
MANUAL

Release 02.2025

StarCore Debugger and Trace

StarCore Debugger and Trace

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 ICD In-Circuit Debugger .. 

 Processor Architecture Manuals .. 

 StarCore ... 

 StarCore Debugger and Trace .. 1

 Introduction ... 6

 Brief Overview of Documents for New Users 6

 Demo and Start-up Scripts 6

 Warning .. 8

 Quick Start ... 9

 Troubleshooting .. 12

 SYStem.Up Errors 12

 Memory Access Errors 13

 NEXUS Flow Errors and FIFO Overflow Messages 14

 FAQ ... 15

 Configuration ... 16

 CPU specific SYStem Settings and Restrictions ... 17

 SYStem.CLOCK Setup core clock 17

 SYStem.CONFIG.state Display target configuration 17

 SYStem.CONFIG Configure debugger according to target topology 18

 Daisy-Chain Example 20

 TapStates 21

 SYStem.CONFIG.CORE Assign core to TRACE32 instance 22

 SYStem.CPU Select the used CPU 23

 SYStem.LOCK Lock and tristate the debug port 23

 SYStem.MemAccess Select run-time memory access method 23

 SYStem.Mode Establish the communication with the target 25

 SYStem.Option.BASE Sets the SUI base address 25

 SYStem.Option.DCFLUSH Data cache flush before step/run 26

 SYStem.Option.DTM Enables data trace messages 26

 SYStem.Option.EnReset Allow the debugger to drive nRESET/nSRST 26

 SYStem.Option.EnTrst Allow debugger to drive TRST 27
StarCore Debugger and Trace | 2©1989-2025 Lauterbach

 SYStem.Option.HalfRate Enable Nexus DDR mode 27

 SYStem.Option.ICFLUSH Instruction cache flush before step/run 28

 SYStem.Option.IMASKASM Disable interrupts while single stepping 28

 SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 28

 SYStem.Option.IPLDI Sets interrupt mask strategy 29

 SYStem.Option.LittleEnd Switches between endian modes 29

 SYStem.Option.MCKO Nexus output clock ratio 29

 SYStem.Option.MPU MPU disabled 30

 SYStem.Option.Nexus Nexus port width 30

 SYStem.Option.OCEBASE Base address for OnCE registers 30

 SYStem.Option.OCECORE OnCE selection 31

 SYStem.Option.OVC Trace message overrun control 31

 SYStem.Option.PTM Enables program trace messages 31

 SYStem.Option.SAMPLE Adjust NEXUS sample point 32

 SYStem.Option.SLOWPOLL Change timing of JTAG during runtime 32

 SYStem.Option.SLOWRESET Expand reset time for additional reset module 32

 SYStem.Option.VBA Set up VBA value for analysis 33

 SYStem.Option.WaitReset Halt the core after reset 34

 SYStem.Option.WATCHDOG Enable WATCHDOG 35

 SYStem.JtagClock Define JTAG clock 35

 CPU specific MMU Commands .. 39

 MMU.DUMP Page wise display of MMU translation table 39

 MMU.List Compact display of MMU translation table 39

 MMU.SCAN Load MMU table from CPU 40

 BenchMarkCounter ... 41

 TrOnchip .. 42

 TrOnchip Control of on-chip resources 45

 TrOnchip.CONVert Automatically convert range to single address 46

 TrOnchip.REGister Shows custom on-chip trigger registers 46

 TrOnchip.RESet Set on-chip trigger to default state 46

 TrOnchip.VarCONVert Automatically convert range to single address 46

 TrOnchip.state Opens configure panel 47

 On-chip Trace .. 48

 Onchip.Mode Select mode to control trace buffer and contents 48

 Onchip.VTBA Set the destination address of the onchip trace 49

 General Restrictions ... 50

 Floating Point Formats ... 51

 Integer Access Keywords ... 51

 File I/O Support .. 52

 Metrowerks MSLIO Support 52
StarCore Debugger and Trace | 3©1989-2025 Lauterbach

 JTAG Connection .. 53

 Mechanical Description of the 20-pin Debug Cable 53

 Electrical Description of the 20-pin Debug Cable 54

 JTAG Connector 14-pin 55

 Memory Classes .. 57
StarCore Debugger and Trace | 4©1989-2025 Lauterbach

StarCore Debugger and Trace

Version 13-Feb-2025
StarCore Debugger and Trace | 5©1989-2025 Lauterbach

Introduction

This document describes the processor specific settings and features for TRACE32-ICD for the following
CPU families:

• MSC8XXX, MSC711X, MXC91XXX from FreeScale

• TC1XXX, TC2XXX from StarCoreLLC

• SC1000, SC2000, SC3000 (Custom Chips with unknown peripherals)

Please note that only the Processor Architecture Manual (the document you are currently reading) is
specific to the core architecture. All other parts of the online help are general and independent of any core
architecture. Therefore, if you have questions related to the core architecture, the Processor Architecture
Manual should be your primary reference.

If some of the described functions, options, signals or connections in this Processor Architecture Manual are
only valid for a single CPU or for specific families, the name(s) of the family(ies) is added in brackets.

Brief Overview of Documents for New Users

Architecture-independent information:

• “Debugger Tutorial” (debugger_tutorial.pdf): Get familiar with the basic features of a TRACE32
debugger.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

• “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

Demo and Start-up Scripts

Lauterbach provides ready-to-run start-up scripts for known StarCore based hardware.
StarCore Debugger and Trace | 6©1989-2025 Lauterbach

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:

• Type at the command line: WELCOME.SCRIPTS

• or choose File menu > Search for Script.

You can now search the demo folder and its subdirectories for PRACTICE start-up scripts
(*.cmm) and other demo software.

You can also manually navigate in the ~~/demo/starcore/ subfolder of the system directory of
TRACE32.
StarCore Debugger and Trace | 7©1989-2025 Lauterbach

Warning

WARNING: To prevent debugger and target from damage it is recommended to connect or
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

1. Disconnect the Debug Cable from the target while the target power is
off.

2. Connect the host system, the TRACE32 hardware and the Debug
Cable.

3. Power ON the TRACE32 hardware.

4. Start the TRACE32 software to load the debugger firmware.

5. Connect the Debug Cable to the target.

6. Switch the target power ON.

7. Configure your debugger e.g. via a start-up script.

Power down:

1. Switch off the target power.

2. Disconnect the Debug Cable from the target.

3. Close the TRACE32 software.

4. Power OFF the TRACE32 hardware.
StarCore Debugger and Trace | 8©1989-2025 Lauterbach

Quick Start

Starting up the debugger is done as follows:

1. Select the device prompt for the ICD Debugger and reset the system.

The device prompt B:: is normally already selected in the TRACE32 command line. If this is not the
case, enter B:: to set the correct device prompt. The RESet command is only necessary if you do
not start directly after booting the TRACE32 development tool.

2. Specify the CPU specific settings.

The default values of all other options are set in such a way that it should be possible to work without
modification. Please consider that this is probably not the best configuration for your target.

3. Set up data for electrical interface

Normally the default value is 1.0 MHz, but the it can be increased up to 80.0 MHz.

b::

RESet

SYStem.CPU <cpu_type>

SYStem.JtagClock <frequency>

SYStem.Option.EnReset

SYStem.Option.EnTrst

SYStem.Option.WaitReset
StarCore Debugger and Trace | 9©1989-2025 Lauterbach

4. Inform the debugger about read only and none-readable address ranges (ROM, FLASH).

The B(reak)on-chip information is necessary to decide where on-chip breakpoints must be used. On-
chip breakpoints are necessary to set program breakpoints to FLASH/ROM. The sections of FLASH
and ROM depend on the specific CPU and its chip selects. Accesses to invalid addresses can cause
unrecoverable bus errors. To avoid bus errors from the debugger side use the subcommands of MAP
to define inaccessible memory areas. Bus errors can be removed by executing SYStem.Up. Make
sure that there isn’t any TRACE32 window open which accesses to a inaccessible memory that is not
masked out, otherwise the bus error can occur again.

5. Enter debug mode.

This command resets the CPU and enters debug mode. After this command is executed, it is possible
to access memory and registers.

6. Configure chip according application.

Before loading binary data into the processor memory, the memory should be made writable for the
debugger. Therefore processor configuration registers have to be set e.g. chip select register.

7. Load the program.

The format of the Data.LOAD command depends on the file format generated by the compiler. It is
recommended to use the option /Verify that verifies all written data. This test discovers a problem with
the electrical connection, wrong chip configurations or linker command file settings.

A detailed description of the Data.LOAD command and all available options is given in the “General
Commands Reference”.

MAP.DenyAccess

MAP.NoDenyAccess <range>

MAP.BOnchip <range>

SYStem.Up

Data.LOAD.Elf program.elf /Verify ; ELF specifies the format,
; program.elf is the file name
StarCore Debugger and Trace | 10©1989-2025 Lauterbach

A typical start sequence for the MSC8101 is shown below. This sequence can be written to a PRACTICE
script file (*.cmm, ASCII format) and executed with the command DO <file>. Other sequences can be found
in the ~~/demo/ directory.

b:: ; Select the ICD device prompt

WinClear ; Clear all windows

SYS.CPU MSC8101 ; Select CPU

SYS.JC 15000000. ; Choose JTAG frequency

SYStem.Up ; Reset the target and enter debug mode

MAP.DENYACCESS ; Forbid any access to the memory in
; general

MAP.NODENYACCESS 0x00000000--0x0007FFFF

MAP.NODENYACCESS 0x00000000--
0x0007FFFF ;SRAM 515KB

; SRAM 515KB
; Allows access to a memory area

MAP.NODENYACCESS 0x00EFFE00--
0x00EFFEFF ;EOnce

; Allows access to a memory area

MAP.NODENYACCESS 0x00F80000--
0x00F807FF ;ROM

; Allows access to a memory area

MAP.NODENYACCESS
IOBASE()++13FFF; 60x BUS

; Allows access to a memory area.
; IOBASE() is the base address of the
; internal memory space. It is derived
; from the EMR register bits 21-19.

MAP.BONCHIP 0x00F80000--
0x00F807FF ;ROM

; Specifies the program memory where
; on-chip breakpoints must be used.

Data.LOAD.ELF demo_be.eld
/VERFY

; Load the application, verify the
; process

Go main ; Run and break at main()

List.Mix ; Open source window

Register.view /SpotLight ; Open register window

Var.Local ; Open window with local variables
StarCore Debugger and Trace | 11©1989-2025 Lauterbach

Troubleshooting

SYStem.Up Errors

The SYStem.Up command is the first command of a debug session where communication with the target is
required. If you receive error messages while executing this command open the AREA window by the
command “AREA”. This will show some further information. There are different type problem that may occur:

Basic electrical problems with the JTAG interface

• The target has no power.

• The JTAG lines are not connected correctly.

• The pull-up resistor between the JTAG[VCCS] pin and the target VCC is too large.

• There are additional loads or capacities on the JTAG lines.

• There is logic added to the JTAG state machine:

By default the debugger supports only one processor in one JTAG chain. If the processor is only
one member of a JTAG chain the debugger has to be informed about the target JTAG chain
configuration. Use the SYS.CONFIG to specify the position of the device in the JTAG-chain.

• The target is in reset:

The debugger controls the processor reset and use the RESET line to reset the CPU on every
SYStem.Up. Therefore no external R-C combination or external reset controller is allowed.

• /TRST is connected with /RESET. If this is the case try System.Option.WaitReset <time>

• The TDO and/or RTCK line is not active while /RESET. System.Option.WaitReset <time>
provides a workaround for this, but there can be unpredictable problems after using the option.

Advanced problems

• The wrong CPU is selected or the multicore settings are wrong.

• The clock of the onchip-peripheral is not running or the core has no clock.

• The JTAG frequency is too high or no RTCK is available.

• The external bus is not released by the bus master. In this case it is possible to execute a
SYStem.Mode.Attach command to attach to the core and wait until the bus becomes ready.
StarCore Debugger and Trace | 12©1989-2025 Lauterbach

Multi-Core configuration problems

• The most important option is SYStem.CONFIG.Slave. One debugger is the Master which must
set SYStem.CONFIG.Slave to OFF. All Slaves must set this option to ON. To bring the system up,
the Master needs to execute the command SYStem.Mode.Up first then the all slaves. Only the
Master will assert the /RESET line and initialize the JTAG interface which is necessary for all
further communication.

• If multiple debug boxes are used with the help of a JTAG-Join adaptor, consider the option
SYStem.CONFIG.TriState (must be ON) and SYStem.CONFIG.TCKLEVEL (must be set to level
of TCK line).

• The JTAG chain settings IRPRE, IRPOST, DRPRE and DRPOST must be set correctly according
to the core position within the JTAG chain.

AREA Diagnostics

• Open the AREA window and type “DIAG 0x16001” to see which JTAG devices are in the JTAG
chain. If this JTAG chain analysis works fine, it can be assumed that the electrical conditions are
correct and the JTAG tap controllers are working.

• By “DIAG 0x10008” the multicore configuration is show in the AREA window

Memory Access Errors

After system up is completed successfully, data can be written to or read from memory. Trying to access
memory not belonging to the memory map of the processor will be refused with the error message

and

When a unrecoverable bus error occurs the target processor has to be reset.

no memory mapped at address D:XXXXXXXX

bus error generated by CPU
StarCore Debugger and Trace | 13©1989-2025 Lauterbach

NEXUS Flow Errors and FIFO Overflow Messages

Flow Errors

• Flow Errors can be internal processing errors of the TRACE32 software. The analysis of the
NEXUS message is not clear in some rare situations. If Flow Errors occur the LAUTERBACH
support has to be contacted in order to fine tune to software to detect this situations.

• Flow Errors can occur if the recorded data is damaged. Various reasons can lead to that
problem. Most probably there are electrical problems with the probe or target. The probe can be
fine tuned by the commands SYStem.Option.MCKO, SYStem.Option.HalfRate, SYStem.CLOCK
and SYStem.Option.Sample to adjust the timing and bandwidth of the NEXUS signals as well as
Trace.THreshold to adjust the signal level detection. The target can be often also tuned to
produce better signals e.g. by set up the slew rate and driver strength of the pins.

• Due to the analysis uses also the disassembler and internal simulator, Flow Errors will also
occur, if the code is damaged or has changed. Using a memory class VM: based analysis
prevents from this problem as well as a post analysis in the simulator mode. The code and VBA
register must exactly match with the conditions when the trace was recorded.

Advanced program flow analysis will not show valid results with Flow Errors or
FIFO Overflow Messages. The concerning dialogs will show an indicator if they
have processed with Flow Errors or FIFO Overflow Messages.

; VM: Based analysis

; Load the ELF-File into virtual RAM at Host and do all code patches
Data.Load.Elf TheElfFile.eld /VM
; Set the VM: based analysis
Trace.ACCESS VM:0x0
; Open the flow trace window
Trace.List
enddo

; Simulator based analysis
; Setup Simulator
System.CPU MyCPU
System.Up
; Load the ELF-File and do all code patches
Data.Load.Elf TheElfFile.eld
; Restore the VBA address (used for interrupt detection)
Register.Set.VBA 0x0
; Load Stored Trace Data
Trace.Load TheTraceData.ad
; Open the flow trace window
Trace.List
enddo
StarCore Debugger and Trace | 14©1989-2025 Lauterbach

FIFO Overflows

• FIFO Overflow NEXUS messages are released if the chip internal trace FIFO is full and program
flow messages get lost. This issue can be solved by increasing the amount of data that is
transferred via the NEXUS lines by increasing the MCKO clock with the command
SYStem.Option.MCKO. Unfortunately the clock is limited to the bandwidth of the NEXUS data
and clock lines. Another way to prevent the FIFO from becoming full is stalling the core or
suppressing less important trace data trace messages. The option SYStem.Option.OVC can be
used to specify this behavior.

FAQ

Please refer to https://support.lauterbach.com/kb.
StarCore Debugger and Trace | 15©1989-2025 Lauterbach

https://support.lauterbach.com/kb

Configuration

The processor type must be selected by the SYStem.CPU command before issuing any other target related
commands.

PODBUS Cable
PODPC
PODPAR Power Debug
PODETH Interface

Debug Cable

JTAG Connector

Basic configuration for the BDM Interface

Dongle
StarCore Debugger and Trace | 16©1989-2025 Lauterbach

CPU specific SYStem Settings and Restrictions

SYStem.CLOCK Setup core clock

Default: 0.

The option is used to calculate the timestamp in simulator mode and to set up the PLL of the Nexus
preprocessor.

Nexus Preprocessor PLL ranges

The selection of the PLL range is based to the System Clock multiplied by the SYStem.Option.MCKO ratio.

1. 24.0 MHz < (SYStem.Clock * SYStem.Option.MCKO) < 50.0 MHz

2. 50.0 MHz <= (SYStem.Clock * SYStem.Option.MCKO) < 100.0 MHz

3. 100.0 MHz <= (SYStem.Clock * SYStem.Option.MCKO) < 200.0 MHz

SYStem.CONFIG.state Display target configuration

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target
configuration settings. The configuration settings tell the debugger how to communicate with the chip on
the target board and how to access the on-chip debug and trace facilities in order to accomplish the
debugger’s operations.

Alternatively, you can modify the target configuration settings via the TRACE32 command line with the
SYStem.CONFIG commands. Note that the command line provides additional SYStem.CONFIG
commands for settings that are not included in the SYStem.CONFIG.state window.

Format: SYStem.CLOCK [<frequency>]

Format: SYStem.CONFIG.state [/<tab>]

<tab>: DebugPort | Jtag

<tab> Opens the SYStem.CONFIG.state window on the specified tab. For tab
descriptions, see below.
StarCore Debugger and Trace | 17©1989-2025 Lauterbach

SYStem.CONFIG Configure debugger according to target topology

The four parameters IRPRE, IRPOST, DRPRE, DRPOST are required to inform the debugger about the
TAP controller position in the JTAG chain, if there is more than one core in the JTAG chain (e.g. Arm + DSP).
The information is required before the debugger can be activated e.g. by a SYStem.Up. See Daisy-chain
Example.
For some CPU selections (SYStem.CPU) the above setting might be automatically included, since the
required system configuration of these CPUs is known.

TriState has to be used if several debuggers (“via separate cables”) are connected to a common JTAG port
at the same time in order to ensure that always only one debugger drives the signal lines. TAPState and
TCKLevel define the TAP state and TCK level which is selected when the debugger switches to tristate
mode. Please note: nTRST must have a pull-up resistor on the target, TCK can have a pull-up or pull-down
resistor, other trigger inputs need to be kept in inactive state.

DebugPort Lets you configure the electrical properties of the debug connection, such
as the communication protocol or the used pinout.

Jtag Informs the debugger about the position of the Test Access Ports (TAP) in
the JTAG chain which the debugger needs to talk to in order to access the
debug and trace facilities on the chip.

Format: SYStem.CONFIG <parameter> <number_or_address>
SYStem.MultiCore <parameter> <number_or_address> (deprecated)

<parameter>: CORE <core>

<parameter>:
(JTAG):

DRPRE <bits>
DRPOST <bits>
IRPRE <bits>
IRPOST <bits>
TAPState <state>
TCKLevel <level>
TriState [ON | OFF]
Slave [ON | OFF]

Multicore debugging is not supported for the DEBUG INTERFACE (LA-7701).
StarCore Debugger and Trace | 18©1989-2025 Lauterbach

CORE For multicore debugging one TRACE32 PowerView GUI has to be started
per core. To bundle several cores in one processor as required by the
system this command has to be used to define core and processor
coordinates within the system topology.
Further information can be found in SYStem.CONFIG.CORE.

DRPRE (default: 0) <number> of TAPs in the JTAG chain between the core of
interest and the TDO signal of the debugger. If each core in the system
contributes only one TAP to the JTAG chain, DRPRE is the number of
cores between the core of interest and the TDO signal of the debugger.

DRPOST (default: 0) <number> of TAPs in the JTAG chain between the TDI signal
of the debugger and the core of interest. If each core in the system
contributes only one TAP to the JTAG chain, DRPOST is the number of
cores between the TDI signal of the debugger and the core of interest.

IRPRE (default: 0) <number> of instruction register bits in the JTAG chain
between the core of interest and the TDO signal of the debugger. This is
the sum of the instruction register length of all TAPs between the core of
interest and the TDO signal of the debugger.

IRPOST (default: 0) <number> of instruction register bits in the JTAG chain
between the TDI signal and the core of interest. This is the sum of the
instruction register lengths of all TAPs between the TDI signal of the
debugger and the core of interest.

TAPState (default: 7 = Select-DR-Scan) This is the state of the TAP controller when
the debugger switches to tristate mode. All states of the JTAG TAP
controller are selectable.

TCKLevel (default: 0) Level of TCK signal when all debuggers are tristated.

TriState (default: OFF) If several debuggers share the same debug port, this
option is required. The debugger switches to tristate mode after each
debug port access. Then other debuggers can access the port. JTAG:
This option must be used, if the JTAG line of multiple debug boxes are
connected by a JTAG joiner adapter to access a single JTAG chain.

Slave (default: OFF) If more than one debugger share the same debug port, all
except one must have this option active.
JTAG: Only one debugger - the “master” - is allowed to control the signals
nTRST and nSRST (nRESET).
StarCore Debugger and Trace | 19©1989-2025 Lauterbach

Daisy-Chain Example

Below, configuration for core C.

Instruction register length of

• Core A: 3 bit

• Core B: 5 bit

• Core D: 6 bit

SYStem.CONFIG.IRPRE 6. ; IR Core D

SYStem.CONFIG.IRPOST 8. ; IR Core A + B

SYStem.CONFIG.DRPRE 1. ; DR Core D

SYStem.CONFIG.DRPOST 2. ; DR Core A + B

SYStem.CONFIG.CORE 0. 1. ; Target Core C is Core 0 in Chip 1

Core A Core B Core C Core D TDOTDI

Chip 0 Chip 1
StarCore Debugger and Trace | 20©1989-2025 Lauterbach

TapStates

0 Exit2-DR

1 Exit1-DR

2 Shift-DR

3 Pause-DR

4 Select-IR-Scan

5 Update-DR

6 Capture-DR

7 Select-DR-Scan

8 Exit2-IR

9 Exit1-IR

10 Shift-IR

11 Pause-IR

12 Run-Test/Idle

13 Update-IR

14 Capture-IR

15 Test-Logic-Reset
StarCore Debugger and Trace | 21©1989-2025 Lauterbach

SYStem.CONFIG.CORE Assign core to TRACE32 instance

Default core_index: depends on the CPU, usually 1. for generic chips

Default chip_index: derived from CORE= parameter of the configuration file (config.t32). The CORE
parameter is defined according to the start order of the GUI in T32Start with ascending values.

To provide proper interaction between different parts of the debugger, the systems topology must be
mapped to the debugger’s topology model. The debugger model abstracts chips and sub cores of these
chips. Every GUI must be connect to one unused core entry in the debugger topology model. Once the
SYStem.CPU is selected, a generic chip or non-generic chip is created at the default chip_index.

Non-generic Chips

Non-generic chips have a fixed number of sub cores, each with a fixed CPU type.

Initially, all GUIs are configured with different chip_index values. Therefore, you have to assign the
core_index and the chip_index for every core. Usually, the debugger does not need further information to
access cores in non-generic chips, once the setup is correct.

Generic Chips

Generic chips can accommodate an arbitrary amount of sub-cores. The debugger still needs information
how to connect to the individual cores e.g. by setting the JTAG chain coordinates.

Start-up Process

The debug system must not have an invalid state where a GUI is connected to a wrong core type of a non-
generic chip, two GUIs are connected to the same coordinate or a GUI is not connected to a core. The initial
state of the system is valid since every new GUI uses a new chip_index according to its CORE= parameter
of the configuration file (config.t32). If the system contains fewer chips than initially assumed, the chips must
be merged by calling SYStem.CONFIG.CORE.

Format: SYStem.CONFIG.CORE <core_index> <chip_index>
SYStem.MultiCore.CORE <core_index> <chip_index> (deprecated)

<chip_index>: 1 … i

<core_index>: 1 … k
StarCore Debugger and Trace | 22©1989-2025 Lauterbach

SYStem.CPU Select the used CPU

Selects the processor type.

• SC100, SC1000, SC2000, SC3000 provide a basic access a customer SOC SC1000, SC2000,
SC3000 device with no support for Watch Dog and Caches.

• OCECORE and SYStem.Option.OCEADDRESS should be set according the integration of the
core. The SC100 CPU selection assumes a JTAG TAP controller compatible to the TCXXXX of
StarCore LLCs design.

SYStem.LOCK Lock and tristate the debug port

Default: OFF.

If the system is locked, no access to the debug port will be performed by the debugger. While locked, the
debug connector of the debugger is tristated. The main intention of the SYStem.LOCK command is to give
debug access to another tool.

SYStem.MemAccess Select run-time memory access method
.

Format: SYStem.CPU <cpu>

<cpu>: MSC8101 | MSC8102 | MSC8103 | MSC8122 | MSC8126 (FREESCALE)
MSC7110 | MSC7112 | MSC7113 | MSC7115 | MSC7116 (FREESCALE)
MXC91XXX (FREESCALE)
SC100 | SC1000 (single SC1000 core with 5bit IR-JTAG register width)
TC1202 | TC1401 | SC140 (StarCore LLCs TC1XXX chips)
SC2000 (Single SC2000 core with 5bit IR-JTAG register width)
TC2400 (StarCore LLCs TC2XXX chips)

Format: SYStem.LOCK [ON | OFF]

Format: SYStem.MemAccess Enable | NEXUS | Cerberus | Denied | StopAndGo
StarCore Debugger and Trace | 23©1989-2025 Lauterbach

Enable
CPU (deprecated)

Memory access of access class E: is done by the on-chip debug
peripheral. The option is selectable if the simulator mode is active. OCE1
to OCE3 don’t support the memory access while runtime..

NEXUS Memory access of access class E: is done by the on-chip Nexus Trace
block. The displayed memory is at level two behind the L1 data cache
and before the L2 cache.

Cerberus Memory access if access class E: is done by the on-chip Cerberus block.

Denied (default) Memory access during program execution to target is disabled.

StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.
StarCore Debugger and Trace | 24©1989-2025 Lauterbach

SYStem.Mode Establish the communication with the target

SYStem.Option.BASE Sets the SUI base address

Default: AUTO.

Format: SYStem.Mode <mode>

SYStem.Attach (alias for SYStem.Mode Attach)
SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)

<mode>: Down
NoDebug
Go
Attach
Up

Down Disables the debugger (default). The state of the CPU remains
unchanged. The JTAG port is tristated.

NoDebug Disables the debugger. The state of the CPU remains unchanged. The
JTAG port is tristated.

Go Resets the target and enables the debugger and start the program
execution. Program execution can be stopped by the break command or
external trigger.

Attach User program remains running (no reset) and the debug mode is
activated. After this command the user program can be stopped with the
break command or if any break condition occurs. The endian mode is not
detected in that case, but can be set by SYStem.Option.LITTLEEND ON.

StandBy This mode is used to start debugging from power-on. The debugger will
wait until power-on is detected, then bring the CPU into debug mode, set
all debug and trace registers and start the CPU. In order to halt the CPU
at the first instruction, place an on-chip breakpoint to the reset address.

Up Resets the target, sets the CPU to debug mode and stops the CPU. After
the execution of this command the CPU is stopped and all register are
set to the default level.

Format: SYStem.Option.BASE [AUTO | VALUE]
StarCore Debugger and Trace | 25©1989-2025 Lauterbach

System Integration Unit (SUI) base address. The base address is detected during the SYStem.Up
command automatically if set to AUTO before. The IOBASE() function returns the value in scripts or
peripheral description files. The debugger cannot detect a change of the base address after SYStem.Up.
Please use SYSten.Option BASE to update the internal used value. When the assumed BASE value differs
from the real value, bus errors can occur in scripts and peripheral browser.

SYStem.Option.DCFLUSH Data cache flush before step/run

Default: OFF.

If enabled, the data cache is updated before the processor executes the next program instructions. This
option must be turned on, if accesses to dual-port memory are taken by the debugger.

SYStem.Option.DTM Enables data trace messages

Default: OFF.

The option can be switched when the chip has nexus trace support. When the option is set to not OFF, the
cpu generates data trace messages. If set to ON or ReadWrite the messages are generated for write/read
accesses. Option Read or Write enables only read or write messages.

SYStem.Option.EnReset Allow the debugger to drive nRESET/nSRST

Default: ON.

If this option is disabled the debugger will never drive the nRESET /nSRST line on the JTAG connector. This
is necessary if nRESET / nSRST is no open collector or tristate signal.

From the view of the StarCore core it is not necessary that nRESET / nSRST becomes active at the start of
a debug session (SYStem.Up), but there may be other logic on the target which requires a reset.

Format: SYStem.Option.DCFLUSH [ON | OFF]

Format: SYStem.Option.DTM [ON | OFF | Read | Write | ReadWrite]

Format: SYStem.Option.EnReset [ON | OFF]
StarCore Debugger and Trace | 26©1989-2025 Lauterbach

SYStem.Option.EnTrst Allow debugger to drive TRST

Default: ON.

If this option is disabled the nTRST line is never driven by the debugger. Instead five consecutive TCK
pulses with TMS high are asserted to reset the TAP controller which have the same effect.

SYStem.Option.HalfRate Enable Nexus DDR mode

Default: OFF.

If the NEXUS probe has an enabled PLL, it will be possible to double the clock of the MCKO line in order to
reconstruct the original clock when the DDR NEXUS mode is active. Use System.Option.HalfRate ON if the
bandwidth of the clock line is too small and to activate the DDR mode. If the option is set to ON the data and
clock lines will need the same bandwidth.

Format: SYStem.Option.EnTrst [ON | OFF]

Format: SYStem.Option.HalfRate [ON | OFF]
StarCore Debugger and Trace | 27©1989-2025 Lauterbach

SYStem.Option.ICFLUSH Instruction cache flush before step/run

Default: ON.

If enabled, the instruction cache is updated before the processor executes the next program instructions.
This option must be turned on, if software breakpoints are set into cached code sections.

SYStem.Option.IMASKASM Disable interrupts while single stepping

Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during assembler single-step operations. The
interrupt routine is not executed during single-step operations. After single step the interrupt mask bits are
restored to the value before the step.

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping

Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during HLL single-step operations. The interrupt
routine is not executed during single-step operations. After single step the interrupt mask bits are restored to
the value before the step.

Format: SYStem.Option.ICFLUSH [ON | OFF]

Format: SYStem.Option.IMASKASM [ON | OFF]

Format: SYStem.Option.IMASKHLL [ON | OFF]
StarCore Debugger and Trace | 28©1989-2025 Lauterbach

SYStem.Option.IPLDI Sets interrupt mask strategy

Default: DI.

SYStem.Option.IMASKHLL and IMASKASM use the SR status register to mask all interrupts. The debugger
can use either the IPL bits or the DI bits to perform this task. Do to technical limitations it is not possible to
detect a disable interrupt code section. After the execution of such a section the debugger cannot determine
whether the interrupts are disabled by the target code or by the debugger depending on the IPLDI strategy.
Use the IPL strategy, when the target code uses the SR.DI bit to disable the interrupts. The DI strategy
should be applied, when the target code modifies the IPL bits in order to disable the interrupts.

SYStem.Option.LittleEnd Switches between endian modes

Default: read after System.Up.

The StarCore cores can run in big and little endian mode. Usually the mode can be switched with the help of
the state of system pins during the reset process. After System.Up the debugger reads the current mode
from the EMR register. Normally it is not necessary to modify this mode during the debug process, but
sometimes it is use full e.g. for verifying the endian mode of loaded code with help of help of the
disassembler. In simulators the endian mode can be changed by editing the EMR:BEM bit in the Register
Window.

SYStem.Option.MCKO Nexus output clock ratio

Default: 1/8.

The option can be set when the chip has nexus trace support and defines the frequency of the nexus output
clock based on the processor frequency. High frequencies can cause electrical connection problems during
the record of trace messages.

Format: SYStem.Option.IPLDI [IPL | DI]

Format: SYStem.Option.LittleEnd [ON | OFF]

Format: SYStem.Option.MCKO [1/8 | 1/4 | 1/2 | 1/1]
StarCore Debugger and Trace | 29©1989-2025 Lauterbach

SYStem.Option.MPU MPU disabled

Default: OFF.

If the option is set to On the MPU will be disabled while the core is stopped. In case of MMU address
translation is enabled on the target there can be still bus errors displayed in case no MMU entry is found for
a memory section. The memory behind the MMU can be seen by the memory class “A” e.g.

SYStem.Option.Nexus Nexus port width

Default: MDO16.

The option can be set when the chip has nexus trace support and defines port width of the MDO vector. The
maximum is defined by the derivatives maximum MDO pin count.

SYStem.Option.OCEBASE Base address for OnCE registers

Default: AUTO.

Defines the base address for the memory mapped OnCE Register. Customer SOCs with addresses
differing from 0x80000000 must set this option.

Format: SYStem.Option.MPU [ON | OFF]

Format: SYStem.Option.Nexus [MDO16 | MDO8]

Format: SYStem.Option.OCEBASE [AUTO | ADDRESS]
StarCore Debugger and Trace | 30©1989-2025 Lauterbach

SYStem.Option.OCECORE OnCE selection

Default: AUTO.

In customer SOCs a standard JTAG StarCore TAP Controller implements a register, where the StarCore can
be addressed when there are multiple cores present. The OCECORE sets the address for the current
TRACE32 instance. Chips with a single StarCore inside don’t need this option.

SYStem.Option.OVC Trace message overrun control

Default: NoStall.

The option can be set when the chip has nexus trace support and defines the behavior that becomes active
when the chip intern trace message FIFO buffer gets full. NoStall will cause losing of messages when the
buffer overruns. All other StallX option will stall the processor until all trace buffers will reach a state with X
elements. The SupprX option disables data trace messages until all trace buffers reach X elements. To do
advanced flow analysis a trace record with no FIFO Overflow Messages is required.

SYStem.Option.PTM Enables program trace messages

Default: OFF.

The option can be switched when the chip has nexus trace support. When PTM is ON, the chip will produce
program trace messages.

Format: SYStem.Option.OCECORE [AUTO | NR]

Format: SYStem.Option.OVC [NoStall | Stall1/4 | Stall1/2 | Stall3/4 | Suppr1/4 |
 Suppr1/2 | Suppr3/4]

Format: SYStem.Option.PTM [ON | OFF]
StarCore Debugger and Trace | 31©1989-2025 Lauterbach

SYStem.Option.SAMPLE Adjust NEXUS sample point

Default: 0.

If the NEXUS probe has an enabled PLL the phase shift of the MCKO line can be adjusted. This setting can
help you to find a better sample point and reach higher MCKO ratios.

SYStem.Option.SLOWPOLL Change timing of JTAG during runtime

Default: ON.

While the starcore is in running mode internal stall cycles can affect the communication. The result can be
the TAP ERROR state or data corruption together with the DCC protocol (used for semi hosting). The
disturbance will increase with longer stall cycles that can occur while the cache is fetching memory or
accesses to external slow busses (e.g. SDRAM with wait states set to high values). SLOWPOLL avoids the
communication problems by decreasing the communication speed.

SYStem.Option.SLOWRESET Expand reset time for additional reset module

Default: OFF.

Defines that the debugger waits additional time for asserting the reset line through an additional reset
controller.

Format: SYStem.Option.SAMPLE [-4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4]

Format: SYStem.Option.SLOWPOLL [ON | OFF]

Format: SYStem.Option.SLOWRESET [ON | OFF]
StarCore Debugger and Trace | 32©1989-2025 Lauterbach

SYStem.Option.VBA Set up VBA value for analysis

Default: AUTO.

Analysis functions like Nexus trace flow analysis depend to a correct VBA value. When the core is running or
down the last known VBA address my be not up to date, therefore it is possible to use a fixed VBA address
specified by this command. The option AUTO will force the debugger to use the last known value. If any
address is set by this command then this address will be used.

Format: SYStem.Option.VBA [AUTO | <address>]
StarCore Debugger and Trace | 33©1989-2025 Lauterbach

SYStem.Option.WaitReset Halt the core after reset

Default: OFF.

This option has to be enabled if the nTRST line is connected to the nRESET/nSRST line on the target. In
this case the CPU executes some cycles while the SYStem.Up command is executed. The reason for this
behavior is the fact that it is necessary to halt the core (enter debug mode) by a JTAG sequence. This
sequence is only possible while nTRST is inactive. In the following figure the time between the de-assertion
of reset and the entry to debug mode is the time for this JTAG sequence.

Often a reset delay unit is used or the JTAG is still unavailable some time after nRESET is released. In this
cases a time >0µs should entered to define the timing when the debugger is allowed to begin to access to
the JTAG after nRESET is released. It is suggested to set the time as small as necessary because the
StarCore can reach an unrecoverable state due to the code execution within the time between reset and
debug mode. The executed code can touch the peripherals which would become active when the core starts
to execute code again. The total between the end of reset and debug mode has a minimum mintime
because the sequence to enter debug time consumes time. The minimum time depends to the JTAG
frequency and core.

If nTRST is available and not connected to nRESET/nSRST it is possible to force the CPU directly after
reset (without cycles) into debug mode. This is also possible by pulling nTRST fixed to VCC (inactive), but
then there is the problem that it is normally not ensured that the JTAG port is reset in normal operation. If the
WaitReset option is disabled the debugger first de-asserts nTRST, then it executes a JTAG sequence to
enter the debug mode and then it de-asserts nRESET/nSRST.

Format: SYStem.Option.WaitReset [OFF | <time>]

nTRST

nSRST

CPU State reset running debug

mintime + <time>

nTRST

nSRST

CPU State reset debug
StarCore Debugger and Trace | 34©1989-2025 Lauterbach

SYStem.Option.WATCHDOG Enable WATCHDOG

Default: OFF.

The watchdog remains active when this option is set to ON [MSC8101]. In this case the watchdog is served
periodically by the debugger, when the chip is in debug mode. Deactivating the watchdog through option
OFF implicates a write access to SYPCR which is writable only one-time after the reset. When a special
configuration word SYPCR is required, disable the watchdog in the startup script by writing the correct value
to SYPCR, or disable it directly in your application.

Example for disabling the watchdog in a script

SYStem.JtagClock Define JTAG clock

Default frequency: 10 MHz.

Selects the JTAG port frequency (TCK) used by the debugger to communicate with the processor. The
frequency affects e.g. the download speed. It could be required to reduce the JTAG frequency if there are
buffers, additional loads or high capacities on the JTAG lines or if VTREF is very low. A very high frequency
will not work on all systems and will result in an erroneous data transfer. Therefore we recommend to use
the default setting if possible.

<frequency>:

The debugger cannot select all frequencies accurately. It chooses the next possible frequency and displays
the real value in the SYStem.state window.

Format: SYStem.Option.WATCHDOG [ON | OFF]

; Watchdog remains active
SYS.Option WATCHDOG ON
SYStem.Up
; the following command read and writes the SYPCR and
; de-asserts the watchdog bit
Data.Set IOBASE()+0x10004 %Long
(Data.Long(D:(IOBASE()+0x10004))&0xFFFFFFFB)

Format: SYStem.JtagClock [<frequency> | RTCK | ARTCK <frequency> |
 CTCK <frequency> | CRTCK <frequency>]

<frequency>: 6kHz … 80MHz
1250000. | 2500000. | 5000000. | 10000000.
StarCore Debugger and Trace | 35©1989-2025 Lauterbach

Besides a decimal number like “100000.” short forms like “10kHz” or “15MHz” can also be used. The short
forms imply a decimal value, although no “.” is used.

• When the debugger is not working correctly (e.g. memory is flickering) decrease the JtagClock.

The following sections about RTCK, ARTCK, CTCK, CRTCK are only relevant if a Board with a 20-pin
Debug Cable is used e.g. LA-7845. Usually this is the case if an ARM core is mixed with a StarCore core in
a device.

RTCK: The JTAG clock is controlled by the RTCK signal (Returned TCK).

On some processor derivatives (e.g. chips including an ARMxxxE-S) there is the need to synchronize the
processor clock and the JTAG clock. In this case RTCK shall be selected. Synchronization is maintained,
because the debugger does not progress to the next TCK edge until after an RTCK edge is received.

In case you have a processor derivative requiring a synchronization of the processor clock and the JTAG
clock, but your target does not provide an RTCK signal, you need to select a fix JTAG clock below 1/6 of the
processor clock (chips including ARM7, ARM9), below 1/8 of the processor clock (chips including ARM11),
respectively.

When RTCK is selected, the frequency depends on the processor clock and on the propagation delays. The
maximum reachable frequency is about 16 MHz.

Example: SYStem.JtagClock RTCK

ARTCK: Accelerated method to control the JTAG clock by the RTCK signal (Accelerated Returned TCK).

RTCK mode allows theoretical frequencies up to 1/6 (chips including ARM7, ARM9) or 1/8 (chips including
ARM11) of the ARM core processor clock. For designs using a very low processor clock we offer a different
mode (ARTCK) which does not work as recommended by ARM and might not work on all target systems. In

The JTAG clock must be limited to 1/4 of the StarCore core clock

Buffers, additional loads or high capacities on the JTAG/COP lines reduce the
debug speed.

The clock mode RTCK can not be used if a debug cable with 14-pin flat cable
(LA-7834) is used. And it is required that the target provides an RTCK signal.
StarCore Debugger and Trace | 36©1989-2025 Lauterbach

ARTCK mode the debugger uses a fixed JTAG frequency for TCK, independent of the RTCK signal. This
frequency must be specified by the user and has to be below 1/3 of the ARM processor clock speed. TDI
and TMS will be delayed by 1/2 TCK clock cycle. TDO will be sampled with RTCK

CTCK: With this option higher JTAG speeds can be reached. The TDO signal will be sampled by a signal
which derives from TCK, but which is timely compensated regarding the debugger-internal driver
propagation delays (Compensation by TCK). This feature can be used with a debug cable versions 3b or
newer. If it is selected, although the debug cable is not suitable, a fix JTAG clock will be selected instead
(minimum of 10 MHz and selected clock).

The mode ARTCK can not be used if a debug cable with 14-pin flat cable (LA-
7834) is used. And it is required that the target provides an RTCK signal.
StarCore Debugger and Trace | 37©1989-2025 Lauterbach

CRTCK: With this option higher JTAG speeds can be reached. The TDO signal will be sampled by the
RTCK signal. This compensates the debugger-internal driver propagation delays, the delays on the cable
and on the target (Compensation by RTCK). This feature requires that the target provides an RTCK signal.
In contrast to the RTCK option, the TCK is always output with the selected, fixed frequency.

The mode CRTCK can not be used if a debug cable with 14-pin flat cable (LA-
7834) is used. And it is required that the target provides an RTCK signal.
StarCore Debugger and Trace | 38©1989-2025 Lauterbach

CPU specific MMU Commands

MMU.DUMP Page wise display of MMU translation table

Displays the contents of the CPU specific MMU translation table.

• If called without parameters, the complete table will be displayed.

• If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

MMU.List Compact display of MMU translation table

This command shows the debugger-internal translation table. See TRANSlation.List.

Format: MMU.DUMP <table> [<range> | <address> | <range> <root> |
 <address> <root>]
MMU.<table>.dump (deprecated)

<table>: ITLB
DTLB

<root> The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display a
page table located anywhere in memory.

<range>
<address>

Limit the address range displayed to either an address range
or to addresses larger or equal to <address>.

For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process if a space ID is
given.

ITLB Displays the contents of the Instruction Translation Lookaside Buffer.

DTLB Displays the contents of the Data Translation Lookaside Buffer.

Format: MMU.List
StarCore Debugger and Trace | 39©1989-2025 Lauterbach

MMU.SCAN Load MMU table from CPU

Loads the CPU-specific MMU translation table from the CPU to the debugger-internal static translation table.

This command is not supported.

Format: MMU.SCAN
StarCore Debugger and Trace | 40©1989-2025 Lauterbach

BenchMarkCounter

For information about architecture-independent BMC commands, refer to “BMC” (general_ref_b.pdf).
StarCore Debugger and Trace | 41©1989-2025 Lauterbach

TrOnchip

The OCE/EOnCE unit of the starcore allows to set on-chip breakpoints and to use the on-chip trace unit.
The registers can be controlled either by TRACE32 or by setting it directly through the DBG memory class
and the target program. TRACE32 uses the on-chip trigger EOnCE registers to perform on-chip breakpoints,
which can be set in the List.auto window or in the Break.Set dialog. The current user interface of TRACE32
offers many possible configurations of the EOnCE unit:

• Up to 12 program address breakpoints

• Or 6 program address range breakpoints

• Or 6 data address breakpoints

• Or 3 data address range breakpoint

• Or 10 program address breakpoints and 1 program address count breakpoint

• Or 1 data address range with value range

The amount of range breakpoints is limited that’s why it is sometimes useful to set the TrOnchip.CONVert
option. When enabled, this option let transform range breakpoints into normal, if necessary. The EOnCE can
perform more operations than TRACE32 offers with it’s user interface e.g. build a chain of breakpoints. If
additional features are required, a special mode can be used, where TRACE32 takes no influence on the
on-chip trigger resources. The dialog TrOnchip includes the switch for this mode. If the special user mode is
activated by selecting “disable”, the registers can be accessed by clicking on “view Register”.

The capability and amount of breakpoints depends to the OCE/EOnce trigger unit structure. An EDCA unit
can hold 2 program breakpoints or 1 program range breakpoint. Data address breakpoints need one single
EDCA. Data address range breakpoints need two EDCA since data bus A and B needs to be checked
independently. The EDCA, EDCD and the ECNT can be connected all by conjunction or disjunction. A data
address range breakpoint with additional data value range is not possible since this contradicts in the
connection, but single data address with value range are possible. The options TrOnchip.CONVert and
TrOnchip.VarCONVert help to convert ranges to single addresses. Also the ECNT unit has only one input
line so that data range address breakpoints cannot be counted.
StarCore Debugger and Trace | 42©1989-2025 Lauterbach

The on-chip counter can be used by several components. If the counter is not used by the on-chip trace
leash mode or on-chip trace stack mode then it can be used as breakpoint counter limited to it’s one input
channel. If no component uses the counter then it will be used as cycle counter and is accessible by the
CYCLO and CYCHI register of the register window.
StarCore Debugger and Trace | 43©1989-2025 Lauterbach

Nexus related actions

The on-chip trigger unit events can be also used to control the on-chip trace and nexus trace. The possible
actions can be defined in the Breakpoint.Set dialog. When the nexus trace is active, the ordinary on-chip
trace will be not active. To control the trace unit an appropriate action has to be selected for the Break.Set
command. The event detection units cannot be associated by conjunction or disjunction that’s why data
ranges or event data value triggered actions are not possible.

On-chip Trace related actions

The on-chip trace can be enabled or disabled by on-chip breakpoints.

Determining the break source

The command TrOnchip.REGister opens a window displaying the OCE/EOnce status registers ESR and
EMCR. The ESR register contains bits to show why the core entered debug mode. If there was no break
indication bit true, the reason was probably a manual break coming from JTAG.

b.s main /TRACEON ; Enabled program Trace at main

b.s sieve /TRACEOFF ; Disabled program Trace at sieve

b.s flags /TRACEDATA ; Set up a filter for Data Trace (only
; Nexus with DTM option set to on)

b.s main /TRACETRIGGER ; Set Watchpoint message or/and EVTO pin
; to generate Trigger

b.s main /BUSTRIGGER ; Set Watchpoint message or/and EVTO pin
; to generate a trigger pulse on the
; PodBus

b.s main /BUSCOUNT ; Set Watchpoint message or/and EVTO pin
; to allow frequency counter feature

b.s main /TRACEON ; Enabled program Trace at main

b.s sieve /TRACEOFF ; Disabled program Trace at sieve
StarCore Debugger and Trace | 44©1989-2025 Lauterbach

TrOnchip Control of on-chip resources

Default: Enable

Example for using T32 mode

Example for using CUSTOM mode

Format: TrOnchip.ENable
TrOnchip.DISable

ENable Enable on-chip breakpoints from the GUI.

DISable Disable influence of GUI. In the CUSTOM mode it is allowed to modify
the EOnCE register of the trigger on-chip unit to implement extended
behavior e.g. breakpoint chains or EE-Signal control.

; activate mode
TrOnchip.ENable
; set on-chip breakpoint on main
Break.Set main /Onchip
; go and break
go
enddo

; activate custom mode
TrOnchip.DISable
; configure trigger onchip unit and set on-chip breakpoint on main with
EDCA2

; open register file to determine addresses in DBG: memory space
TrOnchip.REGister
; EDCA2_CTRL: ENA, A only, PC, read, equal
D.S DBG:0x390 %LONG %LE 0x3C03
; EDCA2_REFA: REFA = main
D.S DBG:0x394 %LONG %LE main
; ESEL_CTRL: SELDM = OR
D.S DBG:0x3E8 %LONG %LE 0x0
; ESEL_DM: EDCA2 = ON
D.S DBG:0x3EC %LONG %LE 0x4

; go and break
go
enddo
StarCore Debugger and Trace | 45©1989-2025 Lauterbach

TrOnchip.CONVert Automatically convert range to single address

When enabled (default) the address on-chip breakpoints are automatically converted from a range to a
single address if required. If the switch is off, the system will only accept breakpoints which exactly fit to the
on-chip breakpoint hardware.

TrOnchip.REGister Shows custom on-chip trigger registers

The command opens a dialog, where the custom on-chip trigger and trace registers can be set. This is only
useful, if TrOnchip.Mode equaled CUSTOM.

TrOnchip.RESet Set on-chip trigger to default state

Sets the TrOnchip settings and trigger module to the default settings.

TrOnchip.VarCONVert Automatically convert range to single address

When enabled (default) the data address on-chip breakpoints are automatically converted from a range to a
single address if required. If the switch is off, the system will only accept breakpoints which exactly fit to the
on-chip breakpoint hardware.

Format: TrOnchip.CONVert [ON | OFF]

Format: TrOnchip.REGister

Format: TrOnchip.RESet

Format: TrOnchip.VarCONVert [ON | OFF]
StarCore Debugger and Trace | 46©1989-2025 Lauterbach

TrOnchip.state Opens configure panel

Control panel to configure the on-chip breakpoint and trace registers. The details are described in section
TrOnchip.

Format: TrOnchip.state
StarCore Debugger and Trace | 47©1989-2025 Lauterbach

On-chip Trace

Onchip.Mode Select mode to control trace buffer and contents

Trace Buffer Modes that control the behavior of the trace buffer if it is full:

• Fifo. In the Fifo mode the trace buffer is implemented as a Ring Buffer. When the trace is full the
write pointer just returns to the begin of the trace buffer and overwrites previous data.

• Stack. If the Stack mode is active, the record is stopped when the trace buffer is full.

• Leash. The Leash mode is a special Stack mode where the target also stops when the trace is
full. The Leash mode is cycle accurate. When the target stops due to that event all previous
messages can be seen. The Leash mode may conflict with the TimeStamp setting or counted
breakpoints, because the same counter is used in another way.

Trace modes that control the contents of the trace buffer:

• ExecutionTrace. The Address of every executed VLES is written to the trace buffer. The
advantage of this mode is that all analysis based on this buffer can be done very fast and easy.

• FlowTrace. Only change of flow instructions are recorded to save trace buffer memory.

• LoopTrace. Hardware Loops are not displayed in the trace to save trace buffer memory. Usually
this does not matter unless the Hardware Loops don’t contain other jumps. Use FlowTrace or
CompressTrace if the program flow cannot be reconstructed.

• CompressTrace. Some derivatives support an additional compression for loops (repeated
branch messages) and Task_ID information. The CompressTrace is based on the FlowTrace with
the advantage of the LoopTrace to save trace buffer memory in case of loops.

• InterruptTrace. If enabled interrupts will be traced.

• TimeStamp. Change of flow oriented trace modes offer the possibility to trace the OCE/EOnce
counter in order to reconstruct a timestamp. If TimeStamp is set to ON, the counter cannot be
used anymore for the Leash mode or counting other events like breakpoints. To derive a
timestamp from the clock cycles the options SYStem.Clock or OnChip.CLOCK need to be set to
a correct value.

Format: Onchip.Mode [<mode>]

<mode> Fifo | Stack | Leash
ExecutionTrace
FlowTrace
LoopTrace
CompressTrace
InterruptTrace
TimeStamp
StarCore Debugger and Trace | 48©1989-2025 Lauterbach

Onchip.VTBA Set the destination address of the onchip trace

The command VTBA sets the Virtual Trace Buffer Address range in order to program the onchip trace unit
with this information. After the command is execute the onchip trace has a defined size and can be armed.

Some derivatives do not have a separate onchip memory to store the trace records, but can write the entries
to an arbitrary memory location, which can be set by the VTBA command. The real-time capability is limited
as more the write process stalls the core. The onchip trace size only depends to the memory layout of the
target application. The speed of post analysis is limited to the download speed of the target via JTAG. Higher
JTAG frequencies will speed up the process as well as smaller trace buffer ranges.

Format: Onchip.VTBA [<addressrange>]
StarCore Debugger and Trace | 49©1989-2025 Lauterbach

General Restrictions

ASM debugging in hard-
ware loops - set PC

When the PC register is set in a hardware loop, the loop flags and
loop count register may be change.

ASM debugging in hard-
ware loops - stepping

The debugger tries to step over delay slots. If the debugger is not
successful, set a software breakpoint after the hardware loop and
use go to step over the hardware loop.

HLL debugging in opti-
mized code

HLL debugging in optimized code is restricted. Source lines may be
assigned wrong, local variables may not be displayed.

Software breakpoints in
delay slots

Breakpoints must not be placed in delay slots. Program flow and
data integrity may be wrong after break.

Debugging with inter-
rupts

When IMASKHLL or IMASKASM is enabled the debugger won’t
update correctly the interrupt disable bit in the SR register in case
the code executed the DI instruction. Use SYStem.Option.IPLDI to
switch the behavior.

MultiCore synchronous
start between StarCore
and ARM cores

The StarCore starts 1 JTAG clock cycle before the ARM core starts

On-chip trace with mode
“LoopTrace”

When a jump instruction is within a loop body the debugger warns
about flow errors. As a workaround the trace mode “FlowTrace”
should be used.

MSC8122 does not halt
with SYStem.UP

The core(s) cannot be stopped by JTAG when the reset is active.
Make sure that the EE0 signal is high while reset in order to halt the
core just after reset. “System.Option.WaitReset 0us” will also work,
but the core will execute some instructions before it halts.
StarCore Debugger and Trace | 50©1989-2025 Lauterbach

Floating Point Formats

Integer Access Keywords

F24 Fractional fixed point 24 bit

F48 Fractional fixed point 48 bit

F16 Fractional fixed point 16 bit

F32 Fractional fixed point 32 bit

NOTE: Fractional floating point numbers are always displayed with a fixed precision, i.e. a
fixed number of digits. Small fractional numbers can have many non relevant digits
displayed.

Word Word (16 bit)

TByte Triple byte (24 bit)

Long Double Word (32 bit), upper and lower word swapped

HByte Hexabyte (48 bit)

Quad Tertiary Word (64 bit), upper and lower word swapped
StarCore Debugger and Trace | 51©1989-2025 Lauterbach

File I/O Support

Metrowerks MSLIO Support

The C-Library delivered with Metrowerks Compiler contains the Standard C I/O functions like printf() or
fopen(). It is possible to make this functions working together with the host in nearly all configurations or
targets. The key is to set a breakpoint to the __syscall address in the target program. TRACE32 for StarCore
has implemented the protocol stack for the __syscall function. When the target stops at the breakpoint the
data is processed by TRACE32 host software and the target is set to running mode again. The approach of
course will have influence to the targets real time capability indicated by a red S in the TRACE32 state line.
To activate the MSLIO support the following line should be executed:

In ROM, FLASH or shared memory sections it is not possible or not recommended to set software
breakpoints. In this case it has to be considered that the StarCore on-chip breakpoint is not exact. It stops
just after the VLES is executed. To trigger the Terminal Protocol to the right Program Counter, just add 0x2 to
the Term.Method MSLIO address:

WinClear TERMW ; Closes opened terminal window

Break.Set __syscall ; Sets breakpoint to __syscall
function

Term.Method MSLIO __syscall ; Set MSLIO protocol activated by
; break point __syscall

SYStem.Up ; Reset the target and enter debug
; mode

WinPOS 0 0 79 10 100 100 TERMW ; Setup position and name for Terminal
; window

Term ; Opens terminal window

Data.List ; Open source window

Register.view /SpotLight ; Open register window

Var.Local ; Open window with local variables

Break.Set __syscall /ONCHIP ; Sets on-chip breakpoint to __syscall
; function

Term.Method MSLIO __syscall+0x2 ; Set MSLIO protocol activated by
; break point __syscall
StarCore Debugger and Trace | 52©1989-2025 Lauterbach

JTAG Connection

Mechanical Description of the 20-pin Debug Cable

This connector is defined by ARM and we recommend this connector for all future designs. Our debugger
“JTAG Debugger for StarCore” (LA-7845) is supplied with this connector:

This is a standard 20 pin double row connector (pin-to-pin spacing: 0.100 in.).

We strongly recommend to use a connector on your target with housing and having a center polarization
(e.g. AMP: 2-827745-0). A connection the other way around indeed causes damage to the output driver of
the debugger.

Signal Pin Pin Signal
VREF-DEBUG 1 2 VSUPPLY (not used)

TRST- 3 4 GND
TDI 5 6 GND

TMS|TMSC|SWDIO 7 8 GND
TCK|TCKC|SWCLK 9 10 GND

RTCK 11 12 GND
TDO|-|SWO 13 14 GND

RESET- 15 16 GND
DBGRQ 17 18 GND

DBGACK 19 20 GND
StarCore Debugger and Trace | 53©1989-2025 Lauterbach

Electrical Description of the 20-pin Debug Cable

• The input and output signals are connected to a supply translating transceiver (74ALVC164245).
Therefore the ICD can work in a voltage range of (1.5 V) 1. … 3.3 V (3.6 V). Please note that a
5V supply environment is not supported! This would cause damage on the ICD.

The newer debug cables (since about March 2004; having a different connector case design) can
work in a voltage range of 0.4 … 5.0 V (5.25 V).

• VTREF is used as a sense line for the target voltage. It is also used as supply voltage for the
supply translating transceiver of the ICD interface to make an adaptation to the target voltage
(1.5 V) 1.8 … 3.3 V (3.6 V). On the newer debug cables (September 2003 and newer) it is used
as sense line, only.

• nTRST, TDI, TMS, TCK are driven by the supply translating transceiver. In normal operation
mode this driver is enabled, but it can be disabled to give another tool access to the JTAG port. In
environments where multiple tools can access the JTAG port, it is required that there is a pull-up
or pull-down resistor at TCK. This is to ensure that TCK maintains its level during a hand-over
between different tools. Depending to that level the option SYStem.CONFIG.TCKLevel has to be
set. The nTRST signal must have a pull-up resistor to have the correct level while endeavor
between different tools.

• RTCK is the return test clock signal from the target JTAG port. This signal can be used to
synchronize JTAG clock with the processor clock (see SYStem.JtagClock).

• TDO is an ICD input. It is connected to the supply translating transceiver.

• nSRST (=nRESET) is used by the debugger to reset the target CPU or to detect a reset on the
target. It is driven by an open collector buffer. A pull-up resistor is included in the ICD connector.
The debugger will only assert a pulse on nSRST when the SYStem.UP, the SYStem.Mode Go or
the SYStem.RESetOUT command is executed. If it is ensured that the ARM is able to enter
debug mode every time (no hang-up condition), the nSRST line is optional.

• EDBGRQ is driven by the supply translating transceiver. This line is optional. It allows to halt the
program execution by an external trigger signal.

• DBGACK is an ICD input. It is connected to the supply translating transceiver. A pull-down
resistor is included in the ICD connector. This line is optional. It allows exact runtime
measurement and exact triggering of other devices on a program execution halt.

• N/C (= Vsupply) is not connected in the ICD. This pin is used by debuggers of other
manufacturers for supply voltage input. The ICD is self-powered.

There is an additional plug in the connector on the debug cable to the debug interface. This signal is tristated
if the JTAG connector is tristated by the debugger and it is pulled low otherwise. This signal is normally not
required, but can be used to detect the tristate state if more than one debug tools are connected to the same
JTAG port.
StarCore Debugger and Trace | 54©1989-2025 Lauterbach

JTAG Connector 14-pin

This connector is the standard for single starcore systems like on StarCoreLLCs evaluation boards or
Freescale public evaluation board for MSC8xxx or MSC7xxx. Our debugger “JTAG Debugger for StarCore”
(LA-7834) is supplied with the connector below. An “Adapter for StarCore Boards with Ejector” is offered by
LA-3724:

Signal Pin Pin Signal
TDI 1 2 GND

TDO 3 4 GND
TCK 5 6 GND
N/C 7 8 KEY

RESET- 9 10 TMS
VCCS 11 12 N/C

N/C 13 14 TRST-

Pins Connection Description Recommendations

1 TDI Test Data In If there are multiple devices on the JTAG chain,
connect TDI to the TDO signal of the previous
device in the chain.

2,4,6 GND System
Ground Plan

Connect to digital ground.

3 TDO Test Data Out If there are multiple devices on the JTAG chain,
connect TDO to the TDI signal of the next device
in the chain.

5 TCK Test Clock Add 10 k pull-up resistor to VCC.

7, 13,
12

NC No Connect Leave unconnected.

8 KEY Mechanical
Keying

Pin should be removed.

9 /RESET Reset May be tied to HRESET.

10 TMS Test Mode
Select

None.
StarCore Debugger and Trace | 55©1989-2025 Lauterbach

11 VCCS VCC Sense Connect to Chip I/O voltage VDDH through a
10 k current limiting resistor.

14 /TRST Test Reset TRST has an internal pull-up resistor, so no
external pull-up or pull-down resistor is required.
However, a 10 k pull-down resistor should
added to GND on this signal to keep the JTAG in
reset mode while the device is operating
regularly. When using more than one debug
dongle driving this signal it is not recommended
to pull down the signal in debug mode, because
during the dongle source switch the signal output
is set to tristate.

Pins Connection Description Recommendations
StarCore Debugger and Trace | 56©1989-2025 Lauterbach

Memory Classes

Memory Class to
select real-time
access

Description

E While the CPU is running all memory accesses containing the E character
will access the memory defined by SYStem.MemAccess. When the CPU
is stopped the E character is not considered.

Memory Class Description

D,C Data memory. Memory seen from the cores point of view.

P Program memory. Access is done with disabled data cache. The
instruction cache state is not touched here. Set SYStem.Option.ICFLUSH
to update the instruction cache before the core executes instructions.

Memory Class attri-
butes to select
Supervisor or User
mode view

Description

S Supervisor mode. The memory is seen from the cores point of view when
it is in Supervisor/Exception mode.

U User mode. The memory is seen from the cores point of view when it is in
User mode.

not S or U Automatically selects U or S derived from EXP and PE bit of the PSR
register.

Memory Class attri-
butes to select MMU
address translation
(ATE) and MMU pro-
tection (MPU)

Description

not A Address translation enabled if it is enabled by the MMU (logical address).

A Absolute address. Any access is done with ATE/MPU disabled (physical
address). The A attribute should be used in peripheral files in order to be
independent of the current MMU settings.

Example Address Description

UD:0x0 References to logical user data memory at 0x0.

AD:0x1000 References to absolute physical address data memory at 0x1000.

SP:0x2000 References to logical supervisor program memory at 0x2000.
StarCore Debugger and Trace | 57©1989-2025 Lauterbach

•

StarCore Debugger and Trace | 58©1989-2025 Lauterbach

	StarCore Debugger and Trace
	Introduction
	Brief Overview of Documents for New Users
	Demo and Start-up Scripts

	Warning
	Quick Start
	Troubleshooting
	SYStem.Up Errors
	Memory Access Errors
	NEXUS Flow Errors and FIFO Overflow Messages

	FAQ
	Configuration
	CPU specific SYStem Settings and Restrictions
	SYStem.CLOCK Setup core clock
	SYStem.CONFIG.state Display target configuration
	SYStem.CONFIG Configure debugger according to target topology
	Daisy-Chain Example
	TapStates

	SYStem.CONFIG.CORE Assign core to TRACE32 instance
	SYStem.CPU Select the used CPU
	SYStem.LOCK Lock and tristate the debug port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Establish the communication with the target
	SYStem.Option.BASE Sets the SUI base address
	SYStem.Option.DCFLUSH Data cache flush before step/run
	SYStem.Option.DTM Enables data trace messages
	SYStem.Option.EnReset Allow the debugger to drive nRESET/nSRST
	SYStem.Option.EnTrst Allow debugger to drive TRST
	SYStem.Option.HalfRate Enable Nexus DDR mode
	SYStem.Option.ICFLUSH Instruction cache flush before step/run
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.Option.IPLDI Sets interrupt mask strategy
	SYStem.Option.LittleEnd Switches between endian modes
	SYStem.Option.MCKO Nexus output clock ratio
	SYStem.Option.MPU MPU disabled
	SYStem.Option.Nexus Nexus port width
	SYStem.Option.OCEBASE Base address for OnCE registers
	SYStem.Option.OCECORE OnCE selection
	SYStem.Option.OVC Trace message overrun control
	SYStem.Option.PTM Enables program trace messages
	SYStem.Option.SAMPLE Adjust NEXUS sample point
	SYStem.Option.SLOWPOLL Change timing of JTAG during runtime
	SYStem.Option.SLOWRESET Expand reset time for additional reset module
	SYStem.Option.VBA Set up VBA value for analysis
	SYStem.Option.WaitReset Halt the core after reset
	SYStem.Option.WATCHDOG Enable WATCHDOG
	SYStem.JtagClock Define JTAG clock

	CPU specific MMU Commands
	MMU.DUMP Page wise display of MMU translation table
	MMU.List Compact display of MMU translation table
	MMU.SCAN Load MMU table from CPU

	BenchMarkCounter
	TrOnchip
	TrOnchip Control of on-chip resources
	TrOnchip.CONVert Automatically convert range to single address
	TrOnchip.REGister Shows custom on-chip trigger registers
	TrOnchip.RESet Set on-chip trigger to default state
	TrOnchip.VarCONVert Automatically convert range to single address
	TrOnchip.state Opens configure panel

	On-chip Trace
	Onchip.Mode Select mode to control trace buffer and contents
	Onchip.VTBA Set the destination address of the onchip trace

	General Restrictions
	Floating Point Formats
	Integer Access Keywords
	File I/O Support
	Metrowerks MSLIO Support

	JTAG Connection
	Mechanical Description of the 20-pin Debug Cable
	Electrical Description of the 20-pin Debug Cable
	JTAG Connector 14-pin

	Memory Classes

