
MANUAL

Release 02.2024

MicroTrace for Cortex-M
User’s Guide

MicroTrace for Cortex-M User’s Guide

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 ICD In-Circuit Debugger .. 

 Processor Architecture Manuals .. 

 Arm/CORTEX/XSCALE .. 

 MicroTrace for Cortex-M User's Guide ... 1

 TRACE32 Products for Cortex-M ... 4

 µTrace (MicroTrace) (with MIPI20T-HS Whisker) 5

 PowerDebug and CombiProbe (with MIPI20T-HS Whisker) 6

 PowerDebug and CombiProbe (with CombiProbe MIPI34 Whisker) 7

 PowerDebug and Debug Cable 8

 PowerDebug and PowerTrace (X-License) 9

 Basics ... 10

 Keywords 10

 CoreSight Components 10

 Overview of Cortex-M CoreSight Components .. 11

 Embedded Trace Macrocell (ETM) Overview 11

 Data Watchpoint and Trace (DWT) Unit Overview 12

 Instrumentation Trace Macrocell (ITM) Overview 12

 Trace Port Interface Unit (TPIU) Overview 13

 Embedded Trace Buffer 13

 Connectors .. 14

 Setting up Parallel Trace .. 15

 Configuring the Correct Port Type 15

 Connecting to the Target and Configure Trace-related Components 15

 Configuring TRACE32 Trace Settings 16

 Viewing or Changing Timing Parameters 17

 Diagnosing Common Problems 19

 Using the ETM ... 21

 Using the DWT ... 23

 PCSampler 24

 Interrupt Trace 26

 Tracing Data Accesses 28
MicroTrace for Cortex-M User’s Guide | 2©1989-2024 Lauterbach

 Tracing only Write Accesses 28

 Tracing Data Accesses and the PC 30

 Tracing Task Switches 30

 Tracing Task Switches and Interrupts 32

 Cycle Accurate Trace 33

 Merging ETM and DWT Data .. 34

 Performance Analysis with the DWT Counters .. 36

 Serial Wire Debug Port (SWDP) and Serial Wire Viewer (SWV) 38

 Software Trace with the ITM ... 40

 Custom Trace DLLs 42

 On-the-fly Transfer of ITM and ETM Data .. 44

 Extending the Recording Size 45

 Feeding Your Own Applications with Trace Data 46

 Real-Time Profiling with the ETM 47

 Discontinued Products ... 48

 µTrace (MicroTrace) (with CombiProbe MIPI34 Whisker) 48

 Deprecated Connectors 49

 34-Pin Debug, SWO and Trace Connector 49

 20-Pin Debug and SWO Connector 50
MicroTrace for Cortex-M User’s Guide | 3©1989-2024 Lauterbach

MicroTrace for Cortex-M User’s Guide

Version 04-Mar-2024

TRACE32 Products for Cortex-M

Lauterbach offers different tool configurations for debugging and tracing of Cortex-M cores. This chapter
presents the individual configurations and their main applications briefly.

The following configurations are provided:

• µTrace (with MIPI20T-HS Whisker)

• PowerDebug and CombiProbe (with MIPI20T-HS Whisker)

• PowerDebug and CombiProbe (with CombiProbe MIPI34 Whisker)

• PowerDebug and Debug Cable

• PowerDebug and PowerTrace (X-License)

The following older combination is no longer recommended, but still supported:

• µTrace (with CombiProbe MIPI34 Whisker)
MicroTrace for Cortex-M User’s Guide | 4©1989-2024 Lauterbach

µTrace (MicroTrace) (with MIPI20T-HS Whisker)

You have chosen the all-in-one debug and off-chip trace solution developed by Lauterbach especially for
Cortex-M processors.

The combination of µTrace (MicroTrace) and MIPI20T-HS whisker supports:

• Debugging via JTAG (IEEE 1149.1), SWD (Serial Wire Debug) or cJTAG (IEEE 1149.7) at clock
rates up to 100 MHz

• Debug connectors MIPI20T and MIPI10 (without adapter), Arm-20 (with included adapter)

• Parallel trace using ETM/TPIU continuous mode with up to 4 data pins and bit rates of up to
400 Mbit/s per pin

• SWV (Serial Wire Viewer) / SWO (Serial Wire Output) trace at port rates up to 200 Mbit/s

• Automatic configuration and advanced diagnostics of electrical parameters of the used trace port

This combination requires TRACE32 R.2018.09 or newer.

Please refer to “Cortex-M Debugger” (debugger_cortexm.pdf) for all Cortex-M specific debug features.

This manual describes the basic setups and all Cortex-M specific trace features.

AU
X

PO
RT

 V
1

D
EB

U
G

/T
RA

CE
 W

H
IS

KE
R

μTRACE® FOR CORTEX®-M / USB 3

PC or
Workstation

USB
Cable

Target

M
IP

I2
0T

/M
IP

I1
0

C
on

ne
ct

or
MicroTrace for Cortex-M User’s Guide | 5©1989-2024 Lauterbach

PowerDebug and CombiProbe (with MIPI20T-HS Whisker)

You have chosen a debug and off-chip trace solution for your processor which is tailor-made for the
Cortex-M, but provides you with greater flexibility than the all-in-one debug and trace solution µTrace
(MicroTrace). The combination of CombiProbe and MIPI20T-HS whisker supports:

• Debugging via JTAG (IEEE 1149.1), SWD (Serial Wire Debug) or cJTAG (IEEE 1149.7) at clock
rates up to 100 MHz

• Debug connectors MIPI20T and MIPI10 (without adapter), Arm-20 (with included adapter)

• Parallel trace using ETM/ITM in TPIU continuous mode with up to 4 data pins and bit rates of up
to 400 Mbit/s per pin

• SWV (Serial Wire Viewer) / SWO (Serial Wire Output) trace at port rates up to 200 Mbit/s

• Automatic configuration and advanced diagnostics of electrical parameters of the used trace port

• Optional logic analyzer extension TRACE32 Mixed-Signal Probe.

• Debugging of CPU types other than Cortex-M (e. g. Cortex-A/R)

• Debugging two chips with two separate debug connectors (using a second whisker cable)

This combination requires TRACE32 R.2018.09 or newer.

For all Cortex-M specific debug features, please refer to “Cortex-M Debugger” (debugger_cortexm.pdf).

For all Cortex-M specific trace features, please refer to “CombiProbe for Cortex-M User’s Guide”
(combiprobe_cortexm.pdf).

��������	

POWER DEBUG E40

POWER DEBUG E40

PC or
Workstation

USB
Cable

Target

CombiProbe

M
IP

I2
0T

/M
IP

I1
0

C
on

ne
ct

or
MicroTrace for Cortex-M User’s Guide | 6©1989-2024 Lauterbach

PowerDebug and CombiProbe (with CombiProbe MIPI34 Whisker)

This solution is outdated.

You have chosen a debug and off-chip trace solution for your processor which is tailor-made for the
Cortex-M, but provides you with greater flexibility than the all-in-one debug and trace solution µTrace
(MicroTrace). The combination of CombiProbe and MIPI34 whisker supports:

• Debugging via JTAG (IEEE 1149.1), SWD (Serial Wire Debug) or cJTAG (IEEE 1149.7) at clock
rates up to 100 MHz

• Debug connectors MIPI34, MIPI20D, MIPI20T and MIPI10 (without adapter), Arm-20 (with
included adapter)

• Parallel trace using ETM/ITM/STM either in TPIU continuous mode or without a TPIU with up to 4
data pins and bit rates of up to 200 Mbit/s per pin

• SWV (Serial Wire Viewer) / SWO (Serial Wire Output) trace at port rates up to 100 Mbit/s

• Optional logic analyzer extension (PowerProbe or PowerIntegrator)

• Debugging of CPU types other than Cortex-M (e. g. Cortex-A/R)

• Debugging two chips with two separate debug connectors (using a second whisker cable)

For all Cortex-M specific debug features, please refer to “Cortex-M Debugger” (debugger_cortexm.pdf).

For all Cortex-M specific trace features, please refer to “CombiProbe for Cortex-M User’s Guide”
(combiprobe_cortexm.pdf).

��������	

POWER DEBUG USB INTERFACE / USB 3

POWER DEBUG INTERFACE / USB 3

PC or
Workstation

USB
Cable

Target

CombiProbe

M
IP

I3
4/

20
/1

0
C

on
ne

ct
or
MicroTrace for Cortex-M User’s Guide | 7©1989-2024 Lauterbach

PowerDebug and Debug Cable

You have chosen a pure debug solution because your processor has no off-chip trace option or you have no
interest in off-chip tracing.

For all Cortex-M specific debug features, please refer to “Cortex-M Debugger” (debugger_cortexm.pdf).

��������	

POWER DEBUG E40

POWER DEBUG E40

PC or
Workstation

USB
Cable

Target

D
eb

ug
C

on
ne

ct
or

Debug Cable
MicroTrace for Cortex-M User’s Guide | 8©1989-2024 Lauterbach

PowerDebug and PowerTrace (X-License)

You have the TRACE32 high-end debug and off-chip trace solution for your processor and it is likely that your
Cortex-M is part of a complex SoC.

For all Cortex-M specific debug features, please refer to “Cortex-M Debugger” (debugger_cortexm.pdf).

For all Cortex-M specific trace features, please refer to “Training Cortex-M Tracing”
(training_cortexm_etm.pdf).

POWER DEBUG X50

��������	

��������	

POWER TRACE III

1

POWER DEBUG X50
POWER TRACE III

SWITCH PC or
Workstation

1 GBit Ethernet

Ethernet
Cable

Target

D
eb

ug
C

on
ne

ct
or

Debug Cable

LA
U
TE
RB

AC
H

LA
U
TE
RB

AC
H

PR
EO

PR
O

CE
SS

O
R

AU
TO

FO
CU

S
II

C B A

CABLE

Tr
ac

e
C

on
ne

ct
or

Preprocessor
AUTOFOCUS II
MicroTrace for Cortex-M User’s Guide | 9©1989-2024 Lauterbach

Basics

Keywords

These keywords are used in the following:

CoreSight Components

Cortex-M processors may include the CoreSight components Instrumentation Trace Macrocell (ITM) and
Embedded Trace Macrocell (ETM). Components in detail:

• 4-bit ETMv3 in Continuous mode for Cortex-M3/M4/M7.

• 4-bit ETMv4 in Continuous mode for Cortex-M7.

• Onchip trace buffer (ETB).

• ITM over TPIU for Cortex-M3/M4/M7.

• ITM over Serial Wire Output for Cortex-M3/M4/M7.

Keywords Description

Serial Wire ARM’s Serial Wire Debug (SWD) port and ARM’s Serial Wire Viewer (SWO)
output.

Trace • Support for ARM’s Instrumentation Trace Macrocell (ITM) and Embedded
Trace Macrocell (ETM), both exported by a Trace Port Interface Unit
(TPIU) in 4/2/1-bit continuous mode (with enabled Formatter).

• Support for ARM’s Instrumentation Trace Macrocell (ITM), exported via
ARMs SerialWireOutput in UART mode.
MicroTrace for Cortex-M User’s Guide | 10©1989-2024 Lauterbach

Overview of Cortex-M CoreSight Components

This overview focuses on the CoreSight components which implement trace support for the Cortex-M3, the
Cortex-M4, and Cortex-M7. These components are shown in the figure below.

The DWT (Data Watchpoint and Trace) unit and the SWV mode (Serial Wire Viewer) are features, which are
implemented in the Cortex-M3, the Cortex-M4, and Cortex-M7.

As you can see from the above figure, the ITM is a regular memory-mapped peripheral for the CPU,
accessible via the AHB (Advanced High-performance Bus).

All CoreSight components are now explained in more detail.

Embedded Trace Macrocell (ETM) Overview

The Cortex-M3/M4/M7 can be connected to an Embedded Trace Macrocell (ETM). The ETM is an optional
component.

The ETM is a very simple ETM, which only can generate information about the instruction execution
sequence. Specifically the Cortex-M ETM:

• Does not support any kind of data tracing.

• Does not contain comparators to filter information of interest out of the instruction execution
sequence.

• Does not support cycle accurate tracing.

• Does not support to trace a ContextID.

4 bit
TPIU port

TPIU SWV

SWO

ITM

DWTETM

AHBCPU

MicroTrace for Cortex-M User’s Guide | 11©1989-2024 Lauterbach

Data Watchpoint and Trace (DWT) Unit Overview

To add more trace features, the Cortex-M3/M4/M7 can contain an optional DWT unit. The DWT unit is able
to monitor data accesses and the program counter of the CPU. The DWT offers the following features:

• It contains comparators, which can trigger several actions if a match occurs.

The NUMCOMP field in the control register for the DWT shows the number of available comparators
for your core.

• It can count specific types of CPU cycles. The DWT can emit events indicating that a counter
wrapped (which happens every 256 counted cycles). By analyzing these events the debugger
can present statistics about the distribution of the different types of CPU cycles.

• It can emit information about data accesses if the access is matched by a comparator.

• It can halt the CPU or trigger the ETM if an access is matched by a comparator.

• It can emit information about the current program counter value at regular intervals.

• It can emit information about Interrupt Service Routine entries and exits.

Instrumentation Trace Macrocell (ITM) Overview

The Instrumentation Trace Macrocell (ITM) for the Cortex-M3/M4/M7 has two main functions:

• It is used by the DWT to emit data to an external debug and trace tool.

• It can be used by software running on the CPU to emit data to an external debug and trace tool.
MicroTrace for Cortex-M User’s Guide | 12©1989-2024 Lauterbach

The ITM appears to software running on the CPU as a memory mapped peripheral. By writing to the
corresponding memory range, the software can send data to an external debug and trace tool.

Trace Port Interface Unit (TPIU) Overview

The Cortex-M Trace Port Interface Unit (TPIU) is responsible for exporting data from the ETM and ITM
through pins of the chip. The TPIU has two different modes of operation:

• Trace Port mode: In this mode, the TPIU uses one clock and up to 4 data pins to synchronously
export data. In this mode the TPIU always enables its internal Formatter. This means that data
from the ETM and ITM will be encapsulated into the Formatter protocol. The Formatter merges
ETM and ITM data into a single stream of bytes.

• Serial Wire Viewer mode: In this mode, the TPIU uses a single signal (Serial Wire Output, SWO)
to asynchronously export data. In this mode the TPIU solely outputs ITM data; it is not possible to
output ETM data. The internal Formatter is disabled; so the ITM data is not encapsulated into the
Formatter protocol.

Serial Wire Viewer in general refers to outputting ITM data via the asynchronous Serial Wire Output signal.

Embedded Trace Buffer

Instead of exporting data from the ETM and ITM through pins off chip, data can also be routed to the
Embedded Trace Buffer (ETB). The ETB content is read by TRACE32 through the debug connection.
MicroTrace for Cortex-M User’s Guide | 13©1989-2024 Lauterbach

Connectors

The export of the trace data depends on the debug and trace connector.

For parallel trace, we recommend the 20-pin debug and trace variant specified by the MIPI alliance and
ARM. Lauterbach refers to this connector as MIPI20T:

If parallel trace is not required, you can also use the smaller MIPI10 variant, which is a subset of MIPI20T:

Both can be used for SWV trace if supported by the target. In this case, the debug protocol is SWD and the
TDO line is used for trace.

Signal Pin Pin Signal
VREF-DEBUG 1 2 TMS|TMSC|SWDIO

GND 3 4 TCK|TCKC|SWCLK
GND 5 6 TDO|-|SWO

GND (KEY) - 8 TDI
GND 9 10 RESET-
GND 11 12 TRC CLK
GND 13 14 TRC DATA[0]
GND 15 16 TRC DATA[1]
GND 17 18 TRC DATA[2]
GND 19 20 TRC DATA[3]

Signal Pin Pin Signal
VREF-DEBUG 1 2 TMS|TMSC|SWDIO

GND 3 4 TCK|TCKC|SWCLK
GND 5 6 TDO|- |SWO

GND (KEY) - 8 TDI
GND 9 10 RESET-
MicroTrace for Cortex-M User’s Guide | 14©1989-2024 Lauterbach

Setting up Parallel Trace

To set up parallel trace, several steps are required.

Configuring the Correct Port Type

Since the trace data pins are at different locations for different connectors, you should inform TRACE32
about the used connector type. For details on the connectors refer to “Connectors”, page 14.

Changing the connector type is only possible in the System.Mode Down state, before connecting to the
target.

Connecting to the Target and Configure Trace-related Components

Connect to the target as usual. Please refer to “Cortex-M Debugger” (debugger_cortexm.pdf) for details.

Depending on the target chip and target board, some additional configuration may be required. This
configuration can be done either by the software running on the target or through the debugger.

• Ensure that the trace logic on the chip, especially the TPIU, is clocked using an appropriate clock
source. The clock to the TPIU determines the bit rate of the data pins. Because the trace uses
double data rate (DDR) signalling, the frequency on the TRACECLK pin will be one half of the
TPIU input clock.

• Configure on-chip pin multiplexing, so that the trace data and clock lines are routed to the correct
pins.

• If the chip I/Os have configurable drive strength and slew rate, configure these appropriately. If in
doubt, use the highest available values.

• If the trace data and clock lines are shared with other peripherals on the target, make sure this
periphery does not drive to the lines. If possible, remove jumpers or solder bridges to completely
disconnect the periphery from the trace lines.

Please check the documentation of your chip and/or board for further details.

; the default connector is MIPI20T (with trace pins)
SYStem.CONFIG CONNECTOR MIPI20T

; for all other connectors, specify MIPI34
SYStem.CONFIG CONNECTOR MIPI34
MicroTrace for Cortex-M User’s Guide | 15©1989-2024 Lauterbach

Configuring TRACE32 Trace Settings

The trace features of the µTrace (MicroTrace) are controlled with the CAnalyzer command group and the
CAnalyzer.state window. Since Trace is the default alias for CAnalyzer if the µTrace (MicroTrace) is used,
you can also use the command group Trace to control the trace features:

To configure the trace settings:

1. Make sure CAnalyzer is selected as METHOD, see [A].

2. Open the TPIU.state window, see [B].

3. Select the number of trace data lines you have connected to the debugger (1, 2 or 4), see [C].

4. Click AutoFocus, see [D].

This configures the target to generate a test pattern that is captured by your µTrace (MicroTrace) to
automatically determine the best threshold voltage and data delays.

The operation takes approximately three seconds. If successful, the message “Analyzer data
capture o.k.” will be printed to the message line at the bottom of the TRACE32 window.

5. Review or change the threshold voltage for the trace data and clock lines in the THreshold input
box, see [E].

6. To view or change the timing parameters, click the ShowFocus button, see [F].

If the AutoFocus operation was successful, you are ready to use the off-chip trace. In this case, you can skip
the rest of this section.

Trace Command group for the trace features of the µTrace
(MicroTrace)

A

E

F

C

D

B

E

MicroTrace for Cortex-M User’s Guide | 16©1989-2024 Lauterbach

Viewing or Changing Timing Parameters

To diagnose any problems that were detected by the CAnalyzer.AutoFocus command or to check the
signal quality, open the CAnalyzer.ShowFocus window:

The data area of the CAnalyzer.ShowFocus windows displays each channel in a separate row. The
horizontal axis is the time offset from the clock edge, measured in nanoseconds. The gray areas indicate the
offsets where a change of the data value was detected. Red bars mean that the data value only changed on
falling or rising edges, not both.

A Click Scan to perform a new measurement. Existing results are discarded.
Scan+ performs the same operation, but combines the new measurement with the existing data.

B Use the Clear/On/Off buttons to manually clear the measured data or enable/disable the capture.
This can be done even while trace data is being recorded, providing a way to detect rare glitches on
the data lines.

C The Eye and ClockEye buttons open the data and clock eye windows described below.

D Use the arrow buttons to move the sample points for all channels at the same time.

E Use the Store... button to create a PRACTICE script (*.cmm) with all current electrical settings. This
script can be executed using the DO command or the Load... button. The contents of the script may
also be copied to your start-up script to replace the AutoFocus command. This can speed up the
start-up process.

F This shows the detected TRACECLK frequency. Note that the bit rate of the data lines is twice this
frequency.

G Displays the current sample delays. The delays can be changed by double-clicking in the data area
of the window or using the small buttons next to the channel names. Positive delays mean that the
data line is sampled after the corresponding clock edge.

F

A B C D E

G

MicroTrace for Cortex-M User’s Guide | 17©1989-2024 Lauterbach

The CAnalyzer.ShowFocusEye window provides even more detailed information:

As in the CAnalyzer.ShowFocus window, the horizontal axis is the time offset from an edge of the
TRACECLK signal. The vertical axis is the voltage and always ranges from 0 to 5 V. In white areas, the data
signal was always stable. In green, red and yellow areas, the signal changed in response to rising clock
edges, falling clock edges, or both.

The CAnalyzer.ShowFocusClockEye window can be used to analyze the TRACECLK line:

Note that the capture of this data is triggered by the clock line itself, so there should always be a vertical
yellow line at offset 0. The information displayed in this window can be useful to check the duty cycle and
jitter of the clock signal.

A The Scan and Scan+ behave like their counterparts in the CAnalyzer.ShowFocus window.
However, the operation is more thorough and takes a few seconds. During the measurement, the
threshold voltage is changed temporarily, so a scan is not possible while trace data is being
captured.

B Use the Channel buttons to switch between individual channels. By default, all channels are
overlaid on each other. The current channel is indicated at the top left corner of the window.

C The arrow buttons change the sample times for all visible channels.

D The horizontal line indicates the current threshold voltage. This setting can be changed in the
Trace.state window or with the CAnalyzer.THreshold command.

E The vertical lines show the sample point of each visible channel.

A B C

D

E

B

MicroTrace for Cortex-M User’s Guide | 18©1989-2024 Lauterbach

Diagnosing Common Problems

In this scenario, the CAnalyzer.ShowFocusEye view for the D0 line differs significantly from the other lines
D1, D2, and D3:

In this case, the D0 line was shared with another IC on the target. Because this IC was not properly disabled,
it was driving the D0 line to ground.

D0

D1

D2

D3
MicroTrace for Cortex-M User’s Guide | 19©1989-2024 Lauterbach

In this scenario, the CAnalyzer.ShowFocus window reveals an unusually large delay on the D2 line:

In this case, it was possible to get an error-free recording at a frequency of 66 MHz because the sample
points were set appropriately. However, at higher frequencies, there was no longer a usable data eye for the
D2 signal.

The delay was caused by a long connection on a custom adapter board.
MicroTrace for Cortex-M User’s Guide | 20©1989-2024 Lauterbach

Using the ETM

The TRACE32 PowerView GUI controls the ETM via the ETM window respectively via the command group:

Most Cortex-M chips include an ETMv3, only the Cortex-M7 includes a ETMv4 with slightly different
features.

 ETM Command group to control the ETM
MicroTrace for Cortex-M User’s Guide | 21©1989-2024 Lauterbach

The TPIU is controlled via the TPIU command group. The TPIU.PortSize command allows you to set up the
number of used trace data pins.

The ETM is ON be default, so the µTrace (MicroTrace) can immediately record ETM data exported via the
TPIU port. After recording the data, you can display the recorded instruction execution sequence with the
Trace.List command and window.

Of course the recorded ETM data can be used to run any kind of analysis supported by the TRACE32
PowerView GUI. This includes for example:

• A chart display of the executed functions

• A run-time statistics of the executed functions

NOTE: As long as the ETM is turned on, the Trace.List command will display ETM data.
• If the ETM is turned off and you only record ITM data, the Trace.List

command will display ITM data.
• If you record both ETM and ITM data, you can use the ITMCAnalyzer.List

command to view the ITM data.
MicroTrace for Cortex-M User’s Guide | 22©1989-2024 Lauterbach

Using the DWT

A DWT unit is a CoreSight component and can be attached to the Cortex-M. The TRACE32 PowerView GUI
controls the DWT via the ITM window and via the command group:

To display the recorded ITM data (which encapsulates DWT data), you can always use the command
ITMCAnalyzer.List. If the ETM is turned off, then the Trace.List command will also display ITM data.

The comparators of the DWT are programmed by setting special on-chip breakpoints. The following DWT
features are supported:

• PCSampler

• Interrupt Trace

• Tracing data accesses

• Cycle accurate trace

These features are described in the following sections.

 ITM Command group to control the DTW
MicroTrace for Cortex-M User’s Guide | 23©1989-2024 Lauterbach

PCSampler

The DWT can output the current value of the program counter at regular intervals. The intervals are specified
in clock cycles. The frequency with which the program counter is emitted via the ITM can be selected from
the PCSampler drop-down list in the ITM window or entered at the command line:

ITM.PCSampler <rate>

ITM.PCSampler 1/512 ; configure DTW to emit PC all
; 512 clock cycles
MicroTrace for Cortex-M User’s Guide | 24©1989-2024 Lauterbach

Sampling the PC can be used to get a statistical analysis of the distribution of run-time of the various
functions by using the ITMCAnalyzer.STATistic command.

; List command to display recorded information
ITMCAnalyzer.List
; Statistic command, result sorted by ratio
ITMCAnalyzer.STATistic Ratio BAR /Sort Ratio
MicroTrace for Cortex-M User’s Guide | 25©1989-2024 Lauterbach

Interrupt Trace

The DWT offers the possibility to emit information about interrupt service routine entries and exits. To use
this feature of the DWT, select the InterruptTrace check box in the ITM window or type at the command line:

If your application is mainly interrupt driven, you can get a quite precise analysis of the run time of the
different interrupt service routines by using this DWT feature.

 ITM.InterruptTrace ON

cycle information

entry Interrupt entry

exit Interrupt entry

return Return to normal program execution
MicroTrace for Cortex-M User’s Guide | 26©1989-2024 Lauterbach

The following commands allow an interrupt analysis:

Trace.STATistic.INTERRUPT Interrupt statistic

Trace.Chart.INTERRUPT Interrupt time chart
MicroTrace for Cortex-M User’s Guide | 27©1989-2024 Lauterbach

Tracing Data Accesses

To trace data accesses to specific memory locations, you first have to configure the DWT to emit information
about data accesses. This can be achieved via the DataTrace drop-down list in the ITM window or via the
command line:

Tracing only Write Accesses

If you want to trace accesses to a single global variable, the Data setting is the most useful one. Select Data
from the Data Trace drop-down list or type at the command line:

The second step is to program the DWT comparators. In the TRACE32 PowerView GUI, the mechanism to
configure the DWT comparators is to define a TraceData breakpoint for the address or address range for
which you want to record information about accesses.

Please be aware the older Cortex-M3 (r1p1 and earlier) were not able to separate read from write accesses.

 ITM.DataTrace <param>

ITM.DataTrace Data

Break.Set mstatic1 /Write /TraceData
MicroTrace for Cortex-M User’s Guide | 28©1989-2024 Lauterbach

The following command allows a graphical display of the data value over the time:

ITMCAnalyzer.DRAW.Var %DEFault mstatic1
MicroTrace for Cortex-M User’s Guide | 29©1989-2024 Lauterbach

Tracing Data Accesses and the PC

If you like to know which function accesses a variable do the following:

These analysis commands can be used:

Tracing Task Switches

If an OS is running on your target, OS-aware debugging has to be configured in order to use OS-aware
tracing.

ITM.DataTrace DataPC

Break.Set mstatic1 /ReadWrite /TraceData

; display an access statistic for the variable mstatic1
ITMCAnalyzer.STATistic.PsYmbol /Filter sYmbol mstatic1

; display a read access statistic for the variable mstatic1
ITMCAnalyzer.STATistic.PsYmbol /Filter sYmbol mstatic1 CYcle Read
MicroTrace for Cortex-M User’s Guide | 30©1989-2024 Lauterbach

The OS writes the ID of the current task to variable that contains the information which task is currently
running. If this write access is traced, the task behavior can be analyzed. TRACE32 PowerView uses a
generic function to identify this variable.

TASK.CONFIG(magic) Returns the address of the variable that contains the
information which task/process is running.

ITM.DataTrace Data

Break.Set TASK.CONFIG(magic) /Write /TraceData

ITMCAnalyzer.List List.TASK DEFault

ITMCAnalyzer.Chart.TASK

ITMCAnalyzer.STATistic.TASK
MicroTrace for Cortex-M User’s Guide | 31©1989-2024 Lauterbach

Tracing Task Switches and Interrupts

The following setup allows you to trace interrupts and task switches.

The following commands allow you to analyze the run-time behavior of your system:

(none)@<task_name> indicates the task was running.

<interrupt>@<task_name> indicates that <interrupt> interrupted the task <task_name>.

ITM.InterruptTrace ON

ITM.DataTrace Data

Break.Set TASK.CONFIG(magic) /Write /TraceData

ITMCAnalyzer.Chart.TASKVSINTERRUPT

ITMCAnalyzer.STATistic.TASKVSINTERRUPT
MicroTrace for Cortex-M User’s Guide | 32©1989-2024 Lauterbach

Cycle Accurate Trace

The DWT exports its data via the ITM. The ITM can add a timestamp to the data which is based on the CPU
clock. The TRACE32 PowerView GUI can use one of the following timestamp sources:

• Either the external timestamps generated by the µTrace (MicroTrace)

• Or the timestamps of the ITM

The default is to use the externally generated timestamps of the µTrace (MicroTrace).

To enable timestamp generation of the ITM and to use the timestamps of the ITM, select the CycleTrace
check box in the ITM window or type at the command line:

Additionally you have to configure the clock rate of the ITM timestamp counter. The following command is
available to configure this clock rate:

If you are using the TPIU to export data, then the ITM timestamp counter is clocked with the CPU clock. So
if your CPU runs at for example 64Mhz, you have to configure the ITM timestamp rate as 64Mhz with the
command:

ITM.CycleTrace ON

CAnalyzer.CLOCK <frequency> Configures the debugger for the CPU clock
frequency of the target.

CAnalyzer.CLOCK 64Mhz
MicroTrace for Cortex-M User’s Guide | 33©1989-2024 Lauterbach

Merging ETM and DWT Data

The Cortex-M allows to use the ETM and DWT (transmitted via the ITM) in parallel. The TPIU will merge the
information from ETM and ITM (containing the DWT data) into a single stream of bytes. This stream is then
exported by the TPIU pins and recorded by the µTrace (MicroTrace).

Preconditions for merging the information:

1. The chip has both CoreSight components: (a) a DWT and (b) an ETM.

2. There must not be a single assembler instruction which accesses both: (a) Memory locations which
are traced with the DWT and (b) memory locations which are not traced with the DWT.
The reason is that under these circumstances the correlation between DWT data access information
and ETM program flow becomes ambiguous.

If the preconditions are fulfilled, the DWT can be configured to emit information about the Program Counter
value for a data access. The information from the DWT about data accesses can then be merged with
the information about program flow from the ETM.

To configure the DWT and to merge the data flow and the program flow, select CorrelatedData from the
DataTrace drop-down list in the ITM window (see Figure 1). Alternatively, type at the command line:

To display the merged information in TRACE32, use the command Trace.List or CAnalyzer.List

Figure 1: A Merged Program Flow and Data Trace

ITM.DataTrace CorrelatedData
MicroTrace for Cortex-M User’s Guide | 34©1989-2024 Lauterbach

Data flow from

The program flow
from the ETM
(see HLL lines)
is merged with
the data flow
from the DWT.

the DWT
via ITM)
MicroTrace for Cortex-M User’s Guide | 35©1989-2024 Lauterbach

Performance Analysis with the DWT Counters

The TRACE32 PowerView GUI supports to enable and analyze the counters included in the DWT. The DWT
counters emit information about:

• CYC, Cycle Counter: This counter counts the total number of CPU clock cycles. The counter will
be used in conjunction with the CPU clock frequency to calculate the running times.

• CPI, This counter counts the total number of cycles per instruction after the first cycle. For
example: If an instruction takes 5 cycles, the CPI counter will be incremented by 4. The slower
this counter increases, the more instructions per cycle are executed.

• EXC, Exception Counter: This counter counts the number of cycles spent in interrupt processing
specific operations. The counter counts the overhead incurred because of interrupts (like entry
sequences which put registers onto the stack, exit sequences which restore registers from the
stack, etc.).

• SLP, Sleep Counter: This counter counts the number of FCLK cycles the CPU spent sleeping.

• LSU, Load and Store Unit Counter: This counter counts the number of cycles spent in load and
store instructions after the first cycle. For example: If a load instruction takes 4 cycles, the LSU
counter will be incremented by 4. The slower this counter increases, the more instructions per
cycle are executed.

• FLD, Fold Counter: In certain situations, the Cortex-M core is able to spent zero clock cycles for
an instruction. Such instructions are called folded instructions. The FLD counter counts the
number of folded instructions.

Additionally by analyzing the counters you can extract a MIPS (million instructions per second) over time.

To enable the DWT counters, select the ProfilingTrace check box in the ITM window (see Figure 2) or type
at the command line:

To get meaningful numbers, it is recommended to first group your program into interesting sections using
this command group:

The TRACE32 PowerView GUI is then able to draw different counter rates over time and correlate the
counter rates to the different sections you defined. You can select the counters via the BMC window
(BenchMark-Counter); in this window, you also have to specify the CPU clock frequency. As an example,
see Figure 2.

In this example, the quicksort algorithm produces the highest rate for the LSU counter. This means that the
bottleneck for this algorithm is the access to memory where the data is stored; the CPU spends more cycles
waiting for memory than in all other algorithms.
This is a good sign; it means that the code is very optimized, so that the CPU itself does not have to execute
many non-load/store instructions.

ITM.ProfilingTrace ON

GROUP Helps to structure application programs to ease the debugging process
and the evaluation of the trace contents.
MicroTrace for Cortex-M User’s Guide | 36©1989-2024 Lauterbach

Figure 2: LSU Counter Rate (in Events/Second) for Different Sorting Algorithms

MicroTrace for Cortex-M User’s Guide | 37©1989-2024 Lauterbach

Serial Wire Debug Port (SWDP) and Serial Wire Viewer (SWV)

This chapter describes how to configure the µTrace (MicroTrace) to use the Serial Wire Debug protocol and
Serial Wire Viewer.

As mentioned before, Arm offers the Serial Wire Debug protocol, which uses only two pins. TRACE32 can
debug a chip with the Serial Wire Debug protocol by using the following commands in this sequence:

If a chip is debugged with Serial Wire Debug protocol (instead of JTAG), you can put the TPIU in Serial Wire
Viewer mode, which makes it possible to receive ITM data asynchronously via the Serial Wire Output signal.
The Serial Wire Output signal is currently expected to be multiplexed with the unused JTAG TDO pin.

To put the TPIU into Serial Wire Viewer mode, the ETM has to be disabled via the ETM window, since the
TPIU only supports ITM in Serial Wire Viewer mode. Alternatively, type at the command line:

When the ETM is disabled, you can switch the TPIU to Serial Wire Viewer mode. To do this, select SWV
from the PortSize drop-down list in the TPIU.state window (see Figure below) or type at the command line:

Figure 3: How to select Serial Wire Viewer mode in the TPIU.state window

The bit rate of the asynchronous Serial Wire Output signal is derived by dividing the CPU frequency. The
frequency divider can be configured in the TPIU.state window via the SWVPrescaler input field, see Figure
above. In this example, 2. is selected, which stands for a bit rate of half the CPU frequency.

Alternatively, use the command TPIU.SWVPrescaler:

SYStem.CONFIG DEBUGPORTTYPE SWD
SYStem.Up

ETM.OFF

TPIU.PortSize SWV

TPIU.SWVPrescaler 2.

MicroTrace for Cortex-M User’s Guide | 38©1989-2024 Lauterbach

The µTrace (MicroTrace) has to know the bit rate of the asynchronous Serial Wire Output signal to sample
the data correctly. Currently up to 200 MHz are supported (100 MHz with the MIPI34 whisker). You might
need to choose a larger divider to remain in the allowed range. You can specify the bit rate manually with the
following command:

To auto-detect the bit rate, click the AutoFocus button in the CAnalyzer window or type at the command
line:

If you use the MIPI20T-HS whisker, you can also use the ShowFocus button to view and change the sample
points used to capture the SWV trace:

CAnalyzer.TraceCLOCK <frequency> Configures the frequency of the trace port,
in this case the bit rate of the Serial Wire
Output signal.

CAnalyzer.AutoFocus

MicroTrace for Cortex-M User’s Guide | 39©1989-2024 Lauterbach

Software Trace with the ITM

The ITM offers another important feature to the user: It enables the CPU to emit data via the TPIU port or the
Serial Wire Output signal.

The ITM provides 32 channels to the CPU. These ITM channels appear as memory-mapped peripheral in
the CPUs memory space. The CPU can emit data through one channel by simply writing to the
corresponding memory location. See Figure 4.

Figure 4: Memory Map for CPU accesses to the ITM Channels

The ITM acts as an extremely easy-to-use output device to send out debug related data. For example, it is
very easy to implement debug “printf” like functionality by simply writing the “printf” strings to an ITM
channel.

Of course using the ITM in this manner requires that you modify your software to access the ITM. So you
have to instrument your software to output data you are interested in; this is the reason why the module is
called Instrumentation Trace Macrocell.

Because the ITM already offers 32 channels it is also easy to implement thread safe code, by simply
assigning one channel per thread.

Other usage models of the ITM can also be easily implemented. For example, you could use Channel 0 to
log Function Entries by emitting the address of the function through channel 0.

CPU

writes

Memory
Address

ITM

0xE0000000

0xE0000004

0xE0000008

...

Channel 0
Channel 1
Channel 2 TPIU

MicroTrace for Cortex-M User’s Guide | 40©1989-2024 Lauterbach

Here is an example source code, which shows C macros to access the ITM from software.

static volatile unsigned int *ITM_BASE = (volatile unsigned int *)0xE0000000;
#define ITM_TRACE_D8(_channel_,_data_) { \

volatile unsigned int *_ch_=ITM_BASE+(_channel_); \
while (*_ch_ == 0); \
(*((volatile unsigned char *)(_ch_)))=(_data_); \

}

#define ITM_TRACE_D16(_channel_,_data_) { \
volatile unsigned int *_ch_=ITM_BASE+(_channel_); \
while (*_ch_ == 0); \
(*((volatile unsigned short *)(_ch_)))=(_data_); \

}

#define ITM_TRACE_D32(_channel_,_data_) { \
volatile unsigned int *_ch_=ITM_BASE+(_channel_); \
while (*_ch_ == 0); \
*_ch_ = (_data_); \

}

/* ... */
ITM_TRACE_D32(0,value); /* send a 32 bit value over ITM channel 0 */
MicroTrace for Cortex-M User’s Guide | 41©1989-2024 Lauterbach

Custom Trace DLLs

If you use the ITM to emit data from your software, the biggest challenge for the TRACE32 PowerView GUI
is to present the data in a useful manner.

Since the TRACE32 PowerView GUI does not know how to interpret the data emitted by your software, the
TRACE32 PowerView GUI can only show you the raw data from the ITM but not more.

To allow for a more useful representation of the data, the TRACE32 PowerView GUI offers an open API
which makes it possible to load a user implemented custom DLL to the TRACE32 PowerView GUI. The DLL
will then be used to analyze the payload of the ITM data (so the data emitted by the Software). The data
produced by the DLL can then be displayed by the TRACE32 PowerView GUI.

Figure 5 shows the concept.

Figure 5: Concept how a Custom DLL analyses ITM Data

Here is a simple “printf” example in which the source code calls a “printf” function to output strings via ITM. A
custom DLL is used by the TRACE32 PowerView GUI to decode the payload of the ITM data.

The source code produces the ITM data shown on the left of Figure 6. The right hand side is generated by a
custom DLL loaded into the TRACE32 PowerView GUI.

if ((d1&0xFFF) == 0x123) {
ITM_printf("count == %08x after %d tries",d1,numInt);
numInt=0;

}

Target

TPIU

CombiProbe

Data
Analyzed

Data
ITM

Trace32 GUI

Custom Trace DLL

Custom Trace
List Window

MicroTrace for Cortex-M User’s Guide | 42©1989-2024 Lauterbach

Figure 6: A Simple “printf” Custom DLL Decoding Example

A custom trace demo is included in your TRACE32 installation. The demo runs under Windows and Linux in
the TRACE32 Instruction Set Simulator.

To access the custom trace demo in TRACE32:

1. Run this command B::CD.PSTEP ~~/demo/customtrace/pipe_dll/*

2. Select one of the following *_demo.cmm files:

- dll_stp_demo.cmm

- dll_csstm_demo.cmm

- dll_itm_demo.cmm (for details about these files, refer to the readme.txt)

The selected PRACTICE script file opens in the CD.PSTEP window in single step mode.

3. To run the demo, click Continue. The result will look similar to Figure 6.

NOTE: Before you can run the demo under Linux, navigate to
~~/demo/customtrace/pipe_dll/
and compile with make -f makefile.linux

dll_stp_demo.cmm Raw STPv2 - MIPI System Trace Protocol version 2

dll_csstm_demo.cmm CoreSight STM - CoreSight System Trace Macrocell output via a
CoreSight TPIU in CONTINUOUS mode

dll_itm_demo.cmm CoreSight ITM - CoreSight Instrumentation Trace Macrocell output
via a CoreSight TPIU in CONTINUOUS mode

MicroTrace for Cortex-M User’s Guide | 43©1989-2024 Lauterbach

On-the-fly Transfer of ITM and ETM Data

Recording ITM data usually does not require a high bandwidth; especially when dealing only with ITM data
generated by software.

The low bandwidth makes it possible to transfer the data recorded by the µTrace (MicroTrace) on-the-fly to
the TRACE32 PowerView GUI on the PC, while the recording is in progress.

The µTrace (MicroTrace) supports three different use cases for on-the-fly transfer of trace data:

1. Extending the Recording Size

2. Feeding Your Own Applications with Trace Data

3. Real-time Profiling with the ETM

The three use cases are discussed in the following sections.

When the µTrace (MicroTrace) transfers data on-the-fly, it behaves like a FIFO: The data coming from the
target is buffered in the memory of the µTrace (MicroTrace) and is then transferred to the PC.

The same mechanism works for ETM data, as long as the bandwidth of the generated ETM data is not too
high.

The on-the-fly transfer to the PC allows to process the data on-the-fly and to store the data to hard disk,
while the recording is in progress.
MicroTrace for Cortex-M User’s Guide | 44©1989-2024 Lauterbach

Extending the Recording Size

The first use case is to stream the trace data to disk to extend the recording size, if you want more than the
128MiB256MiB the µTrace (MicroTrace) has internally.

To enable this use case, select STREAM mode in the CAnalyzer window or type at the command line:

In STREAM mode, all data will be transferred to your hard disk on-the-fly. The following commands are
available for storing the trace data to a file on your hard disk:

When you open a CAnalyzer.List window, the TRACE32 PowerView GUI will access the recorded data
stored on your hard disk.

CAnalyzer.Mode STREAM

<trace>.STREAMCompression Select compression mode for streaming.

<trace>.STREAMFileLimit Set size limit for streaming file.

<trace>.STREAMFILE Specify your own streaming file.
MicroTrace for Cortex-M User’s Guide | 45©1989-2024 Lauterbach

Feeding Your Own Applications with Trace Data

The second major use case is supported by PIPE mode. To enable this use case, select PIPE mode in the
CAnalyzer window or type at the command line:

In this use case, data is on-the-fly transferred to the PC and processed. Processing in this context means,
that the TRACE32 PowerView GUI will decode the TPIU formatter and ITM protocol into a more general
format. This preprocessed data can then be:

• Stored into a file

• Send to a “Named Pipe”

• Passed to a user implemented DLL

If the data is stored into a file, the data can be further processed later on by your own software. The
TRACE32 PowerView GUI allows to filter the ITM data by channels; it is possible to open up to eight files,
each of which receives data from a different set of ITM channels. The command to store the data to a file is:

If you have a software application which wants to receive and process data from the ITM on-the-fly, you can
open up a “Named Pipe”. The TRACE32 PowerView GUI can send the ITM data to up to eight different
Named Pipes; as with files the TRACE32 PowerView GUI can be configured to only send a specific set of
channels to each of the Named Pipes. The command to send the data to a Named Pipe is:

Probably the most flexible approach is to load your own DLL into the TRACE32 PowerView GUI. The
TRACE32 PowerView GUI will pass all received ITM data to your DLL. In the DLL you can filter and
distribute the data in any manner you like.

You can combine all three possibilities, so you can in parallel:

• Store the ITM data to a file

• Send it to a Named Pipe

• Pass it to a DLL

Note that the TRACE32 PowerView GUI treats DLLs for custom trace processing and DLLs for PIPE mode
processing in exactly the same manner. Conceptually there is no difference: In both cases the TRACE32
PowerView GUI will feed the ITM data to your DLL; your DLL analyses the data and either passes it back to
the TRACE32 PowerView GUI (in the case of a custom trace DLL) or it sends it to another application.

This means that if you use a custom trace DLL in PIPE mode, the processing will take place while the
recording is in progress. If you stop the recording, the processing will already be finished and the processed
data can be viewed instantaneously.

CAnalyzer.Mode PIPE

CAnalyzer.WRITE <file> /ChannelID <range_or_mask>

CAnalyzer.PipeWRITE <named_pipe> /ChannelID <range_or_mask>
MicroTrace for Cortex-M User’s Guide | 46©1989-2024 Lauterbach

Real-Time Profiling with the ETM

The third use case is to analyze ETM data on-the-fly: If the Cortex-M core implements an ETM, the µTrace
(MicroTrace) can be used to transfer and analyze ETM data on-the-fly (e.g. while the core is executing its
program).

By analyzing the ETM data on-the-fly, the TRACE32 PowerView GUI can visualize (for example) how often
each function has been executed and if there are code parts which have not been executed at all. The
analysis of ETM data takes place without stopping or influencing the Cortex-M core. For details, please refer
to the RTS command group.

Figure 7: Real-Time Profiling of ETM data
MicroTrace for Cortex-M User’s Guide | 47©1989-2024 Lauterbach

Discontinued Products

µTrace (MicroTrace) (with CombiProbe MIPI34 Whisker)

You have chosen the all-in-one debug and off-chip trace solution developed by Lauterbach especially for
Cortex-M processors.

The combination of µTrace (MicroTrace) and MIPI34 whisker supports:

• debugging via JTAG (IEEE 1149.1), SWD (Serial Wire Debug) or cJTAG (IEEE 1149.7) at clock
rates up to 100 MHz

• debug connectors MIPI-20T, MIPI-10, MIPI-34 and MIPI-20D (without adapter), ARM-20 and TI-
14 (with included adapter)

• parallel trace using ETM/TPIU continuous mode with up to 4 data pins and bit rates of up to
200 Mbit/s per pin.

• SWV (Serial Wire Viewer) / SWO (Serial Wire Output) trace at port rates up to 100 Mbit/s

Please refer to “Cortex-M Debugger” (debugger_cortexm.pdf) for all Cortex-M specific debug features.

This manual describes the basic setups and all Cortex-M specific trace features.

AU
X

PO
RT

 V
1

D
EB

U
G

/T
RA

CE
 W

H
IS

KE
R

μTRACE® FOR CORTEX®-M / USB 3

PC or
Workstation

USB
Cable

Target

M
IP

I3
4/

20
/1

0
C

on
ne

ct
or
MicroTrace for Cortex-M User’s Guide | 48©1989-2024 Lauterbach

Deprecated Connectors

The following connectors are rarely used and not supported by the MIPI20T-HS whisker. To use them, you
currently need to use the older MIPI34 whisker (limited to 100 Mbit/s per pin). Contact Lauterbach support
for alternative solutions.

34-Pin Debug, SWO and Trace Connector

The signals RTCK, DBGRQ/EMU0, DBGACK/EMU1 are not supported by µTrace (MicroTrace).

20-Pin Debug and SWO Connector

The signals RTCK, DBGRQ/EMU0, DBGACK/EMU1 are not supported by µTrace (MicroTrace).

Signal Pin Pin Signal
VREF DEBUG 1 2 TMS

GND 3 4 TCK
GND 5 6 TDO

(KEY) GND 7 8 TDI
GND 9 10 RESET-
GND 11 12 RTCK
GND 13 14 BCE
GND 15 16 TRST-
GND 17 18 TRIGIN
GND 19 20 TRIGOUT
GND 21 22 TRC CLK
GND 23 24 TRC DATA0
GND 25 26 TRC DATA1
GND 27 28 TRC DATA2
GND 29 30 TRC DATA3
GND 31 32 TRC EXT
GND 33 34 VREF TRACE

Signal Pin Pin Signal
VREF-DEBUG 1 2 TMS|TMSC|SWDIO

GND 3 4 TCK|TCKC|SWCLK
GND 5 6 TDO|-|SWO

GND (KEY) - 8 TDI
GND 9 10 RESET-
GND 11 12 RTCK
GND 13 14 TRST- PULLDOWN
GND 15 16 TRST-
GND 17 18 DBGRQ (EMU0)
GND 19 20 DBGACK (EMU1)
MicroTrace for Cortex-M User’s Guide | 49©1989-2024 Lauterbach

	MicroTrace for Cortex-M User’s Guide
	TRACE32 Products for Cortex-M
	µTrace (MicroTrace) (with MIPI20T-HS Whisker)
	PowerDebug and CombiProbe (with MIPI20T-HS Whisker)
	PowerDebug and CombiProbe (with CombiProbe MIPI34 Whisker)
	PowerDebug and Debug Cable
	PowerDebug and PowerTrace (X-License)

	Basics
	Keywords
	CoreSight Components

	Overview of Cortex-M CoreSight Components
	Embedded Trace Macrocell (ETM) Overview
	Data Watchpoint and Trace (DWT) Unit Overview
	Instrumentation Trace Macrocell (ITM) Overview
	Trace Port Interface Unit (TPIU) Overview
	Embedded Trace Buffer

	Connectors
	Setting up Parallel Trace
	Configuring the Correct Port Type
	Connecting to the Target and Configure Trace-related Components
	Configuring TRACE32 Trace Settings
	Viewing or Changing Timing Parameters
	Diagnosing Common Problems

	Using the ETM
	Using the DWT
	PCSampler
	Interrupt Trace
	Tracing Data Accesses
	Tracing only Write Accesses
	Tracing Data Accesses and the PC
	Tracing Task Switches
	Tracing Task Switches and Interrupts

	Cycle Accurate Trace

	Merging ETM and DWT Data
	Performance Analysis with the DWT Counters
	Serial Wire Debug Port (SWDP) and Serial Wire Viewer (SWV)
	Software Trace with the ITM
	Custom Trace DLLs

	On-the-fly Transfer of ITM and ETM Data
	Extending the Recording Size
	Feeding Your Own Applications with Trace Data
	Real-Time Profiling with the ETM

	Discontinued Products
	µTrace (MicroTrace) (with CombiProbe MIPI34 Whisker)
	Deprecated Connectors
	34-Pin Debug, SWO and Trace Connector
	20-Pin Debug and SWO Connector

