LAUTERBACH A

MicroTrace for Cortex-M
User's Guide

Release 02.2024

MicroTrace for Cortex-M User’s Guide

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
ICD IN-Circuit DEDUQGQETcccieciiiiiimririnsmms s sissssmss s ssms s ssms s s s smms s s mms s s e mms e s ea s smmne s ensnmmnns r—~
Processor Architecture Manuals ... r—~
ArM/CORTEX/XSCALEiiiiiiiisiims s ssss s s ssms s ssn s s e smn s s an s s mmn s ams snssmnnnass r—
MicroTrace for Cortex-M User's GUIAecccuvcerrirsmmmismsmiimsmmsssmsssssssss s ssssss s sssssssasanes 1
TRACE32 Products for Cortex-IM ... s ssssss s s ssssss ssssmssssas 4
pTrace (MicroTrace) (with MIPI20T-HS Whisker) 5
PowerDebug and CombiProbe (with MIPI120T-HS Whisker) 6
PowerDebug and CombiProbe (with CombiProbe MIPI34 Whisker) 7
PowerDebug and Debug Cable 8
PowerDebug and PowerTrace (X-License) 9

= 2= L= T 10
Keywords 10
CoreSight Components 10
Overview of Cortex-M CoreSight Componentsccccccvcmmmminnimmmmnnsessrmns s 11
Embedded Trace Macrocell (ETM) Overview 11

Data Watchpoint and Trace (DWT) Unit Overview 12
Instrumentation Trace Macrocell (ITM) Overview 12
Trace Port Interface Unit (TPIU) Overview 13
Embedded Trace Buffer 13

L0 o T o (o 14
Setting up Parallel Traceccccccciiiiiiimrmiis s e mmn s 15
Configuring the Correct Port Type 15
Connecting to the Target and Configure Trace-related Components 15
Configuring TRACES32 Trace Settings 16
Viewing or Changing Timing Parameters 17
Diagnosing Common Problems 19

L0 L= T T IR 4 T 0 = 21

L0 LT T TR T 1 N 23
PCSampler 24
Interrupt Trace 26
Tracing Data Accesses 28

©1989-2024 Lauterbach MicroTrace for Cortex-M User's Guide | 2

Tracing only Write Accesses 28
Tracing Data Accesses and the PC 30
Tracing Task Switches 30
Tracing Task Switches and Interrupts 32
Cycle Accurate Trace 33
Merging ETM and DWT Datacccccccmrimiimmmmmmissnrinssssssssssssssssssssssssssssssss s ssssssssssssnssas 34
Performance Analysis with the DWT Counterscccccccmiiimmnissmnnssnnsssssssssssasssssanes 36
Serial Wire Debug Port (SWDP) and Serial Wire Viewer (SWV)ccooimrmriiiiiciciinnnees 38
Software Trace with the ITM ... s e 40
Custom Trace DLLs 492
On-the-fly Transfer of ITM and ETM Datacccccccmmiiiimmmmmnnnsmmsnnnsssssssssssssssesssenes 44
Extending the Recording Size 45
Feeding Your Own Applications with Trace Data 46
Real-Time Profiling with the ETM 47
Discontinued Products ... s 48
uTrace (MicroTrace) (with CombiProbe MIPI34 Whisker) 48
Deprecated Connectors 49
34-Pin Debug, SWO and Trace Connector 49
20-Pin Debug and SWO Connector 50
©1989-2024 Lauterbach MicroTrace for Cortex-M User's Guide | 3

MicroTrace for Cortex-M User’s Guide

Version 04-Mar-2024

TRACE32 Products for Cortex-M

Lauterbach offers different tool configurations for debugging and tracing of Cortex-M cores. This chapter
presents the individual configurations and their main applications briefly.

The following configurations are provided:

. pTrace (with MIPI20T-HS Whisker)

J PowerDebug and CombiProbe (with MIPI20T-HS Whisker)

J PowerDebug and CombiProbe (with CombiProbe MIPI34 Whisker)
J PowerDebug and Debug Cable

J PowerDebug and PowerTrace (X-License)

The following older combination is no longer recommended, but still supported:

J pTrace (with CombiProbe MIPI34 Whisker)

©1989-2024 Lauterbach MicroTrace for Cortex-M User's Guide | 4

pTrace (MicroTrace) (with MIPI20T-HS Whisker)

PC or
Workstation

Target

HTRACE

usB
Cable

MIPI1 20T / MIPI 10
Connector

#TRACE® FOR CORTEX®-M / USB 3

Wall Mount
—
Power Supply

You have chosen the all-in-one debug and off-chip trace solution developed by Lauterbach especially for
Cortex-M processors.

The combination of pTrace (MicroTrace) and MIPI20T-HS whisker supports:

. Debugging via JTAG (IEEE 1149.1), SWD (Serial Wire Debug) or cJTAG (IEEE 1149.7) at clock
rates up to 100 MHz

J Debug connectors MIPI20T and MIPI10 (without adapter), Arm-20 (with included adapter)

. Parallel trace using ETM/TPIU continuous mode with up to 4 data pins and bit rates of up to
400 Mbit/s per pin

J SWV (Serial Wire Viewer) / SWO (Serial Wire Output) trace at port rates up to 200 Mbit/s

. Automatic configuration and advanced diagnostics of electrical parameters of the used trace port
This combination requires TRACE32 R.2018.09 or newer.
Please refer to “Cortex-M Debugger” (debugger_cortexm.pdf) for all Cortex-M specific debug features.

This manual describes the basic setups and all Cortex-M specific trace features.

©1989-2024 Lauterbach MicroTrace for Cortex-M User's Guide | 5

PowerDebug and CombiProbe (with MIPI20T-HS Whisker)

PC or
Workstation

Target
R CombiProbe
L PODBUS SYNC J 'POWER DEBUG E40
LAUTERBACH]
POWER 2
UsB O % e z
Cable ; % %_
e 55
Tav 5 S
E o
=
I —

POWER DEBUG E40

- Wall Mount
Power Supply

You have chosen a debug and off-chip trace solution for your processor which is tailor-made for the
Cortex-M, but provides you with greater flexibility than the all-in-one debug and trace solution pTrace
(MicroTrace). The combination of CombiProbe and MIPI20T-HS whisker supports:

. Debugging via JTAG (IEEE 1149.1), SWD (Serial Wire Debug) or cJTAG (IEEE 1149.7) at clock
rates up to 100 MHz

J Debug connectors MIPI20T and MIPI10 (without adapter), Arm-20 (with included adapter)

. Parallel trace using ETM/ITM in TPIU continuous mode with up to 4 data pins and bit rates of up
to 400 Mbit/s per pin

J SWV (Serial Wire Viewer) / SWO (Serial Wire Output) trace at port rates up to 200 Mbit/s

J Automatic configuration and advanced diagnostics of electrical parameters of the used trace port
. Optional logic analyzer extension TRACE32 Mixed-Signal Probe.

. Debugging of CPU types other than Cortex-M (e. g. Cortex-A/R)

. Debugging two chips with two separate debug connectors (using a second whisker cable)
This combination requires TRACE32 R.2018.09 or newer.
For all Cortex-M specific debug features, please refer to “Cortex-M Debugger” (debugger_cortexm.pdf).

For all Cortex-M specific trace features, please refer to “CombiProbe for Cortex-M User’s Guide”
(combiprobe_cortexm.pdf).

©1989-2024 Lauterbach MicroTrace for Cortex-M User's Guide | 6

PowerDebug and CombiProbe (with CombiProbe MIPI34 Whisker)

PC or
Workstation

Target

[Ep— — T vower pesuG Use INTERFACE /Use 3 comblPrObe
LAUTERBACH N R

usBe O F

Cable [

]

MIPI 34/20/10
Connector

QL

i

2
LauTERBACH

POWER DEBUG INTERFACE / USB 3

- Wall Mount
Power Supply

This solution is outdated.

You have chosen a debug and off-chip trace solution for your processor which is tailor-made for the
Cortex-M, but provides you with greater flexibility than the all-in-one debug and trace solution pTrace
(MicroTrace). The combination of CombiProbe and MIPI34 whisker supports:

. Debugging via JTAG (IEEE 1149.1), SWD (Serial Wire Debug) or cJTAG (IEEE 1149.7) at clock
rates up to 100 MHz

. Debug connectors MIPI34, MIPI120D, MIPI20T and MIPI10 (without adapter), Arm-20 (with
included adapter)

. Parallel trace using ETM/ITM/STM either in TPIU continuous mode or without a TPIU with up to 4
data pins and bit rates of up to 200 Mbit/s per pin

J SWV (Serial Wire Viewer) / SWO (Serial Wire Output) trace at port rates up to 100 Mbit/s
J Optional logic analyzer extension (PowerProbe or Powerlntegrator)
J Debugging of CPU types other than Cortex-M (e. g. Cortex-A/R)

. Debugging two chips with two separate debug connectors (using a second whisker cable)
For all Cortex-M specific debug features, please refer to “Cortex-M Debugger” (debugger_cortexm.pdf).

For all Cortex-M specific trace features, please refer to “CombiProbe for Cortex-M User’s Guide”
(combiprobe_cortexm.pdf).

©1989-2024 Lauterbach MicroTrace for Cortex-M User's Guide | 7

PowerDebug and Debug Cable

PC or
Workstation

Target
I —1
L roomszne —1 powen pesuG E40 - Debug Cable
. LAUTERBACH. -
use |low 1ET T
Cable ; H § gg
5"7”;5“ : i 5 §§
b 5
3
[romean — .

POWER DEBUG E40

Wall Mount
e
Power Supply

You have chosen a pure debug solution because your processor has no off-chip trace option or you have no
interest in off-chip tracing.

For all Cortex-M specific debug features, please refer to “Cortex-M Debugger” (debugger_cortexm.pdf).

©1989-2024 Lauterbach MicroTrace for Cortex-M User's Guide | 8

PowerDebug and PowerTrace (X-License)

Po0Bus ouT

SWITCH PC or
Workstation
1 GBit Ethernet
C 7
| ——
— FonRs S —T POWER DEBUG X50
Ethernet (|97
Cable [e (j
j 2 g
o L

POWER TRACE Iil
LAUTERBACH

Debug Cable

£

:

B

e

Preprocessor
AUTOFOCUS I

Target

Debug
Connector

Trace
Connector

POWER DEBUG X50
POWER TRACE llI

Desktop
Power Supply

S

You have the TRACES32 high-end debug and off-chip trace solution for your processor and it is likely that your
Cortex-M is part of a complex SoC.

For all Cortex-M specific debug features, please refer to “Cortex-M Debugger” (debugger_cortexm.pdf).

For all Cortex-M specific trace features, please refer to “Training Cortex-M Tracing”

(training_cortexm_etm.pdf).

©1989-2024 Lauterbach

MicroTrace for Cortex-M User’s Guide

9

Basics

Keywords

These keywords are used in the following:

Keywords Description

Serial Wire ARM’s Serial Wire Debug (SWD) port and ARM’s Serial Wire Viewer (SWO)
output.

Trace . Support for ARM’s Instrumentation Trace Macrocell (ITM) and Embedded

Trace Macrocell (ETM), both exported by a Trace Port Interface Unit
(TPIU) in 4/2/1-bit continuous mode (with enabled Formatter).

. Support for ARM’s Instrumentation Trace Macrocell (ITM), exported via
ARMs SerialWireOutput in UART mode.

CoreSight Components

Cortex-M processors may include the CoreSight components Instrumentation Trace Macrocell (ITM) and
Embedded Trace Macrocell (ETM). Components in detail:

4-bit ETMv3 in Continuous mode for Cortex-M3/M4/M7.

4-bit ETMv4 in Continuous mode for Cortex-M7.

Onchip trace buffer (ETB).

ITM over TPIU for Cortex-M3/M4/M7.

ITM over Serial Wire Output for Cortex-M3/M4/M7.

©1989-2024 Lauterbach

MicroTrace for Cortex-M User’s Guide |

10

Overview of Cortex-M CoreSight Components

This overview focuses on the CoreSight components which implement trace support for the Cortex-M3, the
Cortex-M4, and Cortex-M7. These components are shown in the figure below.

@

The DWT (Data Watchpoint and Trace) unit and the SWV mode (Serial Wire Viewer) are features, which are
implemented in the Cortex-M3, the Cortex-M4, and Cortex-M7.

As you can see from the above figure, the ITM is a regular memory-mapped peripheral for the CPU,
accessible via the AHB (Advanced High-performance Bus).

All CoreSight components are now explained in more detail.

Embedded Trace Macrocell (ETM) Overview

The Cortex-M3/M4/M7 can be connected to an Embedded Trace Macrocell (ETM). The ETM is an optional
component.

The ETM is a very simple ETM, which only can generate information about the instruction execution
sequence. Specifically the Cortex-M ETM:

. Does not support any kind of data tracing.

J Does not contain comparators to filter information of interest out of the instruction execution
sequence.

J Does not support cycle accurate tracing.

J Does not support to trace a ContextID.

©1989-2024 Lauterbach MicroTrace for Cortex-M User's Guide | 11

Data Watchpoint and Trace (DWT) Unit Overview

To add more trace features, the Cortex-M3/M4/M7 can contain an optional DWT unit. The DWT unit is able
to monitor data accesses and the program counter of the CPU. The DWT offers the following features:

. It contains comparators, which can trigger several actions if a match occurs.
[\ TRACE32 PowerView for ARV E=rETSe)
File Edit View Var Break Run CPU Misc Trace Pef Cov KinetisK60 Window Help
(M AT e[rn|E 28 0 EnEscs @ 22|
™ BuPER, "Core Registers (Cortex-M4),Debug” EI@
2 Debug -
DFSR 00000003 EXTERNAL Not generated Not tr'lggered DWTTRAP Not generate
BKPT Generated) Generate q
RO DATA. IN S
OO REGWNE REGSEL
00000000
010007F1 TRCENA Enabled MON_REQ 0 MON_PEND Not pending
MON_EN Disabled WV ARDERR Enabled /C_INTERR Enabﬁjed
VC_BUSERR Enabled W TERR Enabled Enabled
VC_NOCPERR Enabled VERR Enabled T Enabled

Debug components

® Flash Patch and Breakpoint Unit (FPB)
= Da atchpoint and Trace Unit (DWT)
Dl RL 40000401 nWuMC . NOTRCPET Supported Supp
Supported MOPRECNT Supported / Disa
FOLDEVTENA D| MNumber of comparators implemented bﬁab] ed SLEEPEVTENA Disa
EXCEVTENA DTSapred = FTEMEDisabled (CTRCENA Disa
AMPLEENA Disabled A CYCCNT[24] CYCC
POSTINIT 0 Enab
7BDB7D3C
00000000 CPICNT 00 -
4 I 2
B::
[componems] [trace] [Data] [Var] [List] [PERF] [SYStem] [Step] [other] [previous
SD:E0001000 28--31 Mumber of comparators implemented stopped MI{ |UP

The NUMCOMP field in the control register for the DWT shows the number of available comparators
for your core.

. It can count specific types of CPU cycles. The DWT can emit events indicating that a counter
wrapped (which happens every 256 counted cycles). By analyzing these events the debugger
can present statistics about the distribution of the different types of CPU cycles.

. It can emit information about data accesses if the access is matched by a comparator.
. It can halt the CPU or trigger the ETM if an access is matched by a comparator.

. It can emit information about the current program counter value at regular intervals.

J It can emit information about Interrupt Service Routine entries and exits.

Instrumentation Trace Macrocell (ITM) Overview

The Instrumentation Trace Macrocell (ITM) for the Cortex-M3/M4/M7 has two main functions:
. It is used by the DWT to emit data to an external debug and trace tool.

. It can be used by software running on the CPU to emit data to an external debug and trace tool.

©1989-2024 Lauterbach MicroTrace for Cortex-M User’'s Guide | 12

The ITM appears to software running on the CPU as a memory mapped peripheral. By writing to the
corresponding memory range, the software can send data to an external debug and trace tool.

Trace Port Interface Unit (TPIU) Overview

The Cortex-M Trace Port Interface Unit (TPIU) is responsible for exporting data from the ETM and ITM
through pins of the chip. The TPIU has two different modes of operation:

J Trace Port mode: In this mode, the TPIU uses one clock and up to 4 data pins to synchronously
export data. In this mode the TPIU always enables its internal Formatter. This means that data
from the ETM and ITM will be encapsulated into the Formatter protocol. The Formatter merges
ETM and ITM data into a single stream of bytes.

J Serial Wire Viewer mode: In this mode, the TPIU uses a single signal (Serial Wire Output, SWO)
to asynchronously export data. In this mode the TPIU solely outputs ITM data; it is not possible to
output ETM data. The internal Formatter is disabled; so the ITM data is not encapsulated into the
Formatter protocol.

Serial Wire Viewer in general refers to outputting ITM data via the asynchronous Serial Wire Output signal.

Embedded Trace Buffer

Instead of exporting data from the ETM and ITM through pins off chip, data can also be routed to the
Embedded Trace Buffer (ETB). The ETB content is read by TRACE32 through the debug connection.

©1989-2024 Lauterbach MicroTrace for Cortex-M User's Guide | 13

Connectors

The export of the trace data depends on the debug and trace connector.

For parallel trace, we recommend the 20-pin debug and trace variant specified by the MIPI alliance and

ARM. Lauterbach refers to this connector as MIPI20T:

Signal
VREF-DEBUG
GND

GND

GND (KEY)
GND

GND

GND

GND

GND

GND

Pin Pin
1 2
3 4
5 6
- 8
9 10
11 12
13 14
15 16
17 18
19 20

Signal
TMSITMSCISWDIO
TCKITCKCISWCLK
TDOI-ISWO

TDI

RESET-

TRC CLK

TRC DATA[0]

TRC DATA[1]

TRC DATA[2]

TRC DATA[3]

If parallel trace is not required, you can also use the smaller MIPI10 variant, which is a subset of MIPI20T:

Signal
VREF-DEBUG
GND

GND

GND (KEY)
GND

Pin

Pin

2

4

6

Q| ' | O W =

8

10

Signal
TMSITMSCISWDIO
TCKITCKCISWCLK
TDOI- ISWO

TDI

RESET-

Both can be used for SWV trace if supported by the target. In this case, the debug protocol is SWD and the

TDO line is used for trace.

©1989-2024 Lauterbach

MicroTrace for Cortex-M User's Guide | 14

Setting up Parallel Trace

To set up parallel trace, several steps are required.

Configuring the Correct Port Type

Since the trace data pins are at different locations for different connectors, you should inform TRACE32
about the used connector type. For details on the connectors refer to “Connectors”, page 14.

the default connector is MIPI20T (with trace pins)

SYStem.CONFIG CONNECTOR MIPI20T

for all other connectors, specify MIPI34

SYStem.CONFIG CONNECTOR MIPI34

Changing the connector type is only possible in the System.Mode Down state, before connecting to the

target.

Connecting to the Target and Configure Trace-related Components

Connect to the target as usual. Please refer to “Cortex-M Debugger” (debugger_cortexm.pdf) for details.

Depending on the target chip and target board, some additional configuration may be required. This
configuration can be done either by the software running on the target or through the debugger.

Ensure that the trace logic on the chip, especially the TPIU, is clocked using an appropriate clock
source. The clock to the TPIU determines the bit rate of the data pins. Because the trace uses
double data rate (DDR) signalling, the frequency on the TRACECLK pin will be one half of the
TPIU input clock.

Configure on-chip pin multiplexing, so that the trace data and clock lines are routed to the correct
pins.

If the chip 1/0s have configurable drive strength and slew rate, configure these appropriately. If in
doubt, use the highest available values.

If the trace data and clock lines are shared with other peripherals on the target, make sure this
periphery does not drive to the lines. If possible, remove jumpers or solder bridges to completely
disconnect the periphery from the trace lines.

Please check the documentation of your chip and/or board for further details.

©1989-2024 Lauterbach MicroTrace for Cortex-M User's Guide | 15

Configuring TRACE32 Trace Settings

The trace features of the pTrace (MicroTrace) are controlled with the CAnalyzer command group and the
CAnalyzer.state window. Since Trace is the default alias for CAnalyzer if the pTrace (MicroTrace) is used,

you can also use the command group Trace to control the trace features:

Trace Command group for the trace features of the pTrace
(MicroTrace)
& B::Trace.state EI@ & B::TPIU.state EI@
METHOD tpiu PortSize SyncPeriod
Analyzer @ CAnahyzer Onchip ART LOGGER () SHO0Per FDX LA OFF 4 -
Hanahzer () B Probe IProbe ON PortMode
(Continugus
state used ACCESS TDely commands W\ Prescaler
DISable | auto - 0. & Tronchip RESet 1.
@ OFF 0. 0% & TP ' @ CLEAR
Arm SIZE CLOCK ETM ™ Register
trigger 67108864, TSELect M @ Trace
break BusA &9 BMC 2 L
SPY Mode THreshold
@ Fifo 1.65 Tout
commands Stack TERMination BusA
RESet Leash ON A
@ Init STREAM
& 5napShot PIPE TestFocus
] List RTS ¥ futoFoous
V| AutoArm X0 ShowFomus
V| AutoInit
SelfArm .
.F
To configure the trace settings:
1. Make sure CAnalyzer is selected as METHOD, see [A].
2 Open the TPIU.state window, see [B].
3. Select the number of trace data lines you have connected to the debugger (1, 2 or 4), see [C].
4 Click AutoFocus, see [D].

This configures the target to generate a test pattern that is captured by your pTrace (MicroTrace) to

automatically determine the best threshold voltage and data delays.

The operation takes approximately three seconds. If successful, the message “Analyzer data

capture o.k.” will be printed to the message line at the bottom of the TRACE32 window.

5. Review or change the threshold voltage for the trace data and clock lines in the THreshold input
box, see [E].
6. To view or change the timing parameters, click the ShowFocus button, see [F].

If the AutoFocus operation was successful, you are ready to use the off-chip trace. In this case, you can skip

the rest of this section.

©1989-2024 Lauterbach

MicroTrace for Cortex-M User’'s Guide

16

Viewing or Changing Timing Parameters

To diagnose any problems that were detected by the CAnalyzer.AutoFocus command or to check the
signal quality, open the CAnalyzer.ShowFocus window:

Fa I - N - I
XX B:CAnalyzer.ShowFocus EI@

[&sew.. | san || San+ !_Jllﬁ_ﬂeaﬂ@ on)[© o) %X AutoFoas] |~ X0 Eve][JOtCkckEye'u'ijmgg Stcrre...][EEB Load...)

f=100.0MHz |-15.00-12.50 -10.00 -7.500 -5.000 -2.500 +0.000 +2.500 +5.000 +7.500 +10.00 +12.50

_Tine | |, . | 1L I 1L I 1. I L I L L 1
| _I I3

[

The data area of the CAnalyzer.ShowFocus windows displays each channel in a separate row. The
horizontal axis is the time offset from the clock edge, measured in nanoseconds. The gray areas indicate the
offsets where a change of the data value was detected. Red bars mean that the data value only changed on
falling or rising edges, not both.

A Click Scan to perform a new measurement. Existing results are discarded.
Scan+ performs the same operation, but combines the new measurement with the existing data.

B Use the Clear/On/Off buttons to manually clear the measured data or enable/disable the capture.
This can be done even while trace data is being recorded, providing a way to detect rare glitches on
the data lines.

C The Eye and ClockEye buttons open the data and clock eye windows described below.
D Use the arrow buttons to move the sample points for all channels at the same time.

Use the Store... button to create a PRACTICE script (*.cmm) with all current electrical settings. This
script can be executed using the DO command or the Load... button. The contents of the script may
also be copied to your start-up script to replace the AutoFocus command. This can speed up the
start-up process.

F This shows the detected TRACECLK frequency. Note that the bit rate of the data lines is twice this
frequency.

G Displays the current sample delays. The delays can be changed by double-clicking in the data area
of the window or using the small buttons next to the channel names. Positive delays mean that the
data line is sampled after the corresponding clock edge.

©1989-2024 Lauterbach MicroTrace for Cortex-M User's Guide | 17

The CAnalyzer.ShowFocusEye window provides even more detailed information:

2.
XX B:CAnalyzer.ShowFocusEye EI@

(P st | Scan || Scan+ " [AutoFocus|[30¢ shnfoas || & Channel[3 Channe;EEJ

f=100.0MHz |-15.00-12.50 -10.00 -7.500 -5.000 -2.500 +0.000 +2.500 +5.000 +7.500 +10.00 +12.50
all | I 1 1

4.0

As in the CAnalyzer.ShowFocus window, the horizontal axis is the time offset from an edge of the
TRACECLK signal. The vertical axis is the voltage and always ranges from 0 to 5 V. In white areas, the data

signal was always stable. In green, red and yellow areas, the signal changed in response to rising clock
edges, falling clock edges, or both.

A The Scan and Scan+ behave like their counterparts in the CAnalyzer.ShowFocus window.
However, the operation is more thorough and takes a few seconds. During the measurement, the

threshold voltage is changed temporarily, so a scan is not possible while trace data is being
captured.

B Use the Channel buttons to switch between individual channels. By default, all channels are
overlaid on each other. The current channel is indicated at the top left corner of the window.

C The arrow buttons change the sample times for all visible channels.

D The horizontal line indicates the current threshold voltage. This setting can be changed in the
Trace.state window or with the CAnalyzer.THreshold command.

E The vertical lines show the sample point of each visible channel.

The CAnalyzer.ShowFocusClockEye window can be used to analyze the TRACECLK line:

XX B:CAnalyzer.ShowFocusClockEye EI@
(P | San || Scan+ [AutoFocus|| 30€ sonfoas |

f=100.0MHz |-15.00-12.50 -10.00 -7.500 -5.000 -2.500 +0.000 +2.500 +5.000 +7.500 +10.00 +12.50
all 1 1 1 1

Note that the capture of this data is triggered by the clock line itself, so there should always be a vertical
yellow line at offset 0. The information displayed in this window can be useful to check the duty cycle and
jitter of the clock signal.

©1989-2024 Lauterbach MicroTrace for Cortex-M User's Guide | 18

Diagnosing Common Problems

In this scenario, the CAnalyzer.ShowFocusEye view for the DO line differs significantly from the other lines
D1, D2, and D3:

XX Bi:CAnalyzer.ShowFocusEye =0 ESH =
[(Psw.. || San || Scan+ (3 AutoFocus|[30¢Smfes |[£ Channel[3 Channei[4] »]
f=100.1MHz [-15.00-12.50 -10.00 -7.500 -5.000 -2.500 +0.000 +2.500 +5.000 +7.500 +10.00 +12.50 |
DO Joojg I I I I I I I I I I I L.
4.0 b
2.
0. A
3
XX Bi:CAnalyzer.ShowFocusEye =0 ESH =
[(Psw.. || San || Scan+ (3 AutoFocus|[30¢Smfes |[£ Channel[3 Channei[4] »]
f=100.1MHz [-15.00-12.50 -10.00 -7.500 -5.000 -2.500 +0.000 +2.500 +5.000 +7.500 +10.00 +12.50
D1 [oL] =
XX Bi:CAnalyzer.ShowFocusEye =0 ESH =
[(Psw.. || San || Scan+ (3 AutoFocus|[30¢Smfes |[£ Channel[3 Channei[4] »]
f=100.1MHz [-15.00-12.50 -10.00 -7.500 -5.000 -2.500 +0.000 +2.500 +5.000 +7.500 +10.00 +12.50 |
D2 [e | I I I I I I I I I I I L.
4. b
2.
0. -
XX Bi:CAnalyzer.ShowFocusEye =0 ESH =
[(Psw.. || San || Scan+ (3 AutoFocus|[30¢Smfes |[£ Channel[3 Channei[4] »]
D f=100.1MHz |-15.00-12.50 -10.00 -7.500 -5.000 -2.500 +0.000 +2.500 +5.000 +7.500 +10.00 +12.50
3 1

In this case, the DO line was shared with another IC on the target. Because this IC was not properly disabled,
it was driving the DO line to ground.

©1989-2024 Lauterbach MicroTrace for Cortex-M User's Guide | 19

In this scenario, the CAnalyzer.ShowFocus window reveals an unusually large delay on the D2 line:

XX B:CAnalyzer.ShowFocus EI@
(& sewp. || San || Scan+ (i Ceaf @ On|[O Off|[% AutoFocs][3¢ Eye [0 Cockiie][4][» |[E2 Store...)[2 Load...|
f=66. 76MHz [-20.00 -15.00 -10.00 -5.000 +0.000 +5.000 +10.00 +15.00

In this case, it was possible to get an error-free recording at a frequency of 66 MHz because the sample
points were set appropriately. However, at higher frequencies, there was no longer a usable data eye for the
D2 signal.

The delay was caused by a long connection on a custom adapter board.

©1989-2024 Lauterbach MicroTrace for Cortex-M User's Guide | 20

Using the ETM

The TRACE32 PowerView GUI controls the ETM via the ETM window respectively via the command group:

I ETM Command group to control the ETM
2 BETM =n| Wl <
= control trace TImeMode resources
) OFF [Trace [8BC AComp: 0.+4.
@ 0N [CIpBGRQ CLOCK DComp: 0.
[ClsTALL CComp: 0.
commands trigger Counter: (R)
[C] PseudoDetaTrace [C] TimeStamps Seq: No
onj/off TimeSamp@ 0K ExtIn: 2.
ExtInBus: 0/0.
level ExtOut: 0.
List counter

Most Cortex-M

chips include an ETMvS, only the Cortex-M7 includes a ETMv4 with slightly different

features.
& B:ETM.state EI@
etm control trace Timetdode resources
) OFF ¥ Trace FIBBC ACormp: 0.+4,
@ 0N [] LPOVERRIDE [l RetumStack CyeleCount Threshol DCormp: 0.
[C1ATETrigger CCormp: 0.
cammands STALL [7] Cyeledecurate Counter: (R}
trigger COND CLOCK Seq: Mo
OFF - Extin. 2
onfoff ExtinBus: 0/2.
[TimeStamps | | ExtOut 2.
level TimeStampeLOCK—| | SShat 1.
Resources: 4.
counter Wersion: 4.0

©1989-2024 Lauterbach

MicroTrace for Cortex-M User’'s Guide

21

The TPIU is controlled via the TPIU command group. The TPIU.PortSize command allows you to set up the

number of used trace data pins.

£ BTPIU state |- e

tpiu PortSize SyncPeriod

@ ON PortMode

Continuous

commands

L

The ETM is ON be default, so the pTrace (MicroTrace) can immediately record ETM data exported via the
TPIU port. After recording the data, you can display the recorded instruction execution sequence with the

Trace.List command and window.

i BuTrace.List EI@
(& setup... || A Goto... |[#3Find... || vichart || EProfile || EMPS | & More |[Xiess
run |address cycle |data symbol ti.back
strb [i.[rS.rl] ~
704 for (1 = 5IZE + 1 ; 1 <= SIZE + 1000 ; d++) e
adds rl,rl,#0x1 o
704 for (1 = 5IZE + 1 ; 1 <= SIZE + 1000 ; d++)
movW r4,#0x3FA
cmp rl,r4
-0000000048 T:1FFFEB76 ptrace Y\demo'\sieve'\sieve+0x26 1.900us
L ble 0x1FFFE868
706 " flags[i] = FALSE;
movs r4,#0x0
ldr r5,0x1FFFEA44
strb [i.[rS.rl]
704 for (1 =SIZE + 1 ; 1 <= SIZE + 1000 ; i++)
adds rl,rl,#0x1
704 for (1 = S5IZE + 1 ; 1 <= SIZE + 1000 ; d++) -
J 4 I3
NOTE: As long as the ETM is turned on, the Trace.List command will display ETM data.
. If the ETM is turned off and you only record ITM data, the Trace.List
command will display ITM data.
. If you record both ETM and ITM data, you can use the ITMCAnalyzer.List
command to view the ITM data.

Of course the recorded ETM data can be used to run any kind of analysis supported by the TRACE32

PowerView GUI. This includes for example:
. A chart display of the executed functions

o A run-time statistics of the executed functions

©1989-2024 Lauterbach

MicroTrace for Cortex-M User’s Guide

| 22

Using the DWT

A DWT unit is a CoreSight component and can be attached to the Cortex-M. The TRACE32 PowerView GUI
controls the DWT via the ITM window and via the command group:

Command group to control the DTW

I I™
¢ B:ITM =N Eoh(
itm trace TImeMode SyncPeriod
@ OFF [Tl InterruptTrace
_ON [ClProfilingTrace CydePrescaler TracelD
DataTrace 1f1 - 16.
commands QnelatedData + [Clcydeacarate TracePriority
RESet PCSampler CLOCK 2.
[®cEar || | [oFF -]
" Register TimeStampMode
[C] TimeStamps
i List TimeSampdOXK

&) BMC

To display the recorded ITM data (which encapsulates DWT data), you can always use the command
ITMCAnalyzer.List. If the ETM is turned off, then the Trace.List command will also display ITM data.

The comparators of the DWT are programmed by setting special on-chip breakpoints. The following DWT
features are supported:

J PCSampler

J Interrupt Trace
. Tracing data accesses
J Cycle accurate trace

These features are described in the following sections.

©1989-2024 Lauterbach

MicroTrace for Cortex-M User’'s Guide

23

PCSampler

The DWT can output the current value of the program counter at regular intervals. The intervals are specified
in clock cycles. The frequency with which the program counter is emitted via the ITM can be selected from
the PCSampler drop-down list in the ITM window or entered at the command line:

I ITM.PCSampler <rate>

2 BaITM =n| Wl <

itm trace TImeMode SyncPeriod

) OFF [interruptTrace

@ 0N [ClProfilingTrace CydePrescaler TracelD

DataTrace 1f1 - 16.
commands P —— [Clcydeacarate TracePriority
RESet PCSampler CLOCK 2.
[@caear ||| [us2 -
" Register TimeStampMode
[C] TimeStamps
ITM.PCSampler 1/512 ; configure DTW to emit PC all

512 clock cycles

I

©1989-2024 Lauterbach MicroTrace for Cortex-M User's Guide | 24

Sampling the PC can be used to get a statistical analysis of the distribution of run-time of the various
functions by using the ITMCAnalyzer.STATistic command.

B:ITMCAnalyzer.List E@
(& setup... | A Goto... || #iFind... || Adchart || EProfile | HIMPS || % More || Xliess
record |run |address cycle data symbol ti.back i
-0000000319 T:1FFFESDZ Tetch hdemo'\s1eve TunclO+0x2C0 24.300us .«
-0000000307 T:1FFFF8BE f Ydemo'Globalh_dmul+0x62 24.320us (g
-0000000302 T:1FFFF8DE “AdemohGlobalhy_dmul+0x82 24.320us
-0000000297 T:1FFFF30C “demo'\Global_dadd 24.320us T
-0000000291 T:1FFFF012 “Ydemo'Globalh__kernel_cos+0xC2 24.320us *
-0000000284 T:1FFFFSE4 Yhdemo'Globalh_dmul+0x88 24.520us
-0000000279 T:1FFFF8EA “Ademo'Globaly_dmul+0x8E 24.120us
-0000000273 T:1FFFF922 “demo'\Globalh_dmuTl+0xC6 24.340us
-0000000266 T:1FFFFA82 “Ydemo'Globalh_dsubl+0x2 24.300us
e | T
- T:1FFFF £ BaITMCAnalyzer.STATistic Ratio BAR /Sort Ratio 5]
-0000000248 T:1FFFF916 L ! EI@
-0000000243 T:1FFFEBCS [&Setup...][i iGroups...][II Conﬁg...][3 Goto...][_-= Detailed][E(Tree][! Chart][B Profile]
-0000000237 T:1FFFF280 Jtems: 51 total: 3.159s o
-0000000232 T:1FFFF85C))))
aiiressrgtioy 1% 2% w108 |
- sieve | 50.150% -
_dmul | 11.835%
__temporary_stack_top$libspace | 8.023%
_dsubl | 7.011%
(ERROR) 3. B24Y | ————
funcl0 | 3.668% \=———————————— =
__deee754_rem_pio2 | 1.963% |se—
_daddl | 1.874% |—
__kernel_poly | 1.217% |m
__kernel_cos | 0.884% |+
__kernel_sin| 0.835% |+
funcd | 0.825% |+
main | 0.732% |+
_dadd | 0.719% |+
sin| 0.654% |+
funcd? | 0.519% |+
funcl3d| 0.481% |+
func2 | 0.469% |+
_drsh | 0.409% |+
_dsub | 0.384% |+
funcZa| 0.330% |+
func2d | 0.292% |+ -

; List command to display recorded information
ITMCAnalyzer.List
; Statistic command,
ITMCAnalyzer.STATistic Ratio BAR /Sort Ratio

result sorted by ratio

©1989-2024 Lauterbach

MicroTrace for Cortex-M User’s Guide |

25

Interrupt Trace

The DWT offers the possibility to emit information about interrupt service routine entries and exits. To use

this feature of the DWT, select the InterruptTrace check box in the ITM window or type at the command line:

ITM. InterruptTrace ON

¢ BaITM [E=H =R 553
itm trace TImeMode SyncPeriod
) OFF InterruptTrace
@ 0N [ClProfilingTrace CydePrescaler TracelD
DataTrace 1f1 - 16.
commands DEE - [Clcydeacarate TracePriority
RESet PCSampler CLOCK 2.
[®cEar || | [oFF -]
" Register TimeStampMode
[C] TimeStamps
| List TimeSampdOXK
=ITMCAnalyzer.List EI@
(& setup... || A Goto... || #3Find... || vichart || EProfile || EMIPS || # More || Tiess |
record run |address cycle |data symbol ti.back i
-0000000061 T:0000047E entry 000F Y\ecos_demo\Globalyhal_defauTt_interrupt_vsr 9.975ms ~
-0000000058 T:0000047E i 000F ‘\ecos_demo\Globalhal_default_interrupt_vsr 3. 500us =
-0000000055 T:00000492 000E ‘\ecos_demo\Globalhal_pendable_svc_vsr 0.040us m
-0000000052 T:00000492 000E ‘\ecos_demo\Globalhal_pendable_svc_vsr 0.380us
-0000000049 0000 0.040us &
-0000000045 T:000004D2 000B “\ecos_demo“Global'hal_default_svc_vsr 3. 500us
-0000000042 T:000004D2 000B “\ecos_demo“Globalihal_default_svc_vsr 13.540us
-0000000039 0000 0.080us
-0000000036 T:000004D2 000 “\\ecos_demo‘\Global\hal_default_svc_vsr 3.340us
-0000000033 T:000004D2 000B “\ecos_demo“Globalihal_defauit_svc_vsr 0.160us
-0000000029 0000 0.160us -
4

If your application is mainly interrupt driven, you can get a quite precise analysis of the run time of the
different interrupt service routines by using this DWT feature.

cycle information

entry Interrupt entry
exit Interrupt entry
return Return to normal program execution

©1989-2024 Lauterbach

MicroTrace for Cortex-M User’s Guide

26

The following commands allow an interrupt analysis:

Trace.STATistic.INTERRUPT
Trace.Chart.INTERRUPT

Interrupt statistic

Interrupt time chart

E| BxITMCAnalyzer STATistic INTERRUPT o] ===
[&Setup...][i 1 Groups...][Lo Conﬁg...][= Detailed][l?i Nesting][ol Chart][B Profile]
funcs: 4. total: 2.592s
range total min max avr count intern¥ [1% i
0.000us - - 0.000us 0.(1/0) 0.000% -
hal_default_interrupt_vsr | 905.778us 3.440us 3.540us 3.497us 259. 034% 4
hal_pendable_sve_vsr | 89.861us 0.280us 0.420us 0.347us 259, 0.003% |+
hal_default_svec_vsr 4.004ms 0.140us | 43.940us 7.745us 517. 0.154% 4
Ll nr 3
% B:ITMCAnalyzer.Chart INTERRUPT o] ===
[&Setup...][i iGroups...][K Conﬁg...][A Goto...][N Goto...][FiFind...][O+ In][bEI! Dut][DIFuII]
960000s -2.511940000s -2.511920000s
I
(none) 4| I HI— I .
hal_default_interrupt_vsr A
hal_pendable_swvc_vsr kM 1))
hal_default_swve_vsri | 1
4 |mfr 3

©1989-2024 Lauterbach

MicroTrace for Cortex-M User's Guide | 27

Tracing Data Accesses

To trace data accesses to specific memory locations, you first have to configure the DWT to emit information
about data accesses. This can be achieved via the DataTrace drop-down list in the ITM window or via the

command line:

I ITM.DataTrace <param>

Tracing only Write Accesses

If you want to trace accesses to a single global variable, the Data setting is the most useful one. Select Data
from the Data Trace drop-down list or type at the command line:

ITM.DataTrace Data

The second step is to program the DWT comparators. In the TRACE32 PowerView GUI, the mechanism to
configure the DWT comparators is to define a TraceData breakpoint for the address or address range for
which you want to record information about accesses.

Break.Set mstaticl /Write /TraceData

Please be aware the older Cortex-M3 (r1p1 and earlier) were not able to separate read from write accesses.

¢ BaITM [E=H =R 553
itm trace TImeMode SyncPeriod
OFF InterruptTrace External -
@ 0N ProfilinaTrace CydePrescaler TracelD
DataTrace T -] 16
commands Data - CydeAccurate TracePriority
[Reset || '=re=wm= CLOCK 2.
[®cEar || | [oFF -]
" Register TimeStampMode
B ITMTrace 1/8192 -
L &reu |
—Em @ el =
(3% Delete All (O Disable Al @ Enable All|[@ Init || L1mpl... || 2 store... || $ Load... || Eiiset...
address t imp]l action i
C: lFFFFFAO——lFFFFFAS?WMte ONCHIP ‘TraceData ‘ mstaticl »
4 I3
B:ITMCAnalyzer.List EI@
(& setup... || A Goto... |[#3Find... || vichart || EProfile || EMPS | & More |[Xiess
record run |address cycle |data o ti.back i
-0000048797 D:1FFFFFAD wr-long 3F4A14AF i{aemo Wsi1eveymstaticl 0.380us .
-0000048788 D:1FFFFFAD wr-long 66000125 ‘'\demo'\sieve'\mstaticl 1.320us |z
-0000048782 D:1FFFFFAD wr-long AOLOE3DE ‘\\demo'\sieve'\mstaticl 0.380us _
-0000048773 D:1FFFFFAD wr-long ED7CBCC2 ‘\\demo\sieve'\mstaticl 0.940us
-0000046930 D:1FFFFFAD wr-long ED7CBCC2 ‘\\demo'\sieve'\mstaticl 979.980us *
-0000046925 D:1FFFFFAD wr-long EES46FCO ‘\\demo\sieve'\mstaticl 0.380us
-0000046916 D:1FFFFFAD wr-long FOO3DSBC ‘\\demo'\sieve'\mstaticl 0.960us
-0000046908 D:1FFFFFAD wr-long F2BAEEBE ‘\\demo'sieve'\mstaticl 0.760us
-0000046902 D:1FFFFFAD wr-long FS5E9BAAE ‘\\demo'sieve'\mstaticl 0. 560us
-0000045090 D:1FFFFFAD wr-long FSE9BAAE ‘\\demo'sieve'\mstaticl 972.680us
-0000045082 D:1FFFFFAD wr-Tlong ECAB285E ‘\\demo'sieve'\mstaticl 0.760us -
I3

©1989-2024 Lauterbach

MicroTrace for Cortex-M User’s Guide |

28

The following command allows a graphical display of the data value over the time:

ITMCAnalyzer.DRAW.Var %$DEFault mstaticl

4o B:ITMCAnalyzer. DRAW.Var %DEFault mstaticl =n| Wl <
(& setup...|[A Goto... |[#3Find... |[Aichart |[@ n |[»Deout|[B0 Full][S |[= out| ElFul
262000s -1.602260000s -1.602258000s -1.60225
| | =]

2000000000.

o

Wl

4 4[] e

©1989-2024 Lauterbach

MicroTrace for Cortex-M User’s Guide

29

Tracing Data Accesses and the PC

If you like to know which function accesses a variable do the following:

ITM.DataTrace DataPC

Break.Set mstaticl /ReadWrite /TraceData

These analysis commands can be used:

; display an access statistic for the variable mstaticl
ITMCAnalyzer.STATistic.PsYmbol /Filter sYmbol mstaticl

; display a read access statistic for the variable mstaticl
ITMCAnalyzer.STATistic.PsYmbol /Filter sYmbol mstaticl CYcle Read

= B:ITMCAnalyzer.STATistic.Ps¥mbol /Filter sYmbol mstaticl =n| Wl <
[&Setup...” 11 Groups... ” HH Conﬁg...” 3 Goto... ” g Detailed“ = Tree ” ! Chart ” B Profile]
items: 5. total: 1.726s samples: 8810.
address [total min max avr count ratio¥% [1% i
(other) 0. 560us - - - R =0.001% [« -
func2 10.723ms - - - 3524, 0.621% |+
func2a 5.759ms - - - 1762. 0.333% [+
funcZb 7.009ms - - - 1762. 0.406% |+
func2d 1.702s - - - 1762. 98. 639% | m—
1 3
F| B:ITMCAnalyzer.STATistic.PsYmbol /Filter sYmbol mstaticl CVcle Read =n| Wl <
[&Setup...” 11 Groups... ” HH Conﬁg...” 3 Goto... ” g Detailed“ = Tree ” ! Chart ” B Profile]
items: 5. total: 1.726s samples: 7048.
address [total min max avr count ratio¥% [1% i
(other) 0. 560us - - - 0. =0.001% [« -
func2 10.723ms - - - 1762. 0.621% |+
func2a 5.759ms - - - 1762. 0.333% [+
funcZb 7.009ms - - - 1762. 0.406% |+
func2d 1.702s - - - 1762. 98. 639% | m—
1 3

Tracing Task Switches

If an OS is running on your target, OS-aware debugging has to be configured in order to use OS-aware

tracing.

©1989-2024 Lauterbach

MicroTrace for Cortex-M User’'s Guide

30

The OS writes the ID of the current task to variable that contains the information which task is currently
running. If this write access is traced, the task behavior can be analyzed. TRACE32 PowerView uses a
generic function to identify this variable.

TASK.CONFIG(magic) Returns the address of the variable that contains the
information which task/process is running.

ITM.DataTrace Data

Break.Set TASK.CONFIG (magic) /Write /TraceData

:ITMCAnalyzer.List List. TASK DEFault =n| Wl <
(& setup... || A Goto... || #3Find... || vichart || EProfile || EMIPS || & More || Tiess |
record run |address cycle |data symbol ti.back i
-0000000092 |] D:1FFFOF18 wr-Tong IFFFO0658 ..ScheduTer_Base::current_thread 42.339ms .
--- THREAD magic = 20004F48, id = 5., name = SinWaveThread -—= =
-0000000085 | | D:1FFFOF18 wr-Tong 20004F48 .Scheduler_Base: :current_thread 17.670ms _
--- THREAD magic = 1FFF3638, id = name = SinThread -
-0000000077 | | D:1FFFOF18 wr-Tong lFFF3638 .Scheduler_Base: :current_thread 38.491ms =
--- THREAD magic = 1FFF0658, id = 1., name = Idle.Thread -—
-0000000070 | | D:1FFFOF18 wr-long 1FFFO658 "..Scheduler_Base: :current_thread 71.960us
--- THREAD magic = 1FFF56EE, id = 3., name = SimpleThread -—
-0000000054 | | D:1FFFOF18 wr-Tong lFFFSGES .Scheduler_Base: :current_thread 141.424ms
--- THREAD magic = 1FFF0658, id = name = Idle.Thread -
-0000000047 | | D:1FFFOF18 wr-Tlong lFFFOGSS .Scheduler_Base: :current_thread 42.339ms -
4 I3
¥ B:ITMCAnalyzer.Chart. TASK =n| Wl <
[&Setup...”iiGroups... ” H Conﬁg...” A Goto... ” 1 Goto... ” F#iFind... ” O In ”'EI< Out”IEIFuII]
lOOs -5.000s -4.000s -3.000s -2.000s
range 4 | | | | |
Cunknown) el
SimpleThreadiy

LEDThread ¥
SinwWaveThreadis] B
SinThread¥H
mai iy

Idle Threadsyy ® = |SSiSSiEEEmE = SEWEmININE

£ B:ITMCAnalyzer.STATistic. TASK =n| Wl <
(& setup... || jifGroups... | 38 Config...|[= Detailed]&?i Nesting | " chart || EProfile |
tasks: 7. total: 5.787s
range [total min max avr count ratio¥% [1% i
(unknown) 0.000us - - - 0. 0.000% 7
SimpleThread | 856.295ms - - - 21. 14, 796% |m—
LEDThread 2.069s - - - 22. 35. 7465 |n—
SinwWaveThread | 923.752ms - - - 24, 15. 961% |se—
SinThread 1.521ms - - - 24, 0.026% |+
main | 16.620us - - - 1. =0. 001% |+
Idle Thread 1.937s - - - 27. 33.468% -
b

ITMCAnalyzer.List List.TASK DEFault
ITMCAnalyzer.Chart.TASK

ITMCAnalyzer.STATistic.TASK

©1989-2024 Lauterbach MicroTrace for Cortex-M User's Guide | 31

Tracing Task Switches and Interrupts

The following setup allows you to trace interrupts and task switches.

ITM. InterruptTrace ON
ITM.DataTrace Data

Break.Set TASK.CONFIG (magic) /Write /TraceData

The following commands allow you to analyze the run-time behavior of your system:

ITMCAnalyzer.Chart.TASKVSINTERRUPT

ITMCAnalyzer.STATistic.TASKVSINTERRUPT

e B:ITMCAnalyzer.Chart TASKVSINTERRUPT [E=n E=R===
|ﬁsatup... || iii Groups... || HH Conﬂg...” 1 Goto... || 1 Goto... || F3Find... || 0rIn || s OutH IEIFuII|
00s -13.350s -13.300s -13.250s -13.200s -13.1
range iy 1 1 1 I 1 i
haT_defauTt_svc_vsr [
(none) Al —— —
(none) M |
hal_default_interrupt_vsr L I A
hal_pendable_svc_vsr L S
hal_default_svc_vsr i | I |
(none) o — ——
(none) 4—
hal_default_svc_vsr i
hal_default_interrupt_vsr W
hal_pendable_svc_vsr R I Sl L L L
(none) - e 1 1 1 | | | | |]
hal_default_interrupt_wsr L I o A U N (A (O N N B
hal_pendable_svc_vsr L I N F S T N I R R B AR |
hal_default_svc_vsr .| I N U I N N O A e A |
(none) G ————
hal_default_interrupt_wsr e N N
al_pendable_svc_vsr i [
hal_default_svc_vsr L I A E o o o o .
J< m|r < »
£ B:ITMCAnalyzer STATistic TASKVSINTERRUPT [E=n E=R===
|ﬁsatup... || iii Groups... || HH Conﬂg...” = Detailed” £ Nesting || ol Chart || B Profile |
funcs: 18. total: 13.610s
range [total min max avr count intern¥ 1% |
(none) 0.000us - - - 0.(1/0) 0. 000% ,
(none) 0.000us - - - 0.(1/0) 0. 000%
hal_default_interrupt_vsr 636. 540us - - - 182. 0.004% |+
hal_pendable_svc_vsr 50. 861us - - - 182. <0. 001% |+
hal_default_svc_vsr 1.89%4ms - - - 364. 0.013% |+
{none) 0.000us - - - 0.(1/0 0. 000%
(none) 0.000us - - - 0.(1/0) 0. 000%
hal_default_svc_vsr 8. 866ms - - - 976 0.065% |+
hal_default_interrupt_vsr 1.707ms - - - 488. 0.012% |+
hal_pendable_svec_vsr 145.439us - - - 488. 0.001% |+
{none) 0.000us - - - 0.(1/0) 0. 000%
hal_default_interrupt_vsr 1.676ms - - - 479. 0.012% |+
hal_pendable_svc_vsr 142.180us - - - 479. 0.001% |+
hal_default_svc_vsr 7.076ms - - - 958. 0.051% |+
{none) 0.000us - - - 0.(1/0) 0. 000%
hal_default_interrupt_wsr 741.320us - - - 212. 0.005% |+
hal_pendable_svc_vsr 59.559us - - - 212. <0.001% |+
hal_default_svc vsr 2.947ms - - - 424, 0.021% |+
1« m »

(none) @ <task_name> indicates the task was running.

<interrupt>@ <task_name> indicates that <interrupt> interrupted the task <task_name>.

©1989-2024 Lauterbach MicroTrace for Cortex-M User’'s Guide |

32

Cycle Accurate Trace

The DWT exports its data via the ITM. The ITM can add a timestamp to the data which is based on the CPU
clock. The TRACES32 PowerView GUI can use one of the following timestamp sources:

. Either the external timestamps generated by the pTrace (MicroTrace)

. Or the timestamps of the ITM
The default is to use the externally generated timestamps of the puTrace (MicroTrace).

To enable timestamp generation of the ITM and to use the timestamps of the ITM, select the CycleTrace
check box in the ITM window or type at the command line:

ITM.CycleTrace ON

Additionally you have to configure the clock rate of the ITM timestamp counter. The following command is
available to configure this clock rate:

CAnalyzer.CLOCK <frequency> Configures the debugger for the CPU clock
frequency of the target.

If you are using the TPIU to export data, then the ITM timestamp counter is clocked with the CPU clock. So
if your CPU runs at for example 64Mhz, you have to configure the ITM timestamp rate as 64Mhz with the
command:

CAnalyzer .CLOCK 64Mhz

©1989-2024 Lauterbach MicroTrace for Cortex-M User's Guide | 33

Merging ETM and DWT Data

The Cortex-M allows to use the ETM and DWT (transmitted via the ITM) in parallel. The TPIU will merge the
information from ETM and ITM (containing the DWT data) into a single stream of bytes. This stream is then
exported by the TPIU pins and recorded by the pTrace (MicroTrace).

Preconditions for merging the information:

1. The chip has both CoreSight components: (a) a DWT and (b) an ETM.

2. There must not be a single assembler instruction which accesses both: (a) Memory locations which
are traced with the DWT and (b) memory locations which are not traced with the DWT.
The reason is that under these circumstances the correlation between DWT data access information
and ETM program flow becomes ambiguous.

If the preconditions are fulfilled, the DWT can be configured to emit information about the Program Counter
value for a data access. The information from the DWT about data accesses can then be merged with
the information about program flow from the ETM.

To configure the DWT and to merge the data flow and the program flow, select CorrelatedData from the
DataTrace drop-down list in the ITM window (see Figure 1). Alternatively, type at the command line:

ITM.DataTrace CorrelatedData

To display the merged information in TRACE32, use the command Trace.List or CAnalyzer.List

Figure 1: A Merged Program Flow and Data Trace

©1989-2024 Lauterbach MicroTrace for Cortex-M User's Guide | 34

B:ITMCAnalyzer.List /Track] =] ¢ B:ITM.state
(2 Sehup. | Goto.) ¥ Find..| [l Chart| B Profild (I MIPs| (£ — itm trace ~ TImeMode —
record mm“ lcycle |data |s |ti.back . 5 [intemuptTrace
-0000004193 D:200022F8 wr-long CC78DDED .. 0.080us [rofiingTrace | |- CycePrescaler —|
TRACE EMAELE +
-0000003423 D:200022F8 wr-long CC78DDEE .. 0.100us ¥ DataTrace — 11 i
Data flow from TRACE ENABLE - commands | | [oedenss +) | | [lQckAcuae
-0000003404 D:200022F8 wr-long C9318740 .. 0.120us |*
the DWT TRACE ENABLE - RESet PCsampler —| — CLOCK
. -0000002636 D:200022F8 wr-long C9318741 .. 0.120us
via ITM) TRACE ENABLE [(@cesr || | [oFF -]
-0000002617 TRMEDéﬁggEEZFS wr-Tlong AS20CFEL .. 0. 080us MRegister] - TimeStampMode —
-0000001855 D:200022F8 wr-Tong AS20CFEZ . 0.120us (& 1TMTrace) /8192 ~
TRACE EMAELE -
 ~ 0000001 36} D:200022F8 wr-long 1868EECC .. 0.140us || & TPy [C] TimeStamps
TRACE EMAELE T - J—
-0000001079 D: 200022F8 wr-Tlong 1868EECD . 0. 080us IJ T 0
|+ [1 | »
The program flow ::CAnalyzer.List /Track
from the ETM [& ghp... | Goto...|[#3Find... |[M chart |[B Profile]LE MIPS [# mMaore || X less |
. record |run |address lcycle |data |symb |t1.back |
(see HLL lines) 2
. . 165 for (regvar = 0; regvar < 5 ; regvar++) 0.177us
IS mel’ged with 166 mstaticl += regvar*autovar; 0.076us *
¥
the data ﬂOW 165 ’V for (regvar = 0; regvar < 5 ; regvar++) 0.127us
166 mstaticl += regvar*autovar; 0.000us -
from the DWT.
165 for (regvar = 0; regvar < 5 ; regvar++) 0.000us
166 r mstaticl += regvar*autovar; 0.000us
165 for (regvar = 0; regvar < 5 ; regvar++) 0.326us
> 0.148us
-0000001834 D: 200022F8 ong 1868EECC .umb_1i_v7/m\sieve\Tunc2\fstatic 0. 000us
169 fstaticz = 2*fstatic; 0.326us
171 if (mcount < 5000 0.000us
174 |— funcl(&fstaticz J; 0.000us
static void funcl(int = intptr) /* static function =/
143 { 0. 000us
149 (=intptr)++; 0.000us D
150 1 0. 000us
r -
J]
©1989-2024 Lauterbach MicroTrace for Cortex-M User's Guide | 35

Performance Analysis with the DWT Counters

The TRACE32 PowerView GUI supports to enable and analyze the counters included in the DWT. The DWT
counters emit information about:

J CYC, Cycle Counter: This counter counts the total number of CPU clock cycles. The counter will
be used in conjunction with the CPU clock frequency to calculate the running times.

. CPI, This counter counts the total number of cycles per instruction after the first cycle. For
example: If an instruction takes 5 cycles, the CPI counter will be incremented by 4. The slower
this counter increases, the more instructions per cycle are executed.

J EXC, Exception Counter: This counter counts the number of cycles spent in interrupt processing
specific operations. The counter counts the overhead incurred because of interrupts (like entry
sequences which put registers onto the stack, exit sequences which restore registers from the
stack, etc.).

J SLP, Sleep Counter: This counter counts the number of FCLK cycles the CPU spent sleeping.

. LSU, Load and Store Unit Counter: This counter counts the number of cycles spent in load and
store instructions after the first cycle. For example: If a load instruction takes 4 cycles, the LSU
counter will be incremented by 4. The slower this counter increases, the more instructions per
cycle are executed.

J FLD, Fold Counter: In certain situations, the Cortex-M core is able to spent zero clock cycles for
an instruction. Such instructions are called folded instructions. The FLD counter counts the
number of folded instructions.

Additionally by analyzing the counters you can extract a MIPS (million instructions per second) over time.

To enable the DWT counters, select the ProfilingTrace check box in the ITM window (see Figure 2) or type
at the command line:

IT™.ProfilingTrace ON

To get meaningful numbers, it is recommended to first group your program into interesting sections using
this command group:

GROUP Helps to structure application programs to ease the debugging process
and the evaluation of the trace contents.

The TRACE32 PowerView GUI is then able to draw different counter rates over time and correlate the
counter rates to the different sections you defined. You can select the counters via the BMC window
(BenchMark-Counter); in this window, you also have to specify the CPU clock frequency. As an example,
see Figure 2.

In this example, the quicksort algorithm produces the highest rate for the LSU counter. This means that the
bottleneck for this algorithm is the access to memory where the data is stored; the CPU spends more cycles
waiting for memory than in all other algorithms.

This is a good sign; it means that the code is very optimized, so that the CPU itself does not have to execute
many non-load/store instructions.

©1989-2024 Lauterbach MicroTrace for Cortex-M User's Guide | 36

Figure 2: LSU Counter Rate (in Events/Second) for Different Sorting Algorithms

i B:GROUP.List 10l =|
B Delete AIII Disable AIII @) Enzble AIII O Hide Alll & Show Alll g Stare...
group enable hide merge [color "
= "createnumbers” W STLVER -
create_random_1fsr W SILVER
= "heapsort” Y BLUE
heapsort W ELUE
= "insertsort” i AQUA { =] 3
is_h i AQUA a
isort ¥ AOUA control CLOCK.
B "quicksort” M GREEN @ Init | I Autelnit IV Trace |48.DMH2
qs_h W GREEN
= GREEN
=10l x| [Meroon _ILI — CYCENT
— itm — zelection configuration — M B 58ds
" OFF [CycleTrace PortSize
@« 0N — DataTrace |4 'l — profile — SELect — comelated
OFF - Forttode &ITM !EF’I CPl = | svmbal
— commands — PCSampler IEontinuous 'l WITMTrace !EXE = EXC = | TREE
RESet |1.-"128 'l TracePriority —| | List !SLF’ " 5LP ETASK
© CLEAR [z L5 & Lsu | =|GROUP
Register [InteruptTrace FLD FLD !stboI
QITMTrace ¥ ProfiingTrace !EYE CYC TASK
i MIFS GROUP
10l =|
F9Find.. | 40 In [p4 0| Ful| 2 0 [X 0wl Z Ful| Fire | Coarse
"createnumbers” ["quicksort" “heapsort”
-1.100s -1.085s -1.080s -1.085s
eventsfsec | | | L 1 1 |
F3
10.08+6 -
8000000.0 . |
E000000.0
4000000.0 . J
2000000.0
x|

B:CAnalyzer.Chart.GROUP /Track _|EI|

W Setup..

-1.100s
addressF 1 1 1 1
(other’
"createnumbers”)))))
oup "quicksort”) |
roup “heapsort”
oup “shellsort”
up "insertsort”

©1989-2024 Lauterbach MicroTrace for Cortex-M User's Guide | 37

Serial Wire Debug Port (SWDP) and Serial Wire Viewer (SWV)

This chapter describes how to configure the pTrace (MicroTrace) to use the Serial Wire Debug protocol and
Serial Wire Viewer.

As mentioned before, Arm offers the Serial Wire Debug protocol, which uses only two pins. TRACES2 can
debug a chip with the Serial Wire Debug protocol by using the following commands in this sequence:

SYStem.CONFIG DEBUGPORTTYPE SWD
SYStem.Up

If a chip is debugged with Serial Wire Debug protocol (instead of JTAG), you can put the TPIU in Serial Wire
Viewer mode, which makes it possible to receive ITM data asynchronously via the Serial Wire Output signal.
The Serial Wire Output signal is currently expected to be multiplexed with the unused JTAG TDO pin.

To put the TPIU into Serial Wire Viewer mode, the ETM has to be disabled via the ETM window, since the
TPIU only supports ITM in Serial Wire Viewer mode. Alternatively, type at the command line:

ETM.OFF

When the ETM is disabled, you can switch the TPIU to Serial Wire Viewer mode. To do this, select SWV
from the PortSize drop-down list in the TPIU.state window (see Figure below) or type at the command line:

TPIU.PortSize SWV

Figure 3: How to select Serial Wire Viewer mode in the TPIU.state window

2 B:TPIU.state =n| Wl <
tpiu PortSize SyncPeriod
OFF SWvV ~
ON PortMode
MNRZ A
commands SW\Prescaler
RESet 2.
@ CLEAR
® Register
@ Trace

The bit rate of the asynchronous Serial Wire Output signal is derived by dividing the CPU frequency. The
frequency divider can be configured in the TPIU.state window via the SWVPrescaler input field, see Figure
above. In this example, 2. is selected, which stands for a bit rate of half the CPU frequency.

Alternatively, use the command TPIU.SWVPrescaler:

TPIU.SWVPrescaler 2.

©1989-2024 Lauterbach MicroTrace for Cortex-M User's Guide | 38

The pTrace (MicroTrace) has to know the bit rate of the asynchronous Serial Wire Output signal to sample
the data correctly. Currently up to 200 MHz are supported (100 MHz with the MIPI134 whisker). You might
need to choose a larger divider to remain in the allowed range. You can specify the bit rate manually with the
following command:

CAnalyzer.TraceCLOCK <frequency> Configures the frequency of the trace port,
in this case the bit rate of the Serial Wire
Output signal.

To auto-detect the bit rate, click the AutoFocus button in the CAnalyzer window or type at the command
line:

CAnalyzer .AutoFocus

If you use the MIPI20T-HS whisker, you can also use the ShowFocus button to view and change the sample
points used to capture the SWV trace:

XX B:CAnalyzer.ShowFocus EI@
(& sew.. || San][Scan+ (il Cesf| @ on)[O Off|[xX AutoFocs] [4][» |[E2 Store...|[S2 Load...|
f=203. 8MHz -4.000 -3.000 -2.000 -1.000 +0.000 +1.000 +2.000 +3.000 +4.000

©1989-2024 Lauterbach MicroTrace for Cortex-M User's Guide | 39

Software Trace with the ITM

The ITM offers another important feature to the user: It enables the CPU to emit data via the TPIU port or the
Serial Wire Output signal.

The ITM provides 32 channels to the CPU. These ITM channels appear as memory-mapped peripheral in
the CPUs memory space. The CPU can emit data through one channel by simply writing to the
corresponding memory location. See Figure 4.

Figure 4: Memory Map for CPU accesses to the ITM Channels
ITM

writes | ,.£0000000 Channel O

0xE0000004 Channel 1
cou | |
—————— 0xE0000008 Channel 2 TPIU
N
. —~
Memory
Address

The ITM acts as an extremely easy-to-use output device to send out debug related data. For example, it is
very easy to implement debug “printf” like functionality by simply writing the “printf” strings to an ITM
channel.

Of course using the ITM in this manner requires that you modify your software to access the ITM. So you
have to instrument your software to output data you are interested in; this is the reason why the module is
called Instrumentation Trace Macrocell.

Because the ITM already offers 32 channels it is also easy to implement thread safe code, by simply
assigning one channel per thread.

Other usage models of the ITM can also be easily implemented. For example, you could use Channel 0 to
log Function Entries by emitting the address of the function through channel 0.

©1989-2024 Lauterbach MicroTrace for Cortex-M User's Guide | 40

Here is an example source code, which shows C macros to access the ITM from software.

static volatile unsigned int *ITM_BASE = (volatile unsigned int *)O0xE0000000;
#define ITM_TRACE_DS8 (_channel ,_data_) { \

volatile unsigned int *_ch_=ITM_BASE+ (_channel_); \

while (*_ch_ == 0); \

(*((volatile unsigned char *) (_ch_)))=(_data_); \

#define ITM _TRACE_D16 (_channel ,_data_) { \

volatile unsigned int *_ch_=ITM_BASE+ (_channel_); \
while (*_ch_ == 0); \
(*((volatile unsigned short *) (_ch_)))=(_data_); \

#define ITM _TRACE_D32 (_channel_,_data_) { \
volatile unsigned int *_ch_=ITM_ BASE+ (_channel_); \
while (*_ch_ == 0); \
* ch_ = (_data_); \

}

7% oo %/

ITM_TRACE_D32 (0,value); /* send a 32 bit value over ITM channel 0 */

©1989-2024 Lauterbach MicroTrace for Cortex-M User's Guide | 41

Custom Trace DLLs

If you use the ITM to emit data from your software, the biggest challenge for the TRACE32 PowerView GUI
is to present the data in a useful manner.

Since the TRACES32 PowerView GUI does not know how to interpret the data emitted by your software, the
TRACE32 PowerView GUI can only show you the raw data from the ITM but not more.

To allow for a more useful representation of the data, the TRACE32 PowerView GUI offers an open API
which makes it possible to load a user implemented custom DLL to the TRACE32 PowerView GUI. The DLL
will then be used to analyze the payload of the ITM data (so the data emitted by the Software). The data
produced by the DLL can then be displayed by the TRACE32 PowerView GUI.

Figure 5 shows the concept.

Figure 5: Concept how a Custom DLL analyses ITM Data

Target
TPIU

Custom Trace
CombiProbe List Window

Trace32 GUI i

IT™M Analyzed
Data Data

Custom Trace DLL

Here is a simple “printf” example in which the source code calls a “printf” function to output strings via ITM. A
custom DLL is used by the TRACE32 PowerView GUI to decode the payload of the ITM data.

if ((d1&0xFFF) == 0x123) {
ITM _printf ("count == %08x after %d tries",dl,numInt) ;
numInt=0;

The source code produces the ITM data shown on the left of Figure 6. The right hand side is generated by a
custom DLL loaded into the TRACE32 PowerView GUI.

©1989-2024 Lauterbach MicroTrace for Cortex-M User’'s Guide | 42

Figure 6: A Simple “printf” Custom DLL Decoding Example

JI T

54553520_l;|
47

1

CaAnalyzer.List address 10l =| H . 10l =|
& setup... | Y Goto.. | §3Find.. | e Chart WSetup...I n,Goto...I #3Find... | ¥y Chart | EProfiIe | ~

record [address |data " record [spare =
-0000020256 C:EOOO0O00 34393732 4 - +
—0000020226 C:EQDOOOOD BI727420 79 [ttt e bt e -
—0000020216 C:E0000000 00007365 [rooooooonon (count <138e123 after 15014 tries
-0000020200 C:E0000000 GE7SEFER X +0000000001 Jcount 15hh5123 after 8102 tries =
—0000020190 C:E0000000 30302074 = +0000000002 Jcount £19¢9123 after 982 tries -
—0000020180 C:E0000000 BEEBE3Z220 iy 0000000003 Jcount e?226123 after 2708 tries
—0000020170 C:E0000000 32316265 +0000000004 Jcount 1c6e0123 after 4389 tries
—0000020160 C:E0000000 BEE12033 +0000000005 |count 03baal123 after 1438 tries
-0000020150 C:E0000000 20726574 +0000000006 |count 55754123 after 1018 tries
—0000020140 C:E0000000 20373638 +0000000007 Jcount e50f6123 after 462 tries
—0000020130 C:E0000000 B5697274 DLL +0000000008 |count 77feb123 after 2794 tries
-0000020120 C:EO000000 00000073 1 +0000000005 Jcount 2ffeb123 after 867 tries
-0000020104 C:E0000000 EE?SEFE3 ﬁ count te tries
-0000020094 C:E0000000 3030207 +0000000011 |count == 6 123 413 tries
-0000020084 C:E0000000 37626520 0000000012 |count == 55522123 after G608 tries
—0000020074 C:E0000000 32313638 0000000013 |count == 99b37123 after 923 tries
-0000020064 C:E0000000 BEE12033 0000000074 |count == 5c248123 after 2232 tries
-0000020054 C:E0000000 20726574 0000000015 |count == ?e?75b123 after 4195 tries
—0000020044 C:E0000000 31363332 0000000016 |count == <BBA0123 after 1144 tries
-0000020034 C:E0000000 69727420 0000000017 |count == 96b57123 after 5590 tries
-0000020024 C:E0000000 00007365 0000000018 |count == 08eec123 after 3941 tries
—0000020008 C:E0000000 BE7SEFE3 0000000019 |count == 9af0b123 after 6406 tries
-0000019998 C:E0000000 30302074 0000000020 |count == £2702123 after 1143 tries
-0000019988 C:E0000000 0000000021 |count == 62303123 after 5828 tries =

o

A custom trace demo is included in your TRACES32 installation. The demo runs under Windows and Linux in
the TRACE32 Instruction Set Simulator.

NOTE:

Before you can run the demo under Linux, navigate to
~~/demo/customtrace/pipe_dll/
and compile with make -f makefile.linux

To access the custom trace demo in TRACE32:

1. Run this command B: :CD.PSTEP ~~/demo/customtrace/pipe_dll/*

2. Select one of the following *_demo.cmm files:

- dll_stp_demo.cmm

- dll_csstm_demo.cmm

- dll_itm_demo.cmm (for details about these files, refer to the readme.txt)

The selected PRACTICE script file opens in the CD.PSTEP window in single step mode.

3. To run the demo, click Continue. The result will look similar to Figure 6.

dll_stp_demo.cmm

Raw STPv2 - MIPI System Trace Protocol version 2

dll_csstm_demo.cmm

CoreSight STM - CoreSight System Trace Macrocell output via a

CoreSight TPIU in CONTINUOUS mode

dil_itm_demo.cmm

CoreSight ITM - CoreSight Instrumentation Trace Macrocell output
via a CoreSight TPIU in CONTINUOUS mode

©1989-2024 Lauterbach

MicroTrace for Cortex-M User’'s Guide

| 43

On-the-fly Transfer of ITM and ETM Data

Recording ITM data usually does not require a high bandwidth; especially when dealing only with ITM data
generated by software.

The low bandwidth makes it possible to transfer the data recorded by the pTrace (MicroTrace) on-the-fly to
the TRACES32 PowerView GUI on the PC, while the recording is in progress.

The pTrace (MicroTrace) supports three different use cases for on-the-fly transfer of trace data:
1. Extending the Recording Size
2. Feeding Your Own Applications with Trace Data

3. Real-time Profiling with the ETM
The three use cases are discussed in the following sections.

When the pTrace (MicroTrace) transfers data on-the-fly, it behaves like a FIFO: The data coming from the
target is buffered in the memory of the pTrace (MicroTrace) and is then transferred to the PC.

The same mechanism works for ETM data, as long as the bandwidth of the generated ETM data is not too
high.

The on-the-fly transfer to the PC allows to process the data on-the-fly and to store the data to hard disk,
while the recording is in progress.

©1989-2024 Lauterbach MicroTrace for Cortex-M User's Guide | 44

Extending the Recording Size

The first use case is to stream the trace data to disk to extend the recording size, if you want more than the
128MiB256MiB the pTrace (MicroTrace) has internally.

To enable this use case, select STREAM mode in the CAnalyzer window or type at the command line:

CAnalyzer .Mode STREAM

In STREAM mode, all data will be transferred to your hard disk on-the-fly. The following commands are
available for storing the trace data to a file on your hard disk:

<trace>.STREAMCompression Select compression mode for streaming.
<trace>.STREAMFileLimit Set size limit for streaming file.
<trace>.STREAMFILE Specify your own streaming file.

When you open a CAnalyzer.List window, the TRACE32 PowerView GUI will access the recorded data
stored on your hard disk.

©1989-2024 Lauterbach MicroTrace for Cortex-M User's Guide | 45

Feeding Your Own Applications with Trace Data

The second major use case is supported by PIPE mode. To enable this use case, select PIPE mode in the
CAnalyzer window or type at the command line:

CAnalyzer .Mode PIPE

In this use case, data is on-the-fly transferred to the PC and processed. Processing in this context means,
that the TRACE32 PowerView GUI will decode the TPIU formatter and ITM protocol into a more general
format. This preprocessed data can then be:

. Stored into a file
. Send to a “Named Pipe”
. Passed to a user implemented DLL

If the data is stored into a file, the data can be further processed later on by your own software. The
TRACE32 PowerView GUI allows to filter the ITM data by channels; it is possible to open up to eight files,
each of which receives data from a different set of ITM channels. The command to store the data to a file is:

I CAnalyzer.WRITE <file> /ChannellD <range_or_mask>

If you have a software application which wants to receive and process data from the ITM on-the-fly, you can
open up a “Named Pipe”. The TRACE32 PowerView GUI can send the ITM data to up to eight different
Named Pipes; as with files the TRACE32 PowerView GUI can be configured to only send a specific set of
channels to each of the Named Pipes. The command to send the data to a Named Pipe is:

I CAnalyzer.PipeWRITE <named_pipe> /ChannellD <range_or_mask>

Probably the most flexible approach is to load your own DLL into the TRACE32 PowerView GUI. The
TRACE32 PowerView GUI will pass all received ITM data to your DLL. In the DLL you can filter and
distribute the data in any manner you like.

You can combine all three possibilities, so you can in parallef.

. Store the ITM data to a file

J Send it to a Named Pipe

. Pass it to a DLL

Note that the TRACE32 PowerView GUI treats DLLs for custom trace processing and DLLs for PIPE mode
processing in exactly the same manner. Conceptually there is no difference: In both cases the TRACE32

PowerView GUI will feed the ITM data to your DLL; your DLL analyses the data and either passes it back to
the TRACES32 PowerView GUI (in the case of a custom trace DLL) or it sends it to another application.

This means that if you use a custom trace DLL in PIPE mode, the processing will take place while the
recording is in progress. If you stop the recording, the processing will already be finished and the processed
data can be viewed instantaneously.

©1989-2024 Lauterbach MicroTrace for Cortex-M User's Guide | 46

Real-Time Profiling with the ETM

The third use case is to analyze ETM data on-the-fly: If the Cortex-M core implements an ETM, the pTrace

(MicroTrace) can be used to transfer and analyze ETM data on-the-fly (e.g. while the core is executing its

program).

By analyzing the ETM data on-the-fly, the TRACE32 PowerView GUI can visualize (for example) how often

each function has been executed and if there are code parts which have not been executed at all. The

analysis of ETM data takes place without stopping or influencing the Cortex-M core. For details, please refer
to the RTS command group.

Figure 7: Real-Time Profiling of ETM data

-k TRACE32 PowerView for Cortex- |

File Edit View Var Break Run CPU Misc Trace Perf Cov STM32Fdx Window Help
(R VN S o A S | - M eS| @@
@ B::COVerage ListFunc EI@
B setup...|| A Goto... || BLst || +Add | Rloed... [Esave.. || @mit |
address tree coverage executed [0% 50% 100 |conds |
P:20000060--20001619| = \sieve partial | 86.150% |m—— 85.606% | .
P :20000060--20000069 funcO never 0.000% -
P:2000006C--20000089 funcl ok [100. 000 | ee—— -
P:2000008C--20000149 func? partial | 97. 894 |e—— 75.000%
P:2000014C--200001A3 funca ok [100. 000% | ee—— 100 . 000%
P:20000144--200001F1 funczb ok [100. 000% | ee—— 100 . 000%
P:200001F4--200002C3 func2c ok [100. 000% | ee—— 100 . 000%
P:200002C4--2000031F func2d ok [100. 000 | ee————— 100, 000% | =
P:20000320--2000032F func3 ok [100. 000 | ee—— -
P:20000330--20000367 funcd ok [100. 000 | ee—— -
P:20000368--2000038D funch ok [100. 000 | ee—— -
P:20000390--200003EF funch partial | 81.250% |ee————— -
P:200003F0--2000047F func? partial | 91.666% | ————— -
P:20000480--20000701 func8 ok [100. 000 | ee—— -
P:20000704--20000779 func9 ok [100. 000% | ee—— 100 . 000%
P:2000077C--2000099F funcl0 ok [100. D00% | ee——— 100 000%
P:200009A0--20000429 funcll partial | 27.536% |wmm— 50. 000%
P :20000A2C--20000A45 funcl2 never 0.000% -
P:20000A48--20000AA3 funcl3 ok [100. 000% | ee—————— 100 000%
P:20000AA4--20000ABF funcl4 ok [100. D00% | e———— -
P :20000AC0--20000ADD funcls ok [100. D00% | e———— -
P :20000AE0--20000AF9 funclé ok [100. D00% | e———— -
P:20000AFC--20000B21 funcl? ok [100. D00% | e———— -
P:20000B24--20000B45 funclg ok [100. 000% -
P:20000B48--20000B69 funcl9 ok [100. 000% - -
‘ 1L »
= | B:ISTATistic ListFunc (===]| &erTs [= = =]
(@ setup... A coto... || Elust || +Add [Load...|[E2save.. | @mit || —ris utilisation errors
address tree coverage |count i - OFF
P:20000060--20001619 [E] 86.156% -j= -
P :20000060--20000069 = 0.000% 0. @ ON 232879904. [¥] StopOnError
P:2000006C--20000089 100.000% | 1963115,
P :2000008C --20000149 97.894% | 280445, |% BT TR, MIEEEE
P:2000014C--200001A3 100. 000% 280445, commands data base
P:200001a4--200001F1 100. 000% 280445,
P:200001F4--200002C3 100.000% | 280445, bl 7] stopOnhicaccesstocode
P:200002C4--2000031F 100. 000% 280445, state fifofulls
P:20000320--2000032F 100. 000% 280445,
P:20000330--20000367 100. 000% 280445, active L
P:20000368--2000038D 100. 000% 280445, -
P:20000390--200003EF 81.250% | 280445, Un|EROfa BV staponFifafull
P :200003F0--2000047F 91.666% | 280445, diagnostics
P:20000480--20000701 100. 000% 280445, =|ISTAT List
P:20000704--20000779 funcd 100. 000% 280445, ~ = I3
4 m »
B::
[cmnponems][trace][Data][Var][List][PERF][SYStem][Step][Go][Break][other ” previous
umng 1 e e

©1989-2024 Lauterbach

MicroTrace for Cortex-M User’s Guide

47

Discontinued Products

pTrace (MicroTrace) (with CombiProbe MIPI34 Whisker)

PC or
Workstation

Target

uuuuuuuu

usB
Cable

o
MIPI 34/20/10
Connector

#TRACE® FOR CORTEX®-M / USB 3

Wall Mount
e
Power Supply

You have chosen the all-in-one debug and off-chip trace solution developed by Lauterbach especially for
Cortex-M processors.

The combination of pTrace (MicroTrace) and MIPI34 whisker supports:

. debugging via JTAG (IEEE 1149.1), SWD (Serial Wire Debug) or cJTAG (IEEE 1149.7) at clock
rates up to 100 MHz

o debug connectors MIPI-20T, MIPI-10, MIPI-34 and MIPI-20D (without adapter), ARM-20 and TI-
14 (with included adapter)

. parallel trace using ETM/TPIU continuous mode with up to 4 data pins and bit rates of up to
200 Mbit/s per pin.

J SWV (Serial Wire Viewer) / SWO (Serial Wire Output) trace at port rates up to 100 Mbit/s
Please refer to “Cortex-M Debugger” (debugger_cortexm.pdf) for all Cortex-M specific debug features.

This manual describes the basic setups and all Cortex-M specific trace features.

©1989-2024 Lauterbach MicroTrace for Cortex-M User's Guide | 48

Deprecated Connectors

The following connectors are rarely used and not supported by the MIPI20T-HS whisker. To use them, you
currently need to use the older MIP134 whisker (limited to 100 Mbit/s per pin). Contact Lauterbach support

for alternative solutions.

34-Pin Debug, SWO and Trace Connector

The signals RTCK, DBGRQ/EMUO, DBGACK/EMU1 are not supported by pTrace (MicroTrace).

Signal Pin Pin Signal

VREF DEBUG 1 2 TMS
GND 3 4 TCK
GND 5 6 TDO

(KEY) GND 7 8 TDI

GND 9 10 RESET-
GND 11 12 RTCK
GND 13 14 BCE
GND 15 16 TRST-
GND 17 18 TRIGIN
GND 19 20 TRIGOUT
GND 21 22 TRC CLK
GND 23 24 TRC DATAO
GND 25 26 TRC DATA1
GND 27 28 TRC DATA2
GND 29 30 TRC DATA3
GND 31 32 TRC EXT
GND 33 34 VREF TRACE

20-Pin Debug and SWO Connector

The signals RTCK, DBGRQ/EMUO, DBGACK/EMU1 are not supported by pTrace (MicroTrace).

Signal Pin Pin Signal

VREF-DEBUG 1 2 TMSITMSCISWDIO
GND 3 4 TCKITCKCISWCLK
GND 5 6 TDOI-ISWO

GND (KEY) - 8 TDI

GND 9 10 RESET-
GND 11 12 RTCK
GND 13 14 TRST- PULLDOWN
GND 15 16 TRST-
GND 17 18 DBGRQ (EMUO)
GND 19 20 DBGACK (EMU1)

©1989-2024 Lauterbach MicroTrace for Cortex-M User’s Guide

49

	MicroTrace for Cortex-M User’s Guide
	TRACE32 Products for Cortex-M
	µTrace (MicroTrace) (with MIPI20T-HS Whisker)
	PowerDebug and CombiProbe (with MIPI20T-HS Whisker)
	PowerDebug and CombiProbe (with CombiProbe MIPI34 Whisker)
	PowerDebug and Debug Cable
	PowerDebug and PowerTrace (X-License)

	Basics
	Keywords
	CoreSight Components

	Overview of Cortex-M CoreSight Components
	Embedded Trace Macrocell (ETM) Overview
	Data Watchpoint and Trace (DWT) Unit Overview
	Instrumentation Trace Macrocell (ITM) Overview
	Trace Port Interface Unit (TPIU) Overview
	Embedded Trace Buffer

	Connectors
	Setting up Parallel Trace
	Configuring the Correct Port Type
	Connecting to the Target and Configure Trace-related Components
	Configuring TRACE32 Trace Settings
	Viewing or Changing Timing Parameters
	Diagnosing Common Problems

	Using the ETM
	Using the DWT
	PCSampler
	Interrupt Trace
	Tracing Data Accesses
	Tracing only Write Accesses
	Tracing Data Accesses and the PC
	Tracing Task Switches
	Tracing Task Switches and Interrupts

	Cycle Accurate Trace

	Merging ETM and DWT Data
	Performance Analysis with the DWT Counters
	Serial Wire Debug Port (SWDP) and Serial Wire Viewer (SWV)
	Software Trace with the ITM
	Custom Trace DLLs

	On-the-fly Transfer of ITM and ETM Data
	Extending the Recording Size
	Feeding Your Own Applications with Trace Data
	Real-Time Profiling with the ETM

	Discontinued Products
	µTrace (MicroTrace) (with CombiProbe MIPI34 Whisker)
	Deprecated Connectors
	34-Pin Debug, SWO and Trace Connector
	20-Pin Debug and SWO Connector

