
MANUAL                                                       

Release 02.2025

Onchip/NOR FLASH 
Programming User’s Guide



Onchip/NOR FLASH Programming User’s Guide

TRACE32 Online Help  

TRACE32 Directory  

TRACE32 Index  

TRACE32 Documents  ...................................................................................................................... 

   FLASH Programming  .................................................................................................................... 

      Onchip/NOR FLASH Programming User's Guide  .................................................................... 1

         Introduction  ............................................................................................................................. 5

         Standard Approach  ................................................................................................................. 6

            On-chip FLASH 6

               Integrated On-chip FLASH Programming 6

               Target-controlled On-chip FLASH Programming 8

            Off-chip FLASH Devices Supporting CFI 11

               CPU Setup 12

               Bus Configuration 12

               FLASH Declaration 13

               Unlocking the FLASH Devices 15

               Programming the FLASH Devices 15

               Full Example 16

               Target-controlled FLASH Programming 17

               Full Example (Target-controlled) 20

         Programming Commands  ...................................................................................................... 21

            FLASH.ReProgram Command (Target-controlled) 21

            FLASH.ReProgram Command (TRACE32 Tool-based) 27

            FLASH.Erase / FLASH.Program Command 28

            The FLASH.AUTO Command 31

               Software Breakpoints in FLASH 32

               Code Patches in FLASH 36

               CENSORSHIP Option 39

            Unlocking Command 40

         DualPort FLASH Programming  .............................................................................................. 42

            Benefits 42

            Preconditions 42

            Usage 43

               Full Example 44

               Full Example (ARM/Cortex) 44

         Special Features for Onchip FLASHs  .................................................................................... 45
Onchip/NOR FLASH Programming User’s Guide     |    2©1989-2025   Lauterbach                                                        



            OTP Sector Programming 45

            Mirrored FLASH Addresses 47

               Non-Cached/Cached Addresses 47

               FLASH mirrored to Boot Area 48

               Hardvard Architecture with Unified Memory 48

            FLASH.Create Command 49

               Group Code NOP 49

               INFO Option 50

               KEEP Option 50

               BootModeHeaDer Option 51

               EraseALIAS Option 52

               AutoInc Option 53

            FLASH.TARGET Command 54

               STACKSIZE Option 54

               FirmWareRAM Option 54

            FLASH.CLocK Command 55

            FLASH.CHANGETYPE Command 56

            FLASH.UNSECUREerase Command 57

         FLASH Declaration in Detail  ................................................................................................... 58

            Further Applications for FLASH Declarations Using CFI 58

               Identical FLASH Devices in Series 58

               Heterogeneous FLASH Devices in Series 61

               Determining the FLASH Size 63

               Truncating the FLASH Size to the CPU Address Space 66

               FLASH Declaration via FLASH.CFI Dialog Window 67

               Generation of Equivalent FLASH.Create Commands 68

            Declarations for not CFI-conform FLASH Devices 69

               Manual FLASH Declaration (TRACE32 Tool-based) 69

               FLASH Devices with Uniform Sectors 70

               FLASH Devices with Sectors of Different Size 71

               FLASH Devices in Series 72

               FLASH Devices in Parallel 73

               General Recommendations 74

            TRACE32 Tool-based vs. Target-controlled FLASH Programming 75

               TRACE32 Tool-based FLASH Programming 76

               Target-controlled FLASH Programming 77

               Converting TRACE32 Tool-based to Target-controlled FLASH Programming 85

            Maintaining the Declared FLASH Devices 87

            List of Supported FLASH Devices 87

         FLASH Programming via Boundary Scan  ............................................................................. 88

            Boundary scan chain configuration 88

            FLASH interface definition 89

            FLASH Programming 90
Onchip/NOR FLASH Programming User’s Guide     |    3©1989-2025   Lauterbach                                                        



            Full Example 92

         FAQ  ........................................................................................................................................... 94

         Further Information  ................................................................................................................. 94
Onchip/NOR FLASH Programming User’s Guide     |    4©1989-2025   Lauterbach                                                        



Onchip/NOR FLASH Programming User’s Guide

Version 13-Feb-2025

Introduction

This manual contains all important information for programming

• On-chip FLASH memory

• Off-chip NOR FLASH devices

The programming of off-chip NAND FLASH devices is described in “NAND FLASH Programming User’s 
Guide” (nandflash.pdf).

The programming of off-chip serial FLASH devices is described in “Serial FLASH Programming User’s 
Guide” (serialflash.pdf).

The programming of off-chip eMMC FLASH devices is described in “eMMC FLASH Programming User’s 
Guide” (emmcflash.pdf).
Onchip/NOR FLASH Programming User’s Guide     |    5©1989-2025   Lauterbach                                                        



Standard Approach

Standard Approach provides a compact description of the steps required to program on-chip/NOR FLASH 
memory. The description is knowingly restricted to standard cases. A detailed description of the FLASH 
programming concepts is given in the subsequent chapters of this manual.

On-chip FLASH

Integrated On-chip FLASH Programming

Integrated on-chip FLASH programming means that the FLASH programming algorithm is part of the 
TRACE32 software.

If the programming of the on-chip FLASH is integrated into the TRACE32 software, the on-chip FLASH is 
automatically declared when the target CPU is selected. The FLASH declaration is listed in the FLASH.List 
window.

If the on-chip FLASH is relocatable the address assignment for the FLASH is automatically performed 
before the on-chip FLASH is accessed by TRACE32. The address assignment is based on the settings in 
the corresponding configuration registers of the CPU.
Onchip/NOR FLASH Programming User’s Guide     |    6©1989-2025   Lauterbach                                                        



Full example for integrated on-chip FLASH programming, here for the MCS12/S12X architecture:

; establish the communication between the debugger and the CPU
 SYStem.CPU Auto
 SYStem.Up

; program FLASH
 FLASH.AUTO ALL
 Data.LOAD.COSMIC demo.h12
 FLASH.AUTO off

; verify the FLASH contents
 Data.LOAD.COSMIC demo.h12 /DIFF
 IF FOUND()

PRINT "Verify error after FLASH programming"
 ELSE

PRINT "FLASH programming completed successfully"
...
Onchip/NOR FLASH Programming User’s Guide     |    7©1989-2025   Lauterbach                                                        



Target-controlled On-chip FLASH Programming

Videos about the target-controlled on-chip flash programming can be found here:
support.lauterbach.com/kb/articles/flash-programming

Target-controlled on-chip FLASH programming means that the FLASH programming algorithm is not 
part of the TRACE32 software. An external programming algorithm usually provided by Lauterbach has 
to be linked to the TRACE32 software. This approach is demonstrated in example scripts. They can be 
found in the TRACE32 installation directory:
~~/demo/<architecture>/flash/<cpu>.cmm

e.g. ~~/demo/powerpc/flash/jpc564xbc.cmm
     ~~/demo/arm/flash/mk20.cmm

Where ~~ is expanded to the <TRACE32_installation_directory>, which is c:/T32 by default.
Using target-controlled FLASH programming for the on-chip FLASH has the advantage that the FLASH 
algorithm can be updated very easily. In most cases no update of the TRACE32 software is required.

If available Lauterbach uses the FLASH programming libraries provided by the chip manufacturer. Using the 
provided libraries ensures that the FLASH algorithm fulfills the manufacturer´s requirements. The FLASH 
algorithm provided by Lauterbach is interfacing between the TRACE32 software and the library algorithm. 

The FLASH programming example scripts are written for the following major use cases:

1. Program FLASH directly after TRACE32 PowerView was started.

Choose File menu > Run Script or use the following command to establish the debug 
communication and to program the on-chip FLASH:

The script queries all necessary information via suitable dialog boxes.

DO ~~/demo/powerpc/flash/jpc564xbc.cmm
Onchip/NOR FLASH Programming User’s Guide     |    8©1989-2025   Lauterbach                                                        

https://support.lauterbach.com/kb/articles/flash-programming


2. Use FLASH programming script in your start-up script.

If you create your own start-up script for your target hardware, please call the flash programming 
script from there. If you leave the flash programming script unchanged, you can always replace it with 
its most current version.

The following parameters can be used, when the flash programming script is called:

Not every script supports all parameters. The parameters relevant for your script are described in the 
comment section of the script.

CPU=<cpu> If a FLASH programming script supports a CPU family, you 
can provide your target CPU as parameter.

PREPAREONLY Advise the FLASH programming script to prepare the 
FLASH programming by declaring the FLASH sectors and 
by linking the appropriate programming binary. The FLASH 
programming commands are bypassed.

DUALPORT=0|1 Disable/enable DualPort FLASH programming.
For all processors/cores that allow to write to physical memory 
while the CPU is running a higher FLASH programming 
performance can be achieved by the use of DualPort FLASH 
Programming
Onchip/NOR FLASH Programming User’s Guide     |    9©1989-2025   Lauterbach                                                        



The following framework can be used to call the flash programming script from your start-up script.

The FLASH.ReProgram command used in a script can be replaced by the FLASH.AUTO command if a too 
old version of the TRACE32 software is used.

For some on-chip FLASHs the command FLASH.Program might fail due to:

• ECC protection of the on-chip FLASH

Each ECC row can only be programmed once, but the file format fragmentation does not match 
the ECC row size.

• The on-chip FLASH programming sequence requires a specific number of bytes to be written 
simultaneously.

…

DO <flash_script> [CPU=<cpu>] PREPAREONLY [DUALPORT=0|1]

; program file to on-chip FLASH
FLASH.ReProgram ALL /Erase
Data.LOAD.Elf <file>
FLASH.ReProgram off

; reset processor/chip
; it might be necessary to reset all target settings made by the 
; flash programming script
SYStem.Up

; continue with start-up script
…

Before the first use of the FLASH programming scripts, it is recommended to 
read the comment section of the script.

In some cases the target memory layout or the programming clock has to be 
adapted. The comments in the example script describe the necessary adjustments.
Onchip/NOR FLASH Programming User’s Guide     |    10©1989-2025   Lauterbach                                                        



Off-chip FLASH Devices Supporting CFI

Here we focus on programming of CFI-conform FLASH devices, since most NOR FLASHs support this 
standard.

CFI stands for Common Flash memory Interface. It is an open standard that describes how self-identifying 
information is provided by a FLASH device. Most relevant are: 

• information about the FLASH programming algorithm

• device size and block configuration

TRACE32 queries this information to perform an easy declaration for off-chip NOR FLASH devices.

The following framework can be used to program CFI-conform FLASH devices:

The following gives a description of the individual steps.

; set up the CPU and configure the
; external bus interface

FLASH.RESet ; reset the FLASH declaration

FLASH.CFI … ; declare FLASH sectors via 
; CFI query

FLASH.UNLOCK ALL ; unlock FLASH if required

FLASH.ReProgram ALL ; enable the FLASH for programming

Data.LOAD.auto … ; load the programming file

FLASH.ReProgram off ; program the FLASH and disable
; the FLASH programming
Onchip/NOR FLASH Programming User’s Guide     |    11©1989-2025   Lauterbach                                                        



CPU Setup

FLASH programming with TRACE32 requires, that the communication between the debugger and the target 
CPU is established. The following commands are available to set up this communication:

Bus Configuration

Programming of an off-chip FLASH devices requires a proper initialization of the external bus interface. The 
following settings in the bus configuration might be necessary:

• Write access has to be enabled for the FLASH devices

• Definition of the base address of the FLASH devices

• Definition of the size of the FLASH devices

• Definition of the data bus size that is used to access the FLASH devices

• Definition of the timing (number of wait states for the access to the FLASH devices)

Use the PER.view command to check the settings in the bus configuration registers.

SYStem.CPU <cpu> Specify your target CPU

SYStem.Up Establish the communication between the 
debugger and the target CPU

SYStem.CPU MCF5272 ; select ColdFire MCF5272 as target CPU

SYStem.Up ; establish the communication between the
; debugger and the target CPU

PER.Set MOV:0xc0f %Long 0x10000001 ; specify the base address for the
; special function registers

PER.Set SD:0x10000044 %Long 0x28

; the FLASH is connected to Chip
; Select CS0, most settings are
; already correct after reset
; set the number of wait states 
; to 10

PER.view , "Chip-Select Module" ; display the CS0 configuration
Onchip/NOR FLASH Programming User’s Guide     |    12©1989-2025   Lauterbach                                                        



FLASH Declaration

The following commands are available to set up the FLASH declaration:

Example:

FLASH.RESet Reset the FLASH declaration

FLASH.CFI <start_address> <bus_width> Set up a declaration for CFI-conform 
FLASH devices

FLASH.List Display the declaration

Parameters for FLASH.CFI command

<start_address> Defines the start address of the FLASH devices.

<bus_width> Defines the width of the data bus between the target CPU and the 
FLASH devices.

FLASH.RESet

FLASH.CFI 0x0 Word

FLASH.List
Onchip/NOR FLASH Programming User’s Guide     |    13©1989-2025   Lauterbach                                                        



If two or more identical FLASH devices are used in parallel to implement the needed data bus width, it is 
sufficient for the FLASH declaration to specify this <bus_width>. 

Example: Two Intel Strata FLASH devices 28F128J3 in 16-bit mode are used in parallel to implement a 32-
bit data bus.

FLASH.RESet

FLASH.CFI 0x0 Long

FLASH.List
Onchip/NOR FLASH Programming User’s Guide     |    14©1989-2025   Lauterbach                                                        



Unlocking the FLASH Devices

Many FLASH devices provide a sector/block protection to avoid unintended erasing or programming 
operations. 

Since some FLASH devices are locked after power-up the protection has to be unlocked in order to erase or 
program the FLASH devices. Please refer to the data sheet of your FLASH device, to find out if your FLASH 
provides sector/block protection.

Programming the FLASH Devices

The following command are available to program the FLASH:

Example:

FLASH.UNLOCK ALL Unlock FLASH devices

FLASH.UNLOCK ALL

FLASH.ReProgram ALL Enable all declared FLASH devices for
programming

FLASH.ReProgram off Program the FLASH devices and disable
the FLASH programming afterwards

Data.LOAD.auto <file> Load the programming file (in most cases an 
automatic detection of the file format is possible) 

Data.LOAD.<file_format> <file> Please refer to the section Compilers in 
the chapter Support of your Processor 
Architecture Manual for the supported file 
formats

Data.LOAD.Elf <file> Load the programming file 
(ELF/DWARF format) 

Data.LOAD.Binary <file> <start_address> Load the programming file (binary file) and 
specify the <start_address> of the FLASH 
devices

Data.LOAD.S3record <file> Load the programming file (S3 record file) 

FLASH.ReProgram ALL

Data.LOAD.auto demo.x

FLASH.ReProgram off
Onchip/NOR FLASH Programming User’s Guide     |    15©1989-2025   Lauterbach                                                        



Full Example

; select ColdFire MCF5272 as target CPU
SYStem.CPU MCF5272

; establish the communication between the debugger and the target CPU
SYStem.Up

; specify the base address for the special function registers
PER.Set MOV:0xc0f %Long 0x10000001

; the FLASH is connected to Chip Select CS0, most settings are already
; correct after reset - set the number of wait states to 10
PER.Set SD:0x10000044 %Long 0x28

; reset the FLASH declaration
FLASH.RESet

; declare the FLASH sectors by CFI query
FLASH.CFI 0x0 Word

; unlock the FLASH device if required for a power-up locked device
; FLASH.UNLOCK ALL

; enable the programming for all declared FLASH devices
FLASH.ReProgram ALL

; specify the file that should be programmed
Data.LOAD.auto demo.x

; program the file and disable the FLASH programming
FLASH.ReProgram off

; verify the FLASH contents
Data.LOAD.auto demo.x /DIFF

IF FOUND()
PRINT "Verify error after FLASH programming"

ELSE
PRINT "FLASH programming completed successfully"

...
Onchip/NOR FLASH Programming User’s Guide     |    16©1989-2025   Lauterbach                                                        



Target-controlled FLASH Programming

The FLASH programming steps described so far are easy to carry out, but FLASH programming is slow. 
The programming time can be considerably improved by using so-called target-controlled FLASH 
programming.

Target-controlled FLASH programming means that the underlying FLASH programming algorithm is no 
longer part of the TRACE32 software. FLASH programming works now in principle as follows:

1. The FLASH algorithm is downloaded to the target RAM.

2. The programming data are downloaded to the target RAM.

3. The FLASH algorithm running in the target RAM programs the data to the FLASH devices.

This way the communication between the host and the debugger hardware is minimized.

Ready-to-run binary files for target-controlled FLASH programming are available for all common processor 
architectures in the folder  ~~/demo/<architecture>/flash. Where ~~ is expanded to the 
<trace32_installation_directory>, which is c:/T32 by default. TRACE32 loads the appropriate 
FLASH programming algorithm automatically from this directory when target-controlled FLASH 
programming with CFI is used. 
Onchip/NOR FLASH Programming User’s Guide     |    17©1989-2025   Lauterbach                                                        



In order to initialize the communication between the TRACE32 software and the external FLASH 
programming algorithm the following command is used:

Parameters

• <start_address>

Defines the start address of the FLASH devices.

• <bus_width>

Defines the width of the data bus between the target CPU and the FLASH devices.

• <code_range>

Define an address range in the target´s RAM to which the external FLASH programming 
algorithm is loaded.

Required size for the code is size_of(<flash_algorithm>) + 32 byte

• <data_range>

Define the address range in the target´s RAM where the programming data are buffered for the 
FLASH algorithm.

The argument buffer used for the communication between the TRACE32 software and the 
FLASH algorithm is located at the first 32 bytes of <data_range>. The 256 byte stack is located 
at the end of <data_range>.

<buffer_size> = 
size_of(<data_range>) - 32 byte argument buffer - 256 byte stack

<buffer_size> is the maximum number of bytes that are transferred from the TRACE32 
software to the external FLASH programming algorithm in one call. 

FLASH.CFI <start_address> <bus_width> /TARGET <code_range> <data_range>

FLASH algorithm

Figure: Memory mapping for the <code_range> 

32 byte

32 byte argument buffer 

Figure: Memory mapping for the <data_range> 

buffer for programming data

256 byte stack
Onchip/NOR FLASH Programming User’s Guide     |    18©1989-2025   Lauterbach                                                        



Example:

FLASH.RESet

FLASH.CFI 0x0 Word /TARGET 0x20000000++0xfff 0x20001000++0xfff

FLASH.List
Onchip/NOR FLASH Programming User’s Guide     |    19©1989-2025   Lauterbach                                                        



Full Example (Target-controlled)

For all processors/cores that allow to write to physical memory while the CPU is running a higher FLASH 
programming performance can be achieved by the use of DualPort FLASH Programming.

; select ColdFire MCF5272 as target CPU
SYStem.CPU MCF5272

; establish the communication between the debugger and the target CPU
SYStem.Up

; specify the base address for the special function registers
PER.Set MOV:0xc0f %Long 0x10000001

; the FLASH is connected to Chip Select CS0, most settings are already
; correct after reset - set the number of wait states to 10
PER.Set SD:0x10000044 %Long 0x28

; reset the FLASH declaration
FLASH.RESet

; set up the FLASH declaration for target-controlled programming
; target RAM at address 0x20000000
FLASH.CFI 0x0 Word /TARGET 0x20000000++0xfff 0x20001000++0xfff

; unlock the FLASH device if required for a power-up locked device
; FLASH.UNLOCK ALL

; enable the programming for all declared FLASH devices
; the option Erase ensures that unused sectors are erased
FLASH.ReProgram ALL /Erase

; specify the file that should be programmed
Data.LOAD.auto demo.x

; program all modified sectors and disable the FLASH programming
FLASH.ReProgram off

; verify the FLASH contents
Data.LOAD.auto demo.x /DIFF

IF FOUND()
PRINT "Verify error after FLASH programming"

ELSE
PRINT "FLASH programming completed successfully"

...
Onchip/NOR FLASH Programming User’s Guide     |    20©1989-2025   Lauterbach                                                        



Programming Commands

FLASH.ReProgram Command (Target-controlled)

The command FLASH.ReProgram is the best choice for target-controlled FLASH programming. It provides 
an optimum FLASH programming performance by reducing the erasing and programming cycles to a 
minimum:

• Only not-empty sectors are erased.

• Only modified sectors are programmed.

TRACE32 allocates a Virtual FLASH Programming Memory to implement the FLASH.ReProgram 
command:

Target FLASH Virtual FLASH 
Programming Memory 

Sector 1

Sector 2

Sector 3

Sector 4

Sector n

Virtual Sector 1

Virtual Sector 2

Virtual Sector 3

Virtual Sector 4

Virtual Sector n
Onchip/NOR FLASH Programming User’s Guide     |    21©1989-2025   Lauterbach                                                        



The following command sequence is recommended when using the FLASH.ReProgram command:

Details

FLASH programming by using the FLASH.ReProgram command works in detail as follows:

It is recommended to initialize the Virtual FLASH Programming Memory as erased (option /Erase). This 
inhibits that obsolete code is remaining in unused sectors.

FLASH.ReProgram ALL /Erase ; switch target FLASH to
; reprogramming state and
; erase virtual FLASH programming
; memory

Data.LOAD.auto … ; write the contents of the
; programming file to the virtual
; FLASH programming memory

FLASH.ReProgram off ; program only changed sectors to
; the target FLASH and erase
; obsolete code in unused sectors

FLASH.ReProgram ALL /Erase ; switch target FLASH to
; reprogramming state and
; erase virtual FLASH programming
; memory
Onchip/NOR FLASH Programming User’s Guide     |    22©1989-2025   Lauterbach                                                        



When the command FLASH.ReProgram /Erase is entered:

1. The Virtual FLASH Programming Memory is erased.

2. The target-controlled FLASH algorithm is called to deliver the following information:

- The checksum for the target FLASH sector

- The information if the target FLASH sector is erased

- The information if an erased FLASH bit is 0 or 1

Afterwards all not-empty FLASH sectors are marked as pending. All empty FLASH sectors are marked as 
reprog.
Onchip/NOR FLASH Programming User’s Guide     |    23©1989-2025   Lauterbach                                                        



The following actions are taken, when TRACE32 performs a write access to a sector:

3. The new data is copied to the corresponding sector in the Virtual FLASH Programming Memory.

4. The checksum for the virtual sector is calculated.

5. The state of the sector is changed from pending to reprog if the checksum of the target FLASH 
sector is equal the checksum of the virtual sector.

The state of the sector is changed from reprog to pending if the checksum of the target FLASH 
sector is different from the checksum of the virtual sector.

When the command FLASH.ReProgram off is executed, all sectors marked as pending are programmed to 
the target FLASH. In this process TRACE32 only erases not-empty sectors before programming. 

After all pending sectors are programmed FLASH programming is disabled. This is indicated by an empty 
state column in the FLASH.List window.

Data.LOAD.auto … ; write the contents of the
; programming file into the 
; virtual FLASH programming
; memory

FLASH.ReProgram off ; program only changed sectors to
; the target FLASH and erase
; obsolete code in unused sectors
Onchip/NOR FLASH Programming User’s Guide     |    24©1989-2025   Lauterbach                                                        



The command syntax:

TRACE32 commands that perform a write access on the memory:

NOTE: Please be aware that TRACE32 PowerView displays the contents of the Virtual 
FLASH Programming Memory, if the FLASH is in reprogramming state and the 
current state of the FLASH sector is pending.

NOTE: If the FLASH is in reprogramming state, the command

FLASH.ReProgram CANCEL

can be used to undo all changes and re-start from scratch.

FLASH.ReProgram ALL | <address_range> | <unit_number> [/Erase] Switch FLASH device 
to reprogramming state 
for optimized FLASH 
programming

FLASH.ReProgram off Program only changed 
sectors

FLASH.ReProgram CANCEL Cancel FLASH 
programming without 
programming pending 
changes.

Data.LOAD.auto <file> Write code from the programming file to 
memory
(if an automatic detection of file format is 
possible) 

Data.Set [<address>|<range> %<format> <value>] Write <value> to the specified memory 
location

Data.PATTERN  <range> [/<option>] Fill memory with a predefined pattern

…

Onchip/NOR FLASH Programming User’s Guide     |    25©1989-2025   Lauterbach                                                        



Full example:

...

; reset the FLASH declaration
FLASH.RESet

; set up the FLASH declaration for target-controlled programming
; target RAM at address 0x20000000
FLASH.CFI 0x0 Word /TARGET 0x20000000++0xfff 0x20001000++0xfff

; switch all declared FLASH sectors to reprogramming state
FLASH.ReProgram ALL /Erase

; copy the code from the programming file to the corresponding sectors
; in the virtual FLASH and mark all changed sectors
Data.LOAD.auto demo.x

; program only the changed sectors
FLASH.ReProgram off

; verify the FLASH contents
Data.LOAD.auto demo.x /DIFF

IF FOUND()
PRINT "Verify error after FLASH programming"

ELSE
PRINT "FLASH programming completed successfully"

...
Onchip/NOR FLASH Programming User’s Guide     |    26©1989-2025   Lauterbach                                                        



FLASH.ReProgram Command (TRACE32 Tool-based)

If TRACE32 tool-based FLASH programming is used, the reprog state is handled differently:

The following actions are taken, when TRACE32 performs a write access on a sector:

1. The corresponding sector in the Virtual FLASH Programming Memory is marked as pending. 

Due to performance reasons no erase status is checked and no checksum is calculated for the target 
FLASH sector.

2. The corresponding sector is erased in the Virtual FLASH Programming Memory.

3. The new data is copied to the corresponding sector in the Virtual FLASH Programming Memory.

If the recommended command sequence for the FLASH.ReProgram is used, no performance benefit is 
reached compared to the usage of FLASH.Erase / FLASH.Program.

• Since no erase status is maintained for a target FLASH sector empty sectors are erased.

• Since no checksum is calculated for a target FLASH sector not-modified sectors are 
programmed.

A reasonable performance benefit is reached, when the Virtual FLASH Programming Memory is not erased 
before the contents of the programming file is copied. Such a proceeding however includes the risk, that 
obsolete code remains in unused target FLASH sectors.

FLASH.ReProgram ALL ; switch target FLASH to
; reprogramming state

Data.LOAD.auto … ; write the contents of the
; programming file to the virtual
; FLASH programming memory

FLASH.ReProgram off ; erase and program all those
; sectors to the target FLASH to 
; which the contents of the 
; programming file was written
Onchip/NOR FLASH Programming User’s Guide     |    27©1989-2025   Lauterbach                                                        



FLASH.Erase / FLASH.Program Command

Beside the FLASH.ReProgram command there are also the commands FLASH.Erase and 
FLASH.Program to program the FLASH devices. Both commands work identically for TRACE32 tool-based 
and target-controlled programming. 

 FLASH programming by using the FLASH.Erase / FLASH.Program commands works in detail as follows:

All declared FLASH sectors are erased.

TRACE32 is using full chip erase/bulk erase whenever possible. If the FLASH devices are declared 
manually it is strongly recommended:

• To declare each FLASH device with all sectors. Otherwise if there are undeclared FLASH 
sectors for a FLASH device, these sectors are also erased when a full chip erase/bulk erase is 
used. 

• To declare each FLASH device with its own <unit_number>, if two or more FLASH devices are 
used in series to implement the needed FLASH memory size. Otherwise if the same unit number 
is used for 2 or more FLASH devices only the first FLASH device is erased.

FLASH.Erase ALL ; erase the FLASH devices

FLASH.Program ALL ; enable all FLASH devices for 
; programming

Data.LOAD.auto … ; write the contents of the
; programming file to the FLASH 
; devices

FLASH.Program off ; disable the programming for the 
; FLASH devices

FLASH.Erase ALL ; erase the FLASH devices
Onchip/NOR FLASH Programming User’s Guide     |    28©1989-2025   Lauterbach                                                        



When the command FLASH.Program is entered, the state of all FLASH sectors is changed to program.

If a FLASH sector is in program state each write access by TRACE32 on this sector is directly converted to 
a FLASH programming command sequences. A typical TRACE32 command that writes to FLASH sectors 
is:

With the command FLASH.Program off FLASH programming is disabled. This is indicated by an empty 
state column in the FLASH.List window.

FLASH.Program ALL ; enable the FLASH devices for 
; programming

Data.LOAD.auto … ; write the contents of the
; programming file to the FLASH 
; devices

FLASH.Program off ; disable the programming for the 
; FLASH devices
Onchip/NOR FLASH Programming User’s Guide     |    29©1989-2025   Lauterbach                                                        



The command syntax:

Full example:

FLASH.Erase ALL | <address_range> | <unit_number> Erase the specified FLASH sectors

FLASH.Program ALL | <address_range> | <unit_number> Enable the specified FLASH sectors 
for programming

FLASH.Program off Disable the programming state for 
all FLASH sectors.

...

; reset the FLASH declaration
FLASH.RESet

; set up the FLASH declaration for target-controlled programming
; target RAM at address 0x20000000
FLASH.CFI 0x0 Word /TARGET 0x20000000++0xfff 0x20001000++0xfff

; erase all FLASH sectors
FLASH.Erase ALL

; enable all FLASH sectors for programming
FLASH.Program ALL

; write the code from the programming file to the target FLASH
Data.LOAD.auto demo.x

; disable the programming state for all sectors
FLASH.Program off

; verify the FLASH contents
Data.LOAD.auto demo.x /DIFF

IF FOUND()
PRINT "Verify error after FLASH programming"

ELSE
PRINT "FLASH programming completed successfully"

...
Onchip/NOR FLASH Programming User’s Guide     |    30©1989-2025   Lauterbach                                                        



The FLASH.AUTO Command

The command FLASH.AUTO is a special command that allows:

• to set software breakpoints to FLASH

• to patch code located in FLASH

TRACE32 is using a Virtual FLASH Programming Memory to implement the FLASH.AUTO command:

Target FLASH Virtual FLASH 
Programming Memory 

Sector 1

Sector 2

Sector 3

Sector 4

Sector n

Virtual Sector 1

Virtual Sector 3

Virtual Sector 4

Virtual Sector n
Onchip/NOR FLASH Programming User’s Guide     |    31©1989-2025   Lauterbach                                                        



Software Breakpoints in FLASH

Using the FLASH.AUTO command to set software breakpoints to FLASH works as follows:

When the command FLASH.AUTO ALL is entered, the state of all FLASH sectors is changed to auto.

If a software breakpoint is set to an address within the FLASH, the following actions are taken:

1. Virtual FLASH Programming Memory is allocated for the affected sector.

2. The code from the target FLASH sector is copied to the virtual sector.

3. The code at the location of the software breakpoint is saved by TRACE32.

4. The software breakpoint is patched into the virtual sector.

FLASH.AUTO ALL ; switch the target FLASH into auto
; state

Break.Set … /Program /SOFT ; set a software breakpoint to a
; program address located in FLASH
Onchip/NOR FLASH Programming User’s Guide     |    32©1989-2025   Lauterbach                                                        



All virtual sectors to which software breakpoints were patched are copied to the target FLASH when the 
program execution is started.

The state of the affected FLASH sectors is changed to pending to indicate that software breakpoints were 
programmed into these sectors.

Go ; start the program execution
Onchip/NOR FLASH Programming User’s Guide     |    33©1989-2025   Lauterbach                                                        



When the software breakpoint is deleted, the original code at the location of the software breakpoint is 
restored in the virtual sector.

All virtual sectors that contain such a restoration are programmed to the target FLASH when the program 
execution is started.

The state of the restored FLASH sectors is changed back to auto.

The following command sequence is recommended when using the FLASH.AUTO command:

Break.Delete … /Program /SOFT ; remove the software breakpoint

Please execute the command FLASH.AUTO off before you exit TRACE32. This 
guarantees that all software breakpoints are removed from the target FLASH 
and the original code is restored.

FLASH.AUTO ALL ; switch the target FLASH to auto 
; state to allow debugging with
; software breakpoints in FLASH

…

Break.Set … /Program /SOFT

…

FLASH.AUTO off ; use this command to restore the
; original code at the locations of 
; the software breakpoints back to
; the target FLASH

; exit TRACE32
Onchip/NOR FLASH Programming User’s Guide     |    34©1989-2025   Lauterbach                                                        



The command syntax:

FLASH.AUTO ALL | <address_range> | <unit_number> Switch FLASH to auto state to allow 
debugging with software 
breakpoints in FLASH

FLASH.AUTO off Restore the original code in the 
FLASH for all software breakpoints 
and disable the auto state

NOTE: Please be aware that TRACE32 PowerView displays the contents of the Virtual 
FLASH Programming Memory, if the FLASH is in auto state and the current 
state of the FLASH sector is pending.
Onchip/NOR FLASH Programming User’s Guide     |    35©1989-2025   Lauterbach                                                        



Code Patches in FLASH

Using the FLASH.AUTO command to patch code located in FLASH works as follows:

When the command FLASH.AUTO ALL is entered, the state of all FLASH sectors is changed to auto.

If code located in FLASH is patched, the following actions are taken:

1. Virtual FLASH Programming Memory is allocated for the affected sector.

2. The code from the target FLASH sector is copied to the virtual sector.

3. The patch is copied into the virtual sector.

4. The state of the virtual sector is change to pending to indicate, that a patch needs to be 
programmed.

FLASH.AUTO ALL ; switch the target FLASH into auto
; state

Data.Assemble … ; patch code in FLASH

Data.Set … ; patch hex. value to FLASH
Onchip/NOR FLASH Programming User’s Guide     |    36©1989-2025   Lauterbach                                                        



All virtual sectors which contain patches are copied to the target FLASH when the program execution is 
started.

The state of the affected FLASH sectors is changed back to auto after the patch is programmed.

The following command sequence is recommended when using the FLASH.AUTO command to patch code 
located in FLASH:

Go ; start the program execution

FLASH.AUTO off ; disable the auto state and
; program all pending patches

FLASH.AUTO ALL ; switch the target FLASH to auto 
; state to allow code patches in
; FLASH 

…

Data.Assemble …

…

FLASH.AUTO off ; program all pending patches and 
; disable the auto state
Onchip/NOR FLASH Programming User’s Guide     |    37©1989-2025   Lauterbach                                                        



The command syntax:

FLASH.AUTO ALL | <address_range> | <unit_number> Switch FLASH to auto state to allow 
code patches is FLASH

FLASH.AUTO off Program all pending patches and 
disable the auto state

NOTE: Please be aware that TRACE32 PowerView displays the contents of the Virtual 
FLASH Programming Memory, if the FLASH is in auto state and the current 
state of the FLASH sector is pending.
Onchip/NOR FLASH Programming User’s Guide     |    38©1989-2025   Lauterbach                                                        



CENSORSHIP Option

A FLASH sector can contain sensitive data e.g. bytes that unsecure the chip and enable it for debugging. An 
unintended or incorrect write to this data might secure the chip and lock it for debugging.

The FLASH programming algorithm provided by Lauterbach is aware of sensitive data. It discards all erase 
and write operations to their addresses.

The CENSORSHIP option enables the erasing/programming of the sensitive data.

Example for Kinetis MK30DX64VEX7, the first FLASH sector contains sensitive data.

FLASH.AUTO <address_range> /CENSORSCHIP Enable erasing/programming of 
sensitive data

FLASH.Create 1. 0x00000000--0x0000FFFF 0x800 TARGET Long

…

; a FLASH programming algorithm that is aware 
; of sensitive data is defined
FLASH.TARGET … ~~/demo/arm/flash/long/ftfl1x.bin

…

; the FLASH sector with sensitive data is explicitly enabled for
; erasing/programming
FLASH.AUTO 0--0x7ff /CENSORSHIP

Data.Set …
Data.Set …
…

; program all changed data and disable the erasing/programming of
; sensitive data
FLASH.AUTO OFF
Onchip/NOR FLASH Programming User’s Guide     |    39©1989-2025   Lauterbach                                                        



Unlocking Command

Many FLASH devices provide a sector/block protection to avoid unintended erasing and programming 
operations. Most of them are locked after power-up. They need to be unlocked in order to be erased or 
programmed..

Two unlocking schemes are used by FLASH devices:

1. Each individual sector/block has to be unlocked (individual unlocking).

2. The execution of a single unlock command sequence on an address range unlocks the complete 
FLASH device (parallel unlocking).

Please refer to the data sheet of your FLASH device, to find out which scheme is used by your FLASH 
device.

Example for 1 (individual unlocking): 

INTEL 28F128L18 at address 0x0, connected to the CPU via a 16-bit data bus, TRACE32 tool-based 
programming

FLASH.UNLOCK ALL | <address_range> | <unit_number>

FLASH.RESet ; reset FLASH declaration

FLASH.CFI 0x0 Word ; declare FLASH sectors via 
; CFI query

FLASH.UNLOCK ALL ; unlock each sector individually

… ; erasing and programming
Onchip/NOR FLASH Programming User’s Guide     |    40©1989-2025   Lauterbach                                                        



Example for 2 (parallel unlocking):

INTEL 28F128J3 at address 0x0, connected to the CPU via a 16-bit data bus, each sector 128 KByte, 
target-controlled programming.

Please be aware that the flash device in this example only supports a full-device unlock. This means a single 
FLASH.UNLOCK command unlocks the complete device.

 

The FLASH devices can be re-locked after programming to avoid unintended erasing and programming 
operations while debugging. Re-locking has to be executed usually sector by sector.

Re-locking is not recommended if you like to use:

• Software breakpoints in FLASH

• Code patches in FLASH

Please refer to “The FLASH.AUTO Command”, page 31 for details.

; reset FLASH declaration
FLASH.RESet

; declare FLASH sectors via CFI query
FLASH.CFI 0x0 Word /TARGET 0x10000000++0xfff 0x10001000++0xfff

; execute a single unlock command by using 
; an address range inside of a FLASH sector (faster)
FLASH.UNLOCK 0x0--0x1ffff

; erasing and programming
…

FLASH.LOCK ALL | <address_range> | <unit_number>
Onchip/NOR FLASH Programming User’s Guide     |    41©1989-2025   Lauterbach                                                        



DualPort FLASH Programming

Benefits

Dualport FLASH programming reduces the FLASH programming time for all processors/cores that allow to 
write to physical memory while the CPU is running. This time reduction is achieved by the simultaneous 
execution of the following: the next block of programming data is downloaded to the target RAM while the 
FLASH algorithm is programming the current block of data.

The best results can be achieved if the following times are nearly the same:

• Sector erase time

• Download time of a block of programming data (host to target RAM)

• Programming time of a block of data

The average time reduction is 5% to 30%. However, under favorable conditions, the programming time can 
be shortened by up to 70%.

Preconditions

1. DualPort FLASH programming is only supported for target-controlled FLASH programming.

2. DualPort FLASH programming can only be used for processors/cores that allow to write to 
physical memory while the CPU is running. For details on this feature refer to “Run-time Memory 
Access”  in TRACE32 Concepts, page 45 (trace32_concepts.pdf).

3. DualPort FLASH programming requires a FLASH binary that is position independent. This is the 
case for nearly all FLASH binaries provided by Lauterbach.

4. FLASH programming in general requires that the data cache is disabled for the entire address 
range of the FLASH. 

5. For DualPort FLASH programming the data cache has to be disabled also for the RAM area that 
is used to buffer the programming data, because run-time memory access can only write to 
physical memory.
Onchip/NOR FLASH Programming User’s Guide     |    42©1989-2025   Lauterbach                                                        



Usage

DualPort FLASH programming achieves a time reduction for the following programming commands:

• FLASH.ReProgram

• FLASH.Auto

DualPort FLASH programming is enabled by the use of one of the following commands:

If you use a processor/core that allows to write to physical memory while the CPU is running, but the option 
DUALPORT is not accepted by TRACE32 PowerView, DualPort FLASH programming is not yet supported 
for your processor architecture. Please contact flash-support@lauterbach.com for details.

The following framework can be used for DualPort FLASH programming:

FLASH.CFI … /TARGET <code_range> <data_range> /DualPort

FLASH.CFI … /TARGET <code_address> <data_address> [<buffer_size>] /DualPort

FLASH.TARGET <code_range> <data_range> <file> /DualPort

FLASH.TARGET <code_address> <data_address> [<buffer_size>] <file> /DualPort

; set up the CPU and configure the
; external bus interface

FLASH.RESet ; reset the FLASH declaration

FLASH.CFI … /TARGET … /DualPort ; declare FLASH sectors via 
; CFI query

FLASH.UNLOCK ALL ; unlock FLASH if required

FLASH.ReProgram ALL /Erase ; enable the FLASH for programming

Data.LOAD.auto … ; load the programming file

FLASH.ReProgram off ; program the FLASH and disable
; the FLASH programming
Onchip/NOR FLASH Programming User’s Guide     |    43©1989-2025   Lauterbach                                                        



Full Example

<data_range> is automatically extended by the access class E: if DualPort FLASH programming is used.

Full Example (ARM/Cortex)

Because ARM/Cortex perform the run-time memory access via the AHB bus, the access class AHB: has to 
specified explicitly for <data_range>.

; set up the CPU and configure the external bus interface

; reset the FLASH declaration
FLASH.RESet

; set up the FLASH declaration for target-controlled programming
; target RAM at address 0x20000000
FLASH.CFI 0x0 Word /TARGET 0x20000000++0xfff 0x20001000++0xfff /DualPort

; enable the programming for all declared FLASH devices
FLASH.ReProgram ALL /Erase

; specify the file that should be programmed
Data.LOAD.auto demo.x

; program only modified sectors and erase obsolete code in unused sectors 
; disable the FLASH programming
FLASH.ReProgram off

FLASH.CFI … /TARGET <code_range> <data_range> /DualPort

; set up debug communication for LPC4357 and configure 
; the external bus interface

; reset the FLASH declaration
FLASH.RESet

; set up the FLASH declaration for target-controlled programming
; target RAM at address 0x10000000
FLASH.CFI 0x1C000000 Long /TARGET 0x10000000 EAHB:0x10001000 0x2000 /DualPort

; enable the programming for all declared FLASH devices
FLASH.ReProgram ALL /Erase

; specify the file that should be programmed
Data.LOAD.auto demo.x

; program only modified sectors and erase obsolete code in unused sectors 
; disable the FLASH programming
FLASH.ReProgram off
Onchip/NOR FLASH Programming User’s Guide     |    44©1989-2025   Lauterbach                                                        



Special Features for Onchip FLASHs

The ready-to-run scripts for onchip FLASH programming provided by Lauterbach use in addition to the 
classical FLASH programming commands special commands and options to handle characteristics of 
onchip FLASHs.

OTP Sector Programming

Nowadays many onchip FLASHs contain OTP sectors. OTP sectors can not be erased, that's why they are 
called One Time Programmable sectors. The ready-to-run FLASH programming scripts provided by 
Lauterbach use the option OTP to protect those sectors from unintentional programming.

Whenever FLASH programming is activated by one of the following commands: FLASH.ReProgram, 
FLASH.AUTO or FLASH.Program the state of all OTP sectors changes to nop to indicate that all FLASH 
erasing and programming commands are blocked for these sectors.

FLASH.Create …TARGET … /OTP Protect OTP sector from unintentional programming

FLASH.Create 6. 0x00400000--0x00401FFF TARGET Quad /OTP 
Onchip/NOR FLASH Programming User’s Guide     |    45©1989-2025   Lauterbach                                                        



In order to program an OTP sector the following command sequence is recommended:

Already programmed OTP sectors can be declared with NOP as <family_code>. TRACE32 PowerView 
discards all erase and write operations to No OPeration sectors.

FLASH.Program 0x00400000--0x00401FFF /OTP ; enable FLASH
; programming for the 
; specified OTP sector

Data.Set … ; program the data
; to sector

FLASH.Program off ; disable FLASH
; programming

FLASH.Create 11.0x402000++0x1cff NOP Quad /OTP /Info "C UTEST - Reserved"
Onchip/NOR FLASH Programming User’s Guide     |    46©1989-2025   Lauterbach                                                        



Mirrored FLASH Addresses

The TRACE32 NOR FLASH programming might fail, if an on-chip FLASH or an off-chip FLASH device is 
addressed in more than one way. 

Non-Cached/Cached Addresses

Some processor architectures (e.g. TriCore, MIPS) provide separate address spaces for cached and non-
cached memory. Compilers may generate code for non-cached addresses for the boot sequence and code 
for cached addresses for the application.

In order to program the FLASH successfully it is recommended to declare the FLASH for non-cached 
addresses and use the command FLASH.CreateALIAS to mirror these addresses to the cached address 
space.

; example for the TriCore architecture
; non-cached on-chip FLASH starts at address 0xa0000000
; cached on-chip FLASH starts at address 0x80000000

FLASH.RESet
; declare program FLASH in non-cached address space
FLASH.Create 1. 0xa0000000--0xa000ffff 0x4000  TARGET Long
FLASH.Create 2. 0xa0010000--0xa001ffff 0x4000  TARGET Long
FLASH.Create 3. 0xa0020000--0xa003ffff 0x20000 TARGET Long
FLASH.Create 3. 0xa0040000--0xa007ffff 0x40000 TARGET Long
FLASH.Create 3. 0xa0080000--0xa01fffff 0x80000 TARGET Long

; declare data FLASH in non-cached address space
FLASH.Create 4. 0xafe00000--0xafe0ffff 0x10000 TARGET Long
FLASH.Create 5. 0xafe10000--0xafe1ffff 0x10000 TARGET Long

; declare FLASH programming algorithm
FLASH.TARGET 0xd4000000 0xd0000000 0x1000 
             ~~/demo/tricore/flash/long/tc1796.bin

; all FLASH write cycles to the address range 0x80000000--0x8fffffff
; (cached) are redirected to the address range 0xa0000000--0xafffffff
; (non-cached)

FLASH.CreateALIAS 0x80000000--0x8fffffff 0xa0000000
…

Onchip/NOR FLASH Programming User’s Guide     |    47©1989-2025   Lauterbach                                                        



The alias is also displayed in the listing of the FLASH declarations.

FLASH mirrored to Boot Area

Some CPUs allow to mirror the FLASH to the boot code address space. In order to program the FLASH 
successfully it is recommended to declare the FLASH for its primary address space and use the command 
FLASH.CreateALIAS to mirror these addresses to the boot code address space.

Hardvard Architecture with Unified Memory

For CPUs with Harvard architecture and unified FLASH memory, it is recommended to declare the FLASH 
for the program memory address space and use the command FLASH.CreateALIAS to mirror these 
addresses to the data address space.

; generate FLASH declaration by CFI
FLASH.CFI P:0x0 Word

…

; all FLASH write cycles to the data address space are redirected
; to the program address space
FLASH.CreateALIAS D:0x0++0xfffffff P:
Onchip/NOR FLASH Programming User’s Guide     |    48©1989-2025   Lauterbach                                                        



FLASH.Create Command

Group Code NOP

TRACE32 PowerView discards all erase and write operations to No OPeration sectors. NOP sectors are 
used for the following purposes:

• Some FLASH sectors are already programmed by the processor/chip manufacturer. If you debug 
without a proper FLASH declaration for these sectors an unintended erase or write operation 
may result in a bus error or something similar.

Declaring such sectors as NOP sectors guarantees an error-free debugging.

• Same FLASH sectors contain sensitive information. An unintended overwrite can harm the 
system or lock the processor/chip for debugging. Examples for sensitive sectors are: shadow 
raws, boot sectors, FLASH sectors that contain the debug monitor.

TRACE32 PowerView forces the user to handle such sectors with care by declaring them as 
NOP sectors.

The chapter “FLASH.CHANGETYPE Command”, page 56 introduces a command sequence 
that is recommended for the programming of sensitive sectors.

Whenever FLASH programming is activated by one of the following commands: FLASH.ReProgram, 
FLASH.AUTO or FLASH.Program the state of all NOP sectors changes to nop to indicate that all FLASH 
erasing and programming commands are discarded for these sectors.

FLASH.Create <unit_number> <address_range> [<sector_size>] NOP <bus_width>

FLASH.Create 4. 0xFFC000--0xFFFFFF NOP Quad
Onchip/NOR FLASH Programming User’s Guide     |    49©1989-2025   Lauterbach                                                        



INFO Option

TRACE32 PowerView allows to add comments to FLASH sectors.

A comment can be up to 64 characters long. TRACE32 PowerView allocated 4 kBytes for all comments.

The comment is displayed in the extra column of the FLASH.List window.

KEEP Option

FLASH sectors may contain data that should not be deleted. An example are chip trimming data stored in 
FLASH.

Use the option KEEP, if you want to advise TRACE32 PowerView to preserve the data in the specified 
<address_range>.

The preservation of the FLASH content is implemented differently depending on the used FLASH 
programming command.

FLASH.ReProgram (for details refer to “FLASH.ReProgram Command (Target-controlled)”, page 21): 
After a virtual FLASH sector is erased, the information to be preserved is written back to the virtual sector. 
This approach assumes that the <address_range> to be preserved is not overwritten by data loaded from 
the file to be programmed.

FLASH.Create … /INFO <comment>

FLASH.Create 4. 0xFFC000--0xFFFFFF NOP Quad /INFO "Reserved"

FLASH.Create … /KEEP <address_range>

FLASH.Create 1. 0x00000000--0x0001FFFF … /KEEP 0x0003FC--0x0003FF
Onchip/NOR FLASH Programming User’s Guide     |    50©1989-2025   Lauterbach                                                        



FLASH.Erase: After the FLASH sector is erased, the information is restored. This approach assumes that 
the <address_range> to be preserved is not overwritten by data loaded from the file to be programmed.

FLASH.AUTO (for details refer to “The FLASH.AUTO Command”, page 31): Since the data from the 
target sector are copied to the virtual FLASH sectors, the option KEEP is not required. Not overwritten 
original data are programmed back to the target sectors.

BootModeHeaDer Option

For the Astep version of the TC27x debugging was locked if the onchip FLASH does not provide a valid Boot 
Mode HeaDer. To avoid that the onchip FLASH contains no valid BMHD after programming, TRACE32 
takes the following preventive measures:

1. TRACE32 tries to preserve all valid BMHDs.

2. The FLASH programming scripts warns you if the FLASH data to be programmed do not contain 
a valid BMHD. For details refer to your FLASH programming script.

More details to 1: The option BootModeHeaDer advises TRACE32 to preserve the contents of 
<address_range> if <address_range> contains a valid BMHD.

The preservation of the BMHDs is implemented differently depending on the used FLASH programming 
command. For details refer to “KEEP Option”, page 50.

FLASH.Create … /BootModeHeaDer  <address_range>

FLASH.Create  1. 0xA0000000--0xA000BFFF … /BMHD 0xA0000000--0xA000001F
Onchip/NOR FLASH Programming User’s Guide     |    51©1989-2025   Lauterbach                                                        



EraseALIAS Option

A physical FLASH sector can be split up into two or more logical address spaces, if it maintains different 
types of information. FLASH programming writes usually to the logical address spaces, while FLASH 
erasing applies to the physical FLASH sector.

To understand the use cases of the option EraseALIAS it is important to remember that the commands 
FLASH.ReProgram or FLASH.AUTO erase/program only modified sectors. The option EraseALIAS 
guarantees:

• That content of logical address spaces is preserved, if a physical sector has to be erased, in 
order to program one of its modified logical address spaces,

• That a physical sector is only erased once while the modified FLASH content is programmed.

FLASH.Create … /EraseALIAS  <address_range>

FLASH.Create 2. 0x2000000++0x7fff /EALIAS 0x2100000++0x7fff /INFO "Data Flash"

FLASH.Create 3. 0x2100000++0x7fff /EALIAS 0x2000000++0x7fff /INFO "ID Tags"
Onchip/NOR FLASH Programming User’s Guide     |    52©1989-2025   Lauterbach                                                        



AutoInc Option

Some FLASH algorithms need additional information to program the onchip FLASH. Typical information are:

• the FLASH control register base address

• a sector number

If additional information is required, it is the last parameter of the FLASH.Create command.

The AutoInc option allows to shorten the FLASH declaration if increasing sector numbers are needed. The 
extra column in the FLASH.List window shows the sector number as a hex. number.

Example 1:

Example 2 shows that it is possible to specify the starting sector number:

FLASH.Create <unit_number> <address_range> <sector_size> TARGET <bus_width> <add_info>

FLASH.Create 1. 0x08180000--0x081FFFFF 0x20000 TARGET Byte /AutoInc

FLASH.Create 1. 0x08180000--0x081FFFFF 0x20000 TARGET Byte 0x20 /AutoInc
Onchip/NOR FLASH Programming User’s Guide     |    53©1989-2025   Lauterbach                                                        



FLASH.TARGET Command

STACKSIZE Option

Target-controlled FLASH programming (for details refer to “Target-controlled FLASH Programming”, 
page 17) uses 256 bytes of stack. If the FLASH programming algorithm requires more stack, the option 
STACKSIZE can be used to define the required stack size.

FirmWareRAM Option

Some processors provide their FLASH programming algorithm in their firmware ROM. The option 
FirmWareRAM can be used to declare the RAM <address_range> needed by the firmware FLASH 
algorithm.

The option FirmWareRAM guarantees that the contents of this <address_range> is saved before and 
restored after FLASH programming.

FLASH.TARGET … /STACKSIZE <size>

FLASH.TARGET 0x0 0x2000 0x1000 lpc4300.bin /STACKSIZE 0x200

FLASH.TARGET … /FirmWareRAM <address_range>

FLASH.TARGET 0x0 0x2000 0x1000 … /FirmWareRAM 0x10089FF0--0x10089FFF
Onchip/NOR FLASH Programming User’s Guide     |    54©1989-2025   Lauterbach                                                        



FLASH.CLocK Command

Some onchip FLASHs require a FLASH programming clock within a specified frequency range. The FLASH 
programming clock is derived from the system clock in most cases. The command FLASH.CLocK allows: 

• to specify the system clock.

• to ask TRACE32 to measure the system clock.

TRACE32 passes the system clock to the FLASH programming algorithm, which is then responsible for 
deriving the FLASH programming clock.

FLASH.CLocK 10.MHz

FLASH.CLocK AUTO

FLASH.CLocK <frequency> | AUTO
Onchip/NOR FLASH Programming User’s Guide     |    55©1989-2025   Lauterbach                                                        



FLASH.CHANGETYPE Command

Sensitive FLASH sectors are declared as NOP sectors to protect them from unintended overwrite.

The following command sequence is recommended if you want to program a sensitive sector:

FLASH.Create 4. 0xFFFC00--0xFFFFFF NOP Quad /INFO "Shadow row"

FLASH.CHANGETYPE 0x00FFFC00++0x3FF TARGET ; change FLASH sector
; from NOP sector to 
; sector programmable by
; the FLASH programming
; algorithm specified by
; the preceding 
; FLASH.TARGET command

FLASH.Program 0x00FFFC00++0x3FF ; enable FLASH sector for
; programming

Data.Set … ; program the data
; to sector

FLASH.Program off ; disable sector for 
; programming

FLASH.CHANGETYPE 0x00FFFC00++0x3FF NOP ; change FLASH sector
; back to NOP sector
Onchip/NOR FLASH Programming User’s Guide     |    56©1989-2025   Lauterbach                                                        



FLASH.UNSECUREerase Command

Some chips/processors are secured and require a key-code to allow debugging. Entering the keycode 
(SYStem.Option.KEYCODE <key_code>) command unsecures the chip and allows to establish a debug 
communication. Please refer to your Processor Architecture manual for details.

The key-code is for most chips stored in the onchip FLASH.

If the keycode is unknown you can use the command FLASH.UNSECUREerase. This command erases the 
onchip FLASH completely in order to remove the key-code. The chip is unsecured afterwards.

NOTE: Please be aware that the command FLASH.UNSECUREerase is locked if it is 
not implemented for the selected CPU (SYStem.CPU <cpu>).

SYSTem.CPU MK10DN32VLH5

FLASH.UNSECUREerase

SYStem.Up
Onchip/NOR FLASH Programming User’s Guide     |    57©1989-2025   Lauterbach                                                        



FLASH Declaration in Detail

Further Applications for FLASH Declarations Using CFI

Identical FLASH Devices in Series

If two identical FLASH devices are used in series to implement the needed FLASH memory size, the 
FLASH.CFI command has to be performed for each FLASH device.

Example:

• Four Intel Strata FLASH devices 28F128J3 in 16-bit mode are used to implement 64 MByte of 
FLASH memory.

• Therefrom two Intel Strata FLASH devices 28F128J3 are used in parallel to implement a 32-bit 
data bus.

• Target RAM at 0xa0000000.

CPU

28F128J3
in 16-bit mode

0x0

0x04000000

28F128J3
in 16-bit mode

28F128J3
in 16-bit mode

28F128J3
in 16-bit mode

0x01FFFFFF

0x05FFFFFF

Address Bus

Data Bus

D31-D16 D15-D0
Onchip/NOR FLASH Programming User’s Guide     |    58©1989-2025   Lauterbach                                                        



FLASH declaration command for TRACE32 tool-based programming:

FLASH declaration command for target-controlled programming:

TRACE32 allocates a so-called <unit_number> for each FLASH device. The <unit_number> allows to 
handle each FLASH device separately and to perform a full chip erase/bulk erase correctly.

FLASH.RESet
; FLASH.CFI <start_address> <bus_width>
FLASH.CFI 0x00000000 Long
FLASH.CFI 0x04000000 Long

FLASH.RESet
; FLASH.CFI <start_address> <bus_width> /TARGET <code_range> <data_range>
FLASH.CFI 0x0 Long 0x00000000 /TARGET 0xa0000000++0xfff 0xa0001000++0x1fff
FLASH.CFI 0x0 Long 0x04000000 /TARGET 0xa0000000++0xfff 0xa0001000++0x1fff
Onchip/NOR FLASH Programming User’s Guide     |    59©1989-2025   Lauterbach                                                        



Assigning a Fixed Unit Number

For some scripts it might be helpful to assign a fixed <unit_number> to a FLASH device. For these cases the 
<unit_number> can be used as a parameter for the FLASH.CFI command.

FLASH.CFI <unit_number> <start_address> <bus_width> <unit_number> allows to 
assign a fixed unit number to 
a FLASH device

FLASH.CFI <unit_number> <start_address> <bus_width> /TARGET <code_range> <data_range>

FLASH.CFI 40. 0x0 Long
Onchip/NOR FLASH Programming User’s Guide     |    60©1989-2025   Lauterbach                                                        



Heterogeneous FLASH Devices in Series

Since TRACE32 can only handle one external FLASH algorithm at a time, a special proceeding is required if 
target-controlled FLASH programming is used to program two or more FLASH devices with different FLASH 
algorithms.

Example 1:

• AM29DL323DB FLASH device in 16-bit mode as boot FLASH

• Two Intel Strata FLASH devices 28F128J3 in 16-bit mode as user FLASH

• Target RAM at 0x00400000

• One programming file per FLASH device

FLASH declaration command for target-controlled programming:

; FLASH.CFI <start_address> <bus_width> /TARGET <code_range> <data_range>

; boot FLASH
FLASH.RESet
FLASH.CFI 0x0 Word /TARGET 0x00400000++0xfff 0x00401000++0x1fff
FLASH.ReProgram ALL
Data.LOAD.auto bootfile.x
FLASH.ReProgram off

; user FLASH 1 + 2 
FLASH.RESet
FLASH.CFI 0x0c000000 Word /TARGET 0x00400000++0xfff 0x00401000++0x1fff
FLASH.CFI 0x0d000000 Word /TARGET 0x00400000++0xfff 0x00401000++0x1fff
FLASH.ReProgram ALL
Data.LOAD.auto userfile.x
FLASH.ReProgram off

CPU

AM29DL323DB
in 16-bit mode

0x0

0x0C000000

28F128J3
in 16-bit mode

0x0D000000

28F128J3
in 16-bit mode

0x003FFFFF

0x0CFFFFFF

0x0DFFFFFF

bootfile.x

userfile.x
Onchip/NOR FLASH Programming User’s Guide     |    61©1989-2025   Lauterbach                                                        



No special proceeding is required if TRACE32 tool-based programming is used:

Example 2:

• On-chip FLASH of TriCore TC1796

• Two AMD FLASH devices Am29BL162CB in parallel to implement a 32-bit data bus

• PMI Scratch-Pad RAM at address 0xD4000000, DMI Scratch-Pad RAM at address 0xD0000000

• One programming file for both FLASHs

FLASH declaration command for target-controlled programming:

FLASH.RESet
; FLASH.CFI <start_address> <bus_width>
FLASH.CFI 0x00000000 Word
FLASH.CFI 0x0c000000 Word
FLASH.CFI 0x0d000000 Word

FLASH.ReProgram ALL
Data.LOAD.auto bootfile.x
Data.LOAD.auto userfile.x
FLASH.ReProgram off

; boot FLASH
; user FLASH 1
; user FLASH 2

; on-chip FLASH
FLASH.RESet
FLASH.Create 1. 0xA0000000++0x1FFFF 0x004000 TARGET Long
FLASH.Create 2. 0xA0020000++0x1FFFF 0x020000 TARGET Long
FLASH.Create 2. 0xA0040000++0x3FFFF 0x040000 TARGET Long
FLASH.Create 2. 0xA0080000++0x7FFFF 0x080000 TARGET Long
FLASH.Create 2. 0xA0100000++0x6FFFF 0x008000 TARGET Long
FLASH.TARGET 0xD4000000++0xFFF 0xD0000000++0x1FFF \
             ~~/demo/tricore/flash/long/tc1796.bin

FLASH.ReProgram ALL
Data.LOAD.Elf demo.elf 0xA0000000++0x16FFFF
FLASH.ReProgram off

; off-chip FLASH
FLASH.RESet
FLASH.CFI 0xA1000000 Long /TARGET 0xD4000000++0xFFF 0xD0000000++0x1FFF

FLASH.ReProgram ALL
Data.LOAD.Elf demo.elf 0xA1000000++0x3FFFFF
FLASH.ReProgram off
Onchip/NOR FLASH Programming User’s Guide     |    62©1989-2025   Lauterbach                                                        



Determining the FLASH Size

Expert example for the MPC85xx architecture:

Preconditioned the boot configuration works correctly it is possible to set up the FLASH declaration and the 
required bus configuration to program the FLASH automatically by a script.

1. Configure the start address of the FLASH devices by setting BR0/BASEADDR to 0xff800000 
(Boot ROM Location). This setting is preliminary and will be corrected later.

FLASH.CFI.SIZE(<address>,<bus_width>) Returns the size of single or parallel CFI-
conform FLASH devices as a hex. 
number.
Returns 0 if TRACE32 can´t read the 
CFI information.

PRINT FLASH.CFI.SIZE(P:0x0,Word)

&flashbase=0xff800000
Data.Set ANC:iobase()+0x00005000 %Long \ 
(Data.LONG(ANC:iobase()+0x00005000)&0x00007FFF)|&flashbase

Bus configuration after reset
Onchip/NOR FLASH Programming User’s Guide     |    63©1989-2025   Lauterbach                                                        



2. Read BR0/PS to determine the data <bus_width> between the CPU and the FLASH devices.

3. Determine the flash size via a CFI query.

4. Calculate the start address of the FLASH device.

5. Correct the start address of the FLASH devices by setting BR0/BASEADDR to the calculated 
&address.

6. Reduce the wait states for the FLASH devices to improve the programming performance by 
setting OR0/SCY to 6.

&port_size=(Data.LONG(ANC:iobase()+0x00005000)>>11.)&0x00000003
IF &port_size==1

&bus_width="BYTE"
ELSE IF &port_size==2

&bus_width="WORD"
ELSE IF &port_size==3

&bus_width="LONG"
ELSE
(

PRINT %ERROR "ERROR: Invalid bus width"
ENDDO

)

&flash_size=FLASH.CFI.SIZE(ANC:&flashbase,&bus_width)
IF (&flash_size==0)
(

PRINT %ERROR "ERROR: FLASH module could not be detected"
ENDDO

)

&end_address=0xffffffff
&address==&end_address-&flash_size+0x1

Data.Set ANC:iobase()+0x00005000 %Long\ 
(Data.LONG(ANC:iobase()+0x00005000)&0x00007FFF)|&address
Onchip/NOR FLASH Programming User’s Guide     |    64©1989-2025   Lauterbach                                                        



7. Program the FLASH.

The script for this example is also available in the TRACE32 folder: 
~~/demo/powerpc/hardware/mpc85xx/all_boards/flash_cfi.cmm

&waitstates=6.
Data.Set ANC:iobase()+0x00005004 %Long \ 
(Data.LONG(ANC:iobase()+0x00005004)&0x00007F0F)\
|&flashbase|(&waitstates<<4.)

; program FLASH device
FLASH.Reset
FLASH.CFI &address &bus_width
FLASH.Erase
FLASH.ReProgram ALL
Data.LOAD.auto * /WORD
FLASH.ReProgram off

Correct bus configuration for the FLASH programming
Onchip/NOR FLASH Programming User’s Guide     |    65©1989-2025   Lauterbach                                                        



Truncating the FLASH Size to the CPU Address Space

If the FLASH size is bigger then the address space of the CPU, it is necessary to specify the usable address 
range for the FLASH.CFI command.

Example:

• In order to have more GPIO pins an Infineon XC2xxx CPU is using only 18 of the 24 address 
lines. Thus the external address space of the CPU is 256 KByte.

• Due to any reason (better availability, smaller packages, better price) a 1 MByte FLASH is used.

• Target RAM at 0x00e00000

FLASH declaration command for TRACE32 tool-based programming:

FLASH declaration command for target-controlled programming:

FLASH.RESet
; FLASH.CFI <address_range> <bus_width>
FLASH.CFI 0x0x00100000++0x3ffff Word

; FLASH.CFI <address_range> <bus_width> /TARGET <code_range> <data_range>

FLASH.RESet
FLASH.CFI 0x0x00100000++0x3ffff Word /TARGET 0x00e00000++0xfff 0x00e01000++0x1fff
Onchip/NOR FLASH Programming User’s Guide     |    66©1989-2025   Lauterbach                                                        



FLASH Declaration via FLASH.CFI Dialog Window

FLASH declaration with CFI is mostly used in scripts so the command line version is more common then the 
corresponding dialog window.

The FLASH.CFI-dialog opens also if the command FLASH.CFI is used without parameters.

FLASH.CFI ; open FLASH.CFI dialog
Onchip/NOR FLASH Programming User’s Guide     |    67©1989-2025   Lauterbach                                                        



Generation of Equivalent FLASH.Create Commands

TRACE32 displays the equivalent commands for the manual FLASH declaration in the TRACE32 message 
area, if the command FLASH.CFI is used. This is especially helpful to check which binary file is loaded as 
FLASH programming algorithm.

A detailed description of the FLASH.Create command is given in the next chapter.

AREA.CLEAR ; clear the message area

AREA.view ; open the message area

FLASH.CFI 0x0 Word /TARGET 0x20000000++0xfff 0x20001000++0xfff
Onchip/NOR FLASH Programming User’s Guide     |    68©1989-2025   Lauterbach                                                        



Declarations for not CFI-conform FLASH Devices

Not CFI-conform FLASH devices require that all characteristics are provided in the FLASH declaration.

Manual FLASH Declaration (TRACE32 Tool-based)

Parameters:

• <unit_number>

TRACE32 maintains each FLASH device by its own <unit_number>.

• <address_range>

Specifies the address range of the FLASH devices.

• <sector_size>

Specifies the size of the individual sectors within the FLASH devices.

• <family_code>

Specifies the TRACE32 tool-based programming algorithm.

• <bus_width>

Defines the width of the data bus between the target CPU and the FLASH devices.

The syntax for the manual FLASH declaration for target-controlled programming is described in 
“Converting TRACE32 Tool-based to Target-controlled FLASH Programming”, page 85.

FLASH.Create <unit_number> <address_range> <sector_size> <family_code> <bus_width>
Onchip/NOR FLASH Programming User’s Guide     |    69©1989-2025   Lauterbach                                                        



FLASH Devices with Uniform Sectors

Example:

• Sharp LH28F016 FLASH device

• 32 sectors each with 64 KBytes

• 8-bit FLASH

FLASH.RESet

; FLASH.Create <unit_number> <address_range> <sector_size> <family_code> <bus_width>

FLASH.Create 1. 0x0--0x1fffff 0x10000 I28F001B Byte
Onchip/NOR FLASH Programming User’s Guide     |    70©1989-2025   Lauterbach                                                        



FLASH Devices with Sectors of Different Size

If a FLASH device contains sectors of different size an extra FLASH.Create command has to be used for 
each address range with the same <sector_size>. TRACE32 knows that all the commands are related to a 
single FLASH device if the same <unit_number> is used with all FLASH.Create commands.

Example:

• Spansion S29AL008D bottom boot sector device

• 1 sector with 16 KByte, 2 sectors with 8 KByte, 1 sector with 32 KByte, 15 sectors with 64 KByte

• 16-bit mode

FLASH.RESet

; FLASH.Create <unit_number> <address_range> <sector_size> <family_code> <bus_width>

FLASH.Create 1. 0x00000--0x03fff 0x04000 AM29LV100 Word
FLASH.Create 1. 0x04000--0x07fff 0x02000 AM29LV100 Word
FLASH.Create 1. 0x08000--0x0ffff 0x08000 AM29LV100 Word
FLASH.Create 1. 0x10000--0xfffff 0x10000 AM29LV100 Word
Onchip/NOR FLASH Programming User’s Guide     |    71©1989-2025   Lauterbach                                                        



FLASH Devices in Series

If two or more identical FLASH devices are used in series to implement the needed FLASH memory size 
each FLASH device has to be declared with a different <unit_number>.

Example:

• Two Spansion S29AL008D bottom boot sector devices

• Each providing 1 sector with 16 KByte, 2 sectors with 8 KByte, 1 sector with 32 KByte, 15 sectors 
with 64 KByte

• 16-bit mode

FLASH.RESet

; FLASH.Create <unit_number> <address_range> <sector_size> <family_code> <bus_width>

; declaration for the first FLASH device
FLASH.Create 1. 0x000000--0x003fff 0x04000 AM29LV100 Word
FLASH.Create 1. 0x004000--0x007fff 0x02000 AM29LV100 Word
FLASH.Create 1. 0x008000--0x00ffff 0x08000 AM29LV100 Word
FLASH.Create 1. 0x010000--0x0fffff 0x10000 AM29LV100 Word

; declaration for the second FLASH device
FLASH.Create 2. 0x100000--0x103fff 0x04000 AM29LV100 Word
FLASH.Create 2. 0x104000--0x107fff 0x02000 AM29LV100 Word
FLASH.Create 2. 0x108000--0x10ffff 0x08000 AM29LV100 Word
FLASH.Create 2. 0x110000--0x1fffff 0x10000 AM29LV100 Word

CPU

S29AL008D
in 16-bit mode

0x0

0x100000

S29AL008D
in 16-bit mode

0x0FFFFF

0x1FFFFF
Onchip/NOR FLASH Programming User’s Guide     |    72©1989-2025   Lauterbach                                                        



FLASH Devices in Parallel

If two or more identical FLASH devices are used in parallel to implement the needed data bus width, the 
FLASH declaration has to be performed as follows:

n identical FLASH devices in parallel

• <address_range> = n x <address_range_of_single_device>

• <sector_size> = n x <sector_size_of_single_device>

• <bus_width> = n x <bus_width_of_single_device>

Example:

• Four 8-bit Sharp LH28F016 FLASH devices are used in parallel to implement a 32-bit data bus

• Each providing 32 sectors with 64 KBytes

FLASH.RESet

; FLASH.Create <unit_number> <address_range> <sector_size> <family_code> <bus_width>
; <address_range> = 4 x 0x200000 = 0x800000
; <sector_size> = 4 x 0x10000 = 0x40000
; <bus_width> = 4 x 8 bit = Long

FLASH.Create 1. 0x0--0x7fffff 0x40000 I28F001B Long

LH28F016
8-bit

Address Bus

Data Bus

D31-D24 D23-D16

LH28F016
8-bit

CPU LH28F016
8-bit

LH28F016
8-bit

D15-D8 D7-D0
Onchip/NOR FLASH Programming User’s Guide     |    73©1989-2025   Lauterbach                                                        



General Recommendations

• Declare each FLASH device with all sectors. 

TRACE32 is using full chip erase/bulk erase if possible. In doing so also not declared FLASH 
sectors are erased.

• Use the same unit number for all sector declarations applying to the same FLASH device.

• If two or more identical FLASH devices are used in parallel to implement the needed data bus width 
with the CPU, use the same unit number and calculate the parameters for the FLASH.Create 
command as follows:

n identical FLASH devices in parallel

<address_range> = n x <address_range_of_single_device>

<sector_size> = n x <sector_size_of_single_device>

<bus_width> = n x <bus_width_of_single_device>

• If two or more FLASH devices are used in series to implement the needed FLASH memory size, 
declare each FLASH device with its own unit number.

TRACE32 is using full chip erase/bulk erase if possible. In doing so only the sectors within the 
first FLASH device are erased, even if other FLASH sectors are declared with the same unit 
number.
Onchip/NOR FLASH Programming User’s Guide     |    74©1989-2025   Lauterbach                                                        



TRACE32 Tool-based vs. Target-controlled FLASH Programming 

TRACE32 provides two techniques to program off-chip FLASH devices:

• TRACE32 tool-based programming

The FLASH programming algorithm is part of the TRACE32 software and runs on the host.

• Target-controlled programming

The FLASH programming algorithm is not part of the TRACE32 software. It is linked to TRACE32 
and downloaded to the target RAM if required.

Despite the obvious disadvantages of TRACE32 tool-based programming it is recommended to start with 
this technique, because errors are less likely since no target resources are required.

If TRACE32 tool-based FLASH programming runs faultless, you can almost be sure that:

• The bus configuration registers for the FLASH devices are set up correctly.

• The interface between the CPU and the FLASH devices on your target hardware works faultless.

• TRACE32 can erase and program the FLASH devices correctly.

After TRACE32 tool-based FLASH programming works correctly, you can easy migrate to the faster target-
controlled FLASH programming. The migration procedure is described in “Converting TRACE32 Tool-
based to Target-controlled FLASH Programming”, page 85.

TRACE32-tool based programming Target-controlled programming

Simple to set up because no target resources 
are required

Simple setup, but the usage of more target 
resources adds sources of errors

Slow Very fast

Update of FLASH programming algorithm 
requires complete TRACE32 software update

FLASH programming algorithm can be updated 
independently from the TRACE32 software

Very flexible, every FLASH device can be 
supported. If required refer to “How to Write 
your own FLASH Algorithm” 
(flash_app_own_algorithm.pdf)

Specifics in the target design (e.g. switched 
data lines) can be corrected by the FLASH 
algorithm.
Onchip/NOR FLASH Programming User’s Guide     |    75©1989-2025   Lauterbach                                                        



TRACE32 Tool-based FLASH Programming

The FLASH declaration requires only information on the FLASH devices since the FLASH algorithm is 
integrated into the TRACE32 software.
FLASH declaration commands:

1. FLASH declaration via CFI query

2. FLASH declaration for not CFI-conform FLASH devices

FLASH.CFI <start_address> <bus_width>

FLASH.Create <unit_number> <address_range> <sector_size> <family_code> <bus_width>

TRACE32 Software

FLASH Algorithm

USB

Power
Debug Module

JTAG 
Connector

Target

CPU

FLASH

A
dd

re
ss

 B
us

D
at

a 
B

us
 

C
on

tr
ol

 L
in

es

EBI

EBI=External Bus Interface

on Host
Onchip/NOR FLASH Programming User’s Guide     |    76©1989-2025   Lauterbach                                                        



Target-controlled FLASH Programming

If target-controlled FLASH programming is used, the FLASH algorithm is not part of the TRACE32 software. 
FLASH programming works now in principle as follows:

If any TRACE32 command is used that unlocks or locks, erases, programs the FLASH devices:

• The TRACE32 software is saving the RAM contents of FLASH Algorithm Program/Data Range.

• The TRACE32 software is saving the register context.

• The TRACE32 software is loading the external FLASH algorithm to the FLASH Algorithm 
Program Range and sets a software breakpoint at the exit of the FLASH algorithm.

TRACE32 Software

USB

Power
Debug Module

JTAG 
Connector

Target CPU

RAM

Address Bus

Data Bus 

Control Lines

EBI

EBI=External Bus Interface

FLASH

FLASH Algorithm
Program Range

FLASH Algorithm
Data Range

on Host
Onchip/NOR FLASH Programming User’s Guide     |    77©1989-2025   Lauterbach                                                        



To execute any action on the FLASH device (unlock or lock, block erase, chip erase, program) by the FLASH 
algorithm

1. The TRACE32 software is loading the argument buffer for the FLASH algorithm.

2. The TRACE32 software is loading the data to FLASH Programming Data Range.

3. The PC, stack pointer and the registers for the argument passing are set.

4. The external FLASH algorithm is started.

5. After the software breakpoint at the exit of the FLASH algorithm is reached, the TRACE32 
software checks if there are any further actions to perform. Step 1 - 4 are repeated until all 
actions are performed.

After the TRACE32 FLASH command is done:

• The TRACE32 software is restoring the contents of the FLASH Algorithm Program/Data Range.

• The TRACE32 software is restoring the register context.

This procedure requires additional setups in order to program off-chip NOR FLASH devices. This includes:

• The definition of the external FLASH programming algorithm

• The definition of the FLASH Algorithm Program Range

• The definition of the FLASH Algorithm Data Range

• The definition of the maximum number of bytes that are transferred from the TRACE32 software.

Before these requirements are described in detail a short command overview:

Only one external FLASH algorithm can be used at a time.
Onchip/NOR FLASH Programming User’s Guide     |    78©1989-2025   Lauterbach                                                        



FLASH Declaration Commands (Overview)

FLASH declaration commands for CFI-conform FLASH devices:

FLASH declaration commands for not CFI-conform FLASH devices:

FLASH.CFI <start_address> <bus_width>  /TARGET <code_range> <data_range>

FLASH.CFI <start_address> <bus_width>  /TARGET <code_address> <data_address> [<buffer_size>]

FLASH.Create <unit_number> <address_range> <sector_size> TARGET <bus_width>
FLASH.TARGET <code_range> <data_range> <file>

FLASH.Create <unit_number> <address_range> <sector_size> TARGET <bus_width>
FLASH.TARGET <code_address> <data_address> [<buffer_size>] <file>
Onchip/NOR FLASH Programming User’s Guide     |    79©1989-2025   Lauterbach                                                        



Localization of External FLASH Algorithm

A binary file is used as external FLASH algorithm.

Ready-to-run binary files for target-controlled FLASH programming are available for the most common 
processor architectures in the folder  ~~/demo/<architecture>/flash; where ~~ is expanded to the 
<TRACE32_installation_directory>, which is c:\T32 by default.

CFI-conform FLASH devices

TRACE32 loads the appropriate FLASH programming algorithm automatically from 
~~/demo/<architecture>/flash when target-controlled FLASH programming for CFI-conform 
FLASH devices is used. 
Onchip/NOR FLASH Programming User’s Guide     |    80©1989-2025   Lauterbach                                                        



Not CFI-conform FLASH devices

The file name and the path for the FLASH programming algorithm needs to be specified explicitly for not 
CFI-conform FLASH devices.

In the directory ~~/demo/<architecture>/flash the FLASH algorithms are organized by 
<bus_width> and by <endianness>.

• <bus_width>_be stands for FLASH support for big endian mode.

• <bus_width>_le stands for FLASH support for little endian mode.

If your processor architecture has a preferred endianness, this <endianness> is left out and only the 
<bus_width> is listed. The preferred endianness for the ARM architecture as an example is little endian 
mode.

Example 1:

• MIPS32 CPU in big endian mode

• Intel Strata FLASH 28L256L30 

• 16-bit data bus width between CPU and FLASH
Onchip/NOR FLASH Programming User’s Guide     |    81©1989-2025   Lauterbach                                                        



Programming algorithm: ~~/demo/mips/flash/word_be/i28f200k3.bin

Example 2:

• ARM9 CPU in little endian mode

• AM29DL323C FLASH 

• 16-bit data bus width between CPU and FLASH

Programming algorithm: ~~/demo/arm/flash/word/am29lv100.bin

If the binary file for the FLASH algorithm is not provided in ~~/demo/<architecture>/flash please 
contact flash-support@lauterbach.com.

If you would like to write your own FLASH programming algorithm, please refer to the application note “How 
to Write your own FLASH Algorithm” (flash_app_own_algorithm.pdf).
Onchip/NOR FLASH Programming User’s Guide     |    82©1989-2025   Lauterbach                                                        



FLASH Algorithm Program/Data Range

If target-controlled FLASH programming is used TRACE32:

1. Downloads the external FLASH algorithm to the target RAM (FLASH Algorithm Program Range).

2. Downloads the programming data to the target RAM (FLASH Algorithm Data Range).

This proceeding requires the specification of both address ranges in the FLASH declaration.

Memory mapping for the FLASH Algorithm Program Range:

Required size for the external FLASH algorithm is size_of(<flash_algorithm>) + 32 byte

Memory mapping for the FLASH Algorithm Data Range:

• The argument buffer used for the communication between the TRACE32 software and the 
FLASH algorithm is located at the first 32 bytes of the FLASH Algorithm Data Range. 

• The 256 byte stack is located at the end of the FLASH Algorithm Data Range. 

• The size of the buffer for programming data (<buffer_size>) specifies the maximum number of 
bytes that are transferred from the TRACE32 software to the external FLASH programming 
algorithm in one call. 

FLASH algorithm

32 byte

32 byte argument buffer 

Buffer for programming data

256 byte stack
Onchip/NOR FLASH Programming User’s Guide     |    83©1989-2025   Lauterbach                                                        



TRACE32 supports two formats to provide this information.

Format 1: <code_range> <data_range>

• <code_range>

TRACE32 downloads the external FLASH algorithm to <code_range>.

• <data_range>

TRACE32 loads the programming data to <data_range> in the target RAM.

• The maximum number of bytes that are transferred from the TRACE32 software to the external 
FLASH programming algorithm in one call is calculated out of the <data_range> as follows: 

size_of(<data_range>) - 32 byte argument buffer - 256 byte stack

Format 2: <code_address> <data_address> <buffer_size>

• <code_address>

TRACE32 loads the external FLASH algorithm to the target RAM starting at <code_address>.

• <data_address>

TRACE32 loads the programming data to the target RAM starting at <data_address>.

• <buffer_size> specifies the maximum number of bytes that are transferred from the TRACE32 
software to the external FLASH programming algorithm in one call.

If <buffer_size> is not specified 4 KByte is used by default. 

; FLASH.CFI <start_address> <bus_width> /TARGET <code_range> <data_range>
FLASH.CFI 0x0 Word /TARGET 0x20000000++0x7ff 0x20001000++0xfff

; FLASH.CFI <start_address> <bus_width> \
;/TARGET <code_address> <data_address> <buffer_size>
FLASH.CFI 0x0 Word /TARGET 0x20000000 0x20001000 0x4000
Onchip/NOR FLASH Programming User’s Guide     |    84©1989-2025   Lauterbach                                                        



Converting TRACE32 Tool-based to Target-controlled FLASH Programming

CFI-conform FLASH Devices

Conversion from TRACE32 tool-based FLASH declaration to target-controlled FLASH declaration:

Add the option /TARGET and the information about the FLASH Algorithm Program/Data Range to the 
FLASH.CFI command.

&FLASH_PROGRAMMING_METHOD="Tool-based"
; &FLASH_PROGRAMMING_METHOD="Target-controlled"

FLASH.RESet
(
IF "&FLASH_PROGRAMMING_METHOD"=="Tool-based"

; FLASH.CFI <start_address> <bus_width>
FLASH.CFI 0x0 Word

)

IF "&FLASH_PROGRAMMING_METHOD"=="Target-controlled"
(
; FLASH.CFI <start_address> <bus_width>/TARGET <code_range> <data_range>
FLASH.CFI 0x0 Word /TARGET 0x20000000++0xfff 0x20001000++0xfff

)

Onchip/NOR FLASH Programming User’s Guide     |    85©1989-2025   Lauterbach                                                        



Not CFI-conform FLASH Devices

Conversion from TRACE32 tool-based FLASH declaration to target controlled FLASH declaration:

1. Replace the <family_code> by the keyword TARGET when using the FLASH.Create command.

2. Use the FLASH.TARGET command to specify the <code_range>, <data_range> and the 
<flash_algorithm>. Please remember to use the FLASH algorithm from the directory with the 
adequate <bus_width> and the correct <endianness>. The name of <flash_algorithm> matches 
with the <family_code>.

&FLASH_PROGRAMMING_METHOD="Tool-based"
; &FLASH_PROGRAMMING_METHOD="Target-controlled"

FLASH.RESet
(
IF "&FLASH_PROGRAMMING_METHOD"=="Tool-based"

; FLASH.Create <unit_number> <address_range> <sector_size> <family_code> <bus_width>

FLASH.Create 1. 0x0++0x3fffff 0x20000 I28F200B Long
)

IF "&FLASH_PROGRAMMING_METHOD"=="Target-controlled"
(
; FLASH.Create <unit_number> <address_range> <sector_size> TARGET <bus_width>
FLASH.Create 1. 0x0++0x3fffff 0x20000 TARGET Long
; FLASH.TARGET <code_range> <data_range> <flash_algorithm>
FLASH.TARGET 0x20000000++0xfff 0x20001000++0xfff ~~/demo/arm/flash/long_be/i28f200b.bin

)

Onchip/NOR FLASH Programming User’s Guide     |    86©1989-2025   Lauterbach                                                        



Maintaining the Declared FLASH Devices

TRACE32 maintains all declared FLASH devices in the so-called FLASH declaration table. The following 
commands are provided:

List of Supported FLASH Devices

A list of all supported FLASH devices plus the corresponding <family_code> can be found in the online help 
under:

FLASH.List List the contents of the FLASH declaration 
table

FLASH.REset Clear the FLASH declaration table and 
reset all FLASH programming setups 
within TRACE32 to its default value

FLASH.Delete ALL | <range> | <unit_number> Remove entries from the FLASH 
declaration table

An up-to-date list of all supported FLASH devices is always available on our 
web-page under:
www.lauterbach.com/supported-platforms/toolchain/flash-devices.
Onchip/NOR FLASH Programming User’s Guide     |    87©1989-2025   Lauterbach                                                        

https://www.lauterbach.com/supported-platforms/toolchain/flash-devices


FLASH Programming via Boundary Scan

External NOR FLASH memories can be programmed via boundary scan, if the FLASH memory is 
connected to an IC with a boundary scan chain and this boundary scan chain is accessible to the debugger. 
After initializing the boundary scan FLASH mode, the tool based FLASH programming is used. All FLASH 
commands like FLASH.CFI, FLASH.Program, ... can be used (target based programming is not possible!).

To avoid disturbances of the FLASH programming due to communication between the debugger and the 
target CPU, the system should be set to down state:

Boundary scan chain configuration

The first step for FLASH programming via boundary scan is the scan chain configuration. Configuration is 
done by loading the BSDL files in the right order. The following commands are available for the scan chain 
configuration:

 

The BSDL file for the IC, which is closest to the board TDO connector, must be loaded first:

SYStem.Down

BSDL.UNLOAD ALL Removes all previous boundary scan chain configurations

BSDL.FILE <file> Loads a BSDL file 

BSDL.UNLOAD ALL ; remove previous configuration

BSDL.FILE ispCLOCK5610Av_isc.bsm ; load the BSDL file for IC1

TDI                TDO

TMS
TCK

IC4

TDI                TDO

TMS
TCK

IC3

TDI                TDO

TMS
TCK

IC2

TDI                TDO

TMS
TCK

IC1

FLASH
Onchip/NOR FLASH Programming User’s Guide     |    88©1989-2025   Lauterbach                                                        



The scan chain configuration can be viewed in the BSDL.state window:

With the commands BSDL.BYPASSall and BSDL.IDCODEall (or the functions bsdl.check.bypass() and 
bsdl.check.idcode() in a PRACTICE script) the correct function of the boundary scan chain can be verified.

FLASH interface definition

The FLASH interface definition is done with the two commands:

The definition requires the number of the IC in the boundary scan chain, to which the FLASH memory is 
connected, the number of address and data ports.

BSDL.FILE ispCLOCK5610Av_isc.bsm ; load the BSDL file for IC2

BSDL.FILE ispCLOCK5610Av_isc.bsm ; load the BSDL file for IC3

BSDL.FILE LCMXCO1200C_ftBGA256.bsdl ; load the BSDL file for IC4

BSDL.FLASH.IFDefine Defines the FLASH memory interface

BSDL.FLASH.IFMap Maps the generic FLASH ports to the driving IC ports

BSDL.FLASH.IFDefine RESet ; remove previous configuration

BSDL.FLASH.IFDefine NOR 4. 24. 16. ; defines a NOR FLASH memory with 
; 24 address bits and 16 data
; bits
; the FLASH is connected to IC4
Onchip/NOR FLASH Programming User’s Guide     |    89©1989-2025   Lauterbach                                                        



If two or more FLASH memories are used in parallel, up to 4 sets of control ports are provided (e.g. CE, 
CE2, CE3 and CE4).

The FLASH interface configuration can be checked with the command BSDL.FLASH.IFCheck (or 
bsdl.check.flashconf() in a PRACTICE script).

FLASH Programming

To start the FLASH programming, the boundary scan chain must be initialized and the boundary scan 
FLASH mode must enabled:

BSDL.FLASH.IFMap CE PR7C ; map the FLASH chip enable port
; to pin PR7C of IC4

BSDL.FLASH.IFMap OE PR7D ; map the FLASH output enable
; port to port PR7D of IC4

BSDL.FLASH.IFMap A0 PB7E ; map the FLASH address bit 0
; to port PB7E of IC4

BSDL.FLASH.INIT SAFE Initializes the boundary scan chain

FLASH.BSDLACCESS ON Switch to boundary scan mode for FLASH access

BSDL.FLASH.INIT SAFE ; Initializes the boundary scan chain: sets the
; required instructions (BYPASS or EXTEST),
; set all ports, which are not used for FLASH
; programming to SAFE state according BSDL
; file and sets the FLASH ports to idle state

FLASH.RESET ; remove previous FLASH configuration

FLASH.BSDLaccess ON ; switch to boundary scan FLASH mode
Onchip/NOR FLASH Programming User’s Guide     |    90©1989-2025   Lauterbach                                                        



For the initialization of the boundary scan chain, the SAFE mode is recommended. Other modes are: 
SAMPLE (the current state of the driving IC is sampled and these values are used during FLASH 
programming), ZERO and ONE (sets all unused boundary scan register bits to ’0’ or ’1’). With the mode 
NONE, the unused boundary scan register bits are not initialized and a previous configuration is used.

After switching to boundary scan mode, the FLASH commands for tool based programming are used. The 
boundary scan FLASH mode is terminated either by FLASH.BSDLaccess OFF or FLASH.RESet.

Caution:
Initializing the unused boundary scan register bits to all zero or one could 
enable output drivers which leads to unintended behavior or could damage the 
board.

Title changes
to “BSDL address”
when FLASH BSDL
access is on
Onchip/NOR FLASH Programming User’s Guide     |    91©1989-2025   Lauterbach                                                        



Full Example

; stop the debugger
SYStem.Down

; configure the boundary scan chain
BSDL.UNLOAD ALL                          ; remove previous configuration
BSDL.FILE ispCLOCK5610Av_isc.bsm         ; load the BSDL file for IC1
BSDL.FILE ispCLOCK5610Av_isc.bsm         ; load the BSDL file for IC2
BSDL.FILE ispCLOCK5610Av_isc.bsm         ; load the BSDL file for IC3
BSDL.FILE LCMXCO1200C_ftBGA256.bsdl      ; load the BSDL file for IC4

; configure the FLASH interface
BSDL.FLASH.IFDefine RESet ; remove previous configuration
BSDL.FLASH.IFDefine NOR 4. 24. 16.       ; defines a 16 bit NOR FLASH
                                         ; with 24 address bits on IC4
BSDL.FLASH.IFMap CE   PR7C               ; map the FLASH CE to port PR7C
BSDL.FLASH.IFMap OE   PR7D               ; map the FLASH OE to port PR7D
BSDL.FLASH.IFMap WE   PB4C               ; map the FLASH WE to port PB4C
; map the address ports
BSDL.FLASH.IFMap A0   PB7E
BSDL.FLASH.IFMap A1   PB7F
BSDL.FLASH.IFMap A2   PB8A
BSDL.FLASH.IFMap A3   PB8B
BSDL.FLASH.IFMap A4   PB8C
BSDL.FLASH.IFMap A5   PB8D
BSDL.FLASH.IFMap A6   PB8E
BSDL.FLASH.IFMap A7   PB8F
BSDL.FLASH.IFMap A8   PB9A
BSDL.FLASH.IFMap A9   PB9B
BSDL.FLASH.IFMap A10  PB9C
BSDL.FLASH.IFMap A11  PB9D
BSDL.FLASH.IFMap A12  PB9E
BSDL.FLASH.IFMap A13  PB9F
BSDL.FLASH.IFMap A14  PB10A
BSDL.FLASH.IFMap A15  PB10B
BSDL.FLASH.IFMap A16  PB10C
BSDL.FLASH.IFMap A17  PB10D
BSDL.FLASH.IFMap A18  PB10F
BSDL.FLASH.IFMap A19  PB11A
BSDL.FLASH.IFMap A20  PB11B
BSDL.FLASH.IFMap A21  PB11C
BSDL.FLASH.IFMap A22  PB11D
BSDL.FLASH.IFMap A23  PB6E
Onchip/NOR FLASH Programming User’s Guide     |    92©1989-2025   Lauterbach                                                        



; map the data ports
BSDL.FLASH.IFMap DQ0  PR16B
BSDL.FLASH.IFMap DQ1  PR16A
BSDL.FLASH.IFMap DQ2  PR15B
BSDL.FLASH.IFMap DQ3  PR15A
BSDL.FLASH.IFMap DQ4  PR14D
BSDL.FLASH.IFMap DQ5  PR14C
BSDL.FLASH.IFMap DQ6  PR14B
BSDL.FLASH.IFMap DQ7  PR14A
BSDL.FLASH.IFMap DQ8  PR13D
BSDL.FLASH.IFMap DQ9  PR13C
BSDL.FLASH.IFMap DQ10 PR13B
BSDL.FLASH.IFMap DQ11 PR13A
BSDL.FLASH.IFMap DQ12 PR12D
BSDL.FLASH.IFMap DQ13 PR12C
BSDL.FLASH.IFMap DQ14 PR12B
BSDL.FLASH.IFMap DQ15 PR12A

; check the boundary scan chain
if bsdl.check.bypass()
(
    if bsdl.check.idcode()
    (

        ; initialize boundary scan chain
        BSDL.FLASH.INIT SAFE

        ; reset the FLASH declaration
        FLASH.RESet

        ; switch to boundary scan FLASH mode
        FLASH.BSDLaccess ON

        ; declare the FLASH sectors by CFI query
        FLASH.CFI 0x0 Word

        ; unlock the FLASH device if required
        ; FLASH.UNLOCK ALL

        ; enable the programming for all declared FLASH devices
        FLASH.ReProgram ALL

        ; specify the file that should be programmed
        Data.LOAD.auto demo.x

        ; program the file and disable the FLASH programming
        FLASH.ReProgram off

        ; verify FLASH data
        FLASH.AUTO ALL
        Data.LOAD.auto demo.x /ComPare
        FLASH.AUTO off
Onchip/NOR FLASH Programming User’s Guide     |    93©1989-2025   Lauterbach                                                        



FAQ

Please refer to https://support.lauterbach.com/kb.

Further Information

        ; finish the boundary scan FLASH mode
        FLASH.BSDLaccess OFF
    )
)

List of supported FLASH 
devices

 www.lauterbach.com/supported-platforms/toolchain/flash-
devices

Command list 
(NOR FLASH)

FLASH command list in “General Commands Reference Guide F” 
(general_ref_f.pdf).

Troubleshooting “Tips to Solve NOR FLASH Programming Problems” 
(flash_diagnosis.pdf)

Write your own FLASH 
programming algorithm

“How to Write your own FLASH Algorithm” 
(flash_app_own_algorithm.pdf)
Onchip/NOR FLASH Programming User’s Guide     |    94©1989-2025   Lauterbach                                                        

https://www.lauterbach.com/supported-platforms/toolchain/flash-devices
https://www.lauterbach.com/supported-platforms/toolchain/flash-devices
https://support.lauterbach.com/kb

	Onchip/NOR FLASH Programming User’s Guide
	Introduction
	Standard Approach
	On-chip FLASH
	Integrated On-chip FLASH Programming
	Target-controlled On-chip FLASH Programming

	Off-chip FLASH Devices Supporting CFI
	CPU Setup
	Bus Configuration
	FLASH Declaration
	Unlocking the FLASH Devices
	Programming the FLASH Devices
	Full Example
	Target-controlled FLASH Programming
	Full Example (Target-controlled)


	Programming Commands
	FLASH.ReProgram Command (Target-controlled)
	FLASH.ReProgram Command (TRACE32 Tool-based)
	FLASH.Erase / FLASH.Program Command
	The FLASH.AUTO Command
	Software Breakpoints in FLASH
	Code Patches in FLASH
	CENSORSHIP Option

	Unlocking Command

	DualPort FLASH Programming
	Benefits
	Preconditions
	Usage
	Full Example
	Full Example (ARM/Cortex)


	Special Features for Onchip FLASHs
	OTP Sector Programming
	Mirrored FLASH Addresses
	Non-Cached/Cached Addresses
	FLASH mirrored to Boot Area
	Hardvard Architecture with Unified Memory

	FLASH.Create Command
	Group Code NOP
	INFO Option
	KEEP Option
	BootModeHeaDer Option
	EraseALIAS Option
	AutoInc Option

	FLASH.TARGET Command
	STACKSIZE Option
	FirmWareRAM Option

	FLASH.CLocK Command
	FLASH.CHANGETYPE Command
	FLASH.UNSECUREerase Command

	FLASH Declaration in Detail
	Further Applications for FLASH Declarations Using CFI
	Identical FLASH Devices in Series
	Heterogeneous FLASH Devices in Series
	Determining the FLASH Size
	Truncating the FLASH Size to the CPU Address Space
	FLASH Declaration via FLASH.CFI Dialog Window
	Generation of Equivalent FLASH.Create Commands

	Declarations for not CFI-conform FLASH Devices
	Manual FLASH Declaration (TRACE32 Tool-based)
	FLASH Devices with Uniform Sectors
	FLASH Devices with Sectors of Different Size
	FLASH Devices in Series
	FLASH Devices in Parallel
	General Recommendations

	TRACE32 Tool-based vs. Target-controlled FLASH Programming
	TRACE32 Tool-based FLASH Programming
	Target-controlled FLASH Programming
	Converting TRACE32 Tool-based to Target-controlled FLASH Programming

	Maintaining the Declared FLASH Devices
	List of Supported FLASH Devices

	FLASH Programming via Boundary Scan
	Boundary scan chain configuration
	FLASH interface definition
	FLASH Programming
	Full Example

	FAQ
	Further Information


