
MANUAL

Release 09.2024

TRACE32 as GDB Front-End

TRACE32 as GDB Front-End

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 GDB Support .. 

 TRACE32 as GDB Front-End ... 1

 History .. 4

 Introduction ... 5

 Documentation Updates 5

 Related Documents 6

 Supported Architectures .. 6

 TRACE32 Setup ... 7

 Configuration File 7

 T32Start 7

 Connection Setup .. 8

 Debugging Virtual Targets 8

 Example: Connecting to QEMU 8

 Protocol Extensions 9

 GNU GDBserver 10

 Connection Setup 11

 Multi-Process Debugging 14

 UndoDB Reversible Debugger 15

 KGDB 16

 Troubleshooting .. 17

 GDB Front-End SYStem Commands ... 18

 SYStem.CPU Select target CPU 18

 SYStem.Mode Establish communication to debug agent 18

 SYStem.Option.IMASKASM Disable interrupts while single stepping 19

 SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 19

 SYStem.Option.MMUSPACES Separate address spaces by space IDs 19

 SYStem.Option.OVERLAY Enable overlay support 20

 SYStem.RESetOut Reset target 20

 SYStem.GDBconfig.BREAKSOFT Use software breakpoint 20

 SYStem.GDBconfig.EXTENDED Enable/disable gdb extended mode 21

 SYStem.GDBconfig.GDBSERVER Remote target is a gdbserver 21

 SYStem.GDBconfig.INFERIORID Set inferior ID 21
TRACE32 as GDB Front-End | 2©1989-2024 Lauterbach

 SYStem.GDBconfig.MONITOR Send monitor command to GDB Back-End 22

 SYStem.GDBconfig.NONSTOP Enable/disable non-stop mode 22

 SYStem.PORT Set communication settings 22

 SYStem.GDBSIGnal Define signal handling 23

 GDB Front-End TASK Commands ... 24
TRACE32 as GDB Front-End | 3©1989-2024 Lauterbach

TRACE32 as GDB Front-End

Version 05-Oct-2024

History

15-Jan-19 Revised manual.

06-May-14 Manual was renamed. The old name was monitor_gdb.pdf.
TRACE32 as GDB Front-End | 4©1989-2024 Lauterbach

Introduction

The TRACE32 GDB Front-End is a software debugger solution which communicates via Ethernet or RS232
with a gdbserver /gdbstub using the GDB Remote Serial Protocol (RSP).

The TRACE32 GDB Front-End can be used:

• To connect to the GNU gdbserver in order to debug Linux user-space processes.

• To debug the Linux kernel via KGDB.

• To connect to any kind of virtual target or debugger implementing a gdbstub (e.g. QEMU)

• As a front end for the UndoDB reversible debugger

The TRACE32 GDB Front-End operates in two different modes: Run Mode and Stop Mode.

Run Mode is used when debugging a Linux user-space process using the GNU gdbserver or the UndoDB
target server. In this case, only the selected task is stopped when a breakpoint is hit. The kernel and all other
processes continue to run. In Run Mode, a single program may have more than one unit of execution, called
threads, that share one memory address space. Each thread has its own registers and execution stack. The
debugger gets and displays the information about the running tasks from the gdbserver by using the
dedicated Remote Serial Protocol packets.

On the other hand, multiple virtual targets (e.g. QEMU) support the GDB Remote Serial Protocol as a
debugging protocol. In this case, we talk about Stop Mode debugging since the TRACE32 GDB Front-End
controls the whole target system and not a single process. A breakpoint will thus cause the target system to
stop completely. In order to support Symmetrical Multi-Processing (SMP) debugging over the GDB interface,
the TRACE32 GDB Front-End considers each core from an SMP system as a thread of execution. Thus, all
the RSP packets relative to the multi-thread handling are used for multi-core handling. Moreover, some
virtual targets support different core clusters which are considered as GDB inferiors. The GDB packets for
multi-process handling are used for this purpose.

Documentation Updates

The latest version of this document is available for download from:
www.lauterbach.com/pdf/frontend_gdb.pdf

NOTE: Demo scripts for the TRACE32 GDB Front-End are available in the TRACE32
installation directory under ~~/demo/etc/gdb
TRACE32 as GDB Front-End | 5©1989-2024 Lauterbach

http://www.lauterbach.com/pdf/frontend_gdb.pdf

Related Documents

• For information about using TRACE32 PowerView as a GDB Back-End, please refer to “TRACE32
as GDB Back-End” (backend_gdb.pdf).

• For information about Linux Integrated Run and Stop Mode Debugging, please refer to “Run
Mode Debugging Manual Linux” (rtos_linux_run.pdf).

• For information about debugging virtual targets via interfaces other than GDB (e.g. MCD or
CADI) please refer to “Virtual Targets User’s Guide” (virtual_targets.pdf).

Supported Architectures

The TRACE32 GDB Front-End is available for the following architectures:

• 68K/ColdFire

• 8051/XC800/M51

• ARM (32- and 64-bit)

• GTM

• Hexagon

• Intel x86/x86 64

• MIPS32/MIPS64

• NIOS-II

• PowerArchitecture (32- and 64-bit)

• RISC-V (32- and 64-bit)

• SuperH

• TriCore

• V850/RH850

• Xtensa

Other architectures can be supported on demand. Please send your request to support@lauterbach.com
TRACE32 as GDB Front-End | 6©1989-2024 Lauterbach

TRACE32 Setup

Configuration File

To configure TRACE32 as GDB Front-End, you need to add the following lines to your TRACE32
configuration file. The default configuration file is config.t32 and is located in the TRACE32 system directory.

Example configuration for Windows:

For more information about the TRACE32 configuration, please refer to “Training Basic Debugging”
(training_debugger.pdf).

T32Start

In case you are using the t32start utility to start the TRACE32 GDB Front-End, you need to add a GDB
Debugger to your configuration.

Please refer to the “T32Start” (app_t32start.fm) manual for more information about the t32start utility.

PBI=GDB
<- mandatory empty line

<- mandatory empty line

PBI=GDB

SYS=C:\T32
TMP=C:\Temp

SCREEN=
FONT=SMALL
TRACE32 as GDB Front-End | 7©1989-2024 Lauterbach

Connection Setup

This chapter describes the needed configurations in order to establish a debug communication between
theTRACE32 GDB Front-End and the following targets:

• Virtual targets with QEMU as example

• GNU GDBserver

• UndoDB reversible febugger

• KGDB

Debugging Virtual Targets

Multiple virtual targets includes a gdbstub and can thus be debugged using the TRACE32 GDB Front-End.
We describe in the following the needed steps to establish a debug communication with QEMU.

Example: Connecting to QEMU

The following steps are required to establish a debug connection with the QEMU emulator.

1. Start QEMU using the -gdb tcp::<port_number> command line option or -s for the default
port number 1234.

2. Start TRACE32 as GDB Front-End.

3. Select the target CPU from the SYStem.state window or using the SYStem.CPU command

4. Define the communication parameters in TRACE32 using the SYStem.PORT command.

Example for localhost and default port number 1234:

5. Set the remote target type using the command SYStem.GDBconfig GDBSERVER OFF.

6. Establish the communication to the QEMU gdbstub using the SYStem.Mode Attach command

SYStem.CPU ZYNQ-ULTRASCALE+-APU

SYStem.PORT localhost:1234

SYStem.GDBconfig GDBSERVER OFF

SYStem.Mode Attach
TRACE32 as GDB Front-End | 8©1989-2024 Lauterbach

Protocol Extensions

The Remote Serial Protocol does not provide a way to distinguish between different memory types. When
the TRACE32 GDB Front-End is used in Stop Mode to debug a virtual target, the memory address is not
always sufficient to identify a unique physical memory location. Depending on the access mode, the same
memory address could refer to different physical memory locations (e.g. secure/non-secure memory for
ARM architecture).

To overcome these limitations, Lauterbach has defined the following protocol extensions:

• A packet to read <length> addressable memory of type defined by <access_class> starting at
address <address>.

• A packet to write <length> addressable memory of type defined by <access_class> starting at
address <address>. The data is given by <values>; each byte is transmitted as a two-digit
hexadecimal number.

If the TRACE32 software version implements this protocol extension, it should include the string
”qtrace32.memory+;Qtrace32.memory+” in the reply to the “qSupported” packet.

qtrace32.memory:<access_class>,<address>,<length>

Qtrace32.memory:<access_class>,<address>,<length>,<values>

The available access classes depend on the processor architecture in
use. Therefore refer to the Access Class/Memory Class section of your
Processor Architecture Manual for more details.
TRACE32 as GDB Front-End | 9©1989-2024 Lauterbach

GNU GDBserver

The gdbserver can be started in one of two different modes:

1. Single-process mode, also called target remote mode. In this case, the program to debug has
to be specified on the gdbserver command line, or the --attach command line option has to be
used to attach to a running process by specifying its PID.

Example 1: Start the gdbserver to debug the process /bin/hello from the start:

Example 2: Attach to the running process with PID 123

2. Multi-process mode, also called target extended-remote mode. In this case, the gdbserver
can be started without supplying an initial command to run or PID to attach. The --multi
command line option has to be used.

Example:

In multi-process mode, the GDB extended mode has to be enabled. This can be configured in
TRACE32 using the command SYStem.GDBconfig EXTENDED ON.

Moreover, GDB supports two different modes for debugging multi-threaded processes: Non-Stop Mode
and All-Stop Mode.

In All-Stop Mode, all threads of execution stop when the program stops. In Non-Stop Mode it is possible to
stop single threads while other threads continue to execute. You can select the mode in TRACE32 using the
command SYStem.GDBconfig NONSTOP which is per default set to OFF.

For more information about the different command line options and debug modes, please refer to the
gdbserver documentation.

gdbserver :2345 /bin/hello

gdbserver --attach :2345 123

gdbserver --multi :2345
TRACE32 as GDB Front-End | 10©1989-2024 Lauterbach

Connection Setup

The following steps are required to establish the communication with the gdbserver:

1. Select the target CPU from the SYStem.state window or using the SYStem.CPU command.

2. Enable the address extension in TRACE32 PowerView using the command
SYStem.Option.MMUSPACES ON. This step is only required if the gdbserver has been
started in multi-process mode.

3. Define the communication parameters in TRACE32 using the SYStem.PORT command.

Example for target IP address 192.168.188.50 and port number 2345:

4. Set the remote target type to gdbserver using the command SYStem.GDBconfig.GDBSERVER
ON. If this command is not used, the TRACE32 GDB Front-End tries to detect what kind of
remote target is used.

5. Use software breakpoints for assembly single stepping. This is required if Linux-3.x or newer is
running on the target.

6. Enable the Non-Stop mode if it is required to stop single threads.

7. If the gdbserver has been started in multi-process mode, the extended mode has to be
enabled using the command SYStem.GDBconfig.EXTENDED ON, otherwise TRACE32 will
return the error “the target is not running”.

8. Establish the communication to the gdbserver using the SYStem.Mode Attach command:

SYStem.CPU CortexA9

SYStem.Option.MMUSPACES ON

SYStem.PORT 192.168.188.50:2345

SYStem.GDBconfig.GDBSERVER ON

SYStem.Option.STEPSOFT ON

SYStem.GDBconfig.NONSTOP ON

SYStem.Mode Attach
TRACE32 as GDB Front-End | 11©1989-2024 Lauterbach

9. If the gdbserver has been started in multi-process mode, the commands TASK.RUN and
TASK.Attach can be used to start a new process or attach to a running process.

Example:

10. Load the process debug symbols. In multi-process mode, the process space ID has to be
specified.

Typical Start-up Script for the Single-Process Mode

; start the process hello
TASK.RUN /usr/bin/hello

; attach to the process sieve with PID 123
TASK.ATTACH 123.

; single-process mode
Data.LOAD.Elf sieve /NoCODE /NoClear

; multi-process mode (0x7b is the space ID of the process sieve)
Data.LOAD.Elf sieve 0x7b:0 /NoCODE /NoClear

; Reset all commands
RESet

; Clear all TRACE32 PowerView windows
WinCLEAR

; Select the target CPU
SYStem.CPU *

; Set the target IP address and port number
SYStem.PORT 192.168.188.50:2345

; Set the target type to “gdbserver”
SYStem.GDBconfig GDBSERVER ON

; Use software breakpoints for assembly single stepping
SYStem.Option.STEPSOFT ON

; Attach to the gdbserver
SYStem.Mode Attach

; Load the debug symbols of process "sieve"
Data.LOAD.Elf sieve /NoCODE /NoClear
TRACE32 as GDB Front-End | 12©1989-2024 Lauterbach

Typical Start-up Script for the Multi-Process Mode

; Reset all commands
RESet

; Clear all TRACE32 PowerView windows
WinCLEAR

; Select the target CPU
SYStem.CPU *

; Set the target IP address and port number
SYStem.PORT 192.168.188.50:2345

; Set the target type to “gdbserver”
SYStem.GDBconfig GDBSERVER ON

; Set the extended mode
SYStem.GDBconfig EXTENDED ON

; Use software breakpoints for assembly single stepping
SYStem.Option.STEPSOFT ON

; Attach to the gdbserver
SYStem.Mode Attach

; View the list of processes
TASK.List.tasks

; Start process sieve, wait 1.s and read its space ID
TASK.RUN /bin/sieve
WAIT 1.s
&spaceid=TASK.SPACEID("sieve")

; Load the debug symbols of process "sieve"
Data.LOAD.Elf hello &spaceid:0 /NoCODE /NoClear

NOTE: The TRACE32 GDB Front-End for Intel x86 can be used together with the x86
gdbserver to debug native x86 Linux applications.
TRACE32 as GDB Front-End | 13©1989-2024 Lauterbach

Multi-Process Debugging

Processes of Linux may reside virtually on the same addresses. To distinguish those addresses, the
debugger uses an additional identifier called space ID (memory space ID) that specifies to which virtual
memory space an address refers to. The space ID is equal to the process ID. Threads of a particular
process use the same memory space. Consequently, threads of the same process have the same space ID.

The command SYStem.Option.MMUSPACES ON enables the additional space ID.

A source code listing for the process sieve is displayed as follows:

A breakpoint to main in the process sieve can be set with one of the following commands:

Please be aware that process-specific breakpoints are set as soon as the process is started by Go.

Break.Set \\sieve\global\main

Break.Set 0x300:0x957C

Break.Set 786.:0x957C

Space ID

Space ID
TRACE32 as GDB Front-End | 14©1989-2024 Lauterbach

UndoDB Reversible Debugger

The TRACE32 GDB Front-End can be used as a front end for the UndoDB reversible debugger. The
UndoDB target server allows to debug a Linux user space application as well as to records details of its
execution. In addition to controlling the debugging process, the TRACE32 GDB Front-End also takes over
the task of displaying the recorded data of the UndoDB target server in the TRACE32 PowerView user
interface. Like a trace recording, the user has the ability to debug the application going through the code
both forward and backward (“reverse-debugging”).

The TRACE32 GDB Front-End automatically detects if it is communicating with an UndoDB target server
and enables the reverse-debugging commands.

In reverse-debugging mode, all control buttons in the List window are displayed in yellow. In addition, the
time of recording displayed in the TRACE32 PowerView state line is referenced in reverse.

Go.Back Go back in program

Go.BackEntry Go back in program to function entry

Step.Back Step back

Step.BackChange Step back till expression changes

Step.BackOver Step back over call

Step.BackTill Step back till expression is true
TRACE32 as GDB Front-End | 15©1989-2024 Lauterbach

KGDB

The TRACE32 GDB Front-End supports debugging the Linux kernel using KGDB. Please note that it is only
possible to debug the kernel space. Debugging the user-space as supported by the TRACE32 Stop Mode
Debugging for Linux is not possible.

Example start-up script for Linux kernel debugging via KGDB:

The program execution can be stopped by writing ‘g’ to the file /proc/sysrq-trigger

; Reset all commands
RESet

; Clear all TRACE32 PowerView windows
WinCLEAR

; Select the CPU
SYStem.CPU *

; Enable address extension
SYStem.Option.MMUSPACES ON

; Set the communication parameter (serial port)
SYStem.PORT COM1 baud=115200 KGDB

; Attach to the KGDB stub in the Linux kernel
SYStem.Mode Attach

; Load the kernel symbols
Data.LOAD.Elf vmlinux /GNU /NoCODE

; Load the Linux Awareness (e.g Linux-3.x. for ARM)
TASK.CONFIG ~~/demo/arm/kernel/linux/linux-3.x/linux3.t32
MENU.ReProgram ~~/demo/arm/kernel/linux/linux-3.x/linux.men

echo g > /proc/sysrq-trigger
TRACE32 as GDB Front-End | 16©1989-2024 Lauterbach

Troubleshooting

No information available until yet.
TRACE32 as GDB Front-End | 17©1989-2024 Lauterbach

GDB Front-End SYStem Commands

SYStem.CPU Select target CPU

Selects the processor type.

SYStem.Mode Establish communication to debug agent

Default: Down

Format: SYStem.CPU <type>

Format: SYStem.Mode <mode>

SYStem.Attach (alias for SYStem.Mode Attach)
SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)

<mode>: Down
NoDebug
Attach
Up

Down The TRACE32 GDB Front-End has no connection to the gdbserver /
gdbstub.
When switching from Up to Down, the TRACE32 GDB Front-End sends
a GDB “kill” packet to the gdbserver / gdbstub.

NoDebug The TRACE32 GDB Front-End has no connection to the gdbserver /
gdbstub.
When switching from Up to NoDebug, the TRACE32 GDB Front-End
detaches from the gdbserver / gdbstub.

Attach The TRACE32 GDB Front-End establishes the connection to gdbserver /
gdbstub.

Up The TRACE32 GDB Front-End is connected to gdbserver / gdbstub.
Up cannot be used to establish the connection.

Go
StandBy

Not available.
TRACE32 as GDB Front-End | 18©1989-2024 Lauterbach

SYStem.Option.IMASKASM Disable interrupts while single stepping

Default: OFF.
If enabled, the interrupt mask bits of the CPU will be set during assembler single-step operations. The
interrupt routine is not executed during single-step operations. After a single step, the interrupt mask bits are
restored to the value before the step.

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping

Default: OFF.
If enabled, the interrupt mask bits of the CPU will be set during HLL single-step operations. The interrupt
routine is not executed during single-step operations. After a single step, the interrupt mask bits are restored
to the value before the step.

SYStem.Option.MMUSPACES Separate address spaces by space IDs

Default: OFF.
Enables the use of space IDs for logical addresses to support multiple address spaces. This options need
to be enabled if the gdbserver has been started in multi-process mode.

Format: SYStem.Option.IMASKASM [ON | OFF]

Format: SYStem.Option.IMASKHLL [ON | OFF]

Format: SYStem.Option.MMUSPACES [ON | OFF]
TRACE32 as GDB Front-End | 19©1989-2024 Lauterbach

SYStem.Option.OVERLAY Enable overlay support

Default: OFF.

Example:

SYStem.RESetOut Reset target

Restarts the program being debugged by sending a GDB ‘R’ packet.

SYStem.GDBconfig.BREAKSOFT Use software breakpoint

Default: OFF.

Format: SYStem.Option.OVERLAY [ON | OFF | WithOVS]

ON Activates the overlay extension and extends the address scheme of the
debugger with a 16 bit virtual overlay ID. Addresses therefore have the
format <overlay_id>:<address>. This enables the debugger to handle
overlaid program memory.

OFF Disables support for code overlays.

WithOVS Like option ON, but also enables support for software breakpoints. This
means that TRACE32 writes software breakpoint opcodes to both, the
execution area (for active overlays) and the storage area. This way, it is
possible to set breakpoints into inactive overlays. Upon activation of the
overlay, the target’s runtime mechanisms copies the breakpoint opcodes
to the execution area. For using this option, the storage area must be
readable and writable for the debugger.

SYStem.Option.OVERLAY ON
List.auto 0x2:0x11c4 ; List.auto <overlay_id>:<address>

Format: SYStem.RESetOut

Format: SYStem.GDBconfig.BREAKSOFT ON | OFF
TRACE32 as GDB Front-End | 20©1989-2024 Lauterbach

When set to ON, TRACE32 GDB Front-End sets breakpoints by patching the corresponding address by a
breakpoint instruction instead of sending a "z/Z" RSP packet.

SYStem.GDBconfig.EXTENDED Enable/disable gdb extended mode

Default: OFF.

When set to ON, this command enables the GDB extended mode which makes the remote server
persistent. If the remote server is a gdbserver started in multi-process mode, the extended mode has to
be enabled. Otherwise TRACE32 will return the error “the target is not running” when establishing the
connection.

SYStem.GDBconfig.GDBSERVER Remote target is a gdbserver

Default: AUTO.

SYStem.GDBconfig.INFERIORID Set inferior ID

Sets the inferior ID in case of multiple inferiors are supported by the gdbstub.

Format: SYStem.GDBconfig.EXTENDED ON | OFF
SYStem.Option.gdbEXTENDED ON | OFF (deprecated)

Format: SYStem.GDBconfig.GDBSERVER ON | OFF | AUTO

ON, OFF This option has to be set to ON if the TRACE32 GDB Front-End is
connected to a GNU gdbserver. Otherwise set to OFF.

AUTO The default value is AUTO which means that the TRACE32 GDB Front-End
tries to detect what kind of remote target is used.

Format: SYStem.GDBconfig.INFERIORID <id>
TRACE32 as GDB Front-End | 21©1989-2024 Lauterbach

SYStem.GDBconfig.MONITOR Send monitor command to GDB Back-End

This command is used to send monitor commands to the GDB Back-End.

SYStem.GDBconfig.NONSTOP Enable/disable non-stop mode

Default: OFF.

Enabling non-stop mode is only possible with gdbserver. Thus SYStem.GDBconfig.NONSTOP ON will
automatically set SYStem.GDBconfig.GDBSERVER to ON.

SYStem.PORT Set communication settings

Sets the communication parameters. You can use a serial or a TCP communication.

Format: SYStem.GDBconfig.MONITOR <string>

Format: SYStem.GDBconfig.NONSTOP ON | OFF
SYStem.Option.gdbNONSTOP ON | OFF (deprecated)

NOTE: Non-stop mode is supported for multi-thread debugging with the following
known limitations:
• Resuming from a breakpoint is not supported for non-current threads.
• For the Intel x86/x64 architecture, if a non-current thread hits a break-

point, a program counter alignment issue could occur.
Thus, it is always recommended to focus on debugging only one thread (current
thread) at a given time.

Format: SYStem.PORT <settings>

<settings>: <com> BAUD=<baudrate>
<host>:<port>

SYStem.PORT COM1 baud=9600

SYStem.PORT 10.1.2.99:2345
TRACE32 as GDB Front-End | 22©1989-2024 Lauterbach

SYStem.GDBSIGnal Define signal handling

Defines the gdbserver/TRACE32 behavior when the application sends the signal <signum>.

Format: SYStem.GDBSIGnal <mode> <signum>

<mode>: STOP | NOSTOP | PASS | NOPASS | PRINT | NOPRINT

<signum> Signal number

NOPASS Do not allow the program to see this signal.

NOPRINT No message is printed.

NOSTOP The signal is ignored and the application continue running.

PASS Allow the program to see this signal; the program can handle the signal, or
else it may terminate if the signal is fatal and not handled.

PRINT A message is printed in the AREA window when the signal is received.

STOP The debugger should stop on this signal.
TRACE32 as GDB Front-End | 23©1989-2024 Lauterbach

GDB Front-End TASK Commands

The following TASK commands are available for the TRACE32 GDB Front-End:

The following TASK commands can additionally be used for multi-process mode:

TASK.List.tasks List the running processes on the target.

TASK.COPYUP Copy a file from the target to the host.

TASK.COPYDOWN Copy a file from the host to the target.

TASK.select Select a task for debugging.

TASK.ATTACH Attach to a running process.

TASK.RUN Start a new process.

TASK.KILL Kill a running process.

TASK.DETACH Detach from a process.

TASK.Go Start the execution of a single task.

TASK.Break Stop the execution of a single task.
TRACE32 as GDB Front-End | 24©1989-2024 Lauterbach

	TRACE32 as GDB Front-End
	History
	Introduction
	Documentation Updates
	Related Documents

	Supported Architectures
	TRACE32 Setup
	Configuration File
	T32Start

	Connection Setup
	Debugging Virtual Targets
	Example: Connecting to QEMU
	Protocol Extensions

	GNU GDBserver
	Connection Setup
	Multi-Process Debugging

	UndoDB Reversible Debugger
	KGDB

	Troubleshooting
	GDB Front-End SYStem Commands
	SYStem.CPU Select target CPU
	SYStem.Mode Establish communication to debug agent
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.Option.MMUSPACES Separate address spaces by space IDs
	SYStem.Option.OVERLAY Enable overlay support
	SYStem.RESetOut Reset target
	SYStem.GDBconfig.BREAKSOFT Use software breakpoint
	SYStem.GDBconfig.EXTENDED Enable/disable gdb extended mode
	SYStem.GDBconfig.GDBSERVER Remote target is a gdbserver
	SYStem.GDBconfig.INFERIORID Set inferior ID
	SYStem.GDBconfig.MONITOR Send monitor command to GDB Back-End
	SYStem.GDBconfig.NONSTOP Enable/disable non-stop mode
	SYStem.PORT Set communication settings
	SYStem.GDBSIGnal Define signal handling

	GDB Front-End TASK Commands

