LAUTERBACH A

RH850 Debugger and Trace

Release 09.2024

RH850 Debugger and Trace

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
ICD IN-Circuit DEDUQGQETcccieciiiiiimririnsmms s sissssmss s ssms s ssms s s s smms s s mms s s e mms e s ea s smmne s ensnmmnns r—~
Processor Architecture Manuals ... s r—~
] 1 PP r=
RHB850 Debugger and TracCecccccciiiiiiiiiiiiisnsmmmennr s sssssss s ssmmsmns s s s e snnnnas 1

L 1= (o 7

Y e Yo 11T £ o) o T 8
Available Tools 8
Debugger 8
Software-only Debugger for XCP 8

SFT Trace 9

On-chip Trace 9
High-Speed Serial Off-chip Trace (Aurora NEXUS) 9

Parallel Off-chip Trace (parallel NEXUS) 9
Co-Processor Debugging (GTM) 10
Multicore Debugging 10
Software Installation 10
Related Documents 10

Demo and Start-up Scripts 11

Brief Overview of Documents for New Users 11

R = 1 41 ' 12

L LT =] I o S 13
Application Starts Running at SYStem.Up 13
Greenhills Compiler 14

Stop Timers and Peripherals during application-break 14
Location of Debug Connector 14

Reset Line 14
Debugging the STOP and DeepSTOP Mode 15

{070 o1 {To 117 = 11 Lo o X 16
System Overview 16
Single Core Debugging - QUIick Start ..o 17
Debug from Reset 17
©1989-2024 Lauterbach RH850 Debugger and Trace | 2

Connect to Running Program (Hot Plug-In) 19
TroubleShOOtING ...cccccciiiiicr s s 20
SYStem.Up Errors 20
O 20
[11 o ¥ o 1 1T R 21
RHB850 Debug Interface Modes 21
JTAG Mode 21
LPD4 Mode 21
LPD1 Mode 22
UART Mode 22
Breakpoints 24
Software Breakpoints 24
Onchip Breakpoints 24
Breakpoint in ROM 25
Example for Breakpoints 25
Access Classes 26
Access Classes to Memory and Memory Mapped Resources 26
Access Classes to Other Addressable Core and Peripheral Resources 27
Support for Peripheral Modules 29
Runtime Measurement 29
Multicore Debugging 30
SMP Debugging 30
AMP Debugging 32
FLASH Programming SUPPOITcccceiiiirmmmrmmiinssssinnsssss s mssssssss s ssssssss s sssssssssssssssssssssssssasas 34
I T 1 36
SFT Trace via LPD4 36
NEXUS On-chip Trace 36
External Trace Ports (Parallel NEXUS/Aurora NEXUS) 36
Tracing the Program Flow 37
Tracing of Data (read/write) Transactions 38
Example: Data Trace with Address Range 38
Trace Filtering and Triggering with Debug Events 39
Event Breakpoints 39
Overview 39
Example: Selective Program Tracing 40
Example: Event Controlled Program/Data Trace Start and End 41
Example: Event Controlled Trace Recording 42
Example: Event Controlled Trigger Signals 42
Example: Event Counter 43
Tracing Peripheral Modules / Bus Masters 43
SFT SOftWAre TracCecccccccceeririmrississsssssmmmmsnnsssnsssssssssssssmsssssssssessssssssssssnmmsesssnsssnssnssssssannnns 44
©1989-2024 Lauterbach RH850 Debugger and Trace 3

SFT Software Trace to On-chip Trace 44
SFT Software Trace via LPD4 debug port 45
CPU specific SYStem Commandsccccevreemmrrrnssmerressssmeersssssmsssesssmmssssssssmssssssssmesseas 46
SYStem.BAUDRATE Baudrate setting 46
SYStem.CONFIG.state Display target configuration 46
SYStem.CONFIG Configure debugger according to target topology 47
Daisy-Chain Example 49
TapStates 50
SYStem.CONFIG.CORE Assign core to TRACES2 instance 51
SYStem.CONFIG.DEBUGPORT Select target interface 52
SYStem.CONFIG.DEBUGPORTTYPE Select debug port type 52
SYStem.CONFIG.EXTWDTDIS Control external watchdog 53
SYStem.CONFIG.PortSHaRing Control sharing of debug port with other tool 54
SYStem.CORECLOCK Core clock frequency 54
SYStem.CPU CPU type selection 55
SYStem.JtagClock JTAG clock selection 55
SYStem.LOCK Lock and tristate the debug port 55
SYStem.MemAccess Select run-time memory access method 56
SYStem.Mode System mode selection 57
SYStem.OSCCLOCK Oscillator clock frequency 58
SYStem.RESetOut Reset target without reset of debug port 58
CPU specific SYStem.Option Commandsccccciivrrcemmmmmmmnnsisnssssssssssssssssssesssssssssssssnas 59
SYStem.Option.CFU CalibrationFunctionUnit support 59
SYStem.Option.DOWNMODE Behavior of SYStem.Mode Down 59
SYStem.Option.DUALPORT Implicitly use run-time memory access 60
SYStem.Option.FLMDO FLMDO pin default level 60
SYStem.Option.HoldReset Set reset hold time 60
SYStem.Option.ICUS ICU-S enable 62
SYStem.Option.IDSET Program KeyCodes to CPU option bytes 63
SYStem.Option.IMASKASM Interrupt disable 63
SYStem.Option.IMASKHLL Interrupt disable 63
SYStem.Option.KEYCODE Keycode (G3Kx cores only) 64
SYStem.Option.MACHINESPACES Address extension for guest OSes 64
SYStem.Option.OCDID OnChipDebuglID setting 65
SYStem.Option.CFID CodeFlashID setting 65
SYStem.Option.DFID DataFlashID setting 65
SYStem.Option.OPtionByTe Option-byte setting 66
SYStem.Option.OPtionByTe8 Option-byte setting 66
SYStem.Option.CIDA Customer-ID A setting 66
SYStem.Option.CIDB Customer-ID B setting 67
SYStem.Option.CIDC Customer-ID C setting 67
SYStem.Option.PERSTOP Disable CPU peripherals if stopped 68
SYStem.Option.RESetBehavior Set behavior when target reset detected 69
©1989-2024 Lauterbach RH850 Debugger and Trace 4

SYStem.Option.ResetDetection Configure reset detection method 70
SYStem.Option.RDYLINE RDY pin available 70
SYStem.Option.SLOWRESET Timeout for ResetRiseTime 71
SYStem.Option.WaitReset Set reset wait time 71
SYStem.Option (Exception Lines ENable)cccccciiiiimiiiesinismnss s s s s e 72
SYStem.Option.CPINT CPINT line enable 72
SYStem.Option.REQest Request line enable 72
SYStem.Option.RESET Reset line enable 72
SYStem.Option.STOP Stop line enable 73
SYStem.Option.WAIT Wait line enable 73
CPU specific BenchMarkCounter COmMmandsc.cccvivmmmmnmsminssmsssssissssssssssssssssnsanes 74
BMC.<counter>.ATOB Enable event triggered counter start and stop 75
BMC.<counter>.EVENT Configure the performance monitor 76
BMC.<counter>.TRIGMODE BMC trigger mode 77
BMC.<counter>.TRIGVAL BMC trigger value 77
CPU specific TrOnchip Commandsccccccemmmiiiiemmmmmnnsssrrnsssssssss s ssssssssns 78
TrOnchip.CONVert Allow extension of address range of breakpoint 78
TrOnchip.EVTEN Enable ‘EVTO-’ trigger input (Aurora trace only) 79
TrOnchip.RESet Set on-chip trigger to default state 79
TrOnchip.SIZE Trigger on byte, word, long memory accesses 80
TrOnchip.state Display on-chip trigger window 80
TrOnchip.VarCONVert Convert breakpoints on scalar variables 81
Command Reference: NEXUS ... ssssssssssssssssmssssssssssssssssssmmsssnnas 83
NEXUS.BTM Program trace messaging enable 83
NEXUS.CoreENable Core specific trace configuration 83
NEXUS.CLIENT<x>.MODE Set data trace mode of nexus client 83
NEXUS.CLIENT<x>.SELECT Select a nexus client for data tracing 84
NEXUS.DTM Data trace messaging enable 84
NEXUS.OFF Disable NEXUS register access 85
NEXUS.ON Switch the NEXUS trace port on 85
NEXUS.PortMode Set NEXUS trace port frequency 85
NEXUS.PortSize Set trace port width 86
NEXUS.RESet Reset NEXUS trace port settings 86
NEXUS.SFT Software trace messaging enable 86
NEXUS.SUSpend Stall the program execution when FIFO full 86
NEXUS.SYNC Address-sync trace messaging enable 87
NEXUS.SyncPeriod Set period of timestamp sync messages 87
NEXUS.state Display NEXUS port configuration window 87
NEXUS.TimeStamps On-chip timestamp generation enable 88
Nexus specific TrOnchip Commandsccccuiimmiiismmmninmies s s 89
TrOnchip.Alpha Set special breakpoint function 89
TrOnchip.Beta Set special breakpoint function 90
©1989-2024 Lauterbach RH850 Debugger and Trace 5

TrOnchip.Charly Set special breakpoint function 90
TrOnchip.Delta Set special breakpoint function 91
TrOnchip.Echo Set special breakpoint function 91
CPU specific FUNCLIONS coiiiiiieiiiiiienr s s s e e ssmmn e 92
CPU.BASEFAMILY() CPU family 92
CPU.DEVICEID() Value of the device-id 92
CPU.SUBFAMILY() CPU subfamily 92
SYStem.BAUDRATE() Value of baudrate 93
SYStem.CORECLOCK() Core clock frequency 93
SYStem.OSCCLOCK() Oscillator clock frequency 93
SYStem.CFID() Values of CodeFlashID 93
SYStem.DFID() Values of DataFlashID 94
SYStem.OCDID() Values of OnChipDebugID 94
SYStem.OPBT() Values of Option-bytes 94
SYStem.OPBT8() Values of Option-bytes 95
SYStem.RESETDETECTION() Reset detection method 95

[1= W T T 0T o o1 0 1= o3 o T 96
Debug Connector 14 pin 100mil 96
Debug Connector 26 97
Trace Connectors and Adapterscccccccmrrmimsrmees s 98
Adapter for RH850 (LA-3561) 98
Parallel NEXUS Connector (Debug and Trace) 100
Aurora NEXUS SAMTEC 34-pin (Debug and Trace) 101
Aurora NEXUS SAMTEC 40-pin (Trace only) 102
Aurora NEXUS SAMTEC 46-pin (Debug and Trace) 103
©1989-2024 Lauterbach RH850 Debugger and Trace | 6

RH850 Debugger and Trace

History

Version 05-Oct-2024

03-Mar-2024
03-May-2023
23-May-2022

20-May-2022

20-May-2022

19-May-2022

New commands: SYStem.Option.CIDA, SYStem.Option.CIDB, and SYStem.Option.CIDC.
New command SYStem.Option.DUALPORT.
New functions: CPU.BASEFAMILY(), and CPU.SUBFAMILY().

New functions: SYStem.BAUDRATE(), SYStem.CORECLOCK(), and
SYStem.OSCCLOCK().

New functions: SYStem.OPBT(), SYStem.OPBT8(), and SYStem.RESETDETECTION().

New functions: CPU.DEVICEID(), SYStem.Option.CFID(), SYStem.Option.DFID(), and
SYStem.Option.OCDID().

©1989-2024 Lauterbach RH850 Debugger and Trace | 7

Introduction

This document describes the processor specific settings and features for RENESAS RH850.

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by
Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your
first choice.

If some of the described functions, options, signals or connections in this Processor Architecture Manual are

only valid for a single CPU or for specific family lines, the name(s) of the family/families is/are added in
brackets.

Available Tools

This chapter gives an overview over available Lauterbach tools for the RH850 processors.

Debugger

Debugging RH850 requires a Lauterbach Debug Cable
together with a Lauterbach PowerDebug Module.

To connect to the target the following Debug Cable can be
used:

. JTAG Debugger for RH850 - LA-3719 N

The Debug Cable supports all debug interface modes of the
RH850 (JTAG, LPD4, LPD1) plus SerialFlashProgramming. %

The Debug Cable comes with a license for debugging.

Furthermore it is required to use a Debug Module from the POWER series, e.g.
. POWER DEBUG INTERFACE / USB 3

. POWER DEBUG INTERFACE / USB 2

. POWER DEBUG PRO

The DEBUG INTERFACE (LA-7701) does not support this processor series.

Software-only Debugger for XCP

TRACES32 supports debugging over a 3rd-party tool using the XCP protocol. For details see “XCP Debug
Back-End” (backend_xcp.pdf).

©1989-2024 Lauterbach RH850 Debugger and Trace | 8

SFT Trace

SFT trace (software trace) requires no extra Lauterbach hardware. Trace data can be saved to the On-chip
trace or it can be streamed to the debug box in real time (LPD4 mode only). In streaming mode up to
32MRec of trace data can be recorded.

SFT-trace requires code instrumentation which typically is provided by the compiler tool. TRACE32 reads all
SFT-trace symbol information from the loaded ELF file (currently only supported for Greenhills compiler).

Beside the display of SFT string messages, the display of function charts and calculation of runtime-
statistics is supported.

On-chip Trace

On-chip tracing requires no extra Lauterbach hardware, it can be configured and read out with the regular
debug hardware. On-chip tracing requires a trace license (LA-3734X).

High-Speed Serial Off-chip Trace (Aurora NEXUS)

Lauterbach offers off-chip trace solutions for the Aurora
NEXUS trace port. Aurora is a high-speed serial interface
defined by Xilinx.

Tracing can either be done with PowerTrace Serial \ . N
4 GigaByte RH850 (LA-3560) which supports up to 8 lanes, '
N\

each at 12.5Gbps.

Or with Preprocessor RH850 HSTP HF-Flex and a
PowerTrace Il / PowerTrace Il module. This configuration
supports up to 4 lanes at a lower speed.

mm" “'/- e

Parallel Off-chip Trace (parallel NEXUS)

Lauterbach offers an off-chip trace solution for processors
with parallel NEXUS trace port.

Tracing requires the parallel preprocessor and a POWER TRACE Il / POWER TRACE Il module.
J Preprocessor Focus Il RH850 (LA-3918)
J Preprocessor RH850 (LA-3843)

©1989-2024 Lauterbach RH850 Debugger and Trace | 9

Co-Processor Debugging (GTM)

Debugging the RH850 coprocessors GTM is included free of charge, i.e. there is no additional license
required.

For details about coprocessor debugging, see the specific Processor Architecture Manuals:

“GTM Debugger and Trace” (debugger_gtm.pdf)

Multicore Debugging

Lauterbach offers multicore debugging and tracing solutions, which can be done in two different setups:
Symmetric Multiprocessing (SMP) and Asymmetric Multiprocessing (AMP). For details see chapter
Multicore Debugging.

Multicore debugging of multiple RH850 cores requires the License for Multicore Debugging (MULTICORE).

Software Installation

Please follow chapter “Software Installation” (installation.pdf) on how to install the TRACES32 software:

An installer is available for a complete TRACE32 installation under Windows.
See “MS Windows” in TRACE32 Installation Guide, page 21 (installation.pdf).

For a complete installation of TRACES32 under Linux, see “PC_LINUX” in TRACES32 Installation
Guide, page 23 (installation.pdf).

Related Documents

“GTM Debugger and Trace” (debugger_gtm.pdf): Debugging and tracing the Generic Timer
Module (GTM).

“Training MPC5xxx/SPC5xx Nexus Tracing” (training_nexus_mpc5500.pdf): Training for the
NEXUS trace

“Onchip/NOR FLASH Programming User’s Guide” (norflash.pdf): Onchip FLASH and off-chip
NOR FLASH programming.

“Training Basic SMP Debugging” (training_debugger_smp.pdf): SMP debugging.
“Application Note Benchmark Counter RH850” (app_rh850_bmc.pdf).

“XCP Debug Back-End” (backend_xcp.pdf): Debugging over a 3rd-party tool using the XCP
protocol.

©1989-2024 Lauterbach RH850 Debugger and Trace | 10

Demo and Start-up Scripts

Lauterbach provides ready-to-run start-up scripts for known hardware that is based on RH850.

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:
. Type at the command line: WELCOME.SCRIPTS

. or choose File menu > Search for Script.
You can now search the demo folder and its subdirectories for PRACTICE start-up scripts
(*.cmm) and other demo software.

You can also manually navigate in the ~~/demo/rh850/ subfolder of the system directory of TRACES32.

Brief Overview of Documents for New Users

Architecture-independent information:

. “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.
J “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

. “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

J “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

J “XCP Debug Back-End” (backend_xcp.pdf): This manual describes how to debug a target over a
3rd-party tool using the XCP protocol.

©1989-2024 Lauterbach RH850 Debugger and Trace | 11

Warning

Signal Level

The debugger output voltage follows the target voltage level. It supports a voltage range of 0.4 ... 5.2 V.

ESD Protection

1.

N o oo A W

—

P 0D

WARNING: To prevent debugger and target from damage it is recommended to connect or
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

Disconnect the Debug Cable from the target while the target power is
off.

Connect the host system, the TRACE32 hardware and the Debug
Cable.

Power ON the TRACE32 hardware.

Start the TRACES32 software to load the debugger firmware.
Connect the Debug Cable to the target.

Switch the target power ON.

Configure your debugger e.g. via a start-up script.

Power down:

Switch off the target power.

Disconnect the Debug Cable from the target.
Close the TRACE32 software.

Power OFF the TRACES32 hardware.

©1989-2024 Lauterbach

RH850 Debugger and Trace | 12

Useful Tips

Application Starts Running at SYStem.Up

Before TRACE32 can get control of the RH850, the cpu already has started the application startup code.
This is a restriction of the RH850 core!

It depends on the executed startup code which peripherals are initialized and if this can cause trouble for the
debugging session. E.g.

. enable watchdog
J enter power saving mode

o ECC errors ...

To prevent unexpected side effects of unwanted code execution at SYStem.Up, an idle-loop should
be placed to the reset exception handler.

What to do:
. Add some “NOP” instructions to the beginning of your “reset exception handler”
J One of the “NOP” instruction addresses should get a label

The “NOP” instructions are just place holders and can stay in your application code.

. For debugging a “jump-to-itself” instruction has to be patched to the “NOP-label” address
Patching example:

FLASH.ReProgram ALL
Data.LOAD.E1f <file> /<options> ; load application code
Data.Assemble NOP-lable JR $-0 ; patch jump-to-itself
FLASH.Reprogram OFF

©1989-2024 Lauterbach RH850 Debugger and Trace | 13

Greenhills Compiler

J Add the option “-dual_debug” to your compiler/linker settings to generate HLL debug
information.

. Add the option “-No_lgnore_Debug_References” to your compiler/linker settings in case of
missing HLL-Line information in the ELF file.

. Load the code with option /JGHS example:

Data.Load.Elf example.abs /GHS

. The compiler can generate HLL line information which points to odd addresses. For TRACES32
the HLL line information and its address has priority, so it can happen the disassembly of certain
code lines is terminated. In this case “/////////" is displayed. As workaround TRACES32 can ignore
such HLL line information. Use command: sYmbol.CLEANUP.MidInstLines

. The compiler can generate bitfields in inverted order. Unfortunately the ELF files does not
contain any information about the bit order in use. In case of wrong bit-variable display please
use the option /ALTBITFIELDS when loading the code.

Data.Load.Elf example.abs /GHS /ALTBITFIELDS

Stop Timers and Peripherals during application-break

Add following command to your script: SYStem.Option.PERSTOP ON

Location of Debug Connector

Locate the debug connector as close as possible to the processor to minimize the capacitive influence of the
trace length and cross coupling of noise onto the debug signals.

Reset Line

Ensure that the debugger signal RESET is connected directly to the RESET of the processor. This will
provide the ability for the debugger to drive and sense the status of RESET.

©1989-2024 Lauterbach RH850 Debugger and Trace | 14

Debugging the STOP and DeepSTOP Mode

Ensure the application sets the register WUFMSKO0[31] to “0” to enable the TDI debug line as a wake-up
factor. This becomes important if the debugger should attach to an already running application which has
entered the STOP- or DeepSTOP mode.

TRACE32 displays the message “running (stopmode)” in the state line if the RH850 device enters the
STOP- or DeepSTOP-mode. The message will switch to “running (stop occurred)” as soon as there is a
wake-up event.

Typically the wake-up is done by the application. Additionally there are several wake-up conditions which are
caused by the debugger:

. Break (Break.direct)

. Real-time memory access, e.g.:
- A memory dump in a Data.dump E:<address> window
- Arefresh of a Var.Watch window

J If breakpoints are changed (Break.Set or Break.Delete)

. When onchip trace is in ARM mode (<trace>.Arm or <trace>.Arm)

To prevent unintended wake-ups from the debugger side:
o Set the trace mode to <trace>.OFF or <trace>.DISable

. Disable real-time memory access with the command SYStem.MemAccess Denied

©1989-2024 Lauterbach RH850 Debugger and Trace | 15

Configuration

System Overview

This figure shows an example of how to connect the TRACES32 hardware to your PC and your target board.

PC or
Workstation

Target
I —1
[E— — POWER DEBUG USB INTERFACE / USB 3 = Debug Cable
LAUTERBACH -
yss o IZZ. (i _
able K H { od
- Bl g] £t
- L g 8
| I 1 «

POWER DEBUG INTERFACE / USB 3

Wall Mount
0
Power Supply

©1989-2024 Lauterbach RH850 Debugger and Trace | 16

Single Core Debugging - Quick Start

In this section:
. Debug from Reset

. Connect to Running Program (Hot Plug-In)

Debug from Reset

Starting up the Debugger is done as follows:

1. Select the device prompt B: for the ICD Debugger, if the device prompt is not active after the
TRACES2 software was started.

B:
2. Select the CPU type to load the CPU specific settings.

SYStem.CPU R7F701035

3. If the TRACE32-ICD hardware is installed properly, the following CPU is the default setting:

JTAG Debugger for RH850 R7F701035

4. Tell the debugger where’s FLASH/ROM on the target.

MAP.BOnchip 0x00000000++0x7FFFF

This command is necessary for the use of on-chip breakpoints.

5. Enter debug mode

SYStem.Up

This command resets the CPU and enters debug mode. After this command is executed, it is possible
to access the registers. Set the chip selects to get access to the target memory.

Data.Set..

6. Load the program.

Data.LOAD.ubrof sieve.d85 ; (ubrof specifies the format,
; sieve.d85 is the file name)

©1989-2024 Lauterbach RH850 Debugger and Trace | 17

The option of the Data.LOAD command depends on the file format generated by the compiler. A
detailed description of the Data.LOAD command is given in the “General Commands Reference”.

The start-up can be automated using the programming language PRACTICE. A typical start sequence is
shown below. This sequence can be written to a PRACTICE script file (*.cmm, ASCII format) and executed

with the command DO <file>.

IBENE

WinCLEAR

MAP.BOnchip 0x000000++0x07ffff
SYStem.CPU R7F701035

SYStem.Up

Data.Load.ubrof sieve.d85
Register.Set PC main
Data.List

Register.view /SpotLight

Frame.view /Locals /Caller

Var.Watch %Spotlight flags ast

PER.view

Break.Set sieve

Break.Set 0x1000 /Program

Break.Set OxXFEDF8000 /Program

Select the ICD device prompt
Delete all windows

Specify where’s FLASH/ROM
Select the processor type

Reset the target and enter debug
mode

Load the application

Set the PC to function main

Open disassembly window @)
Open register window 2

Open the stack frame with
local variables *)

Open watch window for variables *)

Open window with peripheral
register *)

Set breakpoint to function sieve

Set on-chip breakpoint to address
1000 (address 1000 is in FLASH)
(Refer to the restrictions in
On-chip Breakpoints.)

Set software breakpoint to address
O0xXFEDF8000 (address OxXFEDF8000 is in
RAM)

*) These commands open windows on the screen. The window position can be specified with the WinPOS

command.

©1989-2024 Lauterbach

RH850 Debugger and Trace | 18

Connect to Running Program (Hot Plug-In)

Hot plug-in is only supported for JTAG and LPD4 debug mode. Follow these steps to attach the debugger to
a running system:

1. Select the right debug-interface mode, set the Debug Cable to tri-state mode and connect it to
the target.

SYStem.CONFIG.DEBUGPORTTYPE LPD4
SYStem.Mode .NoDebug

2. Select the target processor.

SYStem.CPU R7F701035

3. Load debug symbols.

Data.LOAD.ELF project.x /NoCODE

4. Start debug session without resetting core.
SYStem.Mode.Attach
5. Observe variables or memory.

Var.View %E my_var your_var
Data.Dump E:0x40000100

6. Set breakpoints or halt core.

Break.Set my_func /Onchip

Break

7. Display ASM/HLL core at current instruction pointer

List

For information about SMP and AMP debugging, see “Multicore Debugging”, page 30.

©1989-2024 Lauterbach RH850 Debugger and Trace | 19

Troubleshooting

SYStem.Up Errors

The SYStem.Up command is the first command of a debug session where communication with the target is
required. If you receive error messages while executing this command this may have the following reasons.

All The target has no power.

All The target is in reset:
The debugger controls the processor reset and use the RESET line to reset the
CPU on every SYStem.Up.

All There are additional loads or capacities on the debug lines.

All DEBUGPORTTYPE selection does not match the Debug-Interface-Mode setting
of the OptionBytes.

All Wrong OSCCLOCK, CORECLOCK or BAUDRATE setting (LPD4, U, CSI mode)

All JTAG clock (JTAG mode) too high.

FAQ

Please refer to https://support.lauterbach.com/kb.

©1989-2024 Lauterbach RH850 Debugger and Trace | 20

https://support.lauterbach.com/kb

Debugging

RH850 Debug Interface Modes

The RH850 offers three Debug Interface Modes (JTAG, LPD1, LPD4) plus the SerialFlashProgramming
mode by use of the same debug connection.

J The Debuglnterface modes are selected by the setting of the CPU OptionBytes.

. The SerialFlashProgramming mode is activated by the voltage level at pin FLMDO.
TRACES2 supports all debug interface modes and SerialFlashProgramming mode.

If TRACE32 can not connect to the CPU it might be necessary to modify the Option-Byte settings or
the TRACE32 “DebugPortType” setting. Option Byte programming can be done in
SerialFlashProgramming mode only (see below).

NOTE: . Option-Bytes programming is only supported in SerialFlashProgramming
mode (UART)!

. UserBootMat FlashProgramming is only supported in SerialFlashPro-
gramming mode (UART)!

JTAG Mode

J Full debug/trace support

. Scripts can be found in the ~~/demo/rh850/flash, ~~/demo/rh850/compiler and
~~/demo/rh850/hardware folders

. CPU-limitation: No flashprogramming of the UserBootMat, no OptionByte programming

. TRACES32 command: SYStem.CONFIG DEBUGPORTTYPE JTAG (default)

LPD4 Mode

o Same functions/limitations as in JTAG mode
. TRACE32 command: SYStem.CONFIG DEBUGPORTTYPE LPD4
o Interface baud rate has to be defined with command SYStem.BAUDRATE <value>

©1989-2024 Lauterbach RH850 Debugger and Trace | 21

LPD1 Mode

. Same functions/limitations as in JTAG mode
. TRACES32 command: SYStem.CONFIG DEBUGPORTTYPE LPD1
. Interface baud rate is detected/configured automatically

J There are RH850 CPU versions which do not support LPD1 mode!

UART Mode
. For serial flash programming and OptionByte programming (no debugging!)
J All CPU internal flashes can be programmed

TRACES2 is configured with the commands:

. SYStem.CONFIG DEBUGPORTTYPE UART/UART1

J SYStem.Mode Prepare

. Special FLASH.List table (differs in programming method)

Setup script: use pull down RH850->AutoSetup->AutosSetup for SerialFlashProgramming

The script opens a dialog window which asks for some target-specific parameters
. OSC clock (target-crystal)

J CPU clock (cpu-system-clock)

. UART baud rate

In the scripts you can find some example setting which were working well with the Renesas evaluation
boards.

Before flash and/or Option-Byte programming, please verify serial communication works well.
Check communication

After command SYStem.Mode Prepare

. Use pull-down-menu “view\message-area”.

. Check the messages of the AREA window.

. The SIGNATURE line shows the detected CPU type (e.g. “R7F701Z00”).

. If the SIGNATURE is wrong --> check clock and baud rate settings and try again.

©1989-2024 Lauterbach RH850 Debugger and Trace | 22

OptionByte Programming

The Option-Bytes are described in the CPU User Manual. For programming use command:
SYStem.Option.OPBT <opbt0>....<opbt7>

RH850/F1x --> OPBTO, bit30 and bit29 (JTAG=y11, LPD1=y10, LPD4=y01)
RH850/E1x --> OPBT2, bit30 and bit29 (JTAG=y11, LPD1=y10, LPD4=y01)

The Option-Bytes are programmed immediately, they become effective at the next RESET (SYStem.Up).

NOTE: SerialFlash-Programming mode is only needed if the Option-Bytes or
UserBootFlash has to be modified. All other debugging stuff and flash programming
can be done in JTAG, LPD1 or LPD4 mode.

RH850/F1x WS1.0 and RH850/E1x FCC (R7F701Z00) do not support Flash-
READ in SerialFlash-Programming mode!

©1989-2024 Lauterbach RH850 Debugger and Trace | 23

Breakpoints

There are two types of breakpoints available: Software breakpoints (SW-BP) and on-chip breakpoints (HW-

BP).

Software Breakpoints

Software breakpoints are the default breakpoints. A special breakcode is patched to memory so it only can
be used in RAM or FLASH areas.There is no restriction in the number of software breakpoints.

Onchip Breakpoints

Each core of a RH850 device is equipped with 12 Onchip breakpoints. These breakpoints only can be set if
the RH850 has stopped program execution.

The following list gives an overview of the usage of the on-chip breakpoints by TRACE32:

(core)

Processor-Element

range as bitmask

- include/exclude

range as bitmask
break before make
- include/exclude

- read/write
- size ANY/8/16/32

Number of ProgramBreaks Read/Write Breaks DataValue Breaks
Onchip-Breaks
12 for each 12 4 4 (G3-cores, break

before make)
8 (G4-cores, break
after make)

range as bitmask

©1989-2024 Lauterbach

RH850 Debugger and Trace | 24

Breakpoint in ROM

With the command MAP.BOnchip <range> it is possible to inform the debugger about ROM
(FLASH,EPROM) address ranges in target. If a breakpoint is set within the specified address range the
debugger automatically uses the available on-chip breakpoints.

Example for Breakpoints

The following breakpoint combinations are possible.

Software breakpoints:

Break.Set 0x100000 /Program ; Software breakpoint 1

Break.Set 0x101000 /Program ; Software breakpoint 2

On-chip breakpoints:

Break.Set 0x100 /Program ; On-chip breakpoint 1

Break.Set 0x0ff00 /Program ; On-chip breakpoint 2

©1989-2024 Lauterbach RH850 Debugger and Trace | 25

Access Classes

Access classes are used to specify how TRACE32 PowerView accesses memory, registers of
peripheral modules, addressable core resources, coprocessor registers and the TRACE32 Virtual
Memory.

Addresses in TRACE32 PowerView consist of:
. An access class, which consists of one or more letters/numbers followed by a colon (:)

o A number that determines the actual address

Here are some examples:

Command: Effect:

List.auto P:0x1000 Opens a List window displaying program memory
Data.dump D:0xFEBF8000 /LONG Opens a DUMP window at data address OxFEBF8000
Data.Set SR:0. %Long 0x00003300 Write value 0x00003300 to system register 0

PRINT Data.Long(D:0xFEBF8000) Print data value at physical address OxFEBF8000

Access Classes to Memory and Memory Mapped Resources

The following memory access classes are available:

Access Class Description
P Program (memory as seen by core’s instruction fetch)
D Data (memory as seen by core’s data access)

In addition to the access classes, there are access class attributes.

The following access class attributes are available:

Access Class Attributes Description

E Use real-time memory access.
This attribute has no effect if SYStem.MemAccess is set to Denied).

Examples of usage:

Command: Effect:

Data.dump ED:OXxFEEEO000 | Opens dump window at address OxFEEEO000O using real-time
memory access

©1989-2024 Lauterbach RH850 Debugger and Trace | 26

If an access class attribute is specified without an access class, TRACE32 PowerView will automatically add
the default access class of the used command. For example, List.auto E:0x100 is complemented to

List.auto EP:0x100.

Access Classes to Other Addressable Core and Peripheral Resources

The following access class is used to access system registers which are not mapped into the processor’s

memory address space.

Access Class

Description

SR

System Register (SR) access

The RH850 supports 256 System Registers which are divided into 8 groups (sellD) with 32 registers (reglID)

each.

Example: The ISPR register has a regID==10 and sellD==2

Using the SR: access class the System Register address is defined by:

J Addressbit(4..0) = regID
J Addressbit(7..5) = sellD

So the ISPR register can be accessed by commands:

Data.dump SR:0x4A++0 /Long

PRINT Data.Long (SR:0x4A)

;dump window showing the ISPR
;register value

;print ISPR register value to
;status line

Data.Set SR:0x4A $Lo