
MANUAL

Release 09.2024

CEVA-X Debugger and Trace

CEVA-X Debugger and Trace

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents ..

 ICD In-Circuit Debugger ..

 Processor Architecture Manuals ..

 CEVA-X ...

 CEVA-X Debugger and Trace .. 1

 Introduction ... 5

 Brief Overview of Documents for New Users 5

 Demo and Start-up Scripts 5

 Warning .. 6

 Quick Start ... 7

 Troubleshooting .. 9

 FAQ ... 9

 CPU Specific Implementations .. 10

 Breakpoints 10

 Software Breakpoints 10

 On-chip Breakpoints 10

 Disassembler 11

 MS Windows 11

 Linux 11

 CPU specific SYStem Settings ... 12

 SYStem.CONFIG.state Display target configuration 12

 SYStem.CONFIG Configure debugger according to target topology 14

 <parameters> describing the “DebugPort” 18

 <parameters> describing the “JTAG” scan chain and signal behavior 20

 <parameters> describing a system level TAP “MultiTap” 22

 <parameters> configuring a CoreSight Debug Access Port “AP” 23

 <parameters> describing debug and trace “Components” 29

 <parameters> which are “Deprecated” 38

 SYStem.CONFIG.EXTMEM External program memory 40

 SYStem.CPU Select the used CPU 41

 SYStem.JtagClock Define JTAG clock 41

 SYStem.LOCK Lock and tristate the debug port 41
CEVA-X Debugger and Trace | 2©1989-2024 Lauterbach

 SYStem.MemAccess Select run-time memory access method 42

 SYStem.Mode Establish the communication with the target 42

 SYStem.Option.IMASKASM Disable interrupts while single stepping 43

 SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 44

 SYStem.Option.OVERLAY Enable overlay support 44

 SYStem.Option.PB0size Setup size of internal program memory 45

 SYStem.Option.RisingTDO Target outputs TDO on rising edge 45

 SYStem.VCU Vector Computation Units (VCU) 46

 SYStem.VCU.INSTances Number of available VCUs 46

 SYStem.VCU.MLD MLD available or not 46

 General Restrictions 46

 CEVA-X specific ETM Command ... 47

 ETM.BranchBBC Control branch BBC mode 47

 ETM.IgnoreISyncPredicate Ignore I-Sync predicates 47

 ETM.LoopBBC Branch broadcast 47

 ETM.PredicateAddress Set predicate address 47

 ETM.PredicatePeriod Predicated counter in ETM wrapper 48

 ETM.TimeStampInjectorTraceID CoreSight ATB ID 48

 ETM.WrapperFilter Global breakpoint enable 48

 ETM.WrapperSTALL Enable/disable wrapper stall 48

 TrOnchip Commands .. 49

 TrOnchip.CONVert Adjust range breakpoint in on-chip resource 49

 TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource 49

 TrOnchip.RESet Set on-chip trigger to default state 50

 TrOnchip.Set Set breakpoint 50

 TrOnchip.state Display “Trigger-Onchip” dialog 50

 Ceva Specific Benchmarking Commands .. 51

 BMC.CLOCKS.FORMAT Cycle counter value format 54

 Memory Classes .. 55

 JTAG Connector .. 56
CEVA-X Debugger and Trace | 3©1989-2024 Lauterbach

CEVA-X Debugger and Trace

Version 05-Oct-2024
CEVA-X Debugger and Trace | 4©1989-2024 Lauterbach

Introduction

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by
Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your
first choice.

Brief Overview of Documents for New Users

Architecture-independent information:

• “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.

• “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Demo and Start-up Scripts

Lauterbach provides ready-to-run start-up scripts for known CEVA-X based hardware.

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:

• Type at the command line: WELCOME.SCRIPTS

• or choose File menu > Search for Script.

You can now search the demo folder and its subdirectories for PRACTICE start-up scripts
(*.cmm) and other demo software.

You can also manually navigate in the ~~/demo/cevax/ subfolder of the system directory of TRACE32.
CEVA-X Debugger and Trace | 5©1989-2024 Lauterbach

Warning

WARNING: To prevent debugger and target from damage it is recommended to connect or
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

1. Disconnect the Debug Cable from the target while the target power is
off.

2. Connect the host system, the TRACE32 hardware and the Debug
Cable.

3. Power ON the TRACE32 hardware.

4. Start the TRACE32 software to load the debugger firmware.

5. Connect the Debug Cable to the target.

6. Switch the target power ON.

7. Configure your debugger e.g. via a start-up script.

Power down:

1. Switch off the target power.

2. Disconnect the Debug Cable from the target.

3. Close the TRACE32 software.

4. Power OFF the TRACE32 hardware.
CEVA-X Debugger and Trace | 6©1989-2024 Lauterbach

Quick Start

Starting up the debugger is done as follows:

1. Select the device prompt for the ICD Debugger and reset the system.

The device prompt B:: is normally already selected in the command line. If this is not the case, enter
B:: to set the correct device prompt. The RESet command is only necessary if you do not start
directly after booting the TRACE32 development tool.

2. Specify the CPU.

The default values of all other options are set in such a way that it should be possible to work without
modification. Please consider that this is probably not the best configuration for your target.

3. Set the JTAG frequency

The default value is 1.0 MHz.

4. Inform the debugger about read-only address ranges (ROM, FLASH).

The B(reak)Onchip information is necessary to decide where on-chip breakpoints must be used. On-
chip breakpoints are necessary to set program breakpoints to FLASH/ROM. The sections of FLASH
and ROM depend on the specific CPU and its chip selects.

5. Enter debug mode.

This command resets the CPU and enters debug mode. After this command is executed it is possible
to access memory and registers.

B::

RESet

SYStem.CPU <cpu_type>

SYStem.JtagClock <frequency>

MAP.BOnchip <range>

SYStem.Up
CEVA-X Debugger and Trace | 7©1989-2024 Lauterbach

6. Load the program.

The format of the Data.LOAD command depends on the file format generated by the compiler.

A detailed description of the Data.LOAD command and all available options is given in the ”General
Reference Guide”.

A typical start sequence for the TeakLiteDev-C is shown below. This sequence can be written to a
PRACTICE script file (*.cmm, ASCII format) and executed with the command DO <file>. Other sequences
can be found in the ~~/demo/ directory.

*) These commands open windows on the screen. The window position can be specified with the WinPOS
command.

Data.LOAD.COFF program.a ; COFF specifies the format, program.a
; is the file name)

B:: ; Select the ICD device prompt

WinClear ; Clear all windows

SYS.CPU TeakLiteDev-C ; Select CPU

SYStem.JtagClock 10MHz ; Choose JTAG frequency

SYStem.UP ; Reset the target and enter debug mode

Data.LOAD.COFF demo.a ; Load the application with option large
; memory model and verify the process

Register.Set PC start ; Set program counter

List.Mix ; Open source code window *)

Go main ; Run and break at main()

Register.view /SpotLight ; Open register window *)

Var.Local ; Open window with local variables *)
CEVA-X Debugger and Trace | 8©1989-2024 Lauterbach

Troubleshooting

No information available

FAQ

Please refer to https://support.lauterbach.com/kb.
CEVA-X Debugger and Trace | 9©1989-2024 Lauterbach

https://support.lauterbach.com/kb

CPU Specific Implementations

Breakpoints

There are two types of breakpoints available: Software breakpoints and on-chip breakpoints.

Software Breakpoints

Software breakpoints are the default breakpoints for program breakpoints. A software breakpoint is
implemented by patching a break code into the memory.

There is no restriction in the number of software breakpoints.

On-chip Breakpoints

The resources for the on-chip breakpoints are provided by the CPU.

The following list gives an overview of the supported on-chip breakpoints:

• On-chip breakpoints: Total amount of available on-chip breakpoints.

• Instruction breakpoints: Number of on-chip breakpoints that can be used to set Program
breakpoints into ROM/FLASH/EEPROM.

• Read/Write breakpoints: Number of on-chip breakpoints that can be used as Read or Write
breakpoints.

• Data breakpoint: Number of on-chip data breakpoints that can be used to stop the program
when a specific data value is written to an address or when a specific data value is read from an
address.

Family
Onchip
Breakpoints

Program
Breakpoints

Read/Write
Breakpoints

Data Value
Breakpoints

CEVA-X 4 instruction
4 read/write

4 single address 4 single address or
range

2

CEVA-X Debugger and Trace | 10©1989-2024 Lauterbach

Disassembler

Starting with CEVA-ToolBox v18, TRACE32 must be configured to use the disassembler libraries provided
by Ceva. The only exception from this rule is the NeuPro (Ceva-XM6), which can optionally still use the build-
in disassembler of TRACE32.

MS Windows

1. Install CEVA-ToolBox for your CPU.

2. Browse to <CEVA-ToolBox>\<version>\<cpu>\cevatools\bin.

3. Copy the following two files to <TRACE32>\bin\windows64:

- cevaxasmsrv.dll

- <cpu>db.dll

4. Add the following line to your *.cmm script:

Linux

1. Install CEVA-ToolBox for your CPU.

2. Optional: Browse to <CEVA-ToolBox>/<version>/<cpu>/cevatools/bin.

3. Optional: Copy the following two files to <TRACE32>/bin/pc_linux64:

- libcevaxasmsrv.so

- lib<cpu>db.so

4. Add the path of the disassembler libraries (step 2 or step 3) to LD_LIBRARY_PATH:

5. Add the following line to your *.cmm script:

apu.load ~~/bin/windows64/t32cevadislink.dll "cevaxasmsrv.dll" "<cpu>"

export LD_LIBRARY_PATH=<path_to_libraries>

apu.load ~~/bin/pc_linux64/t32cevadislink.so "libcevaxasmsrv.so" "<cpu>"
CEVA-X Debugger and Trace | 11©1989-2024 Lauterbach

CPU specific SYStem Settings

SYStem.CONFIG.state Display target configuration

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target
configuration settings. The configuration settings tell the debugger how to communicate with the chip on
the target board and how to access the on-chip debug and trace facilities in order to accomplish the
debugger’s operations.

Alternatively, you can modify the target configuration settings via the TRACE32 command line with the
SYStem.CONFIG commands. Note that the command line provides additional SYStem.CONFIG
commands for settings that are not included in the SYStem.CONFIG.state window.

Format: SYStem.CONFIG.state [/<tab>]

<tab>: DebugPort | Jtag | AccessPorts | COmponents

<tab> Opens the SYStem.CONFIG.state window on the specified tab. For tab
descriptions, see below.

DebugPort
(default)

The DebugPort tab informs the debugger about the debug connector type
and the communication protocol it shall use.

For descriptions of the commands on the DebugPort tab, see DebugPort.

Jtag The Jtag tab informs the debugger about the position of the Test Access
Ports (TAP) in the JTAG chain which the debugger needs to talk to in order
to access the debug and trace facilities on the chip.

For descriptions of the commands on the Jtag tab, see Jtag.

AccessPorts This tab informs the debugger about an Arm CoreSight Access Port (AP)
and about how to control the AP to access chip-internal memory busses
(AHB, APB, AXI) or chip-internal JTAG interfaces.

For a descriptions of a corresponding commands, refer to AP.
CEVA-X Debugger and Trace | 12©1989-2024 Lauterbach

COmponents The COmponents tab informs the debugger (a) about the existence and
interconnection of on-chip CoreSight debug and trace modules and (b)
informs the debugger on which memory bus and at which base address
the debugger can find the control registers of the modules.

For descriptions of the commands on the COmponents tab, see
COmponents.
CEVA-X Debugger and Trace | 13©1989-2024 Lauterbach

SYStem.CONFIG Configure debugger according to target topology

Format: SYStem.CONFIG <parameter>
SYStem.MultiCore <parameter> (deprecated)

<parameter>:
(DebugPort)

CONNECTOR [MIPI34 | MIPI20T]
CORE <core> <chip>
DEBUGPORT [DebugCable0 | DebugCableA | DebugCableB]
DEBUGPORTTYPE [JTAG | SWD | CJTAG]

Slave [ON | OFF]
SWDP [ON | OFF]
SWDPIDLEHIGH [ON | OFF]
SWDPTargetSel <value>
TriState [ON | OFF]

<parameter>:
(JTAG)

DAPDRPOST <bits>
DAPDRPRE <bits>
DAPIRPOST <bits>
DAPIRPRE <bits>

DRPOST <bits>
DRPRE <bits>
IRPOST<bits>
IRPRE <bits>

Slave [ON | OFF]
TAPState <state>
TCKLevel <level>
TriState [ON | OFF]

<parameter>:
(MultiTap)

CFGCONNECT <code>
MULTITAP [NONE | IcepickA | IcepickB | IcepickC | IcepickD | IcepickBB |
 IcepickBC | IcepickCC | IcepickDD | STCLTAP1 | STCLTAP2 |
 STCLTAP3 |
 MSMTAP <irlength> <irvalue> <drlength> <drvalue>
 JtagSEQuence <sub_cmd>]

<parameter>:
(AccessPorts
)

AHBAPn.Base <address>
AHBAPn.HPROT [<value> | <name>]
AHBAPn.Port <port>
AHBAPn.RESet
AHBAPn.view
AHBAPn.XtorName <name>

APBAPn.Base <address>
APBAPn.HPROT [<value> | <name>]
APBAPn.Port <port>
CEVA-X Debugger and Trace | 14©1989-2024 Lauterbach

<parameter>:
(AccessPorts
cont.)

APBAPn.RESet
APBAPn.view
APBAPn.XtorName <name>

AXIAPn.ACEEnable [ON | OFF]
AXIAPn.Base <address>
AXIAPn.CacheFlags <value>
AXIAPn.HPROT [<value> | <name>]
AXIAPn.Port <port>
AXIAPn.RESet
AXIAPn.view
AXIAPn.XtorName <name>

DEBUGAPn.Port <port>
DEBUGAPn.RESet
DEBUGAPn.view
DEBUGAPn.XtorName <name>

JTAGAPn.Base <address>
JTAGAPn.Port <port>
JTAGAPn.CorePort <port>
JTAGAPn.RESet
JTAGAPn.view
JTAGAPn.XtorName <name>

MEMORYAPn.HPROT [<value> | <name>]
MEMORYAPn.Port <port>
MEMORYAPn.RESet
MEMORYAPn.view
MEMORYAPn.XtorName <name>

<parameter>:
(COmponents)

COREDEBUG.Base <address>
COREDEBUG.RESet
COREDEBUG.view

CTI.Base <address>
CTI.Config [NONE | ARMV1 | ARMPostInit | OMAP3 | TMS570 | CortexV1 |
 QV1]
CTI.RESet
CTI.view

ETB.ATBSource <source>
ETB.Base <address>
ETB.Name <string>
ETB.NoFlush [ON | OFF]
ETB.RESet
ETB.Size <size>
ETB.STackMode [NotAvailbale | TRGETM | FULLTIDRM | NOTSET | FULL

STOP | FULLCTI]
ETB.view
CEVA-X Debugger and Trace | 15©1989-2024 Lauterbach

<parameter>:
(COmponents
cont.)

ETF.ATBSource <source>
ETF.Base <address>
ETF.Name <string>
ETF.NoFlush [ON | OFF]
ETF.RESet
ETF.Size <size>
ETF.STackMode [NotAvailbale | TRGETM | FULLTIDRM | NOTSET | FULL

STOP | FULLCTI]
ETF.view

ETM.Base <address>
ETM.RESet
ETM.view

ETR.ATBSource <source>
ETR.Base <address>
ETR.CATUBase <address>
ETR.Name <string>
ETR.NoFlush [ON | OFF]
ETR.RESet
ETR.Size <size>
ETR.STackMode [NotAvailbale | TRGETM | FULLTIDRM | NOTSET | FULL

STOP | FULLCTI]
ETR.view

ETS.ATBSource <source>
ETS.Base <address>
ETS.Name <string>
ETS.NoFlush [ON | OFF]
ETS.RESet
ETS.Size <size>
ETS.STackMode [NotAvailbale | TRGETM | FULLTIDRM | NOTSET | FULL

STOP | FULLCTI]
ETS.view

FUNNEL.ATBSource <sourcelist>
FUNNEL.Base <address>
FUNNEL.Name <string>
FUNNEL.PROGrammable [ON | OFF]
FUNNEL.view
FUNNEL.RESet

HTM.Base <address>
HTM.RESet
HTM.Type [CoreSight | WPT]

REP.ATBSource <source>
REP.Base <address>
REP.Name <string>
REP.RESet
REP.view

STM.Base <address>
STM.Mode [NONE | XTIv2 | SDTI | STP | STP64 | STPv2]
CEVA-X Debugger and Trace | 16©1989-2024 Lauterbach
STM.RESet
STM.Type [None | GenericARM | SDTI | TI]

The SYStem.CONFIG commands inform the debugger about the available on-chip debug and trace
components and how to access them.

Some commands need a certain CPU type selection (SYStem.CPU <type>) to become active and might
additionally depend on further settings.

Ideally you can select with SYStem.CPU the chip you are using which causes all setup you need and you do
not need any further SYStem.CONFIG command.

The SYStem.CONFIG command information shall be provided after the SYStem.CPU command, which
might be a precondition to enter certain SYStem.CONFIG commands, and before you start up the debug
session e.g. by SYStem.Up.

<parameter>:
(Deprecated)

COREBASE <address>
CTIBASE <address>
CTICONFIG [NONE | ARMV1 | ARMPostInit | OMAP3 | TMS570 | CortexV1 |
 QV1]
DEBUGBASE <address>
ETBBASE <address>
ETBFUNNELBASE <address>
ETFBASE <address>
ETMBASE <address>
ETMETBFUNNELPORT <port>
ETMFUNNEL2PORT <port>
ETMFUNNELPORT <port>
ETMTPIUFUNNELPORT <port>
FUNNEL2BASE <address>
FUNNELBASE <address>
HTMBASE <address>
HTMETBFUNNELPORT <port>
HTMFUNNEL2PORT <port>
HTMFUNNELPORT <port>
HTMTPIUFUNNELPORT <port>
TPIUBASE <address>
TPIUFUNNELBASE <address>
view

AHBACCESSPORT <port>
APBACCESSPORT <port>
AXIACCESSPORT <port>
COREJTAGPORT <port>
DEBUGACCESSPORT <port>
JTAGACCESSPORT <port>
MEMORYACCESSPORT <port>
CEVA-X Debugger and Trace | 17©1989-2024 Lauterbach

<parameters> describing the “DebugPort”

CONNECTOR
[MIPI34 | MIPI20T]

Specifies the connector “MIPI34” or “MIPI20T” on the target. This
is mainly needed in order to notify the trace pin location.

Default: MIPI34 if CombiProbe is used.

CORE <core> <chip> The command helps to identify debug and trace resources which
are commonly used by different cores. The command might be
required in a multicore environment if you use multiple debugger
instances (multiple TRACE32 PowerView GUIs) to simultaneously
debug different cores on the same target system.

Because of the default setting of this command

debugger#1: <core>=1 <chip>=1
debugger#2: <core>=1 <chip>=2
...

each debugger instance assumes that all notified debug and trace
resources can exclusively be used.

But some target systems have shared resources for different
cores, for example a common trace port. The default setting
causes that each debugger instance controls the same trace port.
Sometimes it does not hurt if such a module is controlled twice.
But sometimes it is a must to tell the debugger that these cores
share resources on the same <chip>. Whereby the “chip” does not
need to be identical with the device on your target board:

debugger#1: <core>=1 <chip>=1
debugger#2: <core>=2 <chip>=1

CORE <core> <chip>

(cont.)

For cores on the same <chip>, the debugger assumes that the
cores share the same resource if the control registers of the
resource have the same address.

Default:
<core> depends on CPU selection, usually 1.
<chip> derived from CORE= parameter in the configuration file
(config.t32), usually 1. If you start multiple debugger instances with
the help of t32start.exe, you will get ascending values (1, 2, 3,...).

DEBUGPORT
[DebugCable0 | DebugCa-
bleA | DebugCableB]

It specifies which probe cable shall be used e.g. “DebugCableA” or
“DebugCableB”. At the moment only the CombiProbe allows to
connect more than one probe cable.

Default: depends on detection.
CEVA-X Debugger and Trace | 18©1989-2024 Lauterbach

DEBUGPORTTYPE
[JTAG | SWD | CJTAG |
CJTAGSWD]

It specifies the used debug port type “JTAG”, “SWD”, “CJTAG”,
“CJTAG-SWD”. It assumes the selected type is supported by the
target.

Default: JTAG.

Slave [ON | OFF] If several debuggers share the same debug port, all except one
must have this option active.

JTAG: Only one debugger - the “master” - is allowed to control the
signals nTRST and nSRST (nRESET). The other debuggers need
to have the setting Slave ON.

Default: OFF.
Default: ON if CORE=... >1 in the configuration file (e.g. config.t32).

SWDPIdleHigh
[ON | OFF]

Keep SWDIO line high when idle. Only for Serialwire Debug mode.
Usually the debugger will pull the SWDIO data line low, when no
operation is in progress, so while the clock on the SWCLK line is
stopped (kept low).

You can configure the debugger to pull the SWDIO data line
high, when no operation is in progress by using
SYStem.CONFIG SWDPIdleHigh ON

Default: OFF.

SWDPTargetSel <value> Device address in case of a multidrop serial wire debug port.

Default: none set (any address accepted).

TriState [ON | OFF] TriState has to be used if several debug cables are connected to a
common JTAG port. TAPState and TCKLevel define the TAP state
and TCK level which is selected when the debugger switches to
tristate mode.
Please note:
• nTRST must have a pull-up resistor on the target.
• TCK can have a pull-up or pull-down resistor.
• Other trigger inputs need to be kept in inactive state.

Default: OFF.
CEVA-X Debugger and Trace | 19©1989-2024 Lauterbach

<parameters> describing the “JTAG” scan chain and signal behavior

With the JTAG interface you can access a Test Access Port controller (TAP) which has implemented a state
machine to provide a mechanism to read and write data to an Instruction Register (IR) and a Data Register
(DR) in the TAP. The JTAG interface will be controlled by 5 signals:

• nTRST (reset)

• TCK (clock)

• TMS (state machine control)

• TDI (data input)

• TDO (data output)

Multiple TAPs can be controlled by one JTAG interface by daisy-chaining the TAPs (serial connection). If you
want to talk to one TAP in the chain, you need to send a BYPASS pattern (all ones) to all other TAPs. For this
case the debugger needs to know the position of the TAP it wants to talk to. The TAP position can be defined
with the first four commands in the table below.

… DRPOST <bits> Defines the TAP position in a JTAG scan chain. Number of TAPs in the
JTAG chain between the TDI signal and the TAP you are describing. In
BYPASS mode, each TAP contributes one data register bit. See possible
TAP types and example below.

Default: 0.

… DRPRE <bits> Defines the TAP position in a JTAG scan chain. Number of TAPs in the
JTAG chain between the TAP you are describing and the TDO signal. In
BYPASS mode, each TAP contributes one data register bit. See possible
TAP types and example below.

Default: 0.

… IRPOST <bits> Defines the TAP position in a JTAG scan chain. Number of Instruction
Register (IR) bits of all TAPs in the JTAG chain between TDI signal and
the TAP you are describing. See possible TAP types and example below.

Default: 0.

… IRPRE <bits> Defines the TAP position in a JTAG scan chain. Number of Instruction
Register (IR) bits of all TAPs in the JTAG chain between the TAP you are
describing and the TDO signal. See possible TAP types and example
below.

Default: 0.

NOTE: If you are not sure about your settings concerning IRPRE, IRPOST, DRPRE,
and DRPOST, you can try to detect the settings automatically with the
SYStem.DETECT.DaisyChain command.
CEVA-X Debugger and Trace | 20©1989-2024 Lauterbach

Slave [ON | OFF] If several debuggers share the same debug port, all except one must
have this option active.

JTAG: Only one debugger - the “master” - is allowed to control the signals
nTRST and nSRST (nRESET). The other debuggers need to have the
setting Slave OFF.

Default: OFF.
Default: ON if CORE=... >1 in the configuration file (e.g. config.t32).

TAPState <state> This is the state of the TAP controller when the debugger switches to
tristate mode. All states of the JTAG TAP controller are selectable.

0 Exit2-DR
1 Exit1-DR
2 Shift-DR
3 Pause-DR
4 Select-IR-Scan
5 Update-DR
6 Capture-DR
7 Select-DR-Scan
8 Exit2-IR
9 Exit1-IR
10 Shift-IR
11 Pause-IR
12 Run-Test/Idle
13 Update-IR
14 Capture-IR
15 Test-Logic-Reset

Default: 7 = Select-DR-Scan.

TCKLevel <level> Level of TCK signal when all debuggers are tristated. Normally defined
by a pull-up or pull-down resistor on the target.

Default: 0.

TriState [ON | OFF] TriState has to be used if several debug cables are connected to a common
JTAG port. TAPState and TCKLevel define the TAP state and TCK level
which is selected when the debugger switches to tristate mode.
Please note:
• nTRST must have a pull-up resistor on the target.
• TCK can have a pull-up or pull-down resistor.
• Other trigger inputs need to be kept in inactive state.

Default: OFF.
CEVA-X Debugger and Trace | 21©1989-2024 Lauterbach

TAP types:

Core TAP providing access to the debug register of the core you intend to debug.
-> DRPOST, DRPRE, IRPOST, IRPRE.

DAP (Debug Access Port) TAP providing access to the debug register of the core you intend to debug. It
might be needed additionally to a Core TAP if the DAP is only used to access memory and not to access the
core debug register.
-> DAPDRPOST, DAPDRPRE, DAPIRPOST, DAPIRPRE.

<parameters> describing a system level TAP “MultiTap”

A “Multitap” is a system level or chip level test access port (TAP) in a JTAG scan chain. It can for example
provide functions to re-configure the JTAG chain or view and control power, clock, reset and security of
different chip components.

CFGCONNECT <code> The <code> is a hexadecimal number which defines the JTAG
scan chain configuration. You need the chip documentation to
figure out the suitable code. In most cases the chip specific
default value can be used for the debug session.

Used if MULTITAP=STCLTAPx.

MULTITAP
[NONE | IcepickA | IcepickB
| IcepickC | IcepickD |
IcepickM |
IcepickBB | IcepickBC |
IcepickCC | IcepickDD |
STCLTAP1 | STCLTAP2 |
STCLTAP3 | MSMTAP
<irlength> <irvalue>
<drlength> <drvalue>
JtagSEQuence <sub_cmd>]

Selects the type and version of the MULTITAP.

In case of MSMTAP you need to add parameters which specify
which IR pattern and DR pattern needed to be shifted by the
debugger to initialize the MSMTAP. Please note some of these
parameters need a decimal input (dot at the end).

IcepickXY means that there is an Icepick version “X” which
includes a subsystem with an Icepick of version “Y”.

For a description of the JtagSEQuence subcommands, see
SYStem.CONFIG.MULTITAP JtagSEQuence.
CEVA-X Debugger and Trace | 22©1989-2024 Lauterbach

<parameters> configuring a CoreSight Debug Access Port “AP”

An Access Port (AP) is a CoreSight module from ARM which provides access via its debug link (JTAG,
cJTAG, SWD, USB, UDP/TCP-IP, GTL, PCIe...) to:

1. Different memory busses (AHB, APB, AXI). This is especially important if the on-chip debug
register needs to be accessed this way. You can access the memory buses by using certain
access classes with the debugger commands: “AHB:”, “APB:”, “AXI:, “DAP”, “E:”. The interface to
these buses is called Memory Access Port (MEM-AP).

2. Other, chip-internal JTAG interfaces. This is especially important if the core you intend to debug
is connected to such an internal JTAG interface. The module controlling these JTAG interfaces is
called JTAG Access Port (JTAG-AP). Each JTAG-AP can control up to 8 internal JTAG interfaces.
A port number between 0 and 7 denotes the JTAG interfaces to be addressed.

3. A transactor name for virtual connections to AMBA bus level transactors can be configured by
the property SYStem.CONFIG.*APn.XtorName <name>. A JTAG or SWD transactor must be
configured for virtual connections to use the property “Port” or “Base” (with “DP:” access) in case
XtorName remains empty.

Example 1: SoC-400

SoC-400

Memory
Access Port
(MEM-AP)

Debug
Port
(DP)

Memory
Access Port
(MEM-AP)

JTAG
Access Port
(JTAG-AP)

CoreSight
Component

ROM table

ROM table

CoreSight
Component

DAP
CEVA-X Debugger and Trace | 23©1989-2024 Lauterbach

Example 2: SoC-600

AHBAPn.HPROT [<value> |
<name>]

Default: 0.
Selects the value used for the HPROT bits in the Control Status
Word (CSW) of a CoreSight AHB Access Port, when using the AHB:
memory class.

APBAPn.HPROT [<value> |
<name>]

Default: 0.
This option selects the value used for the HPROT bits in the Control
Status Word (CSW) of a CoreSight APB Access Port, when using
the APB: memory class.
The secure access bit HPROT[1] is not controlled by this option,
but via the access class prefixes “Z” and “N” as well as “L” and
“O” if the Access Port supports Realm Management Extension.

SoC-600

Debug
link(s)

Memory System 3

ROM table

ROM table

CoreSight
Component

CoreSight
Component

Memory System 2

ROM table

CoreSight
Component

CoreSight
ComponentMEM-AP

Memory System 1

ROM table

CoreSight
Component

MEM-AP

MEM-AP

D
P (32/64-bit)

32/64-bit

32/64-bit

(expected)

(possible)
CEVA-X Debugger and Trace | 24©1989-2024 Lauterbach

The below offered selection options are all non-bufferable. Alternatively you can enter a <value>, where
value[5:4] determines the Domain bits and value[3:0] the Cache bits.

AXIAPn.HPROT [<value> |
<name>]

Default: 0.
This option selects the value used for the HPROT bits in the Control
Status Word (CSW) of a CoreSight AXI Access Port, when using
the AXI: memory class.
The secure access bit HPROT[1] is not controlled by this option,
but via the access class prefixes “Z” and “N” as well as “L” and
“O” if the Access Port supports Realm Management Extension.

MEMORYAPn.HPROT
[<value> | <name>]

Default: 0.
This option selects the value used for the HPROT bits in the Control
Status Word (CSW) of a CoreSight Memory Access Port, when
using the E: memory class.

AXIAPn.ACEEnable [ON |
OFF]

Default: OFF.
Enables ACE transactions on the AXI-AP, including barriers. This
does only work if the debug logic of the target CPU implements
coherent accesses. Otherwise this option will be without effect.

AXIAPn.CacheFlags
<value>

Default: DeviceSYStem (=0x30: Domain=0x3, Cache=0x0).
This option configures the value used for the Cache and Domain
bits in the Control Status Word (CSW[27:24]->Cache, CSW[14:13]-
>Domain) of an Access Port, when using the AXI: memory class.

<name> Description

DeviceSYStem =0x30: Domain=0x3, Cache=0x0

NonCacheableSYStem =0x32: Domain=0x3, Cache=0x2

ReadAllocateNonShareable =0x06: Domain=0x0, Cache=0x6

ReadAllocateInnerShareable =0x16: Domain=0x1, Cache=0x6

ReadAllocateOuterShareable =0x26: Domain=0x2, Cache=0x6

WriteAllocateNonShareable =0x0A: Domain=0x0, Cache=0xA

WriteAllocateInnerShareable =0x1A: Domain=0x1, Cache=0xA

WriteAllocateOuterShareable =0x2A: Domain=0x2, Cache=0xA
CEVA-X Debugger and Trace | 25©1989-2024 Lauterbach

ReadWriteAllocateNonShareable =0x0E: Domain=0x0, Cache=0xE

ReadWriteAllocateInnerShareable =0x1E: Domain=0x1, Cache=0xE

ReadWriteAllocateOuterShareable =0x2E: Domain=0x2, Cache=0xE

AHBAPn.XtorName
<name>

AHB bus transactor name that shall be used for “AHBn:” access
class.

APBAPn.XtorName <name> APB bus transactor name that shall be used for “APBn:” access
class.

AXIAPn.XtorName <name> AXI bus transactor name that shall be used for “AXIn:” access
class.

DEBUGAPn.XtorName
<name>

APB bus transactor name identifying the bus where the debug
register can be found. Used for “DAP:” access class.

MEMORYAPn.XtorName
<name>

AHB bus transactor name identifying the bus where system
memory can be accessed even during runtime. Used for “E:”
access class while running, assuming “SYStem.MemAccess
DAP”.

... .RESet Undo the configuration for this access port. This does not cause
a physical reset for the access port on the chip.

... .view Opens a window showing the current configuration of the access
port.
CEVA-X Debugger and Trace | 26©1989-2024 Lauterbach

SoC-400 Specific Commands

SoC-600 Specific Commands

AHBAPn.Port <port>
AHBACCESSPORT <port>
(deprecated)

Access Port Number (0-255) of a SoC-400 system which shall be
used for “AHBn:” access class. Default: <port>=0.

APBAPn.Port <port>
APBACCESSPORT <port>
(deprecated)

Access Port Number (0-255) of a SoC-400 system which shall be
used for “APBn:” access class. Default: <port>=1.

AXIAPn.Port <port>
AXIACCESSPORT <port>
(deprecated)

Access Port Number (0-255) of a SoC-400 system which shall be
used for “AXIn:” access class. Default: port not available.

DEBUGAPn.Port <port>
DEBUGACCESSPORT
<port> (deprecated)

AP access port number (0-255) of a SoC-400 system where the
debug register can be found (typically on APB). Used for “DAP:”
access class. Default: <port>=1.

JTAGAPn.CorePort <port>
COREJTAGPORT <port>
(deprecated)

JTAG-AP port number (0-7) connected to the core which shall be
debugged.

JTAGAPn.Port <port>
JTAGACCESSPORT <port>
(deprecated)

Access port number (0-255) of a SoC-400 system of the JTAG
Access Port.

MEMORYAPn.Port <port>
MEMORYACCESSPORT
<port> (deprecated)

AP access port number (0-255) of a SoC-400 system where
system memory can be accessed even during runtime (typically
an AHB). Used for “E:” access class while running, assuming
“SYStem.MemAccess DAP”. Default: <port>=0.
CEVA-X Debugger and Trace | 27©1989-2024 Lauterbach

AHBAPn.Base <address> This command informs the debugger about the start address of
the register block of the “AHBAPn:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.AHBAP1.Base DP:0x80002000
Meaning: The control register block of the AHB access ports
starts at address 0x80002000.

APBAPn.Base <address> This command informs the debugger about the start address of
the register block of the “APBAPn:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.APBAP1.Base DP:0x80003000
Meaning: The control register block of the APB access ports
starts at address 0x80003000.

AXIAPn.Base <address> This command informs the debugger about the start address of
the register block of the “AXIAPn:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.AXIAP1.Base DP:0x80004000
Meaning: The control register block of the AXI access ports
starts at address 0x80004000.

JTAGAPn.Base <address> This command informs the debugger about the start address of
the register block of the “JTAGAPn:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.JTAGAP1.Base DP:0x80005000
Meaning: The control register block of the JTAG access ports
starts at address 0x80005000.
CEVA-X Debugger and Trace | 28©1989-2024 Lauterbach

<parameters> describing debug and trace “Components”

On the Components tab in the SYStem.CONFIG.state window, you can comfortably add the debug and
trace components your chip includes and which you intend to use with the debugger’s help.

Each configuration can be done by a command in a script file as well. Then you do not need to enter
everything again on the next debug session. If you press the button with the three dots you get the
corresponding command in the command line where you can view and maybe copy it into a script file.
CEVA-X Debugger and Trace | 29©1989-2024 Lauterbach

You can have several of the following components: CMI, ETB, ETF, ETR, FUNNEL, STM.
Example: FUNNEL1, FUNNEL2, FUNNEL3,...

The <address> parameter can be just an address (e.g. 0x80001000) or you can add the access class in
front (e.g. AHB:0x80001000). Without access class it gets the command specific default access class which
is “EDAP:” in most cases.

Example:

SYStem.CONFIG.COREDEBUG.Base 0x80010000 0x80012000
SYStem.CONFIG.ETM.Base 0x8001c000 0x8001d000
SYStem.CONFIG.STM1.Base EAHB:0x20008000
SYStem.CONFIG.STM1.Type ARM
SYStem.CONFIG.STM1.Mode STPv2
SYStem.CONFIG.FUNNEL1.Base 0x80004000
SYStem.CONFIG.FUNNEL2.Base 0x80005000
SYStem.CONFIG.TPIU.Base 0x80003000
SYStem.CONFIG.FUNNEL1.ATBSource ETM.0 0 ETM.1 1
SYStem.CONFIG.FUNNEL2.ATBSource FUNNEL1 0 STM1 7
SYStem.CONFIG.TPIU.ATBSource FUNNEL2

ETM

ETM

STM

Core

Core

FUNNEL

TPIUFUNNEL

0

1
0

7

CEVA-X Debugger and Trace | 30©1989-2024 Lauterbach

… .ATBSource <source> Specify for components collecting trace information from where the
trace data are coming from. This way you inform the debugger
about the interconnection of different trace components on a
common trace bus.

You need to specify the “... .Base <address>” or other attributes
that define the amount of existing peripheral modules before you
can describe the interconnection by “... .ATBSource <source>”.

A CoreSight trace FUNNEL has eight input ports (port 0-7) to
combine the data of various trace sources to a common trace
stream. Therefore you can enter instead of a single source a list
of sources and input port numbers.

Example:
SYStem.CONFIG FUNNEL.ATBSource ETM 0 HTM 1 STM 7

Meaning: The funnel gets trace data from ETM on port 0, from
HTM on port 1 and from STM on port 7.

In an SMP (Symmetric MultiProcessing) debug session where
you used a list of base addresses to specify one component per
core you need to indicate which component in the list is meant:
CEVA-X Debugger and Trace | 31©1989-2024 Lauterbach

Example: Four cores with ETM modules.
SYStem.CONFIG ETM.Base 0x1000 0x2000 0x3000 0x4000
SYStem.CONFIG FUNNEL1.ATBSource ETM.0 0 ETM.1 1
ETM.2 2 ETM.3 3
"...2" of "ETM.2" indicates it is the third ETM module which has
the base address 0x3000. The indices of a list are 0, 1, 2, 3,...
If the numbering is accelerating, starting from 0, without gaps,
like the example above then you can shorten it to
SYStem.CONFIG FUNNEL1.ATBSource ETM

Example: Four cores, each having an ETM module and an ETB
module.
SYStem.CONFIG ETM.Base 0x1000 0x2000 0x3000 0x4000
SYStem.CONFIG ETB.Base 0x5000 0x6000 0x7000 0x8000
SYStem.CONFIG ETB.ATBSource ETM.2 2
The third "ETM.2" module is connected to the third ETB. The last
"2" in the command above is the index for the ETB. It is not a port
number which exists only for FUNNELs.

For a list of possible components including a short description
see Components and Available Commands.

… .BASE <address> This command informs the debugger about the start address of
the register block of the component. And this way it notifies the
existence of the component. An on-chip debug and trace
component typically provides a control register block which
needs to be accessed by the debugger to control this
component.

Example: SYStem.CONFIG ETMBASE APB:0x8011c000

Meaning: The control register block of the Embedded Trace
Macrocell (ETM) starts at address 0x8011c000 and is accessible
via APB bus.

In an SMP (Symmetric MultiProcessing) debug session you can
enter for the components COREBEBUG, CTI, ETB, ETF, ETM, ETR
a list of base addresses to specify one component per core.

Example assuming four cores: SYStem.CONFIG
COREDEBUG.Base 0x80001000 0x80003000 0x80005000
0x80007000

For a list of possible components including a short description
see Components and Available Commands.
CEVA-X Debugger and Trace | 32©1989-2024 Lauterbach

... .Name The name is a freely configurable identifier to describe how many
instances exists in a target systems chip. TRACE32 PowerView
GUI shares with other opened PowerView GUIs settings and the
state of components identified by the same name and component
type. Components using different names are not shared. Other
attributes as the address or the type are used when no name is
configured.

Example 1: Shared None-Programmable Funnel:
PowerView1:
SYStem.CONFIG.FUNNEL.PROGramable OFF
SYStem.CONFIG.FUNNEL.Name "shared-funnel-1"
PowerView2:
SYStem.CONFIG.FUNNEL.PROGramable OFF
SYStem.CONFIG.FUNNEL.Name "shared-funnel-1"
SYStem.CONFIG.Core 2. 1. ; merge configuration to describe a
target system with one chip containing a single none-
programmable FUNNEL.

Example 2: Cluster ETFs:
1. Configures the ETF base address and access for each core
SYStem.CONFIG.ETF.Base DAP:0x80001000 \

APB:0x80001000 DAP:0x80001000 APB:0x80001000

2. Tells the system the core 1 and 3 share cluster-etf-1 and core
2 and 4 share cluster-etf-2 despite using the same address for all
ETFs
SYStem.CONFIG.ETF.Name "cluster-etf-1" "cluster-etf-2" \
"cluster-etf-1" "cluster-etf-2"

… .NoFlush [ON | OFF] Deactivates a component flush request at the end of the trace
recording. This is a workaround for a bug on a certain chip. You
will loose trace data at the end of the recording. Don’t use it if not
needed. Default: OFF.

… .RESet Undo the configuration for this component. This does not cause a
physical reset for the component on the chip.

For a list of possible components including a short description
see Components and Available Commands.

… .Size <size> Specifies the size of the component. The component size can
normally be read out by the debugger. Therefore this command
is only needed if this can not be done for any reason.
CEVA-X Debugger and Trace | 33©1989-2024 Lauterbach

… .STackMode [NotAvailbale
| TRGETM | FULLTIDRM |
NOTSET | FULLSTOP |
FULLCTI]

Specifies the which method is used to implement the Stack mode
of the on-chip trace.
NotAvailable: stack mode is not available for this on-chip trace.
TRGETM: the trigger delay counter of the onchip-trace is used. It
starts by a trigger signal that must be provided by a trace source.
Usually those events are routed through one or more CTIs to the
on-chip trace.
FULLTIDRM: trigger mechanism for TI devices.
NOTSET: the method is derived by other GUIs or hardware.
detection.
FULLSTOP: on-chip trace stack mode by implementation.
FULLCTI: on-chip trace provides a trigger signal that is routed
back to on-chip trace over a CTI.

… .view Opens a window showing the current configuration of the
component.

For a list of possible components including a short description
see Components and Available Commands.

… .TraceID <id> Identifies from which component the trace packet is coming from.
Components which produce trace information (trace sources) for a
common trace stream have a selectable “.TraceID <id>”.

If you miss this SYStem.CONFIG command for a certain trace
source (e.g. ETM) then there is a dedicated command group for
this component where you can select the ID (ETM.TraceID <id>).

The default setting is typically fine because the debugger uses
different default trace IDs for different components.

For a list of possible components including a short description
see Components and Available Commands.
CEVA-X Debugger and Trace | 34©1989-2024 Lauterbach

CTI.Config <type> Informs about the interconnection of the core Cross Trigger
Interfaces (CTI). Certain ways of interconnection are common
and these are supported by the debugger e.g. to cause a
synchronous halt of multiple cores.

NONE: The CTI is not used by the debugger.
ARMV1: This mode is used for ARM7/9/11 cores which support
synchronous halt, only.
ARMPostInit: Like ARMV1 but the CTI connection differs from the
ARM recommendation.
OMAP3: This mode is not yet used.
TMS570: Used for a certain CTI connection used on a TMS570
derivative.
CortexV1: The CTI will be configured for synchronous start and
stop via CTI. It assumes the connection of DBGRQ, DBGACK,
DBGRESTART signals to CTI are done as recommended by
ARM. The CTIBASE must be notified. “CortexV1” is the default
value if a Cortex-A/R core is selected and the CTIBASE is
notified.
QV1: This mode is not yet used.

ARMV8V1: Channel 0 and 1 of the CTM are used to distribute
start/stop events from and to the CTIs. ARMv8 only.
ARMV8V2: Channel 2 and 3 of the CTM are used to distribute
start/stop events from and to the CTIs. ARMv8 only.
ARMV8V3: Channel 0, 1 and 2 of the CTM are used to distribute
start/stop events. Implemented on request. ARMv8 only.

ETR.CATUBase <address> Base address of the CoreSight Address Translation Unit (CATU).

FUNNEL.Name <string> It is possible that different funnels have the same address for
their control register block. This assumes they are on different
buses and for different cores. In this case it is needed to give the
funnel different names to differentiate them.

FUNNEL.PROGrammable
[ON | OFF]

Default is ON. If set to ON the peripheral is controlled by
TRACE32 in order to route ATB trace data through the ATB bus
network. If PROGrammable is configured to value OFF then
TRACE32 will not access the FUNNEL registers and the base
address doesn't need to be configured. This can be useful for
FUNNELs that don't have registers or when those registers are
read-only. TRACE32 need still be aware of the connected ATB
trace sources and sink in order to know the ATB topology. To
build a complete topology across multiple instances of
PowerView the property Name should be set at all instances to a
chip wide unique identifier.

HTM.Type [CoreSight | WPT] Selects the type of the AMBA AHB Trace Macrocell (HTM).
CoreSight is the type as described in the ARM CoreSight
manuals. WPT is a NXP proprietary trace module.
CEVA-X Debugger and Trace | 35©1989-2024 Lauterbach

Components and Available Commands

See the description of the commands above. Please note that there is a common description for
ATBSource,Base, ,RESet,TraceID.

COREDEBUG.Base <address>
COREDEBUG.RESet
Core Debug Register - ARM debug register, e.g. on Cortex-A/R
Some cores do not have a fix location for their debug register used to control the core. In this case it is
essential to specify its location before you can connect by e.g. SYStem.Up.

CTI.Base <address>
CTI.Config [NONE | ARMV1 | ARMPostInit | OMAP3 | TMS570 | CortexV1 | QV1]
CTI.RESet
Cross Trigger Interface (CTI) - ARM CoreSight module
If notified the debugger uses it to synchronously halt (and sometimes also to start) multiple cores.

ETB.ATBSource <source>
ETB.Base <address>
ETB.RESet
ETB.Size <size>
Embedded Trace Buffer (ETB) - ARM CoreSight module
Enables trace to be stored in a dedicated SRAM. The trace data will be read out through the debug port after
the capturing has finished.

ETF.ATBSource <source>
ETF.Base <address>
ETF.RESet
Embedded Trace FIFO (ETF) - ARM CoreSight module
On-chip trace buffer used to lower the trace bandwidth peaks.

ETM.Base <address>
ETM.RESet
Embedded Trace Macrocell (ETM) - ARM CoreSight module
Program Trace Macrocell (PTM) - ARM CoreSight module
Trace source providing information about program flow and data accesses of a core.
The ETM commands will be used even for PTM.

STM.Mode [NONE | XTIv2 |
SDTI | STP | STP64 | STPv2]

Selects the protocol type used by the System Trace Module (STM).

STM.Type [None | Generic |
ARM | SDTI | TI]

Selects the type of the System Trace Module (STM). Some types
allow to work with different protocols (see STM.Mode).

TPIU.Type [CoreSight |
Generic]

Selects the type of the Trace Port Interface Unit (TPIU).

CoreSight: Default. CoreSight TPIU. TPIU control register
located at TPIU.Base <address> will be handled by the
debugger.

Generic: Proprietary TPIU. TPIU control register will not be
handled by the debugger.
CEVA-X Debugger and Trace | 36©1989-2024 Lauterbach

ETR.ATBSource <source>
ETR.CATUBase <address>
ETR.Base <address>
ETR.RESet
Embedded Trace Router (ETR) - ARM CoreSight module
Enables trace to be routed over an AXI bus to system memory or to any other AXI slave.

FUNNEL.ATBSource <sourcelist>
FUNNEL.Base <address>
FUNNEL.Name <string>
FUNNEL.PROGrammable [ON | OFF]
FUNNEL.RESet
CoreSight Trace Funnel (CSTF) - ARM CoreSight module
Combines multiple trace sources onto a single trace bus (ATB = AMBA Trace Bus).

REP.ATBSource <sourcelist>
REP.Base <address>
REP.Name <string>
REP.RESet
CoreSight Replicator - ARM CoreSight module
This command group is used to configure ARM Coresight Replicators with programming interface. After the
Replicator(s) have been defined by the base address and optional names the ATB sources REPlicatorA and
REPlicatorB can be used from other ATB sinks to connect to output A or B to the Replicator.

HTM.Base <address>
HTM.RESet
HTM.Type [CoreSight | WPT]
AMBA AHB Trace Macrocell (HTM) - ARM CoreSight module
Trace source delivering trace data of access to an AHB bus.

STM.Base <address>
STM.Mode [NONE | XTIv2 | SDTI | STP | STP64 | STPv2]
STM.RESet
STM.Type [None | Generic | ARM | SDTI | TI]
System Trace Macrocell (STM) - MIPI, ARM CoreSight, others
Trace source delivering system trace information e.g. sent by software in printf() style.

TPIU.ATBSource <source>
TPIU.Base <address>
TPIU.RESet
TPIU.Type [CoreSight | Generic]
Trace Port Interface Unit (TPIU) - ARM CoreSight module
Trace sink sending the trace off-chip on a parallel trace port (chip pins).
CEVA-X Debugger and Trace | 37©1989-2024 Lauterbach

<parameters> which are “Deprecated”

In the last years the chips and its debug and trace architecture became much more complex. Especially the
CoreSight trace components and their interconnection on a common trace bus required a reform of our
commands. The new commands can deal even with complex structures.

… BASE <address> This command informs the debugger about the start address of
the register block of the component. And this way it notifies the
existence of the component. An on-chip debug and trace
component typically provides a control register block which
needs to be accessed by the debugger to control this
component.

Example: SYStem.CONFIG ETMBASE APB:0x8011c000

Meaning: The control register block of the Embedded Trace
Macrocell (ETM) starts at address 0x8011c000 and is accessible
via APB bus.

In an SMP (Symmetric MultiProcessing) debug session you can
enter for the components CORE, CTI, ETB, ETF, ETM, ETR a list of
base addresses to specify one component per core.

Example assuming four cores: “SYStem.CONFIG COREBASE
0x80001000 0x80003000 0x80005000 0x80007000”.

For a list of possible components including a short description
see Components and Available Commands.

… PORT <port> Informs the debugger about which trace source is connected to
which input port of which funnel. A CoreSight trace funnel
provides 8 input ports (port 0-7) to combine the data of various
trace sources to a common trace stream.

Example: SYStem.CONFIG STMFUNNEL2PORT 3

Meaning: The System Trace Module (STM) is connected to input
port #3 on FUNNEL2.

On an SMP debug session some of these commands can have a
list of <port> parameter.

In case there are dedicated funnels for the ETB and the TPIU
their base addresses are specified by ETBFUNNELBASE,
TPIUFUNNELBASE respectively. And the funnel port number for
the ETM are declared by ETMETBFUNNELPORT,
ETMTPIUFUNNELPORT respectively.

For a list of possible components including a short description
see Components and Available Commands.
CEVA-X Debugger and Trace | 38©1989-2024 Lauterbach

Deprecated and New Commands

In the following you find the list of deprecated commands which can still be used for compatibility reasons
and the corresponding new command.

SYStem.CONFIG <parameter>

CTICONFIG <type> Informs about the interconnection of the core Cross Trigger
Interfaces (CTI). Certain ways of interconnection are common
and these are supported by the debugger e.g. to cause a
synchronous halt of multiple cores.

NONE: The CTI is not used by the debugger.
ARMV1: This mode is used for ARM7/9/11 cores which support
synchronous halt, only.
ARMPostInit: Like ARMV1 but the CTI connection differs from the
ARM recommendation.
OMAP3: This mode is not yet used.
TMS570: Used for a certain CTI connection used on a TMS570
derivative.
CortexV1: The CTI will be configured for synchronous start and
stop via CTI. It assumes the connection of DBGRQ, DBGACK,
DBGRESTART signals to CTI are done as recommended by
ARM. The CTIBASE must be notified. “CortexV1” is the default
value if a Cortex-A/R core is selected and the CTIBASE is
notified.
QV1: This mode is not yet used.

view Opens a window showing most of the SYStem.CONFIG settings
and allows to modify them.

<parameter>:
(Deprecated)

<parameter>:
(New)

COREBASE <address> COREDEBUG.Base <address>

CTIBASE <address> CTI.Base <address>

CTICONFIG <type> CTI.Config <type>

DEBUGBASE <address> COREDEBUG.Base <address>

ETBBASE <address> ETB1.Base <address>

ETBFUNNELBASE <address> FUNNEL4.Base <address>

ETFBASE <address> ETF1.Base <address>

ETMBASE <address> ETM.Base <address>

ETMETBFUNNELPORT <port> FUNNEL4.ATBSource ETM <port> (1)

ETMFUNNEL2PORT <port> FUNNEL2.ATBSource ETM <port> (1)
CEVA-X Debugger and Trace | 39©1989-2024 Lauterbach

(1) Further “<component>.ATBSource <source>” commands might be needed to describe the full trace data
path from trace source to trace sink.

SYStem.CONFIG.EXTMEM External program memory

ETMFUNNELPORT <port> FUNNEL1.ATBSource ETM <port> (1)

ETMTPIUFUNNELPORT <port> FUNNEL3.ATBSource ETM <port> (1)

FUNNEL2BASE <address> FUNNEL2.Base <address>

FUNNELBASE <address> FUNNEL1.Base <address>

HSMBASE <address> HSM.Base <address>

HTMBASE <address> HTM.Base <address>

HTMETBFUNNELPORT <port> FUNNEL4.ATBSource HTM <port> (1)

HTMFUNNEL2PORT <port> FUNNEL2.ATBSource HTM <port> (1)

HTMFUNNELPORT <port> FUNNEL1.ATBSource HTM <port> (1)

HTMTPIUFUNNELPORT <port> FUNNEL3.ATBSource HTM <port> (1)

TPIUBASE <address> TPIU.Base <address>

TPIUFUNNELBASE <address> FUNNEL3.Base <address>

view state

Format: SYStem.CONFIG.EXTMEM.<sub_cmd> …

<sub_cmd>: Base <address>| L2A <attribute> | QOS <value> | RESet

Base Defines the base address of common external program and data memory.

L2A Level 2 cache attributes.

QOS Quality of Service attributes.

RESet Resets EXTMEM settings.
CEVA-X Debugger and Trace | 40©1989-2024 Lauterbach

SYStem.CPU Select the used CPU

Selects the processor type. If your ASIC is not listed, select the type of the integrated core.

SYStem.JtagClock Define JTAG clock

Default: 1 MHz.

Selects the frequency for the debug interface.

SYStem.LOCK Lock and tristate the debug port

Default: OFF.

If the system is locked, no access to the debug port will be performed by the debugger. While locked, the
debug connector of the debugger is tristated. The main intention of the SYStem.LOCK command is to give
debug access to another tool.

Format: SYStem.CPU <cpu>

<cpu>: OAK,PMB8870P | PMB8870S (OAK cores)

TeakLiteDev-A | TeakLiteDev-B | TeakLiteDev-C | PMB8875 | 88i6523
(TeakLite cores)

TEAK-REVA | TEAK-RTL2_0 | TEAK_REVB | XPERTTEAK (Teak cores)

Format: SYStem.JtagClock <frequency>

Format: SYStem.LOCK [ON | OFF]
CEVA-X Debugger and Trace | 41©1989-2024 Lauterbach

SYStem.MemAccess Select run-time memory access method
.

SYStem.Mode Establish the communication with the target

Format: SYStem.MemAccess Enable | StopAndGo | Denied
SYStem.ACCESS (deprecated)

Enable
CPU (deprecated)

Memory access during program execution to target is enabled.

Denied Memory access during program execution to target is disabled.

StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.

Format: SYStem.Mode <mode>

SYStem.Attach (alias for SYStem.Mode Attach)
SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)

<mode>: Down
Up
Attach

Down Disables the debugger (default). The state of the CPU remains unchanged. The
JTAG port is tristated.

Up Reset the target, sets the CPU to debug mode and stops the CPU.

Attach No reset happens, the mode of the core (running or halted) does not change.
The debug port will be initialized.
After this command has been executed, the user program can, for example, be
stopped with the Break command.

StandBy
NoDebug
Go

Not available for CEVA-X.
CEVA-X Debugger and Trace | 42©1989-2024 Lauterbach

SYStem.Option.IMASKASM Disable interrupts while single stepping

Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during assembler single-step operations. The
interrupt routine is not executed during single-step operations. After single step the interrupt mask bits are
restored to the value before the step. For 56800E processors IMASKASM ON is necessary for HLL stepping
and stepping from software breakpoints.

Format: SYStem.Option.IMASKASM [ON | OFF]
CEVA-X Debugger and Trace | 43©1989-2024 Lauterbach

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping

Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during HLL single-step operations. The interrupt
routine is not executed during single-step operations. After single step the interrupt mask bits are restored to
the value before the step.

SYStem.Option.OVERLAY Enable overlay support

Default: OFF.

Example:

Format: SYStem.Option.IMASKHLL [ON | OFF]

Format: SYStem.Option.OVERLAY [ON | OFF | WithOVS]

ON Activates the overlay extension and extends the address scheme of the
debugger with a 16 bit virtual overlay ID. Addresses therefore have the
format <overlay_id>:<address>. This enables the debugger to handle
overlaid program memory.

OFF Disables support for code overlays.

WithOVS Like option ON, but also enables support for software breakpoints. This
means that TRACE32 writes software breakpoint opcodes to both, the
execution area (for active overlays) and the storage area. This way, it is
possible to set breakpoints into inactive overlays. Upon activation of the
overlay, the target’s runtime mechanisms copies the breakpoint opcodes
to the execution area. For using this option, the storage area must be
readable and writable for the debugger.

SYStem.Option.OVERLAY ON
List.auto 0x2:0x11c4 ; List.auto <overlay_id>:<address>
CEVA-X Debugger and Trace | 44©1989-2024 Lauterbach

SYStem.Option.PB0size Setup size of internal program memory

Sets the size of the internal program memory (PTCM), usually detected automatically.

SYStem.Option.RisingTDO Target outputs TDO on rising edge

Default: OFF.

Bug fix for chips which output the TDO on the rising edge instead of on the falling.

Format: SYStem.Option.PB0size <size>

<size> 32KB | 64KB | 128KB | 256KB | 512KB | 1024KB

Format: SYStem.Option.RisingTDO [ON | OFF]
CEVA-X Debugger and Trace | 45©1989-2024 Lauterbach

SYStem.VCU Vector Computation Units (VCU)

SYStem.VCU.INSTances Number of available VCUs

Default: 0

Specifies the number of implemented Vector Computation Units (VCU) of the SOC.

SYStem.VCU.MLD MLD available or not

Default: OFF

Defines whether the VCU instance(s) features a Maximum-Likelyhood-Decoder (ON) or not (OFF).

General Restrictions

Format: SYStem.VCU.INSTances <count>

Format: SYStem.VCU.MLD [ON | OFF]

Setting the
PC

In cases where the program counter consists of the PC register and program
page extension bits, the program counter can be set by the register PP.
CEVA-X Debugger and Trace | 46©1989-2024 Lauterbach

CEVA-X specific ETM Command

ETM.BranchBBC Control branch BBC mode

Controls branch BBC mode.

ETM.IgnoreISyncPredicate Ignore I-Sync predicates

Default: OFF.

 Workaround in ETM trace decoder for bad predicates at I-Sync.

ETM.LoopBBC Branch broadcast

Enables/disables branch-broadcasting globally.

ETM.PredicateAddress Set predicate address

Configures predicate address.

Format: ETM.BranchBBC [ON | OFF]

Format: ETM.IgnoreISyncPredicate [ON | OFF]

Format: ETM.LoopBBC [ON | OFF]

Format: ETM.PredicateAddress [<address>]
CEVA-X Debugger and Trace | 47©1989-2024 Lauterbach

ETM.PredicatePeriod Predicated counter in ETM wrapper

This command sets up predicated counter in ETM wrapper.

ETM.TimeStampInjectorTraceID CoreSight ATB ID

Some SoCs feature a global timestamp unit, which allows a correlation of multiple core traces in time. In
order to do that, each core in turn is a associated with a so-called timestamp injector. The timestamps from
the timestamp injectors are not directly injected into the core trace, but have their own CoreSight ATB IDs.

ETM.WrapperFilter Global breakpoint enable

Disables or enabled all data and program breakpoints at once.

Default: ON.

ETM.WrapperSTALL Enable/disable wrapper stall

Default: ON.

Format: ETM.PredicatePeriod [<cycles>]

Format: ETM.TimeStampInjectorTraceID <id_tsi0> <id_tsi1> ...

Format: ETM.WrapperFilter [ON | OFF]

Format: ETM.WrapperSTALL [ON | OFF]
CEVA-X Debugger and Trace | 48©1989-2024 Lauterbach

TrOnchip Commands

The OCEM registers can be used to break on several conditions.

TrOnchip.CONVert Adjust range breakpoint in on-chip resource

The on-chip breakpoints can only cover specific ranges. If a range cannot be programmed into the
breakpoint, it will automatically be converted into a single address breakpoint when this option is active. This
is the default. Otherwise an error message is generated.

TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource

The on-chip breakpoints can only cover specific ranges. If you want to set a marker or breakpoint to a
complex variable, the on-chip break resources of the CPU may be not powerful enough to cover the whole
structure. If the option TrOnchip.VarCONVert is set to ON, the breakpoint will automatically be converted
into a single address breakpoint. This is the default setting. Otherwise an error message is generated.

Format: TrOnchip.CONVert [ON | OFF] (deprecated)
Use Break.CONFIG.InexactAddress instead

TrOnchip.CONVert ON
Break.Set 0x1000--0x17ff /Write
Break.Set 0x1001--0x17ff /Write
…

TrOnchip.CONVert OFF
Break.Set 0x1000--0x17ff /Write
Break.Set 0x1001--0x17ff /Write

; sets breakpoint at range
; 1000--17ff sets single breakpoint
; at address 1001

; sets breakpoint at range
; 1000--17ff
; gives an error message

Format: TrOnchip.VarCONVert [ON | OFF] (deprecated)
Use Break.CONFIG.VarConvert instead
CEVA-X Debugger and Trace | 49©1989-2024 Lauterbach

TrOnchip.RESet Set on-chip trigger to default state

Sets the TrOnchip settings and trigger module to the default settings.

TrOnchip.Set Set breakpoint

Sets a trigger condition which causes the core to stop. Not all events listed below may be available on all
CPUs.

TrOnchip.state Display “Trigger-Onchip” dialog

Control panel to configure the on-chip breakpoint registers.

Format: TrOnchip.RESet

Format: TrOnchip.Set.<trigger> [ON | OFF]

<trigger>: EXT1
EXT2
EXT3
EXT4

EXT1 Trigger on external input #1.

EXT2 Trigger on external input #2.

EXT3 Trigger on external input #3.

EXT4 Trigger on external input #4.

Format: TrOnchip.state
CEVA-X Debugger and Trace | 50©1989-2024 Lauterbach

Ceva Specific Benchmarking Commands

The BMC (BenchMark Counter) commands provide control of the optional on-chip profiler module. The
profiler consists of a group of counters that can be configured to count certain events in order to get statistics
on the operation of the processor and the memory system.

The counters can be read by the application at run-time and by the debugger only when stopped.

For information about architecture-independent BMC commands, refer to “BMC” (general_ref_b.pdf).

In addition the Ceva architecture offers the possibility to embed profile counter values in the program trace
flow. Even though not supported by hardware directly, a little software workaround can “unlock” this useful
feature.

The general approach is as follows:

1. Read profile counters by application code

2. Write counter values to a dummy location in the internal data memory

3. Configure the ETM-R4 to track data writes

4. Configure the ETM-R4 wrapper to filter out all data writes we are not interested in

For illustration we will take the Free Running Clock Counter (FRCC) and the Wait Counter (WAITCNT) as an
example. Below steps have been carried out on a Ceva-XC4500 and may vary on other target systems.

 In our sieve demo the result will look like this:

Before we can start with step #1, let’s start with some preliminary thoughts:
CEVA-X Debugger and Trace | 51©1989-2024 Lauterbach

The ETM-R4 wrapper by Ceva offers three comparators. They can be used as filters for three different data
addresses or for one range + one single address. This leads to three possible implementations of step 2):

• Declare three dummy variables somewhere in the internal memory => maximum of three profile
counters to be traced.

• Write all profile counter values to the same dummy variable => no limitation of profile counters
but debugger cannot distinguish between them.

• Declare a dummy variable for each counter and make sure their addresses are coherent => no
limitations.

The first two items are quite straightforward and do not need any more explanation. Hence we will continue
with the last one.

Unfortunately the Ceva inline assembler does not recognize structures etc. written in C language and putting
all dummy variables together does not necessarily mean that the compiler will map them to continuous
memory addresses. The most comfortable way to reserve a memory range for the dummy variables is to put
them into a separate “dummy” data section:

Note that we have to use the “volatile’ keyword. Later on we will make use of the labels FRCC and
WAITCNT in the inline assembler statements only, which would be skipped by the compiler otherwise. As a
result the compiler will optimize FRCC and WAITCNT away and the linker will fail when trying to link C- and
assembler object files.

volatile unsigned int FRCC __asm__("FRCC") __attribute__ ((section
(".DSECT dummy")));

volatile unsigned int WAITCNT __asm__("WAITCNT") __attribute__ ((section
(".DSECT dummy")));

... (etc.)
CEVA-X Debugger and Trace | 52©1989-2024 Lauterbach

Now we can define a macro which can be used anywhere in our application code to output the profile
counters (step #1 & #2):

Finally we just need to configure TRACE32 (step #3 & #4):

#define READ_BMCS { \
__asm__("nop");\
__asm__("nop");\
__asm__("push{4dw} modx");\
__asm__("push{dw} r0");\
__asm__("push{dw} r7");\
__asm__("mov #0x3, mod2");\
__asm__("push{dw} a0");\
__asm__("push{dw} a7");\
__asm__("in{dw, cpm} @0x08, r0");\
__asm__("nop");\
__asm__("in{dw, cpm} @0x0c, r7");\
__asm__("nop");\
__asm__("nop");\
__asm__("nop");\
__asm__("nop");\
__asm__("mov r0, a0");\
__asm__("mov r7, a7");\
__asm__("st{dw} a0, [#_FRCC] || pop{dw}r7");\
__asm__("st{dw} a7, [#_WAITCNT] || pop{dw}r0");\
__asm__("pop{dw} a7");\
__asm__("pop{dw} a0");\
__asm__("pop{4dw} modx");\
}

*1, *2
*1, *2
*2

*2

*2

*1 We only need those two ‘nop’s if the macro is placed after an instruction which modifies the stack
pointer (e.g. “push”, function entry).

*2 If the application does not make use of the mod2 register, we can omit these assembler
instructions and put __asm__("mov #0x3, mod2") somewhere else in an initialization
routine.

; Trace data write accesses
ETM.DataTrace Write

; Will also switch on FRCC automatically
BMC.WaitCounter ON

; Set range comparators for data write accesses
Break.Set var.address(WAITCNT)--var.end(FRCC) /Write /TraceData
CEVA-X Debugger and Trace | 53©1989-2024 Lauterbach

BMC.CLOCKS.FORMAT Cycle counter value format

Sets up the display format for the for each benchmark cycle counter.

Format: BMC.CLOCKS.FORMAT <format>

BMC.CLOCKS.FORMAT DECimal ; Display the cycle counter value in
; decimal format.

BMC.CLOCKS.FORMAT HEXadecimal ; Display the cycle counter value in
; hexadecimal format.
CEVA-X Debugger and Trace | 54©1989-2024 Lauterbach

Memory Classes

Memory Class Description

D Data memory

P Program memory
CEVA-X Debugger and Trace | 55©1989-2024 Lauterbach

JTAG Connector

Pins 17 and 19 are not used.

This is a standard 20 pin double row connector (pin-to-pin spacing: 0.100 in.).

We strongly recommend to use a connector on your target with housing and having a center polarization
(e.g. AMP: 2-827745-0). A connection the other way around indeed causes damage to the output driver of
the debugger.

Signal Pin Pin Signal
VREF-DEBUG 1 2 VSUPPLY (not used)

TRST- 3 4 GND
TDI 5 6 GND

TMS|TMSC|SWDIO 7 8 GND
TCK|TCKC|SWCLK 9 10 GND

RTCK 11 12 GND
TDO|-|SWO 13 14 GND

RESET- 15 16 GND
DBGRQ 17 18 GND

DBGACK 19 20 GND
CEVA-X Debugger and Trace | 56©1989-2024 Lauterbach

	CEVA-X Debugger and Trace
	Introduction
	Brief Overview of Documents for New Users
	Demo and Start-up Scripts

	Warning
	Quick Start
	Troubleshooting
	FAQ
	CPU Specific Implementations
	Breakpoints
	Software Breakpoints
	On-chip Breakpoints
	Disassembler
	MS Windows
	Linux

	CPU specific SYStem Settings
	SYStem.CONFIG.state Display target configuration
	SYStem.CONFIG Configure debugger according to target topology
	<parameters> describing the “DebugPort”
	<parameters> describing the “JTAG” scan chain and signal behavior
	<parameters> describing a system level TAP “MultiTap”
	<parameters> configuring a CoreSight Debug Access Port “AP”
	<parameters> describing debug and trace “Components”
	<parameters> which are “Deprecated”

	SYStem.CONFIG.EXTMEM External program memory
	SYStem.CPU Select the used CPU
	SYStem.JtagClock Define JTAG clock
	SYStem.LOCK Lock and tristate the debug port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Establish the communication with the target
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.Option.OVERLAY Enable overlay support
	SYStem.Option.PB0size Setup size of internal program memory
	SYStem.Option.RisingTDO Target outputs TDO on rising edge
	SYStem.VCU Vector Computation Units (VCU)
	SYStem.VCU.INSTances Number of available VCUs
	SYStem.VCU.MLD MLD available or not
	General Restrictions

	CEVA-X specific ETM Command
	ETM.BranchBBC Control branch BBC mode
	ETM.IgnoreISyncPredicate Ignore I-Sync predicates
	ETM.LoopBBC Branch broadcast
	ETM.PredicateAddress Set predicate address
	ETM.PredicatePeriod Predicated counter in ETM wrapper
	ETM.TimeStampInjectorTraceID CoreSight ATB ID
	ETM.WrapperFilter Global breakpoint enable
	ETM.WrapperSTALL Enable/disable wrapper stall

	TrOnchip Commands
	TrOnchip.CONVert Adjust range breakpoint in on-chip resource
	TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource
	TrOnchip.RESet Set on-chip trigger to default state
	TrOnchip.Set Set breakpoint
	TrOnchip.state Display “Trigger-Onchip” dialog

	Ceva Specific Benchmarking Commands
	BMC.CLOCKS.FORMAT Cycle counter value format

	Memory Classes
	JTAG Connector

