MMU.SCAN 0x20000000 0x02000000

Format: TASK.RAMLOG
OS Awareness Manual OSE Delta | 30©1989-2025 Lauterbach

TASK.SYMbol Symbol handling of load modules

Specify the name in quotes, or the magic of the program, as listed in TASK.DProGram.

The default load command is

where the first %s will be replaced by the program name, and the second %s by the file extension. You may
change this, e.g. if you want to add additional load options:

Format: TASK.SYMbol.<sub_cmd>

LOAD <program> Tries to load the symbols of the load module associated with the
specified program.
The debugger searches for a file with the name of the load module
and loads the symbols of this file. After this, the debugger tries to
relocate the symbols to the addresses, where the load module is
located. For a comfortable loading of symbols, configure the Symbol
Autoloader.

RELOAD <program> First removes the symbols of the specified program, before loading
and relocating them again.

RELOC <program> Tries to relocate the symbols of a program to the address, where the
associated lode module is located.

Option <option> <value> The <option> LOADCMD specifies, how the symbol file of a module is
to be loaded. This command is only used, if the Symbol Autoloader is
not configured.

Data.LOAD.ELF %s.%s /NoCODE /NoClear

TASK.SYMbol.Option LOADCMD "d.load.elf %s.%s /NoCODE /NoClear /gnu"

Option <option> <value>
(cont.)

The <option> AutoLoad [ON | OFF] enables or disables the Symbol
Autoloader. When enabling, ensure that the Symbol Autoloader is
configured correctly.
OS Awareness Manual OSE Delta | 31©1989-2025 Lauterbach

PRACTICE Functions

There are special definitions for OSE Delta specific PRACTICE functions.

TASK.CONFIG() OS Awareness configuration information

Parameter and Description:

Return Value Type: Hex value.

TASK.PG.ADDR() Segment address of program
Only OSE 4.x!

Returns the segment address of the specified program.

Parameter and Description:

Return Value Type: Hex value.

Syntax: TASK.CONFIG(magic | magicsize | kernel)

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

kernel Parameter Type: String (without quotation marks).
Returns the address of the kernel state variable.

Syntax: TASK.PG.ADDR(<program>, [0|1])

<program> Parameter Type: String (without quotation marks).

0 | 1 Parameter Type: Decimal or hex or binary value.
0 is program segment (P:) and 1 is data segment (D:).
OS Awareness Manual OSE Delta | 32©1989-2025 Lauterbach

TASK.PG.RELOC() Relocation address for program
Only OSE 4.x!

Returns the relocation address for the specified program.

Parameter and Description:

Return Value Type: Hex value.

TASK.LM.LIST() Next magic in load module list

Returns the next “magic” in the load module list. Specify zero for the first process. Returns zero if no further
load module is available.

Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

TASK.LM.HANDLE() Install handle of load module

Returns the “install handle” of the load module.

Parameter Type: Decimal or hex or binary value.

Return Value Type: String.

Syntax: TASK.PG.RELOC(<program>, [0|1])

<program> Parameter Type: String (without quotation marks).

0 | 1 Parameter Type: Decimal or hex or binary value.
0 is program segment (P:) and 1 is data segment (D:).

Syntax: TASK.LM.LIST(<lmmagic>)

Syntax: TASK.LM.HANDLE(<lmmagic>)
OS Awareness Manual OSE Delta | 33©1989-2025 Lauterbach

TASK.LM.FILENAME() File name for load module

Returns the file name for the specified load module.

Parameter Type: String (with quotation marks).

Return Value Type: String.

TASK.LM.RELOCINFO() Relocation information for load module
Only OSE 5.x!

Returns the relocation information for the specified load module, to be used with Data.LOAD.Elf.

Parameter Type: String (with quotation marks).

Return Value Type: String.

TASK.LM.RELOCITER() Relocation information of index section
Only OSE 5.x!

Returns the relocation information of the <index> section for the specified load module, to be used with
Data.LOAD.Elf (relocinfo as iteration).

Parameter and Description:

Return Value Type: String.

•

Syntax: TASK.LM.FILENAME("<loadmodule>")

Syntax: TASK.LM.RELOCINFO("<loadmodule>")

Syntax: TASK.LM.RELOCITER("<loadmodule>", <index>)

<loadmodule> Parameter Type: String (with quotation marks).

<index> Parameter Type: Decimal or hex or binary value.
OS Awareness Manual OSE Delta | 34©1989-2025 Lauterbach

	OS Awareness Manual OSE Delta
	History
	Overview
	Terminology
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Manual Configuration
	Automatic Configuration
	Quick Configuration Guide
	Hooks & Internals in OSE Delta

	Features
	Terminal Emulation for dbgprintf
	Display of Kernel Resources
	Task Stack Coverage
	Task-Related Breakpoints
	Task Context Display
	MMU Support
	MMU Declaration

	SMP Support
	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Task State Analysis
	Function Runtime Statistics
	OSE Delta specific Menu
	Debugging OSE Load Modules
	Load Modules in OSE 4
	Load Modules in OSE 5
	Symbol Autoloader

	OSE Delta Commands
	TASK.DBIOS Display bios modules
	TASK.DBLock Display blocks
	TASK.DConf Display kernel configuration
	TASK.DLoadMod Display load modules
	TASK.DPOOL Display pools
	TASK.DProc Display processes
	TASK.DProGram Display loaded programs
	TASK.MMU.SCAN Scan OSE MMU
	TASK.RAMLOG Display ramlog
	TASK.SYMbol Symbol handling of load modules

	PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information
	TASK.PG.ADDR() Segment address of program
	TASK.PG.RELOC() Relocation address for program
	TASK.LM.LIST() Next magic in load module list
	TASK.LM.HANDLE() Install handle of load module
	TASK.LM.FILENAME() File name for load module
	TASK.LM.RELOCINFO() Relocation information for load module
	TASK.LM.RELOCITER() Relocation information of index section

