
MANUAL

Release 09.2024

TriCore Debugger and Trace

TriCore Debugger and Trace

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents ..

 ICD In-Circuit Debugger ..

 Processor Architecture Manuals ..

 TriCore ..

 TriCore Debugger and Trace ... 1

 History .. 8

 Safety Precautions .. 9

 Introduction ... 10

 Brief Overview of Documents for New Users 10

 Available Tools 11

 Debugger 11

 Software-only Debugger for XCP 11

 On-chip Trace 11

 Serial Off-chip Trace (AGBT) 12

 Parallel Off-chip Trace 12

 Co-Processor Debugging (PCP/GTM) 12

 Co-Processor Debugging (HSM) 12

 Multicore Debugging and Tracing 13

 Software Installation 13

 Configuration 14

 System Overview 14

 Related Documents 15

 Demo and Start-up Scripts 15

 OCDS Levels 16

 Debugging .. 17

 Single-Core Debugging (AUDO) 18

 Single-Core Debugging - Quick Start 18

 Multicore Debugging (AURIX) 20

 SMP Debugging - Quick Start 20

 AMP Debugging - Quick Start 22

 AMP vs. SMP vs. iAMP 24

 Selecting the right AURIX CPU 25

 Understanding Multicore Startup by Application Code 25
TriCore Debugger and Trace | 2©1989-2024 Lauterbach

 About Ambiguous Symbols 26

 Access Classes 27

 Breakpoints 28

 Software Breakpoints 28

 On-chip Breakpoints 28

 MAP.BOnchip Command 29

 Advanced Breakpoints 29

 Single Stepping 30

 Assembler Level 30

 HLL Level 30

 Flash 31

 Onchip Triggers (TrOnchip Window) 33

 BenchMarkCounter 34

 Example: Measuring Instructions and Stalls per Clock Cycle 35

 Example: A-to-B Mode (single shot) 36

 Example: A-to-B Mode (average) 37

 Example: Record Counters Periodically 38

 Watchpins 39

 AUDO Devices 39

 AURIX Devices 39

 Accessing Cached Memory Areas and Cache Inspection 43

 AUDO Devices 43

 AURIX Devices 44

 Parallel Usage of a 3rd-Party Tool 48

 Physical Sharing of the Debug Port 48

 Debugging an Application with the Memory Protection Unit Enabled 50

 TriCore v1.6 and Later 50

 TriCore v1.3.1 and Earlier 50

 Debugging with MPU Enabled in RAM 50

 Debugging with MPU Enabled in FLASH 51

 Debugging through Resets and Power Cycles 52

 Soft Resets 52

 Hard Resets 53

 Power Cycles 54

 Suspending the System Timers of TC3xx 56

 Suspending the Watchdogs 56

 Code Overlays 57

 Data Overlays 57

 Cerberus Access Protection 57

 Target Code Execution 58

 Internal Break Bus (JTAG) 58

 Troubleshooting 59

 SYStem.Up Errors 59
TriCore Debugger and Trace | 3©1989-2024 Lauterbach

 Debugging Optimized Code 59

 FAQ ... 60

 Tracing ... 61

 On-chip Trace (OCDS-L3) 61

 Quick Start for Tracing with On-chip Trace (OCDS-L3) 61

 Supported Features 62

 Trace Control 63

 Trace Evaluation 63

 Impact of the Debugger on FPI Bus Tracing 63

 Trace Control Using Break.Set or Var.Break.Set 64

 CPU specific BMC Commands ... 71

 BMC.SELect Select counter for statistic analysis 71

 BMC.<counter>.ATOB Control A-to-B mode 71

 BMC.<counter>.TRIGMODE BMC trigger mode 71

 BMC.<counter>.TRIGVAL BMC trigger value 72

 CPU specific SYStem.CONFIG Commands .. 73

 SYStem.CONFIG.state Display target configuration 73

 SYStem.CONFIG Configure debugger according to target topology 74

 Daisy-Chain Example 76

 TapStates 77

 SYStem.CONFIG.CORE Assign core to TRACE32 instance 78

 SYStem.CONFIG.BreakPIN Define mapping of break pins 79

 SYStem.CONFIG.CAN Configure CAN interface 80

 SYStem.CONFIG.CAN.BaseCLOCK Base clock for CAN interface 80

 SYStem.CONFIG.CAN.NominalBRP Set CAN nominal baud rate prescaler 81

 SYStem.CONFIG.CAN.NominalTSEG1 Set CAN nominal Phase_seg1 81

 SYStem.CONFIG.CAN.NominalTSEG2 Set CAN nominal Phase_seg2 81

 SYStem.CONFIG.CAN.NominalSJW Set CAN nominal SJW parameter 81

 SYStem.CONFIG.CAN.DataBRP Set CAN data baud rate prescaler 82

 SYStem.CONFIG.CAN.DataTSEG1 Set CAN data Phase_seg1 82

 SYStem.CONFIG.CAN.DataTSEG2 Set CAN data Phase_seg2 82

 SYStem.CONFIG.CAN.DataSJW Set CAN data SJW 83

 SYStem.CONFIG.DAP Configure DAP interface 84

 SYStem.CONFIG.DAP.BreakPIN Define mapping of break pins 84

 SYStem.CONFIG.DAP.CRC6 Enable CRC6 mode 84

 SYStem.CONFIG.DAP.DAPENable Enable DAP mode on PORST 84

 SYStem.CONFIG.DAP.SISP Configure SISP setting 85

 SYStem.CONFIG.DAP.USERn Configure and set USER pins 85

 SYStem.CONFIG.DEBUGPORT Select target interface 87

 SYStem.CONFIG.DEBUGPORTTYPE Set debug cable interface mode 87

 SYStem.CONFIG.DXCM Configure DXCM 89

 SYStem.CONFIG.DXCM.TXID Control frame message ID 89
TriCore Debugger and Trace | 4©1989-2024 Lauterbach

 SYStem.CONFIG.DXCM.TXIDE Control frame format 89

 SYStem.CONFIG.DXCM.TXFDF Control frame format 90

 SYStem.CONFIG.DXCM.TXBRS Control the use of baud rate switching 90

 SYStem.CONFIG.DXCM.RXID Set ID for frames from target 90

 SYStem.CONFIG.DXCM.RXIDE Expect extended frames from target 90

 SYStem.CONFIG.DXCPL Configure DXCPL 91

 SYStem.CONFIG.DXCPL.Timing Configure SPD timing for DXCPL 91

 SYStem.CONFIG.EXTWDTDIS Control external watchdog 91

 SYStem.CONFIG.PortSHaRing Control sharing of debug port with other tool 92

 SYStem.CPU Select CPU 93

 SYStem.JtagClock Set the JTAG frequency 94

 SYStem.LOCK Tristate the JTAG port 95

 SYStem.MemAccess Select run-time memory access method 96

 SYStem.Mode Establish the communication with the CPU 97

 CPU and Architecture specific SYStem.Option Commands ... 99

 SYStem.Option.BREAKFIX Enable workaround for asynchronous breaking 99

 SYStem.Option.CBSACCEN<x> Cerberus access protection 100

 SYStem.Option.DCFREEZE Do not modify cache structure 101

 SYStem.Option.DCREAD Control cache behavior of reads 101

 SYStem.Option.DSYNC Force data synchronization 102

 SYStem.Option.DOWNMODE Behavior of SYStem.Mode Down 103

 SYStem.Option.DUALPORT Implicitly use run-time memory access 103

 SYStem.Option.DataTrace Enable data tracing 104

 SYStem.Option.EndInitProtectionOverride Override ENDINIT protection 104

 SYStem.Option.HeartBeat Bug fix to avoid FPI bus conflict 105

 SYStem.Option.HoldReset Reset duration 105

 SYStem.Option.HSMRESTART Restart HSM on connect 106

 SYStem.Option.ICFLUSH Flush instruction cache at 'Go' or 'Step' 106

 SYStem.Option.IMASKASM Disable interrupts while single stepping 106

 SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 107

 SYStem.Option.JTAGENSEQ Use JTAG initialization sequence 107

 SYStem.Option.KEYCODE Set debug interface password 108

 SYStem.Option.KEYCODEWarnNotAccepted Set warning level 108

 SYStem.Option.LBIST LBIST gap handling 108

 SYStem.Option.MACHINESPACES Address extension for guest OSes 109

 SYStem.Option.MAPCACHE Map cache automatically 110

 SYStem.Option.OCDSELOW Set OCDS line to low 111

 SYStem.Option.OVC Enable OVERLAY memory access 111

 SYStem.Option.OVERLAY Enable overlay support 112

 SYStem.Option.PERSTOP Enable global peripheral suspend 113

 SYStem.Option.PMILBFIX Enable PMI line buffer invalidation workaround 114

 SYStem.Option.PostResetDELAY Delay after RESET is released 115

 SYStem.Option.ReadOnly Block all write accesses 115
TriCore Debugger and Trace | 5©1989-2024 Lauterbach

 SYStem.Option.RESetBehavior Set behavior when a reset occurs 116

 SYStem.Option.ResetDetection Set how hard resets are detected 116

 SYStem.Option.ResetMode Select reset method 117

 SYStem.Option.RESetTMS State of TMS line at reset 117

 SYStem.Option.RUNRESTOREDELAY Delay of restore after reset 117

 SYStem.Option.SLOWRESET Long timeout for resets 118

 SYStem.Option.SOFTLONG Set 32 bit software breakpoints 118

 SYStem.Option.SSWWAIT Emulate SSWWAIT 118

 SYStem.Option.STEPONCHIP Step with onchip breakpoints 119

 SYStem.Option.STEPSOFT Step with software breakpoints 119

 SYStem.Option.TB1766FIX Bug fix for some TC1766 TriBoards 120

 SYStem.Option.UNLOCKTIME Timeout for debug port unlock 120

 SYStem.Option.WDTFIX Disables the watchdog on SYStem.Up 120

 SYStem.Option.WDTSUS Link the watchdog timer to the suspend bus 121

 SYStem.RESetOut In-target reset 121

 SYStem.state Open SYStem.state window 121

 CPU specific TrOnchip Commands ... 122

 TrOnchip.BreakBusN.BreakIN Configure break pin of 'BreakBus N' 122

 TrOnchip.BreakBusN.BreakOUT Configure break pin of 'BreakBus N' 122

 TrOnchip.BreakIN.<target> Connect break <target> to BreakBus 123

 TrOnchip.BreakOUT.<source> Connect break <source> to BreakBus 123

 <source> 124

 HaLTEN 124

 TrOnchip.CONVert Adjust range breakpoint in on-chip resource 125

 TrOnchip.CountX Event X counter value 125

 TrOnchip.CountY Event Y counter value 125

 TrOnchip.EXTernal Configure TriCore break on BreakBus event 126

 TrOnchip.PERSTOPOUT Route suspend signal to pin 126

 TrOnchip.RESet Reset settings for the on-chip trigger unit 126

 TrOnchip.SoftWare Configure 'TriCore' break on debug instruction 127

 TrOnchip.SusSWitch Enable or disable suspend switch 127

 TrOnchip.SusSWitch.FORCE Force generation of suspend signal 127

 TrOnchip.SusSWitch.Mode Set suspend switch mode 128

 TrOnchip.SusTarget Connect special targets to the suspend bus 128

 TrOnchip.SYNCHRONOUS Switches mode for data breakpoints 128

 TrOnchip.TDelay Trace trigger delay 129

 TrOnchip.TExtMode Mode for external trigger input 129

 TrOnchip.TExtPol Polarity of external trigger input 129

 TrOnchip.TMode Trace mode 129

 TrOnchip.TR0 Specify trigger event 0 130

 TrOnchip.TR1 Specify trigger event 1 131

 TrOnchip.state Show on-chip trigger window 131

 TrOnchip.WatchPin Route core trigger to pin 132
TriCore Debugger and Trace | 6©1989-2024 Lauterbach

 TrOnchip.X Select trigger source X 132

 TrOnchip.Y Select trigger source Y 133

 Technical Data ... 134

 Trace Connector 134

 Technical Data for Debugger 134

 Mechanical Dimensions 134

 Appendix .. 135

 Parallel Off-chip Trace - OCDS-L2 Flow Trace (Analyzer) 135

 Overview 135

 Quick Start for Tracing with OCDS-L2 Trace (Analyzer) 135

 Supported Features 136

 Version History 137

 Timestamp Accuracy 137

 Concurrent Usage of OCDS-L2 Off-chip Trace and OCDS-L3 On-chip Trace 138

 Simple Trace Control 138

 Trace Break Signals (OCDS-L2) 138

 Trace Examples 139

 Troubleshooting for OCDS-L2 Trace 141

 No Data in Trace.List Visible 141

 Error Diagnosis 141

 Searching for Errors 142

 Error Messages 143

TriCore Debugger and Trace | 7©1989-2024 Lauterbach

TriCore Debugger and Trace

Version 05-Oct-2024

History

24-May-2024 Updated commands SYStem.Option.IMASKASM and SYStem.Option.IMASKHLL.

28-Aug-2023 The chapter 'Simple Trace Control' has been renamed to 'Trace Control Using Break.Set or
Var.Break.Set' and updated.

07-Nov-2022 Added chapters “Code Overlays”, “Data Overlays”, “iAMP Debugging”.

28-Oct-2022 Updated command TrOnchip.SusTarget.

07-Sept-2022 New commands: SYStem.Option.RUNRESTOREDELAY, and
SYStem.Option.UNLOCKTIME.

07-Sept-2022 Updated description of command: SYStem.Option.EndInitProtectionOverride.

29-Mar-2022 Added subchapter “Co-Processor Debugging (HSM)”.

17-Feb-2022 New command: SYStem.Option.SSWWAIT.
TriCore Debugger and Trace | 8©1989-2024 Lauterbach

Safety Precautions

Caution: To prevent debugger and target from damage it is recommended to
connect or disconnect the debug cable only while the target power is
OFF.

Recommendation for the software start:
• Disconnect the debug cable from the target while the target power

is off.
• Connect the host system, the TRACE32 hardware and the debug

cable.
• Power ON the TRACE32 hardware.
• Start the TRACE32 software to load the debugger firmware.
• Connect the debug cable to the target.
• Switch the target power ON.
• Configure your debugger e.g. via a start-up script.

Power down:
• Switch off the target power.
• Disconnect the debug cable from the target.
• Close the TRACE32 software.
• Power OFF the TRACE32 hardware.
TriCore Debugger and Trace | 9©1989-2024 Lauterbach

Introduction

This document describes the processor specific settings and features for the TRACE32 TriCore debugger.

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by
Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your
first choice.

Brief Overview of Documents for New Users

Architecture-independent information:

• “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.

• “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

• “XCP Debug Back-End” (backend_xcp.pdf): This manual describes how to debug a target over a
3rd-party tool using the XCP protocol.
TriCore Debugger and Trace | 10©1989-2024 Lauterbach

Available Tools

This chapter gives an overview of available Lauterbach tools for the TriCore architecture.

Debugger

Debugging an Infineon TriCore device requires a
Lauterbach Debug Cable together with a Lauterbach Debug
Module.

To connect to the target the following Debug Cables can be
used:

• Debugger for TriCore Automotive
(DEBUG-TRICORE-AUTO or
DEBUG-MPC-TC-AUTO)

• Debugger for TriCore (Standard)
(OCDS-TRICORE)

The Debug Cable comes with a license for debugging. Detailed information is available in chapter “Debug
Cables and CombiProbe Whiskers” in Application Note Debug Cable TriCore, page 22
(app_tricore_ocds.pdf). Lauterbach also offers various “Adapter 16-pin 100 mil to 50 mil” in Application
Note Debug Cable TriCore, page 45 (app_tricore_ocds.pdf).

Furthermore it is required to use a Debug Module from the POWER series, e.g.

• POWER DEBUG INTERFACE / USB 3

• POWER DEBUG INTERFACE / USB 2

• POWER DEBUG PRO

• POWER TRACE / ETHERNET

• POWER TRACE II / POWER TRACE III

The DEBUG INTERFACE (LA-7701) cannot be used for debugging TriCore.

Software-only Debugger for XCP

TRACE32 supports debugging over a 3rd-party tool using the XCP protocol. For details see Parallel Usage
of a 3rd-Party Tool and “XCP Debug Back-End” (backend_xcp.pdf).

On-chip Trace

On-chip tracing requires no extra Lauterbach hardware, it can be configured and read out with a regular
Debugger. The trace related features are enables with the Trace License for TriCore ED (TriCore-MCDS).
Note that only TriCore Emulation Devices (ED) provide an onchip trace buffer.
TriCore Debugger and Trace | 11©1989-2024 Lauterbach

Serial Off-chip Trace (AGBT)

Lauterbach offers an off-chip trace solutions for AURIX
devices equipped with a serial off-chip trace port (Aurora
Giga-Bit Trace, AGBT).

Tracing requires either the PREPROCESSOR SERIAL
licensed for the TriCore AGBT and a POWER TRACE
module,

or a POWER TRACE SERIAL licensed for the TriCore
AGBT. The TRACE32 online help provides a “PowerTrace
Serial User’s Guide” (serialtrace_user.pdf), please refer to
this manual if you are interested in details about PowerTrace
Serial.

Parallel Off-chip Trace

For devices of the AUDO-NG family, a parallel off-chip trace is available. For more information, see chapter
“Parallel Off-chip Trace - OCDS-L2 Flow Trace (Analyzer)”, page 135.

Co-Processor Debugging (PCP/GTM)

Debugging the Peripheral Control Processor (PCP) or Generic Timer Module (GTM) comes free of charge
with the TriCore debug license, i.e. an additional license is not required.

Details are available in the “PCP Debugger Reference” (debugger_pcp.pdf) and “GTM Debugger and
Trace” (debugger_gtm.pdf) manuals.

Co-Processor Debugging (HSM)

Debugging the Hardware Security Module (HSM) requires a Cortex-M license in addition to the TriCore
debug license.

Information, documentation, demo files and support for HSM debugging are available for TRACE32 users
who have a valid HSM-related NDA with Infineon. To receive the HSM Support Package, please contact the
Lauterbach support team. Lauterbach will send the HSM Support Package after written approval from
Infineon.
TriCore Debugger and Trace | 12©1989-2024 Lauterbach

Multicore Debugging and Tracing

Lauterbach offers multicore debugging and tracing solutions (particularly for AURIX devices), which can be
done in two different setups: Symmetric Multiprocessing (SMP) and Asymmetric Multiprocessing (AMP). For
details, see “AMP vs. SMP vs. iAMP”, page 24.

Multicore debugging can be activated with the License for Multicore Debugging (MULTICORE) in case you
only have a single TriCore license.

AURIX devices can be traced with an On-chip Trace or a Serial Off-chip Trace (AGBT) if a connector is
available on the target.

Software Installation

Please follow chapter “Software Installation” (installation.pdf) on how to install the TRACE32 software:

• An installer is available for a complete TRACE32 installation under Windows.
See “MS Windows” in TRACE32 Installation Guide, page 21 (installation.pdf).

• For a complete installation of TRACE32 under Linux, see “PC_LINUX” in TRACE32 Installation
Guide, page 23 (installation.pdf).
TriCore Debugger and Trace | 13©1989-2024 Lauterbach

Configuration

System Overview

This figure shows an example of how to connect the TRACE32 hardware to your PC and your target board.

��������	

POWER DEBUG USB INTERFACE / USB 3

POWER DEBUG INTERFACE / USB 3

PC or
Workstation

USB
Cable

Target

D
eb

ug
C

on
ne

ct
or

Debug Cable
TriCore Debugger and Trace | 14©1989-2024 Lauterbach

Related Documents

• “Onchip/NOR FLASH Programming User’s Guide” (norflash.pdf): Onchip FLASH and off-chip
NOR FLASH programming.

• “Application Note Debug Cable TriCore” (app_tricore_ocds.pdf): All about the TriCore debug
cables and available accessories.

• “Training Basic SMP Debugging” (training_debugger_smp.pdf): SMP debugging.

• “Training AURIX Tracing” (training_aurix_trace.pdf): Training for AURIX devices.

• “MCDS User’s Guide” (mcds_user.pdf): Basic and advanced information on the MCDS and the
Infineon Emulation Devices.

• “PCP Debugger Reference” (debugger_pcp.pdf): Debugging and tracing the Peripheral Control
Processor (PCP).

• “GTM Debugger and Trace” (debugger_gtm.pdf): Debugging and tracing the Generic Timer
Module (GTM).

• “XCP Debug Back-End” (backend_xcp.pdf): Debugging over a 3rd-party tool using the XCP
protocol.

Demo and Start-up Scripts

Lauterbach provides ready-to-run start-up scripts for all TriCore chips.

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:

• Type at the command line: WELCOME.SCRIPTS

• or choose File menu > Search for Script.

You can now search the demo folder and its subdirectories for PRACTICE start-up scripts
(*.cmm) and other demo software.

You can also manually navigate in the ~~/demo/tricore/ subfolder of the system directory of TRACE32.
TriCore Debugger and Trace | 15©1989-2024 Lauterbach

OCDS Levels

OCDS (On-chip Debug Solution) is the on-chip logic that implements the debug, trace and calibration
functionality. Infineon defines three OCDS levels:

• OCDS-L1 refers to the basic debug functionality (execution control, register and memory
access). The 16-pin JTAG connector is often called OCDS-L1 connector.

• OCDS-L2 refers to the (deprecated) parallel off-chip trace. The 40-pin AMP connector and the
60-pin SAMTEC connector for the parallel trace is called OCDS-L2 connector.

• OCDS-L3 is the trace, trigger and calibration functionality in the MCDS. Although defined by
Infineon the term is rarely used. Instead the term MCDS is used. MCDS is accessed by the
debugger via the debug port (JTAG or DAP), the connector for the AGBT high-speed serial trace
is called AGBT connector.

Today the differentiation between the OCDS levels is not very common any more. OCDS refers to the
debugging features and MCDS to the trace- and calibration features. Calibration is not supported by
TRACE32, but TRACE32 cooperates with third-party tools performing calibration.
TriCore Debugger and Trace | 16©1989-2024 Lauterbach

Debugging

Debugging, as described in this chapter, includes:

• Core debugging (run control, breakpoints)

• Memory and register access

• Trace configuration

• Additional debug features (performance counter, run-time memory access, …)

It is performed via classic JTAG or alternatively via DAP.

This chapter covers the following topics:

• “Single-Core Debugging (AUDO)”, page 18

• “Multicore Debugging (AURIX)”, page 20

• “Access Classes”, page 27

• “Flash”, page 31

• “Onchip Triggers (TrOnchip Window)”, page 33

• “Internal Break Bus (JTAG)”, page 58

• “Suspending Peripherals”, page 56

• “Assembler and Disassembler Options”, page 47

• “Parallel Usage of a 3rd-Party Tool”, page 48

• “Internal Break Bus (JTAG)”, page 58

• “Troubleshooting”, page 59
TriCore Debugger and Trace | 17©1989-2024 Lauterbach

Single-Core Debugging (AUDO)

This chapter introduces a typical start-up sequence for single-core debugging. Depending on your
application not all steps might be necessary. The example shown uses a TC1766 B-Step on an Infineon
TriBoard-TC1766.

For other chips and more examples, see the chapter Demo and Start-up Scripts.

Single-Core Debugging - Quick Start

1. Prepare the start.

- Connect the Debug Cable to your target. Check the orientation of the connector. Pin 1 of the
Debug Cable is marked with a small triangle next to the nose of the target connector.

- Power up your TRACE32 system.

- Start the TRACE32 Debugger Software for TriCore.

- Power up your target.

2. Inform TRACE32 which chip you want to debug.

3. Establish the communication between the debugger and your target chip.

This command resets the chip and enters debug mode. After this command is executed, it is possible
to access memory and registers.

4. Load your application program.

The sub-command of the Data.LOAD command (here, Elf) depends on the file format generated by
the compiler. A detailed description of the Data.LOAD command is given in “General Commands
Reference”.

If your application runs from FLASH, FLASH programming has to be enabled before the Data.LOAD
command is used. Scripts that enable FLASH programing can be found in
~~/demo/tricore/flash.

To prevent damage please take care to follow this sequence all the time
you are preparing a start.

SYStem.CPU TC1766

SYStem.Up

Data.LOAD.Elf myprog.elf
TriCore Debugger and Trace | 18©1989-2024 Lauterbach

5. Write a start-up script.

It is recommended to prepare a start-up script that performs the start-up sequence of the commands.
This sequence can be written to a PRACTICE script file (*.cmm, ASCII format) and executed with the
command DO <file>.

 Here is a typical start sequence:

*) These commands open windows on the screen. The window position can be specified with the WinPOS
command.

WinCLEAR ; clear all windows

SYStem.RESet

SYStem.CPU TC1766 ; select CPU

SYStem.Up ; reset the target and enter debug
; mode

Data.LOAD.Elf myprog.elf ; load the application

List.auto ; open a source listing *)

Register.view /SpotLight ; open register window *)

Frame.view /Locals /Caller ; open the stack frame with
; local variables *)

Var.Watch %Spotlight flags ast ; open watch window for variables *)

PER.view ; open window with peripheral
; register *)

Break.Set main ; set breakpoint to function main
TriCore Debugger and Trace | 19©1989-2024 Lauterbach

Multicore Debugging (AURIX)

This chapter covers the following topics:

• “SMP Debugging - Quick Start”, page 20

• “AMP Debugging - Quick Start”, page 22

• “AMP vs. SMP vs. iAMP”, page 24

• “Selecting the right AURIX CPU”, page 25

• “Understanding Multicore Startup by Application Code”, page 25

• “About Ambiguous Symbols”, page 26

SMP Debugging - Quick Start

1. Inform TRACE32 which chip you want to debug.

2. Inform TRACE32 which cores form the SMP system.

Select the cores you want to debug. Do this with the CORE.ASSIGN command before running the
SYStem.Up command, e.g.:

3. Establish the communication between the debugger and all cores of the SMP system.

This command resets the chip and enters debug mode. After reset only TC 1.6.1 CPU0 is ready, TC
1.6.1 CPU1 and TC 1.6.1 CPU2 have to be initialized by code running on TC 1.6.1 CPU0.

4. Convenient debugging

The command CORE.select allows to switch between cores (also visible and changeable via the
“State Line” (ide_user.pdf)). Many commands also offer the option /CORE <core>, e.g.:

SYStem.CPU TC275TE

CORE.ASSIGN 1. 2. 3. ; assign cores to an SMP
; system

SYStem.Up

CORE.select 0.
Register.view

Register.view /CORE 1.

; select core 0
; view registers of
; currently selected core
; i.e. core 0
; view registers of core
; 1
TriCore Debugger and Trace | 20©1989-2024 Lauterbach

5. Summary

Refer to the SMP demo scripts for details, e.g.:

The above script above can be found in ~~/demo/tricore/hardware/triboard-
tc2x5/tc275te.

Copy the demo script and adjust it to your needs to get started with your own application in SMP
mode.

PSTEP tc275te_smp_demo_multisieve.cmm
TriCore Debugger and Trace | 21©1989-2024 Lauterbach

AMP Debugging - Quick Start

Master-Slave Script Concept

For AMP it is recommended to write one start-up script, which is intended to run on the “master” GUI
controlling the “slave” GUIs via InterCom commands.

Hint: Setting up user-defined commands with ON CMD improves readability, e.g.:

1. Start the TRACE32 PowerView GUIs

To set up an AMP multicore debugging scenario, multiple TRACE32 instances (GUIs) need to be started.
Please make sure InterCom is enabled and the “Configuration File” in TRACE32 Installation Guide, page
35 (installation.pdf) contains:

2. Set up the Multicore Environment

After starting the TRACE32 PowerView GUIs, each instance assumes to be connected to a separate chip by
default. Mounting the cores into the same chip makes TRACE32 aware of the resources to be shared
between the cores. This is especially important for multicore synchronization and shared resources like the
on- and off-chip trace (MCDS, AGBT).

Before bringing the system up, use the SYStem.CONFIG.CORE command on each GUI to mount all cores
into one chip, e.g.:

; startup_script.cmm running on GUI0:
&addressGUI2="127.0.0.1:20002"

ON CMD CORE2 GOSUB
(

LOCAL ¶ms
ENTRY %Line ¶ms
InterCom.execute &addressGUI2 ¶ms

RETURN
)
CORE2 PRINT "executed on core 2"

; address and port of
; GUI2
; define command “CORE2”

; execute command on
; remote GUI

; use the user-defined
; command: text will be
; printed on GUI2

CORE=<integer>

IC=NETASSIST
PORT=<port_number>

; e.g. CORE=1

; enable InterCom
; e.g. PORT=20000

CORE0 SYStem.CONFIG CORE 1. 1.
CORE1 SYStem.CONFIG CORE 2. 1.
CORE2 SYStem.CONFIG CORE 3. 1.

; GUIO: core 0 in chip 1
; GUI1: core 1 in chip 1
; GUI2: core 2 in chip 1
TriCore Debugger and Trace | 22©1989-2024 Lauterbach

3. Synchronize Go / Step / Break

The SYnch command allows for start stop synchronization between multiple GUIs.

4. Summary

All steps described above are included in the AMP multisieve demo scripts, e.g.:

Copy the demo script and adjust it to your needs to get started debugging your own application in AMP
mode.

The above script above can be found in ~~/demo/tricore/hardware/triboard-tc2x5/tc275te.

iAMP Debugging

iAMP allows to have multiple cores in one GUI but to have different symbols for each core. For details, see
“Application Note for iAMP Debugging” (app_iamp.pdf).

; step through AMP demo script
PSTEP tc275te_amp_demo_multisieve.cmm
TriCore Debugger and Trace | 23©1989-2024 Lauterbach

AMP vs. SMP vs. iAMP

For multicore debugging and tracing, TRACE32 supports three different setups:

• Symmetric Multiprocessing (SMP)

- Homogeneous (e.g. three TriCore CPUs)

• Asymmetric Multiprocessing (AMP)

- Homogeneous AMP (e.g. three TriCore CPUs)

- Heterogeneous AMP (e.g. TriCore, GTM, HSM CPUs)

• integrated Asymmetric Multiprocessing (iAMP)

- Homogeneous (e.g. three TriCore CPUs)

The following table gives an overview of the differences between SMP and AMP:

The debug concept is explained in
 www.lauterbach.com/publications/debugging_amp_smp_systems.pdf and
“Application Note for iAMP Debugging” (app_iamp.pdf).

To get started with a new AURIX target, we recommend to start with our “Demo and Start-up Scripts”,
page 15. (~~/demo/tricore/hardware/):

SMP AMP iAMP

One GUI Multiple GUIs One GUI

Controls all cores at the
same time.

Control cores individually. Controls all cores at the same
time.

Cores are automatically
synchronized, i.e. all cores
will run at the same time
and halt at the same time.

GUIs can be synchronized
(Go/Step/Break/SystemMode),
see SYnch / InterCom

Cores are automatically
synchronized, i.e. all cores will
run at the same time and halt
at the same time.

Same onchip breakpoints
on each core

Individual onchip breakpoints
per core

Onchip breakpoints per
machine (group of cores)

Recommended for RTOS
(esp. with dynamic
core/thread assignment)

Required for heterogenous
systems, e.g. debugging
TriCore concurrently with GTM
core

Can be used in case of
different RTOS on different
cores,

More: “SMP Debugging -
Quick Start”, page 20

More: “AMP Debugging -
Quick Start”, page 22

More: “Application Note for
iAMP Debugging”
(app_iamp.pdf)

PSTEP ~~/demo/tricore/hardware/*.cmm ; step through a demo
; script
TriCore Debugger and Trace | 24©1989-2024 Lauterbach

http://www.lauterbach.com/publications/debugging_amp_smp_systems.pdf

Selecting the right AURIX CPU

An AURIX CPU can be selected with the SYStem.CPU command as usual. Please note that for all TC27x
devices there are two variants available per device. Devices with the -Astep suffix reflect the major silicon
stepping “A”. When using a device with another major stepping, select a CPU without the -Astep suffix.

The following table gives some examples:

The connected device can be detected automatically with SYStem.DETECT.CPU.

Understanding Multicore Startup by Application Code

After bringing the system up (SYStem.Up), all cores are halted at their respective reset vector.

When starting program execution (Go), at first only core 0 will start running application code (your
application). The other “slave” cores are yet not initialized, i.e. it is not possible to start them as long as their
Program Counter is at the reset vector. TRACE32 indicates this with the special state “running (reset)” or
“stopped at reset vector” in the state line.

The other “slave” cores will switch to a special state “running (reset)”, waiting to be initialized and started by
core 0. When the debugger detects that the slave cores were initialized and started by core 0, it will switch to
“running” state in the state line.

Debugging and tracing is possible right from the reset vector.

SYStem.CPU TC275TE-Astep ; e.g. TC277TE-64F200S AA EES

SYStem.CPU TC275TF ; e.g. TC275TF-64F200W BC EES

SYStem.CPU TC275TP ; e.g. TC275TP-64F200W CA EES

SYStem.DETECT.CPU ; Detect the device automatically

PRINT CHIP.STEPping() ; Stepping is available with a
; function (for scripting)
TriCore Debugger and Trace | 25©1989-2024 Lauterbach

About Ambiguous Symbols

Each TriCore core of an AURIX chip is equipped with directly attached memories: Program Scratch Pad
Ram (PSPR) and Data Scratch Pad Ram (DSPR), accessible by itself via core-local and global addressing,
accessible by other cores via global addressing.

When accessing its own memory, accessing via global addresses has no (!) impact on access speed.

When having different code and therefore different symbols on each core, core-local addressing can easily
lead to ambiguous symbols. Imagine a function “foo” at address P:0xC0000100 on core 0 and a completely
different function “bar” at address P:0xC0000100 on core 1.

Using global addressing avoids such ambiguities, in the above example “foo” would be at address
P:0x70100100 and “bar” at P:0x60100100. The following table illustrates the differences:

In general, we strongly recommend to use global addressing only, avoid core-local-addressing whenever
possible. You might have to modify the linker script file in your compiler tool chain.

e.g. PSPR on TC275TE Global addressing Core-local addressing

Core 0 P:0x70100000 P:0xC0000000

Core 1 P:0x60100000 P:0xC0000000

Core 2 P:0x50100000 P:0xC0000000

Summary Unambiguous addresses Ambiguous addresses (!)
TriCore Debugger and Trace | 26©1989-2024 Lauterbach

Access Classes

For background information about the term access class, see “TRACE32 Concepts”
(trace32_concepts.pdf).

For TriCore, the following memory access classes are available:

P: and D: display the same memory, the difference is in handling the symbols.

Prepending an E as attribute to the memory class will make memory accesses possible even when the CPU
is running. See SYStem.MemAccess and SYStem.CpuAccess for more information.

SYStem.Option.DUALPORT will enable the runtime update of almost all windows so memory class
attribute E is not necessary. Although the core is not stopped for accessing the memory this can slow down
program execution since the CPU and debugger both access the on-chip buses.

With SYStem.Option.DCREAD ON all data memory accesses (D:) will be redirected cached data memory
accesses (DC:). For details, see “Accessing Cached Memory Areas and Cache Inspection”, page 43.

Memory Access
Class

Description

P Program (memory as seen by CPU’s instruction fetch)

D Data

EEC Emulation Memory on EEC
Only available on TriCore Emulation Devices for accessing the Emulation
Extension Chip.

IC Instruction Cache

DC Data Cache (memory as seen by CPU’s data access)

NC No Cache (access with caching inhibited)
TriCore Debugger and Trace | 27©1989-2024 Lauterbach

Breakpoints

TRACE32 uses two techniques to implement breakpoints: Software breakpoints and on-chip breakpoints.

Software Breakpoints

Software breakpoints are only available for program breakpoints. If a program breakpoint is set to an
instruction, the original instruction at the breakpoint location is patched by a break code. This patching is the
reason why software breakpoints are usually only used in RAM areas.

Software breakpoints in FLASH memory are also supported (see FLASH.AUTO in “General Commands
Reference Guide F” (general_ref_f.pdf), chapter FLASH), but their use is not recommended since they
drastically reduce the FLASH’s lifetime.

On-chip Breakpoints

• On-chip breakpoints: Total amount of available on-chip breakpoints.

• Instruction breakpoints: Number of on-chip breakpoints that can be used to set program
breakpoints into FLASH/ EEPROM.

• Read/write breakpoints: Number of on-chip breakpoints that can be used as read or write
breakpoints.

• Data breakpoint: Number of on-chip data breakpoints that can be used to stop the program
when a specific data value is written to an address or when a specific data value is read from an
address.

You can view your currently set breakpoints with the command Break.List.

If no more on-chip breakpoints are available, you will get an error message when trying to set one.

On-chip
Breakpoints

Instruction
Breakpoints

Read / Write
Breakpoints

Data
Breakpoints

(up to AUDO-FG)

up to 4 instruction,
up to 4 read/write

up to 4 single or
up to 2 ranges

up to 4 single or
up to 2 ranges

—

(AUDO-MAX,
AURIX)

up to 8 up to 8 single
address or
up to 4 ranges

up to 8 single
address or
up to 4 ranges

—

TriCore Debugger and Trace | 28©1989-2024 Lauterbach

Intrusive Breakpoints

TRACE32 PowerView uses so-called intrusive breakpoint to implement a breakpoint, if the core in use
does not provide the means to set a complex breakpoint.

MAP.BOnchip Command

Previously it was necessary to inform the debugger about the location of read-only memory on the target.
This allows the debugger to automatically use on-chip breakpoints. Meanwhile, the debugger automatically
sets Onchip breakpoints when read-only memory is detected. Today the command MAP.BOnchip
<address_range> is rarely used.

Advanced Breakpoints

When using an Infineon Emulation Device, the MCDS part of the Emulation Extension Chip allows to set
advanced breakpoints.

; stop the program execution at the 1000. call of the function sieve
Break.Set sieve /Program /COUNT 1000.

; stop the program execution if the byte 0x0 is written
; to the variable flags[3]
Var.Break.Set flags[3] /Write /DATA.Byte 0x0

Note Only one intrusive breakpoints can be set on read/write breakpoints.
TriCore Debugger and Trace | 29©1989-2024 Lauterbach

Single Stepping

OCDS does not offer a single-stepping feature so this has to be emulated by the debugger. We differentiate
between single-stepping on assembler level and single-stepping on HLL level.

Assembler Level

For single-stepping on assembler level, use the Step.Asm command. An assembler level single-step is
performed by default in mixed or assembler mode.
Use SYStem.Option.IMASKASM to control whether interrupts should be enabled during single-stepping.

On-chip Breakpoint Ranges (Default)

By default, the TriCore uses on-chip breakpoint ranges for implementing single-stepping. This allows the
detection of exceptions (interrupts, traps) or any abnormal program execution.

 SYStem.Option.STEPSOFT and SYStem.Option.STEPONCHIP both have to be disabled (OFF) for
activating the default behavior.

Software Breakpoints

With SYStem.Option.STEPSOFT one or two software breakpoint instructions are used for single-stepping.
This is required when the Memory Protection Unit shall be used for memory protection. Note that software
breakpoints can also be used in FLASH memory. A special setup is required for this to work.

As side effect, the interrupt handler may run silently in the background without the user noticing. So data
required for the current function may change while stepping, thus resulting in a different behavior.

On-chip Breakpoint

With SYStem.Option.STEPONCHIP an on-chip breakpoint with Break-After-Make is used for single-
stepping.

This is mainly used as a workaround for a silicon bug (CPU_TC.115) which prevents a proper suspend of an
already taken interrupt. As a result, the interrupt handler will run silently in the background without the user
noticing. So data required for the current function may change while stepping, thus resulting in a different
behavior.

In case SYStem.Option.STEPSOFT is enabled at the same time, SYStem.Option.STEPONCHIP will have
no effect.

HLL Level

For single-stepping on HLL level, use the Step.Hll command. An HLL level single-step is performed by
default in HLL mode.

Use SYStem.Option.IMASKHLL to control whether interrupts should be enabled during single-stepping.

There are no options to configure the behavior, the debugger will always choose the correct implementation
depending on the kind of memory.
TriCore Debugger and Trace | 30©1989-2024 Lauterbach

Flash

Programming the flash memory is explained in detail in chapter “FLASH” (general_ref_f.pdf). This chapter
will only give a short overview.

TriCore devices can be efficiently programmed with target controlled flash algorithms. They require a flash
declaration, which can be found in the ~~/demo/tricore/flash/directory of the TRACE32 installation.

After the flash is declared, TRACE32 offers three approaches:

• FLASH.Erase and FLASH.Program

• FLASH.Auto

• FLASH.ReProgram (recommended)

Flashing an application typically follows these steps:

1. Prepare flash programming (declarations)

- Using FLASH.Create commands

- Or using provided scripts in ~~/demo/tricore/flash/

2. Enable flash programming using FLASH.ReProgram ALL.

3. Load an application usingData.LOAD <file>.

4. Finally program the flash using FLASH.ReProgram off.

All these steps, including device-specific declarations, are provided in the flash demo scripts. Use

for a comprehensive step-by-step procedure.

PSTEP ~~/demo/tricore/flash/tc*.cmm ; run flash script
TriCore Debugger and Trace | 31©1989-2024 Lauterbach

Flashing and Debugging AURIX Devices

General help for flashing is available in chapter “FLASH” in General Commands Reference Guide F, page
25 (general_ref_f.pdf).

The onchip flash on AURIX devices has three states: 0, 1 and Bus Error.

By default, an erased flash sector returns a Bus Error on read access, indicated as “????????” in a
Data.dump window. It is caused by an ECC error in the chip, which can be changed with the
FLASH0_MARP.TRAPDIS and FLASH0_MARD.TRAPDIS register fields.

If you prefer to have an erased flash set to zero, simply run Data.Set <range> %Long 0x0 before loading
your application, e.g.:

To make sure that another core is not intervening while flashing, it is recommended to switch to single-core
debugging before flashing an application. All required steps are demonstrated in the flash script, e.g. in
~~/demo/tricore/flash/tc27x.cmm:

AURIX devices have several security features. Be careful not to lock yourself
out when flashing a device!

• Boot Mode Headers (BMHD):

Do not reboot or unpower your device in case all BMHD (Boot Mode
Headers) do not contain valid information. This is normally the case
after having erased the internal program flash or loading an object or
binary file without a valid BMHD.

• Hardware Security Module (HSM):

Do not enable HSM boot when no valid HSM code is present. This will
lock your device permanently. See also “Flashing the Hardware
Security Module (HSM)”, page 33.

• User Configuration Blocks (UCB):

Pay special attention when modifying the UCB. An invalid or
erroneous content will lock your device permanently. This also
happens in case the confirmation code is neither “unlocked” nor
“confirmed”.

FLASH.ReProgram 0xA0080000--
 0xA009FFFF /Erase

; Activate flash region
; for programming

Data.Set 0xA0080000--0xA009FFFF %Long 0x0 ; set to zero

Data.LOAD.Elf myapp.elf ; load ELF file

FLASH.ReProgram off ; Erase and program
; modified region

DO ~~/demo/tricore/flash/tc2*.cmm ; run flash script
TriCore Debugger and Trace | 32©1989-2024 Lauterbach

After flashing the application, a multicore debug scenario can be started as usual.

Hint: Use the option /NoCODE of the Data.LOAD command to load only the symbols (without downloading
code), e.g.:

Flashing the Hardware Security Module (HSM)

When flashing the HSM, use the same precautions as described in “Flashing and Debugging AURIX
Devices”, page 32.

The HSM can be flashed with the scripts ~~/demo/tricore/flash/tc2*-hsm.cmm:

Onchip Triggers (TrOnchip Window)

Onchip triggers can be influenced with the TrOnchip.view window. It affects primarily “On-chip
Breakpoints”, page 28, and allows to control the Multi-Core Break Switch (MCBS) providing two internal
Break Buses and a Suspend Switch.

See the TrOnchip commands for more information.

Data.LOAD.elf my_application.elf /NoCODE ; Load just the symbolic
; information of an al-
; ready flashed appli-
; cation

DO ~~/demo/tricore/flash/tc2*-hsm.cmm ; run flash script

Do not enable HSM boot when no valid HSM code is present. This will lock your
device permanently. See the Infineon documentation and contact your Infineon
FAE for more information on HSM.
TriCore Debugger and Trace | 33©1989-2024 Lauterbach

BenchMarkCounter

Benchmark counters are on-chip counters that count specific hardware events, e.g., the number of executed
instructions. This allows to calculate typical performance metrics like clocks per instruction (CPI).The
benchmark counters can be read at run-time.

TriCore CPUs support three different types of benchmark counters:

• Performance counters in the core debug controller of each core. These counters are available in
AUDO MAX and AURIX CPUs.

- Clock counter CCNT.

- Instruction counter ICNT.

- Multi counters M1CNT, M2CNT, M3CNT that can be configured to count specific events, e.g.,
cache hits and misses. The available events depend on the used device.

• Event Counters in the OTGS. These counters are only available for AURIX and later devices.
These counters can capture events generated by breakpoints with action alpha, beta, charly,
delta or echo.

• Event counters in the MCDS. These counters are only available in emulation devices. For AUDO
CPUs these counters are named CNT0 to CNT15. For AURIX CPUs these counters are named
PMN0 to PMN31. Refer to “Benchmark Counters” in MCDS User’s Guide, page 40
(mcds_user.pdf) for more information.

In TRACE32, these benchmark counters can be programmed through the BMC.state window.

Performance counters and event counters of TriCore CPUs can be started or stopped using on-chip
breakpoints. This A-to-B mode allows to determine performance metrics for a single code block. This mode
is available for AUDO MAX CPUs with a TC1.6 core and all AURIX CPUs.

A Enable or Disable A-to-B mode. In A-to-B mode only events between the Alpha and Beta marker
are counted. See BMC.<counter>.ATOB.

B Defines the BenchMarkCounter trigger value. See BMC.<counter>.TRIGVAL.

C Enables/disables the BenchMarkCounter trigger. See BMC.<counter>.TRIGMODE.

A B C
TriCore Debugger and Trace | 34©1989-2024 Lauterbach

Example: Measuring Instructions and Stalls per Clock Cycle

This example explains how to measure the number of instructions [A] and the stalls per clock cycle [B].
The analysis can be set up in the BMC.state window:

or using the following commands in PRACTICE:

BMC.CLOCK 100.Mhz
BMC.ICNT.EVENT ON
BMC.M1CNT.EVENT IP_DISPATCH_STALL
BMC.M2CNT.EVENT LS_DISPATCH_STALL
BMC.M3CNT.EVENT DMEM_STALL
BMC.ICNT.RATIO X/CLOCK
BMC.M1CNT.RATIO X/CLOCK
BMC.M2CNT.RATIO X/CLOCK
BMC.M3CNT.RATIO X/CLOCK

; Set the BMC Clock
; Set the Events

; Set the counters RATIO

A

B

TriCore Debugger and Trace | 35©1989-2024 Lauterbach

Example: A-to-B Mode (single shot)

In the following example, the runtime of the function sieve() is measured, and the instructions executed
during runtime are counted. The result is displayed in the BMC.state window.

This example can be set up using the following PRACTICE script.

It is not possible to have different A-to-B mode settings for the counters of the core debug controller.
Executing the command for one of the counters will automatically set the state for the other counters.

For the performance counters of the core debug controller, the alpha and beta marker must not overlap with
another breakpoint.

CLOCK.ON
Break.Set sieve /Program /Alpha
Break.Set sYmbol.EXIT(sieve)-2 /Program /Beta
Break.Set sYmbol.EXIT(sieve)
BMC.ICNT.EVENT ON
BMC.ICNT.ATOB ON

Alpha breakpoint
Break.Set sieve /Program /Alpha

Beta breakpoint
Break.Set sYmbol.EXIT(sieve)-2
/Program /Beta

Instructions are only counted in
this range.

A-to-b mode active

Runtime
TriCore Debugger and Trace | 36©1989-2024 Lauterbach

Example: A-to-B Mode (average)

Starting from AURIX devices and release R.2020.02, average runtimes can be measured using a
combination of the performance counters in the core debug controller and the event counters in the OTGS.

In the following example, the average runtime of the function sieve() is measured. The result is displayed
in the BMC.state window.

Result:

A complex example recording the results in BTrace can be found in the demo folder under
~~/demo/tricore/etc/bmc.

CLOCK.ON
Break.SetFunc sieve
BMC.ICNT.EVENT ON
BMC.ICNT.ATOB ON
BMC.OTGSC0.EVENT Alpha
BMC.OTGSC0.RATIO TIME/X

; measure for one second
Go
WAIT 1.s
Break

BMC.state
TriCore Debugger and Trace | 37©1989-2024 Lauterbach

Example: Record Counters Periodically

The TRACE32 SNOOPer trace can be used to record the event counters periodically, if the target system
allows to read the event counters while the program execution is running.

The SNOOPer.List and SNOOPer.PROfileChart.COUNTER commands allow to specify the counters you
want to display.

BMC.state ; display the BMC configuration
; window

BMC.M1CNT.EVENT DATA_X_HIT ; count data cache / data buffer
; hits

BMC.M2CNT.EVENT DATA_X_CLEAN ; count data cache / data buffer
; misses

BMC.SnoopSet ON ; configure the TRACE32 SNOOPer
; trace for event counter recording

Go ; start the program execution to
; fill the SNOOPer trace

Wait 1.s

Break ; stop the program execution

SNOOPer.PROfileChart.COUNTER %Up
M1CNT M2CNT M3CNT

; display a profile statistic
TriCore Debugger and Trace | 38©1989-2024 Lauterbach

Watchpins

Watchpins can be used to pulse a physical output pin on the target or on the debugger when a special
breakpoint is hit (without halting the cpu). The breakpoints use the action /WATCH. Watchpins are especially
useful for analyzing the timing of an application.

Watchpins use the on-chip logic of the chip. Thus, they differ between AUDO and AURIX devices.

AUDO Devices

To set up watchpins on AUDO devices, first set the watch-breakpoint, then route the watch event to an
output pin using the TrOnchip.BreakBus feature, e.g.:

See the chapter “CPU specific TrOnchip Commands”, page 122 for details.

AUDO devices do not allow to set Alpha/Beta/Charly/Delta/Echo breakpoints as watchpoints (as opposed to
AURIX devices.

AURIX Devices

AURIX devices can pulse up to eight different output pins, for details see chapter “Features and
Restrictions”, page 41.

Setup

Setting up watchpins on AURIX devices requires three basic steps:

1. Setting the breakpoint

2. Routing to the pin

3. Changing the speedgrade

All these steps are also shown in a demo script:

Break.Set sieve /WATCH
TrOnchip.BreakBus0.BreakOUT Enable

; set WATCH breakpoint
; route to pin

NOTE: The GPIO pins are not driven automatically, they have to be configured manually.

PSTEP ~~/demo/tricore/etc/trace_trigger/watchpins/aurix_watchpin.cmm
TriCore Debugger and Trace | 39©1989-2024 Lauterbach

1. Setting the breakpoint:

Set a breakpoint with action watch, e.g.:

2. Routing to the pin:

The watch event can be routed to an output pin using the TrOnchip.WatchPin feature, e.g.:

AURIX devices allow to set additional watchpoints using the Alpha/Beta/Charly/Delta/Echo breakpoints (as
opposed to AUDO devices), e.g.:

For a sample pin mapping see chapter “Features and Restrictions”, page 41.

3. Changing the speedgrade:

In order to see short pulses (i.e. watch breakpoints on single addresses or on an address range with only a
few hundred instructions) the speed grade of the respective GPIO pin has to be changed manually.

Break.Set sieve /WATCH ; set WATCH breakpoint

TrOnchip.WatchPin.WATCH.Pin0 ; route to pin

NOTE: Enabling WatchPins automatically enables the respective pin as Trigger Output Pin
(overriding user configuration), so make sure not to use the GPIO pin for something
else at the same time.

Break.Set sieve /ALPHA
TrOnchip.WatchPin.ALPHA.Pin1

; set WATCH breakpoint
; route to pin
TriCore Debugger and Trace | 40©1989-2024 Lauterbach

This can be done either by command, e.g.:

Or in the peripheral window, e.g.:

Features and Restrictions

In general there are 8 output pins. Please be aware that they might be used for a different purpose already.
For example, it might not be a good idea to use Pin3, which is used for the TDO/DAP2.

Sample pin mapping (See Infineon documentation for details):

There is a maximum of 4 watch breakpoints per core, i.e. 12 watch breakpoints for a device with three cores.

; set P20_PDR0.PD0 to "Speed Grade 1" (Pad Driver Mode for Port 20 Pin 0)
PER.Set D:0xf003c040 (Data.Long(D:0xf003c040)&(~0x7))

Pin Package Pin Note

Pin0 P20.0 /BRKOUT

Pin1 P20.1 /BRKIN

Pin2 P21.6 (TDI)

Pin3 P21.7 (TDO, DAP2)

Pin4 P32.6

Pin5 P32.7

Pin6 P33.14

Pin7 P33.15
TriCore Debugger and Trace | 41©1989-2024 Lauterbach

The most restrictive part is the availability of the internal lines for routing the watch breakpoints. There are 7
lines, but some of them are already preoccupied:

• Two of them are already occupied internally

• One line is occupied per core

So there are 2-4 lines still available to be routed dynamically (e.g. 4 lines available for a single-core
device, 2 lines when multi-core debugging a device with three cores). TRACE32 tries to find an optimal
routing.

To sum up, at most 4 different pins can be used at the same time. Still, multiple watch breakpoints can be
routed to the same output pin. This might be especially useful when no more resources are available.
TriCore Debugger and Trace | 42©1989-2024 Lauterbach

Accessing Cached Memory Areas and Cache Inspection

Most AURIX devices and some AUDO devices have data caches as well as instruction caches. There is one
cache per CPU and these caches are located between the CPU and the system bus. The CPU will use this
cache for certain address ranges only. These address ranges are referred to as cached memory areas in the
following.

If a CPU with active cache modifies data in a cached memory area (e.g., the LMU), this modification will be
first stored to it’s local cache only. It will be written back to memory if explicitly requested by the CPU or
implicitly when the cache line shall be reused.

Normally, TRACE32 will access memory using the system bus. This will bypass the caches. When you, e.g.,
view data that is currently cached by a CPU, this will lead to a difference in the data displayed by the
debugger and the data seen by the CPU. TRACE32 provides the following methods to view the correct data:

• Use access class “DC”. For example, the data at address 0x90040000 (LMU of TC39x) can be
displayed using the command
Data.dump DC:0x90040000

• Set SYStem.Option.DCREAD ON to display the correct cached data when using access class “D”.
This access class is used by default for all data accesses. This is especially useful when displaying
variables in the Var.Watch / Var.View window, because they will then be displayed from the CPUs
point of view.

The exact behavior differs between AUDO (TC1xxx) and AURIX (TC2xx and later) CPUs and is described
below.

A similar issues occurs when TRACE32 tries to write data in a memory area that is currently cached by a
CPU. An access through the system bus will only update the memory but not the data cached by the CPU.
TRACE32 provides different methods to handle this. This is also described below.

Please note, that it is not possible to access cached memory areas while the CPU is running. In this case,
physical memory is accessed.

In some use cases (e.g., performance optimization) the exact cache state is of interest. In the following this is
referred to as cache inspection. The corresponding commands can be found in the CACHE command
group. For TC2xx and later devices this is subject to certain constraints that are described below.

AUDO Devices

• Reads using access class “DC” will always evaluate the cache tags to present the cached data if
applicable.

• Writes using access class “DC” will first flush the respective cache lines and then write the new
values to memory.

• Reads using access class “D” with SYStem.Option.DCREAD ON will be redirected to access
class “DC”.

• Writes using access class “D” with SYStem.Option.DCFREEZE OFF will be redirected to access
class DC.

Cache inspection is always possible.
TriCore Debugger and Trace | 43©1989-2024 Lauterbach

AURIX Devices

This section does not apply to early AURIX devices (TC27x-Astep, TC2Dx). These behave like AUDO
devices.

TC1.6E (efficiency) cores implement a small data read buffer instead of a data cache. The data read buffer is
not accessible by TRACE32.

For TC1.6P and TC1.6.2 cores TRACE32 provides two different methods how cached memory areas can
be read or written:

• cache evaluation method: this method will evaluate the cache tags and content to reconstruct the
cached memory area on read as well as to update the cache contents on writes.

• target code method: this method will execute code on the CPU to read or write cached memory
areas.

The cache evaluation method can only be used when certain constraints are fulfilled. This is explained in the
following.

CPU Constraints for Cache Evaluation and Cache Inspection

The cache evaluation method as well as cache inspection require that TRACE32 is able to read out the
cache tags and contents. AURIX CPUs allow reading this by mapping the cache into the CPU address
space using the MTU. As soon as the cache is mapped by TRACE32, the CPU will clean the cache content
due to security reasons. In addition, this might be reported to other units as security/safety alarm. This has
the following implications:

• The cache must only be mapped when the cache is empty. Otherwise data might be lost.

• The cache must stay mapped during the complete debug session.

• In some use-cases mapping the cache might not be possible at all.

This is considered by TRACE32 as follows:

• SYStem.Option.MAPCACHE controls if TRACE32 will map the cache at all. By default it is
activated (ON).

• TRACE32 will map the cache only if SYStem.Option.MAPCACHE ON and the cache is known to
be empty. This is the case after the following commands: SYStem.Up, CACHE.INVALIDATE IC,
CACHE.INVALIDATE DC, CACHE.FLUSH DC.

• TRACE32 will unmap the cache only if executing SYStem.Option.MAPCACHE OFF.

This implies that the cache is not mapped after connecting to the device using SYStem.Mode.Go,
SYStem.Mode.Attach and after power losses or external resets while SYStem.Option.RESetBehavior
RunRestore is set. In this case, the cache can be manually mapped by halting the CPU and executing
CACHE.INVALIDATE DC, CACHE.FLUSH DC and/or CACHE.INVALIDATE IC.

Due to the internal architecture of the CPU (e.g. usage of the store buffers), stores might not become visible
in the caches of a CPU until an isync or dsync instructions is executed. The latter can be done
automatically by TRACE32. Please see SYStem.Option.DSYNC for further details.
TriCore Debugger and Trace | 44©1989-2024 Lauterbach

Reading and Writing using Cache Evaluation Method

This method will evaluate the cache tags to display and modify the cached data where applicable. This has
the advantage that the cache structure (i.e., which memory content is cached) does not change.

On writes, the corresponding physical memory will be modified in parallel. This is done to avoid marking
the cache line as dirty and thus triggering writebacks that will not occur during normal operation. This
will not change the cache tags.

This method requires a mapped cache. Please see the previous section for more details.

TRACE32 will potentially use this method if SYStem.Option.MAPCACHE ON.

In particular:

• Reads and writes using access class “DC” will always use this method. In case the cache is not
mapped an error will be returned.

• Reads using access class “D” with SYStem.Option.DCREAD ON will first evaluate the core
configuration with respect to cache bypass and physical memory attributes. In case the cache is
relevant for the current access, it will use the cache evaluation method. Otherwise physical
memory is accessed directly. In case the cache is not mapped an error will be shown and physical
memory will be accessed.

• Writes using access class “D” will first evaluate the core configuration with respect to cache
bypass and physical memory attributes. In case the cache is relevant for the current access it will
use the cache evaluation method. Otherwise physical memory is accessed directly. In case the
cache is not mapped an error will be shown and physical memory will be accessed.
SYStem.Option.DCFREEZE will be ignored since the cache tags are not changed.

Reading and Writing using Target Code Method

This method implements reads and writes by executing appropriate code on the CPU. This has the
advantage that the result always matches the CPU view. This method will modify the cache structure (i.e.,
which memory content is cached) and trigger additional writebacks. The effort for this method is
considerably higher since the CPU state and some target memory needs to be saved and restored.

TRACE32 will potentially use this method if SYStem.Option.MAPCACHE OFF:

In particular:

• Reads and writes using access class “DC” will always use this method.

• Reads using access class “D” with SYStem.Option.DCREAD ON and
SYStem.Option.DCFREEZE OFF will first evaluate the core configuration with respect to cache
bypass and physical memory attributes. In case the cache is relevant for the current access it will
use the target code method. Otherwise physical memory is accessed directly.

• Writes using access class “D” with SYStem.Option.DCFREEZE OFF will first evaluate the core
configuration with respect to cache bypass and physical memory attributes. In case the cache is
relevant for the current access it will use the target code method. Otherwise physical memory is
accessed directly.
TriCore Debugger and Trace | 45©1989-2024 Lauterbach

For further details about target code execution, see “Target Code Execution”, page 58.

Use Case: No cache used

Set SYStem.Option.MAPCACHE OFF in case of unwanted security/safety alerts or concerns about the
cache being mapped in the CPU access space.

Use Case: Cache used, Cache Mapping Possible

Leave SYStem.Option.MAPCACHE ON to use cache evaluation method.

Consider setting SYStem.Option.DCREAD ON for correct display of variables. Consider setting
SYStem.Option.DSYNC ReadWrite to ensure no data remains in the CPU.

In case you experience problems with unwanted security/safety alerts, see “Use Case: Cache used,
Cache Mapping Not Possible”, page 46

Use Case: Cache Inspection

In case you want to analyze the cache behavior of your application, the cache must be mapped. This means
SYStem.Option.MAPCACHE ON is required.

Use Case: Cache used, Cache Mapping Not Possible

In case you experience problems with unwanted security/safety alerts or you are concerned about the cache
being mapped in the CPU access space, use target code method. This means set
SYStem.Option.MAPCACHE OFF and SYStem.Option.DCFREEZE OFF.

Consider setting SYStem.Option.DCREAD ON for correct display of variables.
TriCore Debugger and Trace | 46©1989-2024 Lauterbach

Assembler and Disassembler Options

By default, the disassembler displays all opcodes as defined by Infineon (Simple). Alternatively the 16-bit
opcodes can be marked with a “16” tag to identify them more easily (Generic); see [A] in figure below. The
SETUP.DIS command is used to configure the behavior.

Generic disassembler mode:

Simple disassembler mode:

In case an assembler mnemonic is available in 16-bit as well as in a 32-bit flavor, the 32-bit variant is
preferred. To force the usage of the 16-bit equivalent the “16” tag can be used.

A

A

A

A

A

TriCore Debugger and Trace | 47©1989-2024 Lauterbach

Parallel Usage of a 3rd-Party Tool

Some 3rd-party tools require access to the debug port and/or debug resources as well. Examples of 3rd-
party tools are tools for measurement, calibration and data-stimulation (MC tools). This section describes
how to use such a 3rd-party tool in parallel with TRACE32.

There are different options of how to share the debug port. The appropriate method depends on the 3rd-
party tool. In general, TRACE32 supports the following options:

• Software debugging over XCP: In this mode, all debug commands are send to the 3rd-party tool
using the standardized XCP protocol. For details, see “XCP Debug Back-End”
(backend_xcp.pdf).

• Physical sharing: In this mode, the debug signals are shared using a special debug adapter for
the 3rd-party tool. This mode is described in the next section.

The 3rd-party tool might also require certain debug resources of the target CPU. Typical examples are:

• The Core Debug Controller covers all debug resources that are part of the CPU like hardware
breakpoints.

• The Cerberus block (CBS) covers all chip-wide debug resources. See also “Cerberus Access
Protection”, page 57.

• Emulation Memory can be divided up between a calibration tool and TRACE32 to allow
calibration and tracing in parallel. For details and configuration, please refer to chapter
“Emulation Memory” (mcds_user.pdf).

You must make sure TRACE32 is not trying to use these resources in parallel, e.g. by special configuration.
Examples for known 3rd-party tools can be found under ~~/demo/tricore/etc/. In doubt, please
contact Lauterbach and/or the 3rd-party tool vendor.

Physical Sharing of the Debug Port

The general configuration is depicted below.

The 3rd-party tool is connected between the debugger and the target. It acts as an arbiter for the JTAG or
DAP debug port. In order to communicate with the target, the debugger requests the debug port from the
tool and waits until access is granted.

NOTE: Please be aware that some debug operations are intrusive, e.g., Go, Break,
SYStem.Mode Up, or FLASH programming, and therefore might interfere with the
operation of the 3rd-party tool.

PowerDebug Module
+

Debug Cable
JTAG or DAP

Request

Grant 3rd party
tool

JTAG or DAP

target
TriCore Debugger and Trace | 48©1989-2024 Lauterbach

Sharing of the debug port must be configured using SYStem.CONFIG PortSHaRing before bringing the
system up. Typical start-up sequences:

• JTAG (e.g., ETAS ETK for AUDO CPUs):

The JTAG clock must be between 10 MHz (default) and 40 MHz.

• DAP (e,g., ETAS ETK-S20 for AURIX CPUs):

For the most common CPUs and 3rd-party tools, PRACTICE start-up scripts (*.cmm) can be found under
~~/demo/tricore/etc/.

Avoid displaying invalid memory locations (Bus Error).

Details about electrical requirements and connector pin-outs can be found in “Application Note Debug
Cable TriCore” (app_tricore_ocds.pdf).

SYStem.CPU TC1796ED ; select your CPU

SYStem.CONFIG DEBUGPORTTYPE JTAG ; switch debug port to JTAG

SYStem.CONFIG PortSHaRing ON ; enable port sharing

SYStem.CONFIG TCKLEVEL 0 ; pull-down on TCK (default)

SYStem.CONFIG TAPState 12. ; Run-Test/Idle (default)

SYStem.Mode Attach ; connect to CPU

SYStem.CPU TC277TE ; select your CPU

SYStem.CONFIG DEBUGPORTTYPE DAP2 ; switch debug port to DAP

SYStem.CONFIG PortSHaRing ON ; enable port sharing

SYStem.Mode Attach ; connect to CPU

PSTEP
~~/demo/tricore/etc/debug_connections/portsh
aring_etk/*.cmm

; step through a demo
; script
TriCore Debugger and Trace | 49©1989-2024 Lauterbach

Debugging an Application with the Memory Protection Unit Enabled

Debugging a TriCore device with the Memory Protection Unit enabled requires different device-dependent
strategies.

TriCore v1.6 and Later

For TriCore devices with core architecture v1.6 and later, the Memory Protection Unit and the on-chip
breakpoint implementation have been separated. Debugging such a device with the MPU enabled does not
require any specific setup or configuration.

TriCore v1.3.1 and Earlier

TriCore devices with a core architecture up to v1.3.1 have the on-chip breakpoint feature implemented in the
Memory Protection Unit. This means that either on-chip breakpoints or the MPU can be used, but not both at
the same time. Do not activate the MPU for single stepping on assembler level.

For simplification debugging an application in RAM is explained first, then the additional configuration for an
application located in FLASH.

Debugging with MPU Enabled in RAM

The first step is to prevent the debugger from configuring any on-chip breakpoint:

1. Single-stepping

Disable the usage of on-chip breakpoints for single-stepping on assembler level

2. Program breakpoints

While single addresses are automatically configured as software breakpoints, make sure not to
program any address range.

3. Data breakpoints

Do not configure any breakpoint on data accesses.

Watch the Break.List window and check the configured breakpoints.

SYStem.Option.STEPSOFT ON
TriCore Debugger and Trace | 50©1989-2024 Lauterbach

Debugging with MPU Enabled in FLASH

For debugging an application running in FLASH using the MPU first apply the same configuration as for
debugging in RAM. Additionally perform the following steps:

1. Enable software breakpoints in FLASH by configuring your flash, e.g. as you would do for FLASH
programming:

2. Enable FLASH programming in AUTO mode:

3. Set software breakpoints as preferred breakpoint implementation:

For more information, see:

• FLASH programming and commands: “FLASH” (general_ref_f.pdf)

• “Software Breakpoints in FLASH” (norflash.pdf)

; Set up FLASH programming for affected FLASH
FLASH.Create 1. 0xA0000000--0xA000FFFF 0x4000
FLASH.CREATE …
…
FLASH.TARGET 0xD4000000 0xD0000000 0x1000 tc1797.bin

FLASH.AUTO ALL

Break.SELect Program SOFT

NOTE: Software breakpoints in FLASH drastically reduce the life-time of your FLASH.
TriCore Debugger and Trace | 51©1989-2024 Lauterbach

Debugging through Resets and Power Cycles

While debugging a TriCore CPU, resets and power cycles can be caused by the application software, on-
chip logic or external logic, e.g., a watchdog. These events can lead to a reset of the debug logic and loss of
the connection to the debugger. TRACE32 supports debugging despite such events for the following
scenarios.

Soft Resets

Soft resets cover application and system resets of the TriCore. These are typically caused by the application
software or on-chip logic. They do not reset the debug logic. Programmed on-chip breakpoints will be
preserved. Such a reset will be automatically detected by the debugger by reading the corresponding status
register.

TRACE32 provides the following options to handle soft resets.

• CPU running after soft reset

This behavior is selected by using SYStem.Option.RESetBehavior RestoreGo or
SYStem.Option.RESetBehavior RunRestore.

• CPU halted after soft reset

This behavior is selected by using SYStem.Option.RESetBehavior Halt.

VTREF

RESET

INFINEON
boot code

CPU
status

application
running

TRACE32
status up re-

attaching up

application
running

soft reset

INFINEON
boot code

haltedCPU
status

TRACE32
status

application
running

RESET

VTREF

up up
re-

attaching

soft reset
TriCore Debugger and Trace | 52©1989-2024 Lauterbach

Hard Resets

Hard resets cover warm power-on resets. These are typically caused by external logic pulling the RESET pin
low. They reset the debug logic and the connection to the debugger. Programmed on-chip breakpoints will
not be preserved.

Such a reset will be automatically detected by the debugger in the following ways:

• Reading status of RESET line. This does only work if all hard resets are visible at the RESET pin
of the debug connector. Details can be found in “Application Note Debug Cable TriCore”
(app_tricore_ocds.pdf).

• Polling of the debug port using DAP. The debugger will detect the begin of a hard reset when the
connection to the target is lost. The debugger will detect the end of a hard reset by polling the
debug port until the target responds again. This requires that DAP2 is selected as type of the
debug port, see SYStem.CONFIG.DEBUGPORTTYPE DAP2.

TRACE32 provides the following options to handle hard resets.

• Restore debug resources after hard reset, start CPU

After a hard reset, TRACE32 will halt the CPU for a short time to restore the debug resources
and continue execution afterwards. Breakpoints will trigger from the reset vector. This behavior is
selected by using SYStem.Option.RESetBehavior RestoreGo.

• Restore debug resources while CPU is running after hard reset

After a hard reset, TRACE32 will not halt the CPU. The debug resources will be restored while
the CPU is running. Breakpoints triggered during this time will be missed. This behavior is
selected by using SYStem.Option.RESetBehavior RunRestore.

VTREF

RESET

INFINEON
boot code

haltedCPU
status

hard
reset

application
running

TRACE32
status up reattaching uprestoring debug

resources

application
running

VTREF

RESET

INFINEON
boot code

CPU
status

hard
reset

application
running

TRACE32
status up reattaching uprestoring debug

resources

application
running
TriCore Debugger and Trace | 53©1989-2024 Lauterbach

• CPU halted after hard reset

After a hard reset, TRACE32 will halt the CPU at the reset vector. This behavior is selected by
using SYStem.Option.RESetBehavior Halt.

Power Cycles

Power cycles cover cold power-on resets caused by switching off CPU power completely, and then on again.
They reset the debug logic and the connection to the debugger. Programmed on-chip breakpoints will not be
preserved.

INFINEON
boot code

haltedCPU
status

TRACE32
status

hard
reset

application
running

RESET

VTREF

up reattaching up
TriCore Debugger and Trace | 54©1989-2024 Lauterbach

The debugger will automatically detect a power cycle by observing the VTREF pin of the debug connector.
Details can be found in “Application Note Debug Cable TriCore” (app_tricore_ocds.pdf). Debugging
through power cycles is supported by TRACE32 if SYStem.Mode StandBy is selected beforehand. The
following options are available:

• Restore debug resources after power cycle, start CPU

After detecting the end of a power cycle, TRACE32 will halt the CPU for a short time to restore
the debug resources. Breakpoints will trigger from the reset vector. This behavior is selected by
using SYStem.Option.RESetBehavior RestoreGo.

• Restore debug resources while CPU is running after power cycle

After detecting the end of a power cycle, TRACE32 will not halt the CPU. The debug resources
will be restored while the CPU is running. Breakpoints triggered during this time will be missed.
This behavior is selected by using SYStem.Option.RESetBehavior RunRestore.

• CPU halted after power cycle

After detecting the end of a power cycle, TRACE32 will halt the CPU at the reset vector. This
behavior is selected by using SYStem.Option.RESetBehavior Halt.

VTREF

RESET

INFINEON
boot code

CPU
status off

application
running

TRACE32
status

up
(standby) reattaching

restoring debug
resources

application
running

standby
up

(standby)

halted

VTREF

RESET

INFINEON
boot code

CPU
status off

application
running

TRACE32
status

up
(standby) reattaching

restoring debug
resources

application
running

standby
up

(standby)

VTREF

RESET

INFINEON
boot code

CPU
status off

application
running

TRACE32
status

up
(standby) reattaching

restoring debug
resources

application
running

standby
up

(standby)

halted
TriCore Debugger and Trace | 55©1989-2024 Lauterbach

Suspending Peripherals

TriCore CPUs allow to suspend peripheral modules automatically when the core(s) are halted. Depending
on the CPU family, dedicated mechanisms are used for watchdogs and system timers. These are described
after the general mechanism.

The general mechanism consists of two components:

• A chip-wide level signal (suspend signal) that is generated by the debug logic of the chip. If
SYStem.Option.PERSTOP is set, TRACE32 manages this signal according to the overall debug
configuration.

• Configuration bits for every peripheral module that allow to configure if and how the module is
suspended. For AURIX devices, this is typically done using the OCDS Control and Status Register
<module>_OCS . For AUDO devices, this is typically done using the Clock Control Register
<module>_CLC. These registers must be programmed by the target application, or using Per.Set
commands in the debugger startup script. Example: Suspend GTP12 on a TC3xx chip

In case such a setting shall be automatically restored after a reset or power less, this can be achieved using
Data.STANDBY and Data.STARTUP.

During an assembler step (Step.Asm), Go.direct /SingleCORE and target code executed by TRACE32
(see “Target Code Execution”, page 58), the suspend signal will be kept active.

Components directly suspended by the MCBS (AUDO devices) or OTGS (AURIX devices) can be controlled
by TrOnchip.SusTarget.

Suspending the System Timers of TC3xx

In TC3xx CPUs the system timers are directly connected to the suspend out signal of the CPU. In case
SYStem.Option.PERSTOP ON is set, TRACE32 will manage the suspend out signal for all assigned cores.
The suspend of the system timer must still be configured by setting STMx_OCS.SUS. Example:

Suspending the Watchdogs

TriCore CPUs disable their internal watchdogs automatically if the debugging system is enabled. Optionally,
the watchdogs can be connected to suspend signal as well. See SYStem.Option.WDTSUS for more
details.

SYStem.Option.PERSTOP ON
; GTP12_OCS.SUS[_P]=0x11
Per.Set.Field D:0xF00018E8 %Long 0x1F000000 0x11

SYStem.Option.PERSTOP ON
; STM0_OCS.SUS[_P]=0x12
Per.Set.Field D:0xF00010E8 %Long 0x1F000000 0x12
TriCore Debugger and Trace | 56©1989-2024 Lauterbach

Code Overlays

Some memories, e.g., the program scratch pad RAM (PSPR), can be accessed from the CPU in a very
performant way. An optimization technique is to dynamically copy different code parts into such a memory
and execute them from there.

For the debugger this means, that addresses map to different symbols at different times. For a correct
mapping, the TRACE32 Overlay mechanism needs to enabled. For details, refer to See SYStem.Option
OVERLAY. An example can be found in ~~/demo/tricore/etc/overlay.

Data Overlays

The Data Access Overlay (OVC) mechanism of TC2xx and newer chips allows to redirect data accesses
made by a CPU to a certain memory (e.g., flash) to another memory (e.g., RAM). Effectively this means, that
the address map of a CPU differs from the address map of the system bus.

By default, the debugger will not recognize this, since it accesses all memories by the system bus. This
means the debugger will, e.g., display the original values of the memory instead of the values in the overlay
memory.

For a correct resolution, SYStem.Option.OVC ON needs to be set. Then the debugger will check the status
of the OVC module, read its configuration if necessary and resolve accesses accordingly. An example can
be found in ~~/demo/tricore/etc/ovc.

Cerberus Access Protection

The Cerberus of a TriCore CPU is one of the main debug modules. Some implementations have access
control registers. By default, TRACE32 will configure this register to allow access by the debugger only. This
behavior can be changed using SYStem.Option.CBSACCEN<x>.

When configuring these registers manually, make sure to grant access to the debugger.

Please consider also “Parallel Usage of a 3rd-Party Tool”, page 48.
TriCore Debugger and Trace | 57©1989-2024 Lauterbach

Target Code Execution

In certain situations TRACE32 will download and/or execute code to your target to achieve specific actions.
This includes but is not limited to:

• target controlled flash programming (see FLASH command group)

• target code referenced in Data.EPILOG.TARGET, Data.PROLOG.TARGET, etc.

• Var.Set, Var.Assign if used with a function.

• CACHE.INVALIDATE, CACHE.FLUSH, CACHE.CLEAN.

• Memory access using access class “D” or “DC” if core access is enabled. For further details, see
“Reading and Writing using Target Code Method”, page 45.

Internal Break Bus (JTAG)

The JTAG connector has two break lines which can be connected to an internal Break Bus of TriCore
devices of the AUDO family:

An AUDO-TriCore chip has several modules (Break Target) which can react on break signals, such as
TriCore PCP, MCDS and the Suspend Switch and several modules (Break Source) which can generate
break signals, such as TriCore, PCP, MCDS, DMA, Peripheral Buses and MLI bridges.

The Break Buses can be used to distribute break signals from a Break Source to one or more Break Targets.
For example TriCore can be stopped concurrently when PCP breaks and vice versa.

Pin Break Bus

nBRKIN 0

nBRKOUT 1

NOTE: Break signals are edge signals and only active for a short period of time.
TriCore Debugger and Trace | 58©1989-2024 Lauterbach

Troubleshooting

In this section:

• SYStem.Up Errors

• Debugging Optimized Code

• Please also see the chapter “FAQ”, page 60.

SYStem.Up Errors

The SYStem.Up command is the first command of a debug session where communication with the target is
required. If you receive error messages while executing this command this may have the following reasons.

• The target has no power or the debug connector is mounted in wrong orientation.

• External controlled /RESET line:

The debugger controls the processor reset and uses the /RESET line to reset the CPU on most
of the SYStem.Mode commands. Therefore only non-active, open-drain driver may be connected
to this signal.

• There is logic added to the JTAG signals:

The debugger supports multi-processor debugging only in certain cases. When inserting other
processors in the JTAG chain, TriCore must be the first processor. No other TriCore and no
processor with a Cerberus based JTAG interface (e.g. XC16x, XC2000) are allowed in the chain.

• There are additional loads or capacities on the JTAG line.

For more information on pins, signals and daisy-chaining please refer to “Debug Interface Configuration”
(app_tricore_ocds.pdf).

Debugging Optimized Code

It is recommended to debug applications with compiler-optimizations turned off. However, this is not always
possible.

Optimized code often splits a single HLL line into multiple blocks of non-consecutive assembler instructions.
Depending on the compiler a single HLL line can generate multiple blocks of code, making single stepping
fiddly and setting breakpoints complex.

Such lines can be summarized when loading an application with the Data.LOAD command:

• The /SingleLineAdjacent option summarizes adjacent blocks of assembler code generated for an
HLL line.

• The /SingleLine option summarizes blocks of assembler code generated for an HLL line.

For example:

Data.LOAD.Elf my_application.elf /SingleLineAdjacent
TriCore Debugger and Trace | 59©1989-2024 Lauterbach

These options are explained in detail in chapter “Details on Generic Load Options” in General
Commands Reference Guide D, page 86 (general_ref_d.pdf).

FAQ

Please refer to https://support.lauterbach.com/kb.
TriCore Debugger and Trace | 60©1989-2024 Lauterbach

https://support.lauterbach.com/kb

Tracing

Tracing allows an in-depth analysis of the behavior and the timing characteristics of the embedded system.

A trace records information about a program’s execution during runtime, usually including program flow and
read/written data. The cores as well as chip internal buses can act as trace sources.

This chapter covers the following topics:

• “On-chip Trace (OCDS-L3)”, page 61

• “Serial Off-Chip Trace”, page 70

• “Parallel Off-Chip Trace”, page 70

Only basic information will be given here, details and advanced tasks are described in separate documents,
see “Further Reading”, page 69.

The trace messages for the On-chip Trace and the Serial Off-chip Trace are generated by the MCDS or Mini-
MCDS. The MCDS is only implemented in Emulation Devices, the Mini-MCDS in some Product Devices.
Please refer to “MCDS User’s Guide” (mcds_user.pdf) for more information.

On-chip Trace (OCDS-L3)

On-chip tracing is only possible with an Infineon Emulation Device (ED), offering the MCDS (MultiCore
Debug Solution) for implementing trace triggers, filters and generation of trace messages (MCDS
messages).

Use Trace.METHOD Onchip for selecting the on-chip trace.

Quick Start for Tracing with On-chip Trace (OCDS-L3)

It is assumed that you are tracing a TC1766ED B-Step on an Infineon TriBoard-TC1766.300 or above.

1. Prepare the Debugger

Load your application and prepare for debug. For details, see “Single-Core Debugging - Quick Start”,
page 18.
TriCore Debugger and Trace | 61©1989-2024 Lauterbach

2. Specify Trace Source and Recording Options

Select the core to trace (e.g. TriCore), and what should be recorded (e.g. program flow and timestamps).
When enabling timestamps, the CPU clock has to be added also.

3. Start and Stop Tracing

Note that tracing can also be stopped by a breakpoint.

4. View the Results

Supported Features

• Program Flow Trace for TriCore and PCP

• Data Trace for TriCore and PCP

• Ownership Trace for PCP

• FPI Bus Trace (independent of TriCore or PCP), both System Peripheral Bus (SPB) and Remote
Peripheral Bus (RPB, if available)

• Timestamps

• Simple Trace Control

See the Onchip.Mode commands for a general setup of the on-chip trace, the MCDS commands and
“Basic Trace Usage” in MCDS User’s Guide, page 24 (mcds_user.pdf) for a detailed setup of the on-chip
MCDS resources.

MCDS.SOURCE TriCore FlowTrace ON ; enable TriCore program flow
; trace

MCDS.TimeStamp TICKS ; enable Ticks as timestamps

MCDS.CLOCK SYStem 20.0MHz ; configure CPU clock for correct
; timestamp evaluation

Go ; start tracing

Break ; stop tracing

Onchip.List ; view recorded trace data

NOTE: A trace source can either be TriCore, PCP or both at the same time.
It is not possible to enable a trace stream (e.g. Program Flow or Data
Trace) for only one trace source when both are enabled.
TriCore Debugger and Trace | 62©1989-2024 Lauterbach

Trace Control

The On-chip settings can be done with the Onchip commands, e.g. from the Onchip.state window. The
settings affect both TriCore and PCP trace.

Trace Evaluation

In case one or more of the FBI buses have been traced, the Onchip.List window features two additional
columns with information on the bus access:

Bus accesses performed in User Mode are displayed in light gray.

See <trace>.List in “General Commands Reference Guide T” (general_ref_t.pdf) on how to customize
the Onchip.List window to your needs.

Impact of the Debugger on FPI Bus Tracing

The debugger is either connected as Bus Master via the System Peripheral Bus (AUDO-NG and previous)
or via the DMA controller (all other AUDO and AURIX).

All accesses performed by the debugger are visible on the buses and will be traced which consumes a large
amount of on-chip trace memory. Enabling SYStem.Option.DUALPORT will increase the amount of traced
bus data depending on the size and number of displayed data windows.

By default, accesses generated by the debugger are not displayed. To display those, use
Onchip.Mode.SLAVE OFF.Tri

NOTE: Onchip.AutoArm has an effect only on TriCore, but not on PCP. Always
make sure that PCP is running when arming the trace.

BusMaster Shows which Bus Master initiated the FPI bus access, e.g. DMA, PCP, …

BusMODE Shows in which mode the FPI Bus access was performed: User or Supervisor
mode.
TriCore Debugger and Trace | 63©1989-2024 Lauterbach

Trace Control Using Break.Set or Var.Break.Set

The Break.Set or Var.Break.Set commands provide basic trace control. For more complex trace scenarios
please refer to “Application Note for Complex Trigger Language” (app_ctl.pdf).

A successfully loaded target application is needed for the following examples.

TriCore AURIX

With TRACE32 Release 09/2022, programming for trace control has been made easier for all TriCore
AURIX MCUs. For the examples it is assumed that the user knows on which core a function is running or by
which core a variable access is performed. This avoids the following problem: many AURIX processors have
n cores, but MCDS only allows trace generation for r cores () only.

The MCDS.INFO window shows for how many cores MCDS can generate trace information. The number of
cpumux is the characteristic value here. The screenshot below shows the MCDS.INFO window for a
TriCore AURIX TC275TF, which has 3 core, but only 2 cpumux.

Example 1: Trace only the instructions of the sieve() function
The sieve() function executes on core 0. Subfunctions, interrupts etc. are not included.

; enable MCDS clock
CLOCK.ON
; instruct MCDS to generate trace timestamps
MCDS.TimeStamp.ON

; instruct MCDS to generate program trace for the instruction within the
, sieve() function
Var.Break.Set sieve /Program /TraceEnable /Core 0.

; display the result
Trace.List

n r
TriCore Debugger and Trace | 64©1989-2024 Lauterbach

Example 2: Trace all instructions executed after the function sieve() was started until its exit
The function sieve executes on core 0. Subfunctions, interrupts etc. are included.

Example 3: Stop the trace recording at the exit of the function sieve()
The function sieve executes on core 0.

Example 4: Trace write accesses to a variable
The write access to flags[12] is done by core 1 or core 2.

; enable MCDS clock
CLOCK.ON
; instruct MCDS to generate trace timestamps
MCDS.TimeStamp.ON

; instruct MCDS to start the generation of program trace when the
; function sieve is entered
Break.Set sieve /TraceON /Core 0.

; instruct MCDS to stop the generation of program trace when the
; function sieve is exited
Break.Set sYmbol.EXIT(sieve) /Program /TraceOFF /Core 0.

; display the result
Trace.List

; enable MCDS clock
CLOCK.ON
; instruct MCDS to generate trace timestamps
MCDS.TimeStamp.ON

; stop trace recording when the exit of function sieve() is reached
Break.Set sYmbol.EXIT(sieve) /Program /TraceTrigger /Core 0.

; display the result
Trace.List

; enable MCDS clock
CLOCK.ON
; instruct MCDS to generate trace timestamps
MCDS.TimeStamp.ON

; instruct MCDS to generate a data trace when a write access to
; the variable flags[12] occurs by core 1 or core 2.
Var.Break.Set flags[12] /Write /TraceEnable /Core 1.
Var.Break.Set flags[12] /Write /TraceEnable /Core 2.

; display the result
Trace.List
TriCore Debugger and Trace | 65©1989-2024 Lauterbach

Example 5: Trace Specific write accesses to a variable
 The data value 0. is written to flags[12] by core 0.

; enable MCDS clock
CLOCK.ON
; instruct MCDS to generate trace timestamps
MCDS.TimeStamp.ON

; instruct MCDS to generate a data trace when a write access to the
variable flags[12] with the data value 0. occurs from core 0.
Var.Break.Set flags[12] /Write /Data.auto 0. /TraceEnable /Core 0.

; display the result
Trace.List
TriCore Debugger and Trace | 66©1989-2024 Lauterbach

Aged TriCore microcontrollers

Aged MCUs like the AUDO Max family have only a single TriCore core, which is capable of a program and
data trace (write accesses only) for the emulation devices. For this generation of MCUs the classic
command syntax is still valid.

Example 1: Trace only the instructions of the sieve() function
Subfunctions, interrupts etc. are not included.

Example 2: Trace all instructions executed after the function sieve() was started until its exit
Subfunctions, interrupts etc. are included.

; display MCDS state window
MCDS.state

; enable MCDS clock
CLOCK.ON
; instruct MCDS to generate trace timestamps
MCDS.TimeStamp.ON

; instruct MCDS to generate program trace for the instruction within the
; sieve() function
Var.Break.Set sieve /Program /TraceEnable
; TriCore program trace needs to be enabled
MCDS.SOURCE.Set TriCore.Program ON

; display the result
Trace.List

; display MCDS state window
MCDS.state

; enable MCDS clock
CLOCK.ON
; instruct MCDS to generate trace timestamps
MCDS.TimeStamp.ON

; advise MCDS to start the generation of program trace when the
; function sieve is entered
Break.Set sieve /Program /TraceON

; advise MCDS to stop the generation of program trace when the
; function sieve is exited
Break.Set sYmbol.EXIT(sieve) /Program /TraceOFF

; TriCore program trace needs to be enabled
MCDS.SOURCE.Set TriCore.Program ON

; display the result
Trace.List
TriCore Debugger and Trace | 67©1989-2024 Lauterbach

Example 3: Stop the trace recording at the exit of the function sieve()

Example 4: Trace write accesses to a variable

; display MCDS state window
MCDS.state

; enable MCDS clock
CLOCK.ON
; instruct MCDS to generate trace timestamps
MCDS.TimeStamp.ON

; stop trace recording when the exit of function sieve() is reached
Break.Set sYmbol.EXIT(sieve) /Program /TraceTrigger

; TriCore program trace needs to be enabled
MCDS.SOURCE.Set TriCore.Program ON

; display the result
Trace.List

; display MCDS state window
MCDS.state

; enable MCDS clock
CLOCK.ON
; instruct MCDS to generate trace timestamps
MCDS.TimeStamp.ON

; advise MCDS to generate a data trace message when a write access to
; the variable flags[12] occurs
Var.Break.Set flags[12] /Write /Onchip /TraceEnable

; TriCore data trace for write accesses needs to be enabled
MCDS.SOURCE.Set TriCore.WriteAddr ON
MCDS.SOURCE.Set TriCore.WriteData ON

; TriCore program trace can be disabled
MCDS.SOURCE.Set TriCore.Program OFF

; show trace list window
Trace.List
TriCore Debugger and Trace | 68©1989-2024 Lauterbach

Example 5: Trace Specific Write Accesses to a Variable

Aged TriCore microcontrollers

Further Reading

For advanced tasks regarding the MCDS, see “MCDS User’s Guide” (mcds_user.pdf).

; display MCDS state window
MCDS.state

; enable MCDS clock
CLOCK.ON
; instruct MCDS to generate trace timestamps
MCDS.TimeStamp.ON

Var.Break.Set flags[12] /Write /Data.auto 0x0 /TraceEnable /Core 0.

; TriCore data trace for write accesses needs to be enabled
MCDS.SOURCE.Set TriCore.WriteAddr ON
MCDS.SOURCE.Set TriCore.WriteData ON

; TriCore program trace can be disabled
MCDS.SOURCE.Set TriCore.Program OFF

; show trace list window
Trace.List
TriCore Debugger and Trace | 69©1989-2024 Lauterbach

Serial Off-Chip Trace

The Aurora Giga-Bit Trace (AGBT) is a high-speed serial trace for AURIX devices.

This trace is explained in the “Training AURIX Tracing” (training_aurix_trace.pdf).

For advanced tasks, see the “MCDS User’s Guide” (mcds_user.pdf).

Parallel Off-Chip Trace

For more information, see chapter “Parallel Off-chip Trace - OCDS-L2 Flow Trace (Analyzer)”, page 135.
TriCore Debugger and Trace | 70©1989-2024 Lauterbach

CPU specific BMC Commands

The BMC (BenchMark Counter) commands provide control and usage of the on-chip benchmark and
performance counters on the chip if available.

For information about architecture-independent BMC commands, refer to “BMC” in General Commands
Reference Guide B, page 9 (general_ref_b.pdf).

For information about architecture-specific BMC commands, see command descriptions below.

BMC.SELect Select counter for statistic analysis

The exported event counter values can be combined with the exported instruction flow in order to get a
clearer understanding of the program behavior. The command BMC.SELect allows to specify which counter
is combined with the instruction flow to get a statistical evaluation.

BMC.<counter>.ATOB Control A-to-B mode

Enable or disable A-to-B mode of the counter. In A-to-B mode only events between the alpha and beta
marker are counted.

The Alpha and Beta markers may be of type Program, Read, Write and ReadWrite. For details about setting
the Alpha and Beta markers see Break.Set.

BMC.<counter>.TRIGMODE BMC trigger mode

Enables/disables the generation of BenchMark Counter trace messages.

Format: BMC.SELect <counter>

<counter>: PMN0 | PMN1 | …

Format: BMC.<counter>.ATOB [ON | OFF]

Format: BMC.<counter>.TRIGMODE [OFF | TRACEOVERFLOW]
TriCore Debugger and Trace | 71©1989-2024 Lauterbach

An example can be found under “Example: Record BMC Counters in the Trace” in MCDS User’s Guide,
page 43 (mcds_user.pdf).

BMC.<counter>.TRIGVAL BMC trigger value

Defines the BenchMark Counter trigger value. Entry in the trace when counter has reached trigger value and
is then reset.

An example can be found under “Example: Record BMC Counters in the Trace” in MCDS User’s Guide,
page 43 (mcds_user.pdf).

Format: BMC.<counter>.TRIGVAL [<value>]
TriCore Debugger and Trace | 72©1989-2024 Lauterbach

CPU specific SYStem.CONFIG Commands

The SYStem.CONFIG commands are used to configure the behavior of the complete target system for
debugging, e.g., the debug interface or the chaining of several CPUs.

SYStem.CONFIG.state Display target configuration

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target
configuration settings. The configuration settings tell the debugger how to communicate with the chip on
the target board and how to access the on-chip debug and trace facilities in order to accomplish the
debugger’s operations.

Alternatively, you can modify the target configuration settings via the TRACE32 command line with the
SYStem.CONFIG commands. Note that the command line provides additional SYStem.CONFIG
commands for settings that are not included in the SYStem.CONFIG.state window.

Format: SYStem.CONFIG.state [/<tab>]

<tab>: DebugPort | Jtag | XCP

<tab> Opens the SYStem.CONFIG.state window on the specified tab:
DebugPort, JTAG, and XCP.

DebugPort Lets you configure the electrical properties of the debug connection, such
as the communication protocol or the used pinout.

Jtag Informs the debugger about the position of the Test Access Ports (TAP) in
the JTAG chain which the debugger needs to talk to in order to access the
debug and trace facilities on the chip.

XCP Lets you configure the XCP connection to your target.

For descriptions of the commands on the XCP tab, see “XCP Debug
Back-End” (backend_xcp.pdf).
TriCore Debugger and Trace | 73©1989-2024 Lauterbach

SYStem.CONFIG Configure debugger according to target topology

The four parameters IRPRE, IRPOST, DRPRE, DRPOST are required to inform the debugger about the
TAP controller position in the JTAG chain, if there is more than one core in the JTAG chain (e.g. Arm + DSP).
The information is required before the debugger can be activated e.g. by a SYStem.Up. See Daisy-chain
Example.
For some CPU selections (SYStem.CPU) the above setting might be automatically included, since the
required system configuration of these CPUs is known.

TriState has to be used if several debuggers (“via separate cables”) are connected to a common JTAG port
at the same time in order to ensure that always only one debugger drives the signal lines. TAPState and
TCKLevel define the TAP state and TCK level which is selected when the debugger switches to tristate
mode. Please note: nTRST must have a pull-up resistor on the target, TCK can have a pull-up or pull-down
resistor, other trigger inputs need to be kept in inactive state.

Format: SYStem.CONFIG <parameter> <number_or_address>
SYStem.MultiCore <parameter> <number_or_address> (deprecated)

<parameter>: CORE <core>

<parameter>:
(JTAG):

DRPRE <bits>
DRPOST <bits>
IRPRE <bits>
IRPOST <bits>
TAPState <state>
TCKLevel <level>
TriState [ON | OFF]
Slave [ON | OFF]

Multicore debugging is not supported for the DEBUG INTERFACE (LA-7701).

CORE For multicore debugging one TRACE32 PowerView GUI has to be started
per core. To bundle several cores in one processor as required by the
system this command has to be used to define core and processor
coordinates within the system topology.
Further information can be found in SYStem.CONFIG.CORE.

DRPRE (default: 0) <number> of TAPs in the JTAG chain between the core of
interest and the TDO signal of the debugger. If each core in the system
contributes only one TAP to the JTAG chain, DRPRE is the number of
cores between the core of interest and the TDO signal of the debugger.
TriCore Debugger and Trace | 74©1989-2024 Lauterbach

DRPOST (default: 0) <number> of TAPs in the JTAG chain between the TDI signal
of the debugger and the core of interest. If each core in the system
contributes only one TAP to the JTAG chain, DRPOST is the number of
cores between the TDI signal of the debugger and the core of interest.

IRPRE (default: 0) <number> of instruction register bits in the JTAG chain
between the core of interest and the TDO signal of the debugger. This is
the sum of the instruction register length of all TAPs between the core of
interest and the TDO signal of the debugger.

IRPOST (default: 0) <number> of instruction register bits in the JTAG chain
between the TDI signal and the core of interest. This is the sum of the
instruction register lengths of all TAPs between the TDI signal of the
debugger and the core of interest.

TAPState (default: 7 = Select-DR-Scan) This is the state of the TAP controller when
the debugger switches to tristate mode. All states of the JTAG TAP
controller are selectable.

TCKLevel (default: 0) Level of TCK signal when all debuggers are tristated.

TriState (default: OFF) If several debuggers share the same debug port, this
option is required. The debugger switches to tristate mode after each
debug port access. Then other debuggers can access the port. JTAG:
This option must be used, if the JTAG line of multiple debug boxes are
connected by a JTAG joiner adapter to access a single JTAG chain.

Slave (default: OFF) If more than one debugger share the same debug port, all
except one must have this option active.
JTAG: Only one debugger - the “master” - is allowed to control the signals
nTRST and nSRST (nRESET).
TriCore Debugger and Trace | 75©1989-2024 Lauterbach

Daisy-Chain Example

Below, configuration for core C.

Instruction register length of

• Core A: 3 bit

• Core B: 5 bit

• Core D: 6 bit

SYStem.CONFIG.IRPRE 6. ; IR Core D

SYStem.CONFIG.IRPOST 8. ; IR Core A + B

SYStem.CONFIG.DRPRE 1. ; DR Core D

SYStem.CONFIG.DRPOST 2. ; DR Core A + B

SYStem.CONFIG.CORE 0. 1. ; Target Core C is Core 0 in Chip 1

Core A Core B Core C Core D TDOTDI

Chip 0 Chip 1
TriCore Debugger and Trace | 76©1989-2024 Lauterbach

TapStates

0 Exit2-DR

1 Exit1-DR

2 Shift-DR

3 Pause-DR

4 Select-IR-Scan

5 Update-DR

6 Capture-DR

7 Select-DR-Scan

8 Exit2-IR

9 Exit1-IR

10 Shift-IR

11 Pause-IR

12 Run-Test/Idle

13 Update-IR

14 Capture-IR

15 Test-Logic-Reset
TriCore Debugger and Trace | 77©1989-2024 Lauterbach

SYStem.CONFIG.CORE Assign core to TRACE32 instance

Default core_index: depends on the CPU, usually 1. for generic chips

Default chip_index: derived from CORE= parameter of the configuration file (config.t32). The CORE
parameter is defined according to the start order of the GUI in T32Start with ascending values.

To provide proper interaction between different parts of the debugger, the systems topology must be
mapped to the debugger’s topology model. The debugger model abstracts chips and sub cores of these
chips. Every GUI must be connect to one unused core entry in the debugger topology model. Once the
SYStem.CPU is selected, a generic chip or non-generic chip is created at the default chip_index.

Non-generic Chips

Non-generic chips have a fixed number of sub cores, each with a fixed CPU type.

Initially, all GUIs are configured with different chip_index values. Therefore, you have to assign the
core_index and the chip_index for every core. Usually, the debugger does not need further information to
access cores in non-generic chips, once the setup is correct.

Generic Chips

Generic chips can accommodate an arbitrary amount of sub-cores. The debugger still needs information
how to connect to the individual cores e.g. by setting the JTAG chain coordinates.

Start-up Process

The debug system must not have an invalid state where a GUI is connected to a wrong core type of a non-
generic chip, two GUIs are connected to the same coordinate or a GUI is not connected to a core. The initial
state of the system is valid since every new GUI uses a new chip_index according to its CORE= parameter
of the configuration file (config.t32). If the system contains fewer chips than initially assumed, the chips must
be merged by calling SYStem.CONFIG.CORE.

Format: SYStem.CONFIG.CORE <core_index> <chip_index>
SYStem.MultiCore.CORE <core_index> <chip_index> (deprecated)

<chip_index>: 1 … i

<core_index>: 1 … k
TriCore Debugger and Trace | 78©1989-2024 Lauterbach

SYStem.CONFIG.BreakPIN Define mapping of break pins

Default: PortPort.

Maps a Break Bus to either a GPIO port pin or an unused JTAG pin. It is dependent on the Interface Mode
which Break Bus can be mapped to which pin:

Format: SYStem.CONFIG.BreakPIN [PortPort | TdiPort | PortTdo | TdiTdo]

Break Bus 0 Break Bus 1

PortPort GPIO port pin GPIO port pin

TdiPort TDI pin GPIO port pin

PortTDO GPIO port pin TDO pin

TdiTdo TDI pin TDO pin
TriCore Debugger and Trace | 79©1989-2024 Lauterbach

SYStem.CONFIG.CAN Configure CAN interface

The command group SYStem.CONFIG.CAN configures the timing properties for debugging over a
Controller Area Network (CAN) interface. Currently, the only supported protocol that uses the CAN interface
is DxCM (DAP over CAN messages).

These timing parameters must be chosen to be compatible with the bus. Refer to ISO 11898 for details
about these parameters.

These settings can also be viewed and changed using the command SYStem.CONFIG.state /DXCM.

Use the command group SYStem.CONFIG.DXCM to set parameters specific to the DxCM protocol.

SYStem.CONFIG.CAN.BaseCLOCK Base clock for CAN interface

Configures the base clock used for the CAN interface. The <frequency> can be in the range of 10 MHz to
200 MHz. For optimum performance, it is suggested to prefer higher frequencies.

Format: SYStem.CONFIG.CAN.BaseCLOCK <frequency>
TriCore Debugger and Trace | 80©1989-2024 Lauterbach

SYStem.CONFIG.CAN.NominalBRP Set CAN nominal baud rate prescaler

Configures the baud rate prescaler used for nominal transmission.

The effective bit rate during nominal transmission can be computed as BaseCLOCK / NominalBRP / (1
+ NominalTSEG1 + NominalTSEG2).

SYStem.CONFIG.CAN.NominalTSEG1 Set CAN nominal Phase_seg1

Configures the length of Phase_Seg1 for nominal transmission.

SYStem.CONFIG.CAN.NominalTSEG2 Set CAN nominal Phase_seg2

Configures the length of Phase_Seg2 for nominal transmission.

SYStem.CONFIG.CAN.NominalSJW Set CAN nominal SJW parameter

Configures the Synchronization Jump Width for nominal transmission.

Format: SYStem.CONFIG.CAN.NominalBRP <prescaler>

<prescaler>: 1. ... 4095.

Format: SYStem.CONFIG.CAN.NominalTSEG1 <length>

<length>: 1. ... 4095.

Format: SYStem.CONFIG.CAN.NominalTSEG2 <length>

<length>: 1. ... 4095.

Format: SYStem.CONFIG.CAN.NominalSJW <length>

<length>: 1. ... 4095.
TriCore Debugger and Trace | 81©1989-2024 Lauterbach

SYStem.CONFIG.CAN.DataBRP Set CAN data baud rate prescaler

Configures the baud rate prescaler used for data transmission.

This setting is only relevant for CAN-FD (ISO 11898-1:2015) transmission with baud rate switching. Note
that this needs to be set correctly if the bus used baud rate switching, even if the frames for debugging do
not.

The effective bit rate during data transmission can be computed as BaseCLOCK / DataBRP / (1 +
DataTSEG1 + DataTSEG2).

SYStem.CONFIG.CAN.DataTSEG1 Set CAN data Phase_seg1

Configures the length of Phase_Seg1 for data transmission.

This setting is only relevant for CAN-FD (ISO 11898-1:2015) transmission with baud rate switching. Note
that this needs to be set correctly if the bus used baud rate switching, even if the frames for debugging do
not.

SYStem.CONFIG.CAN.DataTSEG2 Set CAN data Phase_seg2

Configures the length of Phase_Seg2 for data transmission.

This setting is only relevant for CAN-FD (ISO 11898-1:2015) transmission with baud rate switching. Note
that this needs to be set correctly if the bus used baud rate switching, even if the frames for debugging do
not.

Format: SYStem.CONFIG.CAN.DataBRP <length>

<length>: 1. ... 4095.

Format: SYStem.CONFIG.CAN.DataTSEG1 <length>

<length>: 1. ... 4095.

Format: SYStem.CONFIG.CAN.DataTSEG2 <length>

<length>: 1. ... 4095.
TriCore Debugger and Trace | 82©1989-2024 Lauterbach

SYStem.CONFIG.CAN.DataSJW Set CAN data SJW

Configures the Synchronization Jump Width for data transmission.

This setting is only relevant for CAN-FD (ISO 11898-1:2015) transmission with baud rate switching. Note
that this needs to be set correctly if the bus used baud rate switching, even if the frames for debugging do
not.

Format: SYStem.CONFIG.CAN.DataSJW <length>

<length>: 1. ... 4095.
TriCore Debugger and Trace | 83©1989-2024 Lauterbach

SYStem.CONFIG.DAP Configure DAP interface

The SYStem.CONFIG.DAP commands are used to configure the debugger connection to the target CPU
via the DAP interface mode. Before these commands can be used, a DAP interface mode has to be selected
by using the SYStem.CONFIG.DEBUGPORTTYPE command.

For details, see “Application Note Debug Cable TriCore” (app_tricore_ocds.pdf).

SYStem.CONFIG.DAP.BreakPIN Define mapping of break pins

Default: PortPort.

This command is an alias to SYStem.CONFIG BreakPIN for backward compatibility reasons.

SYStem.CONFIG.DAP.CRC6 Enable CRC6 mode

Default: OFF.

Enables the CRC6 mode of the DAP connection. This setting should only be changed if a 3rd-party tool
using CRC6 mode is used in parallel at the same debug port (see also “Parallel Usage of a 3rd-Party
Tool”, page 48). This requires an AURIX CPU. For further details about this mode, please refer to the
Infineon User Manual.

SYStem.CONFIG.DAP.DAPENable Enable DAP mode on PORST

Default: TARGET.

Defines if the DAP interface of the CPU is enabled during a Power On Reset (PORST). This command
requires that the debugger DAP interface is enabled by SYStem.CONFIG.DEBUGPORTTYPE before.

For target boards where a pull-up resistor on TRST line permanently enables the DAP interface the TARGET
setting is required.

Format: SYStem.CONFIG.DAP.BreakPIN [PortPort | TdiPort | PortTdo | TdiTdo]

Format: SYStem.CONFIG.DAP.CRC6 [ON | OFF]

Format: SYStem.CONFIG.DAP.DAPEN [TARGET | ON | OFF]
TriCore Debugger and Trace | 84©1989-2024 Lauterbach

In case the CPU DAP interface should not be enabled although a debugger is attached to the target board,
the OFF setting is recommended. When performing a SYStem.Mode Go or SYStem.Mode Up, the
debugger enables the CPU DAP interface automatically when performing the PORST. SYStem.Mode
Attach is not possible in this case.

If the CPU DAP interface should be enabled as long as the debugger is attached, the ON setting is required.
All SYStem.Mode options are possible in this case, including hot attach.

See the “Application Note Debug Cable TriCore” (app_tricore_ocds.pdf) for details.

SYStem.CONFIG.DAP.SISP Configure SISP setting
[build 134017 - DVD 09/2021]

Default: AUTO.

Configures the SISP (Startbit insetivity period) setting used for the DAP connection. This setting should only
be changed if a 3rd-party tool using a certain SISP value is used in parallel at the same debug port (see also
“Parallel Usage of a 3rd-Party Tool”, page 48). This requires an AURIX CPU. For further details about this
setting, please refer to the Infineon User Manual.

SYStem.CONFIG.DAP.USERn Configure and set USER pins

• Default for USER0: In.

• Default for USER1: Out and Low.

Configures the USER0 and USER1 pins of the 10 pin DAP Debug Connector as input or output. The output
level can be Low or High.

NOTE: This command only has an effect in case the TRST line is connected to the
DAPEN output pin.
The ALTEN pin always behaves like the OFF setting and should only be
used in case DAP or JTAG mode should be possible via the 16-pin
connector.

Format: SYStem.CONFIG.DAP.SISP [AUTO | 0 | 1 | 2 | 3]

Format: SYStem.CONFIG.DAP.USER0 [In | Out | Set <level>]
SYStem.CONFIG.DAP.USER1 [In | Out | Set <level>]

<level>: Low | High
TriCore Debugger and Trace | 85©1989-2024 Lauterbach

Use the functions DAP.USER0() and DAP.USER1() for reading the current status.

The availability of the USER pins depends on the Debug Cable, the selected interface mode and the DAP
Enabling Mode. See the “Application Note Debug Cable TriCore” (app_tricore_ocds.pdf) for details.
TriCore Debugger and Trace | 86©1989-2024 Lauterbach

SYStem.CONFIG.DEBUGPORT Select target interface

Selects the interface to the target. The available options depend on whether TRACE32 uses a hardware
debugger or runs in HostMCI mode (without TRACE32 hardware).

With TRACE32 hardware

HostMCI mode

SYStem.CONFIG.DEBUGPORTTYPE Set debug cable interface mode

Default: DAP2 (JTAG).

Format: SYStem.CONFIG.DEBUGPORT <port>

<port>: DebugCable0 | DebugCableA | InfineonDAS0 | XCP0 | Unknown

DebugCable0 Uses the debug cable directly connected to a PowerDebug hardware
module.

DebugCableA Uses the whisker connected to a CombiProbe.

InfineonDAS0 Selects the Infineon DAS backend as interface. For a detailed description
and examples, see “Debugging via Infineon DAS Server”
(backend_das.pdf).

XCP0 Selects the XCP backend as interface. For a detailed description and
examples, see “XCP Debug Back-End” (backend_xcp.pdf).

Unknown No backend is selected. Debugging is not possible.

Format: SYStem.CONFIG.DEBUGPORTTYPE <type>
SYStem.CONFIG.Interface [JTAG | DAP2] (deprecated)

<type>: JTAG | DAP2 | DAP3 | DAPWide | DAP4 | DXCPL | DXCM
TriCore Debugger and Trace | 87©1989-2024 Lauterbach

Configures the debug port type to be used by the debugger. Attempts to configure the target device to use
the specified debug port type if possible. Both target device and Debug Cable must support this mode, see
“Application Note Debug Cable TriCore” (app_tricore_ocds.pdf) for details.

As of build 92378 - DVD 02/2018, the default is DAP2, unless the Debug Cable or CPU do not support this
mode.
DAP3: Supported for AURIX only.
TriCore Debugger and Trace | 88©1989-2024 Lauterbach

SYStem.CONFIG.DXCM Configure DXCM

The command group SYStem.CONFIG.DXCM configures the protocol parameters for the DxCM (DAP over
CAN messages).

These settings can also be viewed and changed using the command SYStem.CONFIG.state /DXCM.

Use the command group SYStem.CONFIG.CAN to set general CAN timing parameters.

SYStem.CONFIG.DXCM.TXID Control frame message ID

Sets the message ID to be used for frames sent to the device.

SYStem.CONFIG.DXCM.TXIDE Control frame format

Controls whether frames sent to the device will use the base frame format (setting OFF) or the extended
frame format (setting ON). This corresponds to the value of the IDE (Identifier Extension) field of the frames.

Format: SYStem.CONFIG.DXCM.TXID <id>

<id>: 0x000 ... 0x7FF (base frame format)
0x00000000 ... 0x1FFFFFFF (extended frame format)

Format: SYStem.CONFIG.DXCM.TXIDE [ON | OFF]
TriCore Debugger and Trace | 89©1989-2024 Lauterbach

SYStem.CONFIG.DXCM.TXFDF Control frame format

Controls whether frames sent to the device will use the ISO 11898-1:2015 FD format (setting ON) or the
classic format (setting OFF).

Setting will also cause the device to reply using FD frames.

SYStem.CONFIG.DXCM.TXBRS Control the use of baud rate switching

Controls whether frames sent to the device will use baud rate switching. This only has an effect if
SYStem.CONFIG.DXCM.TXFDF is also set.

Setting will also cause the device to reply with baud rate switching.

SYStem.CONFIG.DXCM.RXID Set ID for frames from target

Sets the message ID of the debugger used to listen to reply telegrams from the device.

SYStem.CONFIG.DXCM.RXIDE Expect extended frames from target

Configures whether the debugger expects frames in the base frame format (setting OFF) or the extended
frame format (setting ON).

Format: SYStem.CONFIG.DXCM.TXFDF [ON | OFF]

Format: SYStem.CONFIG.DXCM.TXBRS [ON | OFF]

Format: SYStem.CONFIG.DXCM.RXID <id>

<id>: 0x000 ... 0x7FF (base frame format)
0x00000000 ... 0x1FFFFFFF (extended frame format)

Format: SYStem.CONFIG.DXCM.RXIDE [ON | OFF]
TriCore Debugger and Trace | 90©1989-2024 Lauterbach

SYStem.CONFIG.DXCPL Configure DXCPL

The abbreviation DXCPL stands for DAP over CAN Physical Layer by Infineon.

SYStem.CONFIG.DXCPL.Timing Configure SPD timing for DXCPL

Default: AUTO.

Configures the edge distance for a ‘0’ bit.

• For AURIX device about 0.80µs recommended.

• For AUDO MAX device it depends on the crystal which is used for the clock. 0.50µs for a 20MHz
crystal and 1.00µs for a 10MHz crystal.

SYStem.CONFIG.EXTWDTDIS Control external watchdog

Default for Automotive/Automotive PRO Debug Cable: High.
Default for XCP: SLAVE.

Controls the WDTDIS pin of the debug port. This configuration is only available for tools with an Automotive
Connector (e.g., Automotive Debug Cable, Automotive PRO Debug Cable) and XCP.

Format: SYStem.CONFIG.DXCPL.Timing [AUTO | <time>]

AUTO The option AUTO checks the working timing settings and prints it in the
AREA.view window. AUTO should only used with SYStem.Mode Attach.

Format: SYStem.CONFIG.EXTWDTDIS <option>

<option>: OFF
High
Low
HighwhenStopped
LowwhenStopped
SLAVE

OFF The WDTDIS pin is not driven. (XCP only)

High The WDTDIS pin is permanently driven high.
TriCore Debugger and Trace | 91©1989-2024 Lauterbach

See also “Application Note Debug Cable TriCore” (app_tricore_ocds.pdf).

SYStem.CONFIG.PortSHaRing Control sharing of debug port with other tool

Configure if the debug port is shared with another tool, e.g., an ETAS ETK.

The current setting can be obtained by the PORTSHARING() function, immediate detection can be
performed using SYStem.DETECT.PortSHaRing.

See also “Parallel Usage of a 3rd-Party Tool”, page 48.

Low The WDTDIS pin is permanently driven low.

HighwhenStopped The WDTDIS pin is driven high when program is stopped (not XCP).

LowwhenStopped The WDTDIS pin is driven low when program is stopped (not XCP).

SLAVE The WDTDIS state of the XCP slave is not changed. (XCP only)

Format: SYStem.CONFIG.PortSHaRing [ON | OFF | Auto]
SYStem.Option.ETK [ON | AUTO | OFF] (deprecated)

ON Request for access to the debug port and wait until the access is granted
before communicating with the target.

OFF Communicate with the target without sending requests.

Auto Automatically detect a connected tool on next SYStem.Mode Up,
SYStem.Mode Attach or SYStem.Mode Go. If a tool is detected switch to
mode ON else switch to mode OFF.
TriCore Debugger and Trace | 92©1989-2024 Lauterbach

SYStem.CPU Select CPU

Default: TC1797.

Selects the processor type.

Format: SYStem.CPU <cpu>

<cpu> For a list of supported CPUs, use the command SYStem.CPU * or refer
to the chip search on the Lauterbach website.

NOTE: In case your device is listed on the website but not listed in the SYStem.CPU *
list, you may require a software update. Please contact your responsible
Lauterbach representative.
TriCore Debugger and Trace | 93©1989-2024 Lauterbach

SYStem.JtagClock Set the JTAG frequency

Default: 10 MHz.

Selects the frequency for the JTAG clock. This influences the speed of data transmission between target and
debugger.

Not all values in between the frequency range can be generated by the debugger. The debugger will select
and display the possible value if it cannot generate the exact value.
It is also possible to enter units, e.g. 10.0 MHz.

SYStem.JtagClock EXT is not supported by TriCore.

Format: SYStem.JtagClock <rate>
SYStem.BdmClock (deprecated)

<rate>: 10000. … 50000000.

NOTE: The JTAG clock must be lower or equal to the CPU clock. Otherwise JTAG
communication will fail.
The possible maximum of the JTAG clock is extremely dependent of the
target board layout.
TriCore Debugger and Trace | 94©1989-2024 Lauterbach

SYStem.LOCK Tristate the JTAG port

Default: OFF.

If the system is locked, no access to the JTAG port will be performed by the debugger. While locked the
JTAG connector of the debugger is tristated. The intention of the SYStem.LOCK command is, for example,
to give JTAG access to another tool. The process can also be automated, see SYStem.CONFIG TriState.

It must be ensured that the state of the TriCore JTAG state machine remains unchanged while the system is
locked. To ensure correct hand-over, the options SYStem.CONFIG TAPState and SYStem.CONFIG
TCKLevel must be set properly. They define the TAP state and TCK level which is selected when the
debugger switches to tristate mode. Please note: nTRST must have a pull-up resistor on the target.

Format: SYStem.LOCK [ON | OFF]

There is a single cable contact on the casing of the Debug Cable which can
be used to detect if the JTAG connector of the debugger is tristated. If
tristated also this signal is tristated, otherwise it is pulled low.
TriCore Debugger and Trace | 95©1989-2024 Lauterbach

SYStem.MemAccess Select run-time memory access method

Default: CPU.

This option declares if and how a non-intrusive memory access can take place while the CPU is executing
code. Although the CPU is not halted, run-time memory access creates an additional load on the
processor’s internal data bus. The currently selected run-time memory access mode is displayed in the state
line.

The run-time memory access has to be activated for each window by using the memory class E: (e.g.
Data.dump ED:0xA1000000) or by using the format option %E (e.g. Var.View %E var1). It is also possible
to enable non-intrusive memory access for all memory areas displayed by setting
SYStem.Option.DUALPORT ON.

Format: SYStem.MemAccess <mode>
SYStem.ACCESS (deprecated)

<mode>: Enable | StopAndGo | Denied

Enable
CPU (deprecated)

The debugger performs non-intrusive memory accesses via the CPU
internal buses (FPI Bus).

StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.

Denied Non-intrusive memory access is disabled while the CPU is executing
code. Instead intrusive accesses can be configured with
SYStem.CpuAccess.
TriCore Debugger and Trace | 96©1989-2024 Lauterbach

SYStem.Mode Establish the communication with the CPU

Initial mode: Down.

The SYStem modes are not only commands to bring the debugger in a certain debug state, they also reflect
the current debug state of the target. SYStem.Mode Attach and SYStem.Mode Go are only transitional
states which will result in an Up state on success. Any critical failure will transition the debug state to
SYStem.Mode Down immediately.

Format: SYStem.Mode <mode>

SYStem.Attach (alias for SYStem.Mode Attach)
SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)

<mode>: Down
NoDebug
Prepare
Go
Attach
Up
StandBy

Down Default state and state after fatal errors. The behavior can be configured
with SYStem.Option.DOWNMODE.

NoDebug The CPU is running. Debug mode is not active, debug port is tristate. In
this mode the target behaves as if the debugger is not connected.

Prepare Establishes connection to the target and resets the debug module. This
debugging mode is used if no CPU shall be debugged.
The mode allows to access memory and peripherals.

Attach User program remains running (no reset) and the debug mode is
activated. After this command the user program can be stopped with the
break command or if any break condition occurs. The debugger should be
in NoDebug mode when performing an Attach.

Go The CPU is reset and starts executing user code. Debug mode is active.
After this command the CPU can be stopped with the Break command or
if any break condition occurs.

Up The CPU is reset and halted at the reset vector. Debug mode is active. In
this mode the CPU can be started and stopped. This is the most common
way to activate debugging.

StandBy Activates debugging through power cycles, see “Power Cycles”, page 54.
TriCore Debugger and Trace | 97©1989-2024 Lauterbach

The “Emulate” LED on the debug module is ON when the debug mode is active and the CPU is running.

NOTE: For the SYStem.Mode Up the JTAG clock must be high enough. Otherwise
the debugger is not able to configure the Halt-After-Reset before the on-
chip startup firmware has completed.
SYStem.JtagClock 500.0KHz or higher is a saved value for all CPUs.
TriCore Debugger and Trace | 98©1989-2024 Lauterbach

CPU and Architecture specific SYStem.Option Commands

The SYStem.Option commands are architecture and CPU specific commands.

SYStem.Option.BREAKFIX Enable workaround for asynchronous breaking

Default: ON for all TriCore v1.3.1 cores, OFF otherwise.

This option is mainly used as a workaround for silicon bug OCDS_TC.028, where the functionality of the
loop instruction may be corrupted by FPI accesses to the [0xF7E10000--0xF7E1FFFF] address region. The
Debug Status Register (DBGSR), used for asynchronous breaking, resides in this region.

Switching the SYStem.Option.BREAKFIX ON will temporarily suspend the TriCore when breaking to allow
safe accesses to the critical region. The break is then issued by configuring the Memory Protection System
of the TriCore.

Format: SYStem.Option.BREAKFIX [ON | OFF]
TriCore Debugger and Trace | 99©1989-2024 Lauterbach

SYStem.Option.CBSACCEN<x> Cerberus access protection

Default: CerBeruS.

Handles the behavior of TRACE32 with respect to the CBS_ACCEN<x> registers of the Cerberus block.

The <value> is the OR-composition of the following:

Example 1: Do not touch the CBS_ACCEN0 register.

Example 2: Enable access from the debugger to the Cerberus block.

Example 3: Enable access from the debugger and two more masters (described by <mask>) to the
Cerberus block. The two syntax examples are equivalent:

Format: SYStem.Option.CBSACCEN<x> TarGeT | <value>

<x>: 0

<value>: CerBeruS | <mask> [CerBeruS | <mask>] …

TarGeT TRACE32 will not touch the specified CBS_ACCEN<x> register.

<value> The value is written to the register when the core is started.

CerBeruS Access for the debugger.

<mask> Arbitrary mask. For valid masks, refer to the TriCore User Manual.

SYStem.Option.CBSACCEN0 TarGeT

SYStem.Option.CBSACCEN0 CerBeruS

; |---------- <value> -----------|
; <mask> <mask>
SYStem.Option.CBSACCEn0 CerBeruS 0x000000001 0x00000002

; |---------- <value> -----------|
; <mask> <mask>
SYStem.Option.CBSACCEn0 0x000000001 CerBeruS 0x00000002
TriCore Debugger and Trace | 100©1989-2024 Lauterbach

SYStem.Option.DCFREEZE Do not modify cache structure

Default: ON.

Protects the cache status of all memories, i.e., it ensures that the data cache tags are not modified on write
accesses. If disabled, cache lines may be invalidated/flushed on write accesses. For details, see
“Accessing Cached Memory Areas and Cache Inspection”, page 43.

SYStem.Option.DCREAD Control cache behavior of reads

Default: OFF.

If disabled, physical memory is read directly (as seen from the bus).

If enabled, memory reads with access class D: (data) and variable windows display the memory values
from the data cache, if valid. If data is not available in cache, physical memory will be read. Memory will be
seen as from the CPU’s point of view.

TriCore cores do not allow cache access during CPU runtime. All accesses will be automatically redirected
to physical memory when the CPU is running, given that run-time memory access is enabled (e.g. with
SYStem.Option.DUALPORT). The following table illustrates the effect.

More information is available in chapter “Accessing Cached Memory Areas and Cache Inspection”,
page 43.

Format: SYStem.Option.DCFREEZE [ON | OFF]

Format: SYStem.Option.DCREAD [ON | OFF]

DCREAD CPU is Read Access class D: is like

ON stopped through data cache DC:

ON running physical memory NC:

OFF stopped or running physical memory NC:
TriCore Debugger and Trace | 101©1989-2024 Lauterbach

SYStem.Option.DSYNC Force data synchronization

Default: OFF

Automatically executes a dsync instruction to make sure the CPU writes all data back. If the data is part of
an active cache it will be written to the data cache. Otherwise it is written memory.

SYStem.Option.DSYNC ReadWrite is expected to have better performance in a multi-core system if
only one or few cores are of interest.

This system option uses target code execution (see “Target Code Execution”, page 58).

Format: SYStem.Option.DSYNC OFF | ReadWrite | Halt

OFF Feature disabled.

ReadWrite Execute dsync instruction on first read or write on that core.

Halt Execute dsync instruction when the CPU is halted.
TriCore Debugger and Trace | 102©1989-2024 Lauterbach

SYStem.Option.DOWNMODE Behavior of SYStem.Mode Down

Configures the behavior of SYStem.Mode Down:

SYStem.Option.DUALPORT Implicitly use run-time memory access

All TRACE32 windows that display memory are updated while the processor is executing code (e.g.
Data.dump, List.auto, PER.view, Var.View). This setting has no effect if SYStem.MemAccess is disabled.

If only selected memory windows should update their content during runtime, leave
SYStem.Option.DUALPORT OFF and use the access class prefix E or the format option %E for the
specific windows.

As of build 108805, SYStem.Option.DUALPORT ON no longer interferes with flash programming.

Format: SYStem.Option.DOWNMODE TriState | ReSeT

TriState (default) All drivers of the debug port are switched off.

ReSeT The CPU is held in reset.

Format: SYStem.Option.DUALPORT [ON | OFF]
TriCore Debugger and Trace | 103©1989-2024 Lauterbach

SYStem.Option.DataTrace Enable data tracing
OCDS-L2 trace only

Default is OFF.

The CPU trace port does not support data tracing. This option uses code instrumentation to output some
data.

This is not a real data trace since it doesn’t trace the buses. But it may be enough to output some RTOS
related information as thread IDs or task IDs.

For transferring more data, you may want to use the FDX command group, for a real bus trace, you may
want to use the on-chip tracing features of the Emulation Devices (TC17xxED).

SYStem.Option.EndInitProtectionOverride Override ENDINIT protection

Default: AUTO.

Handles the behavior of TRACE32 with respect to the ENIDIS bit of the CBS_OSTATE register.

Format: SYStem.Option.DataTrace [ON | OFF]

Format: SYStem.Option.EndInitProtectionOverride [ON | OFF | AUTO]

AUTO TRACE32 automatically sets the bit for write accesses to segment 0xF
with access width long.
TRACE32 automatically clears the bit after the write access.

OFF TRACE32 clears the bit immediately and does not further access it.

ON TRACE32 sets the bit immediately and does not further access it.
TriCore Debugger and Trace | 104©1989-2024 Lauterbach

SYStem.Option.HeartBeat Bug fix to avoid FPI bus conflict

Default: OFF.

This option should be used as a workaround for the FPI bus problem on RiderA and AudoLite only.
Otherwise bus errors occur when the debugger checks if the processor is running by reading a core special
function register via FPI bus. With this option active there are two additional conditions checked first before
any read via FPI bus will be done by the debugger. If one of these conditions is true, it is assumed that the
processor is still running.

If a RiscTrace is used together with the debugger, the debugger first checks if the RiscTrace is still recording.
The RiscTrace may not be used in stack mode.

If a RiscTrace is not used or stack mode is required, the debugger checks if pin 15 (reserved) of the JTAG
connector will be toggled. If toggled it is assumed that the processor is running. Therefore it is required to
connect a signal there, which will be toggled while the processor is running. A good signal would be the
ORed signal of the pipeline status information EMUSTAT0-4 which are available on the OCDS Level 2
connector pin 4-8. Please note that on AudoLite these pins must be activated by
Data.Set 0xF0003748 %Long 0xFFFFFFFF.
The connection of one of these pipeline status information lines (e.g. pin 6) might be sufficient. The signal
high level must be lower or equal than VCCS (Pin 2 of JTAG connector) and at least 2.0 V. The signal low
level must be lower than 0.8 V. The switching frequency should be higher than 10 Hz.

To avoid other FPI bus conflicts, do not use SYStem.Option.DUALPORT and do not use the access class
attribute E.

SYStem.Option.HoldReset Reset duration

Configure the minimum time the debugger holds the RESET line active on SYStem.Up or SYStem.Mode
Go.

Format: SYStem.Option.HeartBeat [ON | OFF]

NOTE: RiderA and AudoLite are not supported any more, so this feature is obsolete.

Format: SYStem.Option.HoldReset <time>
TriCore Debugger and Trace | 105©1989-2024 Lauterbach

SYStem.Option.HSMRESTART Restart HSM on connect

Default: OFF

Issues an additional application reset during SYStem.Up or if the chip is reset while
SYStem.Option.RESetBehavior Halt or SYStem.Option.RESetBehavior RestoreGo is active. This will
release the HSM from halt state. Use only if HSM is not accessible for the debugger.

SYStem.Option.ICFLUSH Flush instruction cache at "Go" or "Step"

Default: ON.

If enabled, an instruction cache flush will be performed with each Go or Step. This is especially required if
software breakpoints are used.

AURIX TC1.6P cores are unable to flush the instruction cache while the core is halted. Thus, flushing will be
performed as soon as the core switches to running state. During flush sequence accesses to cacheable
memory will stall the CPU, which can result in a slight asynchronity in a multicore system.

Newer AUDO-Future TriCore derivatives (TC11xx, TC1762, TC1764, TC1766, TC1766ED, TC1792,
TC1796 and TC1796ED) have a silicon bug which prevents the line buffer cache to be invalidated during
CPU halt. See the demo scripts for a workaround.

SYStem.Option.IMASKASM Disable interrupts while single stepping

Default: OFF.

If enabled, the interrupt enable (IE) bit of the CPU will be cleared during assembler single-step operations.
This mean, the interrupt routine is not executed during single-step operations. After single step, the interrupt
enable bit is restored to the value before the step. Starting from R.2024.02, read outs of the IE bit during the
step are corrected on a best effort basis. The same applies for modifications of the interrupt enable status
during the step.

However, direct or indirect reads of the IE bit during the step may show the value modified by the debugger.

Format: SYStem.Option.HSMRESTART [ON | OFF]

Format: SYStem.Option.ICFLUSH [ON | OFF]

Format: SYStem.Option.IMASKASM [ON | OFF]
TriCore Debugger and Trace | 106©1989-2024 Lauterbach

On AUDO-Future devices, IMASKASM might not always work due to chip bug CPU_TC.115 (see the
corresponding Infineon Errata sheets). Enable SYStem.Option.STEPONCHIP concurrently as a
workaround.

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping

Default: OFF.

If enabled, the interrupt enable (IE) bit of the CPU will be cleared during HLL single-step operations. This
means, the interrupt routine is not executed during single-step operations. After single step, the interrupt
enable bit is restored to the value before the step.

On AUDO-Future devices, IMASKHLL might not always work due to chip bug CPU_TC.115 (see the
corresponding Infineon Errata sheets). Enable SYStem.Option.STEPONCHIP concurrently as a
workaround.

SYStem.Option.JTAGENSEQ Use JTAG initialization sequence

When JTAG is selected as type of the debug port (see SYStem.CONFIG.DEBUGPORTTYPE JTAG), the
debugger must switch the debug port of the CPU to JTAG. This can either be done using TRST or a
dedicated JTAG enable sequence.

Format: SYStem.Option.IMASKHLL [ON | OFF]

Direct or indirect reads of the IE bit during the step will show the value modified by the debugger.

Modifications of the interrupt enable status during the step will be lost.

Format: SYStem.Option.JTAGENSEQ [NONE | JTAG | <signature>]

NONE (default) Do not send a sequence on SYStem.Mode Up and SYStem.Mode Go
but use TRST. Use standard sequence on SYStem.Mode Attach.

JTAG Send standard JTAG enable sequence in all cases.

<signature> Specify custom upper word for the DAP turn-off command on which the
enable sequence is based. Not required for normal operation.
TriCore Debugger and Trace | 107©1989-2024 Lauterbach

SYStem.Option.KEYCODE Set debug interface password

Set debug interface password for AURIX devices in case the debug interface was locked by programming
UCB_DBG. The password will be sent automatically on SYStem.Mode Up, SYStem.Mode Go and
SYStem.DETECT CPU as well as on reconnects during SYStem.Mode STANDBY and after resets.

Each parameter <pwd0> to <pwd7> is a 32-bit number. Omitting all parameters disables sending the
password.

SYStem.Option.KEYCODEWarnNotAccepted Set warning level

Default: ON.

In some cases, the chip will not respond to the password exchange sequence enabled by
SYStem.Option.KEYCODE. This option configures if a warning is emitted in these cases.

SYStem.Option.LBIST LBIST gap handling

Default: OFF.

Format: SYStem.Option.KEYCODE [<pwd0> <pwd1> … <pwd7>]

Format: SYStem.Option.KEYCODEWarnNotAccepted [ON | OFF]

Format: SYStem.Option.LBIST [ON | OFF | AUTO]
TriCore Debugger and Trace | 108©1989-2024 Lauterbach

If LBIST is activated for TC3xx, there is an interruption of the debug connection during device start-up
(LBIST gap). This option automatically manages this gap after resets, on reconnects during SYStem.Mode
StandBy, and when the following commands are executed:

• SYStem.Mode Up

• SYStem.Mode Go

• SYStem.DETECT CPU

SYStem.Option.MACHINESPACES Address extension for guest OSes

Default: OFF

Enables the TRACE32 support for debugging virtualized systems. Virtualized systems are systems running
under the control of a hypervisor.

After loading a Hypervisor Awareness, TRACE32 is able to access the context of each guest machine. Both
currently active and currently inactive guest machines can be debugged.

If SYStem.Option.MACHINESPACES is set to ON:

• Addresses are extended with an identifier called machine ID. The machine ID clearly specifies to
which host or guest machine the address belongs.

The host machine always uses machine ID 0. Guests have a machine ID larger than 0.
TRACE32 currently supports machine IDs up to 30.

• The debugger address translation (MMU and TRANSlation command groups) can be individually
configured for each virtual machine.

• Individual symbol sets can be loaded for each virtual machine.

Besides debugging virtualized systems, this option can also be used to set up an iAMP system (see “iAMP
Debugging”, page 23).

OFF No LBIST expected. Occurrence of an LBIST gap will lead to an error.

ON LBIST expected. TRACE32 waits for the end of the LBIST gap and
reconfigures the debug connection automatically.

If no LBIST gap occurs, a warning is displayed.

AUTO Automatic LBIST handling. TRACE32 waits for the end of the LBIST gap
and reconfigures the debug connection automatically.

If no LBIST gap occurs, then no warning is displayed.

Format: SYStem.Option.MACHINESPACES [ON | OFF]
TriCore Debugger and Trace | 109©1989-2024 Lauterbach

SYStem.Option.MAPCACHE Map cache automatically

Default: ON / Ponly for TC2xx.

For the cache analysis in the CACHE command group and SYStem.Option.DCREAD, TC2xx and TC3xx
require to map the cache via MTU. This operations is potentially intrusive, i.e., it modifies status bits of the
MTU.

For details, see “CPU Constraints for Cache Evaluation and Cache Inspection”, page 44.

Format: SYStem.Option.MAPCACHE [ON | OFF | Ponly]

OFF Do not map cache.

ON Map cache if appropriate, e.g., on SYStem.Up.

Ponly Map cache of TC1.6P cores only if appropriate, e.g., on SYStem.Up.
This is the default for TC2xx CPUs to avoid problems with flushing the
TC1.6E cores.
TriCore Debugger and Trace | 110©1989-2024 Lauterbach

SYStem.Option.OCDSELOW Set OCDS line to low

Default: OFF.

If enabled the nOCDSE line of the Debug Cable is driven low, otherwise it is:

• High in case of the Automotive Debug Cable.

• Tri-stated in case of Uni- and Bi-directional Debug Cables.

See “Debug Cables and CombiProbe Whiskers” (app_tricore_ocds.pdf) for more information on Debug
Cables.

This option is ignored on TriCore devices where the nOCDSE line is needed for enabling the OCDS, or when
SYStem.Option.ETK is not OFF.

SYStem.Option.OVC Enable OVERLAY memory access

Default: OFF.

Enables evaluation of Data Access Overlay (OVC) configuration during memory accesses.
Only supported for AURIX devices.

See also: “Data Overlays”, page 57.

Format: SYStem.Option.OCDSELOW [ON | OFF]

Format: SYStem.Option.OVC [ON | OFF]
SYStem.Option.OVERLAY (deprecated)

ON Memory will be seen as from the CPU’s point of view.
The debugger reads the OVC configuration from the target on each access.
For flash regions with configured overlay, the overlay memory content will be
shown instead of the original flash content.

OFF Debugger displays the original Flash content only.
TriCore Debugger and Trace | 111©1989-2024 Lauterbach

SYStem.Option.OVERLAY Enable overlay support

Default: OFF.

Example:

See also: “Code Overlays”, page 57

Format: SYStem.Option.OVERLAY [ON | OFF | WithOVS]

ON Activates the overlay extension and extends the address scheme of the
debugger with a 16 bit virtual overlay ID. Addresses therefore have the
format <overlay_id>:<address>. This enables the debugger to handle
overlaid program memory.

OFF Disables support for code overlays.

WithOVS Like option ON, but also enables support for software breakpoints. This
means that TRACE32 writes software breakpoint opcodes to both, the
execution area (for active overlays) and the storage area. This way, it is
possible to set breakpoints into inactive overlays. Upon activation of the
overlay, the target’s runtime mechanisms copies the breakpoint opcodes
to the execution area. For using this option, the storage area must be
readable and writable for the debugger.

SYStem.Option.OVERLAY ON
List.auto 0x2:0x11c4 ; List.auto <overlay_id>:<address>
TriCore Debugger and Trace | 112©1989-2024 Lauterbach

SYStem.Option.PERSTOP Enable global peripheral suspend

Default: ON.

This controls the operation mode of the peripherals (e.g. timer), when a debug event is raised, e.g. when the
target is halted or when a breakpoint is hit. A debug event causes the peripherals to suspend if this option is
activated and the suspend enable bit in the peripheral module is set. Usually this is done in its Clock
Register <module>_CLC on AUDO devices, or in the OCDS Control and Status Register <module>_OCS
on AURIX devices.

If enabled, TRACE32 will only set the suspend signal. The user has to activate the enable suspend bit in the
desired peripheral modules either manually or by his application.

See Trigger Onchip Commands for the Suspend Switch for advanced programming features.

Format: SYStem.Option.PERSTOP [ON | OFF]
TriCore Debugger and Trace | 113©1989-2024 Lauterbach

SYStem.Option.PMILBFIX Enable PMI line buffer invalidation workaround

Default: ON.

This option is implemented for AUDO-NG devices only.

This is a workaround for a silicon bug (CPU_TC.053), where the PMI Line Buffer is not invalidated during
CPU halt. The bug comes into effect, when the debugger sets software breakpoints, replacing the original
instruction at the breakpoint address with a debug instruction and thereby halting the CPU. When execution
is resumed, the obsolete debug instruction is still present in the PMI Line Buffer, preventing the CPU to
resume execution. Therefore, the PMI Line Buffer needs to be invalidated before the execution is resumed.

If this option is turned on, the PMI Line Buffer will be invalidated when program execution is resumed.

When using software breakpoints in FLASH memory this bugfix is not applicable. The following procedure in
your start-up script can be used as a workaround.

These commands define a simple target program, that is automatically started by the TRACE32 software
directly before program execution, fetching the stated instructions at <code_address> and thereby
invalidating the PMI Line Buffer. Replace <code_address> with an address in unused and valid memory.

Format: SYStem.Option.PMILBFIX [ON | OFF]

Data.Assemble <code_address> debug16 nop nop nop nop nop nop nop nop

Data.PROLOG.TARGET <code_address>++0x1F (<code_address>+0x20)++0x1F

Data.PROLOG.ON

Register.Set PC <code_address>+0x02

Step
TriCore Debugger and Trace | 114©1989-2024 Lauterbach

SYStem.Option.PostResetDELAY Delay after RESET is released

Default: 100.us

This option affects the behavior of the commands SYStem.Mode Up, SYStem.Mode Attach and
SYStem.Mode Go, as depicted below.

It configures the delay that is inserted after the RESET line was released by the debugger and the RESET
line is detected as de-asserted, but before accessing the debug port via DAP or JTAG.

SYStem.Option.ReadOnly Block all write accesses

Default: OFF

This option blocks all write accesses to the target. This includes accesses from the debugger itself.
Commands like Go.direct and Break.direct will not work while this option is active.

Format: SYStem.Option.PostResetDELAY <time>

NOTE: • Too short delays may result in debug port errors.
• Too long delays may result in failure to stop at the reset vector.

Format: SYStem.Option.ReadOnly [ON | OFF]

JTAG /
DAP

RESET

active

RESET detection of
RESET de-assertion released

SYStem.Option.PostResetDELAY
TriCore Debugger and Trace | 115©1989-2024 Lauterbach

SYStem.Option.RESetBehavior Set behavior when a reset occurs

Sets the behavior in case of a reset. For a detailed explanation, see Debugging through Resets.

SYStem.Option.ResetDetection Set how hard resets are detected

Configure which of the following methods TRACE32 uses to detect hard resets.

Format: SYStem.Option.RESetBehavior <mode>

<mode>: Halt
RestoreGo
RunRestore

Halt Halt after reset.

RestoreGo Halt after power-on reset, restore the debugging resources (e.g.,
breakpoints), and then go. After a soft reset, the debugger does not stop
the CPU. The debugging resources remain in place.

RunRestore Restore debugging resources after power-on reset while CPU is running.
Breakpoints shortly after a reset will be missed. After a soft reset, the
debugger does not stop the CPU. The debugging resources remain in
place.

Format: SYStem.Option.ResetDetection <mode>

<mode>: DEFault
TIMEOUT

DEFault A hard reset is detected on a low pulse of the RESET line or a time out of
the debug connection.

TIMEOUT A hard reset is detected on a time out of the debug connection only.
TriCore Debugger and Trace | 116©1989-2024 Lauterbach

SYStem.Option.ResetMode Select reset method

Configures the reset method used by SYStem.Up and SYStem.Mode Go.

SYStem.Option.RESetTMS State of TMS line at reset

Default: OFF.

Configures the state of the TMS line at the time the RESET line is released by commands SYStem.Mode
Up and SYStem.Mode Go. This option is only required when chaining a TriCore with other devices, e.g., an
XC800.

SYStem.Option.RUNRESTOREDELAY Delay of restore after reset
[build 148624 - DVD 09/2022]

Default: 100.us

Allows to adjust the behavior of TRACE32 in case of a reset or power cycle triggered by the target and
SYStem.Option.RESetBehavior is set to RunRestore. It allows to adjust the time between the detection of
the reset and the begin of the reattach/restore sequence.

Normally, it should not be necessary to adjust this value.

Format: SYStem.Option.ResetMode <method>

<method>: PORST | EPORST | SYS | APP

PORST Power on Reset by asserting the RESET line on the debug
connector.

EPORST Emulated Power on Reset using the Cerberus module.

SYS System reset using the Cerberus module.

APP Application reset using the Cerberus module.

Format: SYStem.Option.RESetTMS [ON | OFF]

Format: SYStem.Option.RUNRESTOREDELAY <time>
TriCore Debugger and Trace | 117©1989-2024 Lauterbach

See also “Debugging through Resets and Power Cycles”, page 52, and
SYStem.Option.RESetBehavior RunRestore.

SYStem.Option.SLOWRESET Long timeout for resets

Default: OFF.

If enabled, TRACE32 waits up to 25s for the end of a reset.

SYStem.Option.SOFTLONG Set 32 bit software breakpoints

Default: OFF.

This option must be used if the program RAM allows only 32-bit accesses. When enabled the debugger
uses always 32-bit accesses to write the software breakpoints.

SYStem.Option.SSWWAIT Emulate SSWWAIT
[build 144272 - DVD 09/2022]

Emulates the startup behavior of DMU_SP_PROCONHSMCFG on TC2x and TC3x CPUs.

Format: SYStem.Option.SLOWRESET [ON | OFF]

Format: SYStem.Option.SOFTLONG [ON | OFF]

Format: SYStem.Option.SSWWAIT [IGNore | OFF | AUTO | ON]
TriCore Debugger and Trace | 118©1989-2024 Lauterbach

Default: IGNORE

SYStem.Option.STEPONCHIP Step with onchip breakpoints

Default: OFF.

If turned on, single stepping is implemented by using a single on-chip breakpoint with Break-After-Make.
This is mainly used as workaround for the silicon bug CPU_TC.115 where an already accepted interrupt is
not suspended. See chapter Single Stepping for details.

Note that in case interrupts are not disabled, the interrupt handler will run silently in the background without
the user noticing. This leads to data modification which may affect the behavior of the stepped function.

This option has no effect if SYStem.Option.STEPSOFT is ON.

SYStem.Option.STEPSOFT Step with software breakpoints

Default: OFF.

If turned off, single stepping is performed by using on-chip breakpoints. For an overview, see “Single
stepping”.

If turned on, single stepping is implemented by using software breakpoints only. This is necessary for
AUDO-NG an earlier cores if the Memory Protection Registers are used by the target application for Memory
Protection. For single stepping in flash memory, set up flash configuration and enable FLASH.AUTO ALL.

Note that in case interrupts are not disabled, the interrupt handler will run silently in the background without
the user noticing. This leads to data modification which may affect the behavior of the stepped function.

IGNore Do not check DMU_SP_PROCONHSMCFG.SSWWAIT at all.

OFF Assumes that DMU_SP_PROCONHSMCFG.SSWWAIT is off, throws a
warning if on.

AUTO Emulates SSWWAIT if DMU_SP_PROCONHSMCFG.SSWWAIT is on.

ON Emulates SSWWAIT, throws a warning if
DMU_SP_PROCONHSMCFG.SSWWAIT is off.

Format: SYStem.Option.STEPONCHIP [ON | OFF]

Format: SYStem.Option.STEPSOFT [ON | OFF]
TriCore Debugger and Trace | 119©1989-2024 Lauterbach

SYStem.Option.TB1766FIX Bug fix for some TC1766 TriBoards

Default: OFF.

Bug fix only required for some TriBoards TC1766. On those, two trace pins are swapped. Therefore the
debugger switches the signals, so that the trace is working correctly.

SYStem.Option.UNLOCKTIME Timeout for debug port unlock
[build 148624 - DVD 09/2022]

Default: 100.ms

Allows to adjust the behavior of SYStem.Up, SYStem.Mode Go, etc. It allows to adjust the maximum time
TRACE32 waits for the debug port to unlock. Normally, it should not be necessary to adjust this value.

SYStem.Option.WDTFIX Disables the watchdog on SYStem.Up

Default: OFF.

Some early TriCore AUDO derivatives, e.g. TC1130, TC1796, TC19xx, …, have a silicon bug where the
watchdog is not suspended when the CPU is halted. As a workaround, this options disables the watchdog
on SYStem.Mode Up and SYStem.Mode Go.

To find out if your derivative is affected by this bug, have a look at the “Example Scripts” and at the Errata
Sheets available from Infineon.

Do not use too low a JTAG clock frequency otherwise the debugger might be too slow to disable the
watchdog in time. The default frequency should be fine.

Format: SYStem.Option.TB1766FIX [ON | OFF]

Format: SYStem.Option.UNLOCKTIME <time>

Format: SYStem.Option.WDTFIX [ON | OFF]
SYStem.Option.WATCHDOGFIX [ON | OFF] (deprecated)
SYStem.Option.TC1796FIX [ON | OFF] (deprecated)
SYStem.Option.TC19XXFIX [ON | OFF] (deprecated)
TriCore Debugger and Trace | 120©1989-2024 Lauterbach

SYStem.Option.WDTSUS Link the watchdog timer to the suspend bus

Default: OFF.

By default the TriCore watchdog timer is disabled when OCDS is enabled, i.e. when the debugger is
attached.

Setting this option to ON will link the watchdog timer to the suspend bus, i.e. the watchdog timer will be
running only if the suspend bus is inactive. In other words: The watchdog timer will run concurrently with the
CPU and halt concurrently with the CPU. TRACE32 will concurrently set SYStem.Option.PERSTOP ON to
automatically pull the suspend bus when breaking. This allows debugging the watchdog timer.

Consult the Infineon documentation for details.

SYStem.RESetOut In-target reset

When issuing this command, the debugger will drive the nRESET line low for 2 ms. This will reset the target
including the CPU but not the debug port. The debugger might report one or more bus errors during the
reset.

SYStem.state Open SYStem.state window

Opens the SYStem.state window with settings of CPU specific system commands. Settings can also be
changed here.

Format: SYStem.Option.WDTSUS [ON | OFF]

Format: SYStem.RESetOut

Format: SYStem.state
TriCore Debugger and Trace | 121©1989-2024 Lauterbach

CPU specific TrOnchip Commands

TriCore derivatives such as the TC1100 and devices of the AUDO family have a Multi-Core Break Switch
(MCBS) providing two internal Break Buses and a Suspend Switch.

TrOnchip.BreakBusN.BreakIN Configure break pin of "BreakBus N"

Default: DISable.

When enabled, the nBRKIN pin (nBRKOUT pin) of the JTAG connector acts as input for BreakBus 0
(BreakBus 1). Available for devices with an MCBS (up to AUDO-MAX family).

For TC1100, TC1115 and TC1130 only Break Bus 0 (nBRKIN pin) can be configured as input.

TrOnchip.BreakBusN.BreakOUT Configure break pin of "BreakBus N"

Default: DISable.

When enabled, the nBRKOUT pin (nBRKIN pin) of the JTAG connector acts as output for BreakBus 1
(BreakBus 0). Available for devices with an MCBS (up to AUDO-MAX family).

For TC1100, TC1115 and TC1130 only Break Bus 1 (nBRKOUT pin) can be configured as output.

Format: TrOnchip.BreakBus0.BreakIN [ENable | DISable]
TrOnchip.BreakBus1.BreakIN [ENable | DISable]

NOTE: Configuring a BreakBus as BreakIN and BreakOUT at the same time will
result in undefined behavior.

Format: TrOnchip.BreakBus0.BreakOUT [ENable | DISable]
TrOnchip.BreakBus1.BreakOUT [ENable | DISable]

NOTE: Configuring a BreakBus as BreakIN and BreakOUT at the same time will
result in undefined behavior.
TriCore Debugger and Trace | 122©1989-2024 Lauterbach

TrOnchip.BreakIN.<target> Connect break <target> to BreakBus

Default: BreakBus0.

Connects the break <target> with the specified BreakBus. A break target must always be connected to a
BreakBus. Available for devices with an MCBS (up to AUDO-MAX family). Not all targets are available on
each derivative.

TrOnchip.BreakOUT.<source> Connect break <source> to BreakBus

Default: BreakBus0.

Format: TrOnchip.BreakIN.<target> [BreakBus0 | BreakBus1]

<target>: TriCore
MCDS
SusSWitch

TriCore Sets the TriCore as target.

MCDS MCDS is only available on an Emulation Device.

SusSWitch SusSWitch is the break to Suspend Switch.

Format: TrOnchip.BreakOUT.<source> [BreakBus0 | BreakBus1]
TrOnchip.BreakOUT.HaLTEN [ENable | DISable]

<source>: TriCore
MCDS
DMA
SBCU
RBCU
MLI0
MLI1

NOTE: Configuring a BreakBus as BreakIN and BreakOUT at the same time will
result in undefined behavior.
TriCore Debugger and Trace | 123©1989-2024 Lauterbach

<source>

Connect the break <source> with the specified BreakBus. A break source must always be connected to a
BreakBus. Available for devices with an MCBS (up to AUDO-MAX family). Not all sources are available on
each derivative.

Depending on the derivative, not all trace sources are available. The break source MCDS is only available
on an Emulation Device. The following table shows which sources are available on which device. Sources
separated by a / are shared and can be disabled in the corresponding chip modules separately. For
information on how to program the module correctly, refer to the Infineon User’s Manual of your device.

HaLTEN

Default: DISable.

This special target is only available for the AUDO-Future family. When enabled, the CPU HALT state is
broadcast as a level signal on the connected break bus.

TC11xx AUDO-NG AUDO-Future

TriCore TriCore TriCore

DMA DMA DMA

BCU / MLI0 S-BCU / MLI0 S-BCU / (MCDS)

MLI1 R-BCU / MLI1 MLI0

(MCDS) MLI1

NOTE: Note that the R-BCU is only available on TC1792, TC1796 and TC1796ED.
Note that the TrOnchip.view window summarizes shared sources within
the same box.

NOTE: Do not enable the break target PCP in case HaLTEN is enabled for
TriCore and TriCore is the break source to the same break bus where
PCP is break target. In this case the synchronous multicore start will fail.
TriCore Debugger and Trace | 124©1989-2024 Lauterbach

TrOnchip.CONVert Adjust range breakpoint in on-chip resource

Converts on-chip breakpoints, freeing on-chip breakpoint resources.

TrOnchip.CountX Event X counter value

This feature is only available for the 5 V trace preprocessor (LA-7879).

The counter <value> is incremented each time the event X has occurred. When the value is equal to 0, the
assigned status (TR[1..0] CR or EXT) is sampled.

On 3.3 V preprocessors (LA-7928), this counter is not active, the status will be sampled every time the event
X occurred.

TrOnchip.CountY Event Y counter value

See TrOnchip.CountX.

Format: TrOnchip.CONVert [ON | OFF]

ON On cores up to core version 1.3.1, breakpoint ranges will be reduced to
single address breakpoints.

As of core version 1.6, breakpoint ranges from and to the same address will
be converted to a single address breakpoint.

OFF No conversion.

Format: TrOnchip.CountX <value>

Format: TrOnchip.CountY <value>
TriCore Debugger and Trace | 125©1989-2024 Lauterbach

TrOnchip.EXTernal Configure TriCore break on BreakBus event

Default: OFF.

When enabled, TriCore will break on an break signal distributed via the BreakBus which TriCore listens to.

For AURIX devices, this option is always on.

TrOnchip.PERSTOPOUT Route suspend signal to pin

This command configures the OTGS of TC2xx and later devices to route the peripheral suspend signal (see
Suspending Peripherals) to a pin. For the exact pins, please refer to the chip data sheet. Pin0 corresponds
to /TGO0, Pin1 corresponds to /TGO1, etc.

TrOnchip.RESet Reset settings for the on-chip trigger unit

Resets the settings for the trigger on-chip unit to default.

Format: TrOnchip.EXTernal [ON | OFF]

NOTE: Enabling this feature will disturb the OCDS-L2 break actions TraceON,
TraceOFF, TraceEnable and TraceTrigger. Instead TriCore will stop when
hitting such a break action.
Unconditional tracing is still possible, OCDS-L3 (On-chip trace) is not
affected.

Format: TrOnchip.PERSTOPOUT OFF | <pin>

<pin> Pin0 | Pin1 | ... | Pin7

Format: TrOnchip.RESet
TriCore Debugger and Trace | 126©1989-2024 Lauterbach

TrOnchip.SoftWare Configure "TriCore" break on debug instruction

Default: ON.

When enabled, TriCore will break when executing a debug instruction.

TrOnchip.SusSWitch Enable or disable suspend switch

Default: DISable.

Enables or disables forwarding of a break signal to the suspend bus.

Available for devices with an MCBS (up to AUDO-MAX family).

TrOnchip.SusSWitch.FORCE Force generation of suspend signal

Default: DISable.

When enabled, the suspend switch generates a suspend signal independent of any state or mode.

Available for devices with an MCBS (up to AUDO-MAX family).

Format: TrOnchip.SoftWare [ON | OFF]

NOTE: When this feature is disabled, the TriCore CPU will treat all debug
instructions as nop instructions. This will silently disable all software
breakpoints.

Format: TrOnchip.SusSwitch [ENable | DISable]

Format: TrOnchip.SusSwitch.FORCE [ENable | DISable]
TriCore Debugger and Trace | 127©1989-2024 Lauterbach

TrOnchip.SusSWitch.Mode Set suspend switch mode

Default: CAPTURE.

In DIRECT mode, the suspend switch forwards the signal coming from the break bus directly to the suspend
bus.

In CAPTURE mode, a high-low transition on the break bus is stored in a flip-flop. Its state is used to drive the
suspend bus. The flip-flop is reset with the CLEAR option. Available for devices with an MCBS (up to AUDO-
MAX family).

TrOnchip.SusTarget Connect special targets to the suspend bus

Normally each peripheral has a clock register <mod>_CLC (AUDO) or a debug control register
<mod>_OCS (AURIX TC2x and later) where it can be connected to the suspend bus. Some modules do not
have such a register and are directly connected to the break switch. These modules can be programmed
here.

If FORCE is selected, all special targets enabled for suspend are suspended immediately, independent of
the current suspend bus state. This is also true for PCP if enabled in ICD PCP. Available for devices with an
MCBS (up to AUDO-MAX family).

TrOnchip.SYNCHRONOUS Switches mode for data breakpoints

Default: OFF.

Switches the Break Before Make flag in TRxEVT registers of AURIX cores. This flag is only effective for data
breakpoints.

Format: TrOnchip.SusSwitch.Mode [CAPTURE | DIRECT | CLEAR]

Format: TrOnchip.SusTarget <target> ON | OFF
TrOnchip.SusTarget.FORCE ENable | DISable

<target>: TriCore | PMU (AUDO devices with MCBS)
DMA | HSS (TC2x)
DMA | DMA1 | HSS0 | HSS1 (TC3x, TC4x)

Format: TrOnchip.SYNCHRONOUS [ON | OFF]
TriCore Debugger and Trace | 128©1989-2024 Lauterbach

If the flag is ON the processor stops on a breakpoint hit before the new value is written to the respective
destination/address. If the flag is set OFF the processor stops after the new value is written.

TrOnchip.TDelay Trace trigger delay

The trace will not stop immediately after trigger if a trigger delay is programmed.

TrOnchip.TExtMode Mode for external trigger input

Default: EDGE.

This defines if the external trigger pin on the preprocessor (only LA-7879) reacts on level (COMP) or edge
(EDGE).

TrOnchip.TExtPol Polarity of external trigger input

Default: -.

This defines if the external trigger pin on the preprocessor (only LA-7879) reacts on active high/positive edge
(+) or active low/negative edge (-).

TrOnchip.TMode Trace mode

This command is obsolete and only left for compatibility reasons.

Format: TrOnchip.TDelay <value> (deprecated)
Use Break.Set instead.

Format: TrOnchip.TExtMode [COMP | EDGE]

Format: TrOnchip.TExtPol [+ | -]

Format: TrOnchip.TMode <mode> (deprecated)
Use Break.Set instead.
TriCore Debugger and Trace | 129©1989-2024 Lauterbach

TrOnchip.TR0 Specify trigger event 0

Specifies the source for the trigger event 0 and the action associated with the trigger event. Available for
devices with an MCBS (up to AUDO-MAX family).

Specify the event for trigger source 0

Example 1: Stop the program execution when the function sieve is entered.

Format: TrOnchip.TR0 <source> <event>

<source>: Code <breakpoint>
Address <breakpoint>
CYcle OFF | Read | Write | Access

<event>: WATCH [ON | OFF]

Code
<breakpoint>

Code range for the debug event generation, the code range has to be
marked by an Alpha | Beta | Charly | Delta | Echo breakpoint.

Address
<breakpoint>

Data range for the debug event generation, the data range has to be
marked by an Alpha | Beta | Charly | Delta | Echo breakpoint.

CYcle Cycle type for the data range: OFF | Read | Write | Access

WATCH
[ON | OFF]

Default: OFF.
When WATCH is ON and the event X or Y occurs, program execution will
stop and the status will be output. If switched to OFF, only the status will
be output.

NOTE: This way of setting Trace Triggers is obsolete.
The correct way is to use Breakpoints.

Break.Set sieve /Alpha ; Set a breakpoint of the type Alpha to sieve

TrOnchip.TR0.Code
Alpha

; Select the code range as source for the
; trigger event 0 generation and assign the
; breakpoint type Alpha

TrOnchip.TR0.WATCH OFF ; The program execution will be stopped if the
; trigger event 0 occurs
TriCore Debugger and Trace | 130©1989-2024 Lauterbach

Example 2: Stop the program execution when a write access to flags[3] occurs.

TrOnchip.TR1 Specify trigger event 1

See TrOnchip.TR0 for further information.

TrOnchip.state Show on-chip trigger window

Shows the trigger on-chip window.

; Set a breakpoint of the type Alpha to flags[3]

Var.Break.Set \\demo\taskc\flags[3]; /Alpha

; Select the data range as source for the trigger event 0 generation and
; assign the breakpoint type Alpha

TrOnchip.TR0.Address Alpha

; Select Write as cycle type for the data access

TrOnchip.TR0.CYcle Write

; The program execution will be stopped if the trigger event 0 occurs

TrOnchip.TR0.WATCH OFF

Format: TrOnchip.state
TriCore Debugger and Trace | 131©1989-2024 Lauterbach

TrOnchip.WatchPin Route core trigger to pin

This command configures the OTGS of TC2xx and later devices to route a core trigger to a pin. This can be
used to correlate program events with external signals. For the exact pins, please refer to the chip data
sheet. Pin0 corresponds to /TGO0, Pin1 corresponds to /TGO1, etc.

Additional configuration for the pins, e.g., speed grade, might be required.

Example:

This example shows how to route a range breakpoint on "func1" to pin "/TGO0". The pin will be active (low)
while the program counter is inside func1 but not inside a called function.

An extended example can be found at
~~/demo/tricore/etc/trace_trigger/watchpins/aurix_watchpin.cmm.

TrOnchip.X Select trigger source X

The on-chip comparator unit can react on different sources. Available for devices with an MCBS (up to
AUDO-MAX family).

Format: TrOnchip.WatchPin OFF | <pin>

<trigger> WATCH | Alpha | Beta | Charly | Delta | Echo

<pin> Pin0 | Pin1 | ... | Pin7

Break.Set sYmbol.RANGE(func1) /Alpha
TrOnchip.WatchPin.Alpha Pin0

Format: TrOnchip.X <source>

<source>: TR0
TR1
CR
EXT

TR0 On-chip address comparator TR0

TR1 On-chip address comparator TR1
TriCore Debugger and Trace | 132©1989-2024 Lauterbach

TrOnchip.Y Select trigger source Y

See TrOnchip.X for further information.

CR Core Event: MTCR/ MFCR instruction is executed or a core SFR is
modified.

EXT External Break In pin is asserted.
TriCore Debugger and Trace | 133©1989-2024 Lauterbach

Technical Data

Trace Connector

For more information on connectors, adapters, converters, and cables, see “Application Note Debug
Cable TriCore” (app_tricore_ocds.pdf).

Technical Data for Debugger

Mechanical Dimensions

The Debug Cables with new housings are shipped within Europe since March 2006. They have a removable
cable and are RoHS compliant. The electrical components and the schematics are identical to ones in the
old housing.

Further details are available in “Application Note Debug Cable TriCore” (app_tricore_ocds.pdf).

OCDS Uni-Dir
Debug Cable V0

Bidirectional Cables and
Automotive Debug Cables

Length: 4.2 cm 5.5 cm

Width: 5.2 cm 6.25 cm

Height: 1.6 cm 1.7 cm

Length of cable: approx. 37.5 cm approx. 37.8 cm
TriCore Debugger and Trace | 134©1989-2024 Lauterbach

Appendix

This chapter covers the following topics:

• “Parallel Off-chip Trace - OCDS-L2 Flow Trace (Analyzer)”, page 135

Parallel Off-chip Trace - OCDS-L2 Flow Trace (Analyzer)

Use Trace.METHOD Analyzer for selecting the Analyzer.

Overview

This chapter describes the OCDS-L2 Flow Trace, which is available on some devices of the AUDO-NG
family, e.g. the TC1796.

For all other traces, please refer to chapter “Tracing”, page 61.

Quick Start for Tracing with OCDS-L2 Trace (Analyzer)

It is assumed that you are tracing a TC1766 B-Step on an Infineon TriBoard-TC1766.300 or above.

1. Prepare the Debugger

Load your application and prepare for debug. See “Quick Start for OCDS-L1 Debugger” for more details.

2. Connect the PreProcessor to the Trace Connector on the Target

Plug the preprocessor into the trace connector on the target board. In case of an AMP40 connector you
need to care for the correct orientation of the connector. Check for Pin 1.

3. Configure the Trace Port on Your Target

On TriBoard-TC1766.300 the trace connector is connected to GPIO port 5 which needs to be set up for
tracing.

Data.Set 0xF0001110 %Long 0xA0A0A0A0 ; enable Port 5 for OCDS-L2 output

Data.Set 0xF0001114 %Long 0xA0A0A0A0

Data.Set 0xF0001118 %Long 0xA0A0A0A0

Data.Set 0xF000111C %Long 0xA0A0A0A0
TriCore Debugger and Trace | 135©1989-2024 Lauterbach

4. Fine Tuning

The preprocessor uses a compression algorithm which affects the accuracy of the timestamp information.
For improving the accuracy by the factor 4, specify the CPU clock frequency.

The trace is now configured.

5. Start and Stop Tracing

Recording is stopped when the TriCore halts, e.g. when a breakpoint was hit.

6. View the Results

Supported Features

• Program Flow Trace for TriCore

• Program Flow Trace for PCP

• Timestamp

• Simple Trace Control

Analyzer.Clock 20.0MHz ; specify CPU clock

Go ; start tracing

Break ; stop tracing

Analyzer.List ; view recorded trace data

NOTE: Note that OCDS-L2 does not allow to trace TriCore and PCP at the same
time.
TriCore Debugger and Trace | 136©1989-2024 Lauterbach

Version History

The trace hardware is under constant development. So it is possible that you have different trace hardware
versions. Only the latest trace hardware versions are housed (see “Mechanical Dimensions” in
Application Note Debug Cable TriCore, page 66 (app_tricore_ocds.pdf)).

Timestamp Accuracy

The TriCore does not generate any timestamps for OCDS-L2 trace.

The trace preprocessor demultiplexes multiple OCDS-L2 trace samples (2 in case of LA-7879, 4 in case of
LA-7928) into a single trace package which is stored in one trace memory frame and marked with a
timestamp generated by the trace hardware. The accuracy is trace hardware dependent, see “Analyzer”
(general_ref_a.pdf) for details.

This results in inaccurate execution times. Especially when Trace.PortFilter is used, you can get extremely
high time values or even durations below the resolution of the trace hardware - shown as e.g. "< 20 ns".
PowerView is able to compensate for the inaccuracy by setting Analyzer.CLOCK <cpufreq> according to
the CPU frequency.

Note that in case of high CPU frequencies and Analyzer.CLOCK <cpufreq> is set, negative cycles may be
displayed. In case of negative timestamps, it is recommended to adjust the <cpufreq>. Sightly higher values
may already eliminate all or most of the negative timestamps.

OCDS-L2 trace is a Program Flow Trace and so timestamps will never be instruction accurate.

Order number LA-7879 LA-7879 LA-7928

Housing no no yes

PCB version MERF1-4 MERF5-6 MERF7-

Connector AMP40 SAMTEC60 SAMTEC60

Counter yes yes no

Frequency 80 MHz 133 MHz 180 MHz

Termination passive (clock) passive (clock) active
50Ohm Thevenin

Threshold no no yes

Trace control yes yes yes

JTAG on board no no yes

Trace depth x2 x2 x4

Number of cable 1 1 2
TriCore Debugger and Trace | 137©1989-2024 Lauterbach

Concurrent Usage of OCDS-L2 Off-chip Trace and OCDS-L3 On-chip Trace

The parallel OCDS-L2 off-chip trace and the OCDS-L3 on-chip trace can be used in parallel with restrictions.
For details, see “Concurrent Usage of Different Trace Methods” (mcds_user.pdf).

This use case is not recommended.

Simple Trace Control

TriCore OCDS-L2 trace supports the same features:

• Trace all

• Trace to

• Trace from

• Trace from to

• Trigger

• Enable

Trace Break Signals (OCDS-L2)

The trace connector has three break lines (see Trace Connector) which will output a defined status when
certain events occurred a definable number of times:

BREAK[2..0] corresponds to EMUSTAT[7..5] in the trace.

TR[1..0], CR and EXT can be assigned to events X and Y.

OCDS level 2 is a flow trace. That means only relative program flow
information is given out by the CPU.
TRACE32 needs synchronization points for starting trace disassembling.
The trace cannot be shown correctly until such a synchronization point is
reached.

event TR0 TR1

[EMU]BREAK0 1 1

[EMU]BREAK1 0 0

[EMU]BREAK2 0 1
TriCore Debugger and Trace | 138©1989-2024 Lauterbach

Trace Examples

A successfully loaded target application is needed for the following examples.

Example 1: Trace from

Start recording at address 0xA0001000.

Example 2: Trace to

Stop recording at address 0xA0001100, but do not halt the CPU.

Example 3: Trace from to

Start recording at address 0xA0001000 and stop recording at address 0xA0001100, but do not halt the
CPU. If recording was stopped once it will restart when the start address is reached once more.

Trace is just a pointer to the currently selected trace method (see
Trace.METHOD).

Analyzer.view ; show trace setup window

Analyzer.Mode STACK ; set trace to stack mode

Analyzer.List ; show trace list window

Break.Set 0xA0001000 /TraceON ; set start address

Analyzer.view ; show trace setup window

Analyzer.Mode STACK ; set trace to stack mode

Analyzer.List ; show trace list window

Break.Set 0xA0001100 /TraceOFF ; set end address

Analyzer.view ; show trace setup window

Analyzer.Mode STACK ; set trace to stack mode

Analyzer.List ; show trace list window

Break.Set 0xA0001000 /TraceON ; set start address

Break.Set 0xA0001100 /TraceOFF ; set end address
TriCore Debugger and Trace | 139©1989-2024 Lauterbach

Example 4: Trace Trigger

Trigger recording at address 0xA0001200. The trace will stop recording after a programmable period, see
Trace.Trigger for more information.

Example 5: Trace Enable

When address 0xA0001400 is reached, write a sample into the trace memory.

Analyzer.view ; show trace setup window

Analyzer.Mode STACK ; set trace to stack mode

Analyzer.List ; show trace list window

Break.Set 0xA0001200 /TraceTrigger ; set trigger address

Analyzer.view ; show trace setup window

Analyzer.Mode STACK ; set trace to stack mode

Analyzer.List ; show trace list window

Break.Set 0xA0001400 /TraceEnable ; set enable address
TriCore Debugger and Trace | 140©1989-2024 Lauterbach

Troubleshooting for OCDS-L2 Trace

No Data in Trace.List Visible

Different reasons are possible:

• CPU trace port not mapped.

Mostly the trace port shares its functionality with another peripheral. In this case, one or more
dedicated registers have to be set correctly. See also the demo scripts within the TRACE32
installation directory: ~~/demo/tricore/hardware/*.

• Reference voltage not set up correctly (LA-7928 only).

Reference voltage pin on trace connector connected? If not, the threshold value must be set to
the middle of the trace signal manually (half of target I/O voltage level).

• Poor trace/clock signal.

Change termination setting (LA-7928 only) and threshold value. If a change of the setup does not
help, further target hardware modifications are required. Please ask the technical support for
details (support@lauterbach.com).

Error Diagnosis

Error messages are displayed in the upper left corner of the Trace.List window:

NOTE: Advanced trace analysis commands like Trace.STATistic.Func,
Trace.STATistic.TASK display accurate results only if the trace recording
works error-free.
TriCore Debugger and Trace | 141©1989-2024 Lauterbach

Searching for Errors

TRACE32 uploads only the requested trace information to the host to provide a quick display of the trace
information. Consequently, potential errors outside the uploaded range are not immediately visible.

There are several ways to search for errors within the trace, all of them will force TRACE32 to upload the
complete trace information to the host:

1. The Trace Find window

Pushing the Find … button of the Trace.List window opens a special search window:

Select Expert and enter “flowerror” in the item field. The item entry is not case sensitive. Use the Find
First/Find Next button to jump to the next flowerror within the trace. Find All will open a separate
window with a list of all flowerrors.

2. Using command Trace.FindAll , FLOWERROR

This command will search for errors within the entire trace buffer. The records will be listed within a
separate window. This command corresponds to the FindAll option described above.
TriCore Debugger and Trace | 142©1989-2024 Lauterbach

3. Using command Trace.Chart.sYmbol

This command will start a statistical analysis. An additional symbol (ERROR) is shown if errors where
found.

Error Messages

One of the following 2 errors may occur:

1. HARDERROR

There are no valid trace data. Possible reasons are:

• Traceport multiplexed with other IO functions (no valid trace data)

• Trace signal capturing failed (setup/hold time violations)

• Wrong version of PowerTrace module

• Target frequency too high

2. FLOWERROR

The traced data are not consistent with the code in the target memory. Possible reasons are:

• Memory contents has changed.

Self modifying code is not supported.

• Wrong trace data (as result of HARDERRORS)

• CPU trace port not mapped.

The search could take a long time depending on the used memory size of
the trace module and the type of host interface. Check the status to estimate
the time.
TriCore Debugger and Trace | 143©1989-2024 Lauterbach

Mostly the trace port shares its functionality with another peripheral. In this case, one or more
dedicated registers have to be set correctly. See also the demo scripts within the TRACE32
installation directory: ~~/demo/tricore/hardware/*.

• Reference voltage not set up correctly (LA-7928 only).

Reference voltage pin on trace connector connected? If not, the threshold value must be set to
the middle of the trace signal manually (half of target I/O voltage level).

• Poor trace/clock signal.

Change termination setting (LA-7928 only) and threshold value. If a change of the setup does not
help, further target hardware modifications are required. Please ask the technical support for
details (support@lauterbach.com).

• Setup/hold time violation.

- 3 ns setup / 1 ns hold time needed.

- sample point: falling edge.
TriCore Debugger and Trace | 144©1989-2024 Lauterbach

	TriCore Debugger and Trace
	History
	Safety Precautions
	Introduction
	Brief Overview of Documents for New Users
	Available Tools
	Debugger
	Software-only Debugger for XCP
	On-chip Trace
	Serial Off-chip Trace (AGBT)
	Parallel Off-chip Trace
	Co-Processor Debugging (PCP/GTM)
	Co-Processor Debugging (HSM)
	Multicore Debugging and Tracing

	Software Installation
	Configuration
	System Overview

	Related Documents
	Demo and Start-up Scripts
	OCDS Levels

	Debugging
	Single-Core Debugging (AUDO)
	Single-Core Debugging - Quick Start

	Multicore Debugging (AURIX)
	SMP Debugging - Quick Start
	AMP Debugging - Quick Start
	iAMP Debugging
	AMP vs. SMP vs. iAMP
	Selecting the right AURIX CPU
	Understanding Multicore Startup by Application Code
	About Ambiguous Symbols

	Access Classes
	Breakpoints
	Software Breakpoints
	On-chip Breakpoints
	MAP.BOnchip Command

	Advanced Breakpoints

	Single Stepping
	Assembler Level
	HLL Level

	Flash
	Flashing and Debugging AURIX Devices
	Flashing the Hardware Security Module (HSM)

	Onchip Triggers (TrOnchip Window)
	BenchMarkCounter
	Example: Measuring Instructions and Stalls per Clock Cycle
	Example: A-to-B Mode (single shot)
	Example: A-to-B Mode (average)
	Example: Record Counters Periodically

	Watchpins
	AUDO Devices
	AURIX Devices

	Accessing Cached Memory Areas and Cache Inspection
	AUDO Devices
	AURIX Devices

	Assembler and Disassembler Options
	Parallel Usage of a 3rd-Party Tool
	Physical Sharing of the Debug Port

	Debugging an Application with the Memory Protection Unit Enabled
	TriCore v1.6 and Later
	TriCore v1.3.1 and Earlier
	Debugging with MPU Enabled in RAM
	Debugging with MPU Enabled in FLASH

	Debugging through Resets and Power Cycles
	Soft Resets
	Hard Resets
	Power Cycles

	Suspending Peripherals
	Suspending the System Timers of TC3xx
	Suspending the Watchdogs

	Code Overlays
	Data Overlays
	Cerberus Access Protection
	Target Code Execution
	Internal Break Bus (JTAG)
	Troubleshooting
	SYStem.Up Errors
	Debugging Optimized Code

	FAQ
	Tracing
	On-chip Trace (OCDS-L3)
	Quick Start for Tracing with On-chip Trace (OCDS-L3)
	Supported Features
	Trace Control
	Trace Evaluation
	Impact of the Debugger on FPI Bus Tracing
	Trace Control Using Break.Set or Var.Break.Set
	Further Reading

	Serial Off-Chip Trace
	Parallel Off-Chip Trace

	CPU specific BMC Commands
	BMC.SELect Select counter for statistic analysis
	BMC.<counter>.ATOB Control A-to-B mode
	BMC.<counter>.TRIGMODE BMC trigger mode
	BMC.<counter>.TRIGVAL BMC trigger value

	CPU specific SYStem.CONFIG Commands
	SYStem.CONFIG.state Display target configuration
	SYStem.CONFIG Configure debugger according to target topology
	Daisy-Chain Example
	TapStates

	SYStem.CONFIG.CORE Assign core to TRACE32 instance
	SYStem.CONFIG.BreakPIN Define mapping of break pins
	SYStem.CONFIG.CAN Configure CAN interface
	SYStem.CONFIG.CAN.BaseCLOCK Base clock for CAN interface
	SYStem.CONFIG.CAN.NominalBRP Set CAN nominal baud rate prescaler
	SYStem.CONFIG.CAN.NominalTSEG1 Set CAN nominal Phase_seg1
	SYStem.CONFIG.CAN.NominalTSEG2 Set CAN nominal Phase_seg2
	SYStem.CONFIG.CAN.NominalSJW Set CAN nominal SJW parameter
	SYStem.CONFIG.CAN.DataBRP Set CAN data baud rate prescaler
	SYStem.CONFIG.CAN.DataTSEG1 Set CAN data Phase_seg1
	SYStem.CONFIG.CAN.DataTSEG2 Set CAN data Phase_seg2
	SYStem.CONFIG.CAN.DataSJW Set CAN data SJW
	SYStem.CONFIG.DAP Configure DAP interface
	SYStem.CONFIG.DAP.BreakPIN Define mapping of break pins
	SYStem.CONFIG.DAP.CRC6 Enable CRC6 mode
	SYStem.CONFIG.DAP.DAPENable Enable DAP mode on PORST
	SYStem.CONFIG.DAP.SISP Configure SISP setting
	SYStem.CONFIG.DAP.USERn Configure and set USER pins
	SYStem.CONFIG.DEBUGPORT Select target interface
	SYStem.CONFIG.DEBUGPORTTYPE Set debug cable interface mode
	SYStem.CONFIG.DXCM Configure DXCM
	SYStem.CONFIG.DXCM.TXID Control frame message ID
	SYStem.CONFIG.DXCM.TXIDE Control frame format
	SYStem.CONFIG.DXCM.TXFDF Control frame format
	SYStem.CONFIG.DXCM.TXBRS Control the use of baud rate switching
	SYStem.CONFIG.DXCM.RXID Set ID for frames from target
	SYStem.CONFIG.DXCM.RXIDE Expect extended frames from target
	SYStem.CONFIG.DXCPL Configure DXCPL
	SYStem.CONFIG.DXCPL.Timing Configure SPD timing for DXCPL
	SYStem.CONFIG.EXTWDTDIS Control external watchdog
	SYStem.CONFIG.PortSHaRing Control sharing of debug port with other tool
	SYStem.CPU Select CPU
	SYStem.JtagClock Set the JTAG frequency
	SYStem.LOCK Tristate the JTAG port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Establish the communication with the CPU

	CPU and Architecture specific SYStem.Option Commands
	SYStem.Option.BREAKFIX Enable workaround for asynchronous breaking
	SYStem.Option.CBSACCEN<x> Cerberus access protection
	SYStem.Option.DCFREEZE Do not modify cache structure
	SYStem.Option.DCREAD Control cache behavior of reads
	SYStem.Option.DSYNC Force data synchronization
	SYStem.Option.DOWNMODE Behavior of SYStem.Mode Down
	SYStem.Option.DUALPORT Implicitly use run-time memory access
	SYStem.Option.DataTrace Enable data tracing
	SYStem.Option.EndInitProtectionOverride Override ENDINIT protection
	SYStem.Option.HeartBeat Bug fix to avoid FPI bus conflict
	SYStem.Option.HoldReset Reset duration
	SYStem.Option.HSMRESTART Restart HSM on connect
	SYStem.Option.ICFLUSH Flush instruction cache at "Go" or "Step"
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.Option.JTAGENSEQ Use JTAG initialization sequence
	SYStem.Option.KEYCODE Set debug interface password
	SYStem.Option.KEYCODEWarnNotAccepted Set warning level
	SYStem.Option.LBIST LBIST gap handling
	SYStem.Option.MACHINESPACES Address extension for guest OSes
	SYStem.Option.MAPCACHE Map cache automatically
	SYStem.Option.OCDSELOW Set OCDS line to low
	SYStem.Option.OVC Enable OVERLAY memory access
	SYStem.Option.OVERLAY Enable overlay support
	SYStem.Option.PERSTOP Enable global peripheral suspend
	SYStem.Option.PMILBFIX Enable PMI line buffer invalidation workaround
	SYStem.Option.PostResetDELAY Delay after RESET is released
	SYStem.Option.ReadOnly Block all write accesses
	SYStem.Option.RESetBehavior Set behavior when a reset occurs
	SYStem.Option.ResetDetection Set how hard resets are detected
	SYStem.Option.ResetMode Select reset method
	SYStem.Option.RESetTMS State of TMS line at reset
	SYStem.Option.RUNRESTOREDELAY Delay of restore after reset
	SYStem.Option.SLOWRESET Long timeout for resets
	SYStem.Option.SOFTLONG Set 32 bit software breakpoints
	SYStem.Option.SSWWAIT Emulate SSWWAIT
	SYStem.Option.STEPONCHIP Step with onchip breakpoints
	SYStem.Option.STEPSOFT Step with software breakpoints
	SYStem.Option.TB1766FIX Bug fix for some TC1766 TriBoards
	SYStem.Option.UNLOCKTIME Timeout for debug port unlock
	SYStem.Option.WDTFIX Disables the watchdog on SYStem.Up
	SYStem.Option.WDTSUS Link the watchdog timer to the suspend bus
	SYStem.RESetOut In-target reset
	SYStem.state Open SYStem.state window

	CPU specific TrOnchip Commands
	TrOnchip.BreakBusN.BreakIN Configure break pin of "BreakBus N"
	TrOnchip.BreakBusN.BreakOUT Configure break pin of "BreakBus N"
	TrOnchip.BreakIN.<target> Connect break <target> to BreakBus
	TrOnchip.BreakOUT.<source> Connect break <source> to BreakBus
	<source>
	HaLTEN

	TrOnchip.CONVert Adjust range breakpoint in on-chip resource
	TrOnchip.CountX Event X counter value
	TrOnchip.CountY Event Y counter value
	TrOnchip.EXTernal Configure TriCore break on BreakBus event
	TrOnchip.PERSTOPOUT Route suspend signal to pin
	TrOnchip.RESet Reset settings for the on-chip trigger unit
	TrOnchip.SoftWare Configure "TriCore" break on debug instruction
	TrOnchip.SusSWitch Enable or disable suspend switch
	TrOnchip.SusSWitch.FORCE Force generation of suspend signal
	TrOnchip.SusSWitch.Mode Set suspend switch mode
	TrOnchip.SusTarget Connect special targets to the suspend bus
	TrOnchip.SYNCHRONOUS Switches mode for data breakpoints
	TrOnchip.TDelay Trace trigger delay
	TrOnchip.TExtMode Mode for external trigger input
	TrOnchip.TExtPol Polarity of external trigger input
	TrOnchip.TMode Trace mode
	TrOnchip.TR0 Specify trigger event 0
	TrOnchip.TR1 Specify trigger event 1
	TrOnchip.state Show on-chip trigger window
	TrOnchip.WatchPin Route core trigger to pin
	TrOnchip.X Select trigger source X
	TrOnchip.Y Select trigger source Y

	Technical Data
	Trace Connector
	Technical Data for Debugger
	Mechanical Dimensions

	Appendix
	Parallel Off-chip Trace - OCDS-L2 Flow Trace (Analyzer)
	Overview
	Quick Start for Tracing with OCDS-L2 Trace (Analyzer)
	Supported Features
	Version History
	Timestamp Accuracy
	Concurrent Usage of OCDS-L2 Off-chip Trace and OCDS-L3 On-chip Trace
	Simple Trace Control
	Trace Break Signals (OCDS-L2)
	Trace Examples

	Troubleshooting for OCDS-L2 Trace
	No Data in Trace.List Visible
	Error Diagnosis
	Searching for Errors
	Error Messages

