
MANUAL

Release 02.2025

Application Note FLASH
Programming TriCore

Application Note FLASH Programming TriCore

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 ICD In-Circuit Debugger .. 

 Processor Architecture Manuals .. 

 TriCore .. 

 TriCore Application Notes ... 

 Application Note FLASH Programming TriCore ... 1

 Introduction .. 4

 FLASH Programming Commands .. 5

 Organization of TriCore FLASH Scripts ... 6

 FLASH Declaration Scripts 6

 FLASH Feature Scripts 7

 FLASH Demo Scripts 7

 TC2xx Devices .. 11

 Erased FLASH 11

 TRACE32 Methods for Safe FLASH Programming 13

 NOP Sectors 13

 Protecting Boot Mode Headers 14

 Recommended Procedures 15

 Boot Mode Headers 15

 User Configuration Blocks 16

 HSM 18

 OTP and WOP Sectors 21

 TC3xx Devices .. 22

 Erased FLASH 22

 TRACE32 Mechanisms for Safe FLASH Programming 24

 NOP Sectors 24

 Recommended Procedures 25

 User Configuration Blocks 25

 HSM 30

 OTP and WOP Sectors 33

 DFLASH Single-Ended and Complement Sensing Mode 34

 Support for SOTA 35
Application Note FLASH Programming TriCore | 2©1989-2025 Lauterbach

 FLASH Programming with SWAP Enabled 35

 The SWAP Feature Script 36
Application Note FLASH Programming TriCore | 3©1989-2025 Lauterbach

Application Note FLASH Programming TriCore

Version 13-Feb-2025

Introduction

TriCore AURIX devices have many configurations that are located in FLASH (e.g., User Configurations
Blocks). For security and safety reasons, the chip offers the possibility, e.g., to install intended locking of the
debug access, or prohibit programming of specific FLASH sectors. But programming invalid content to the
FLASH may result in locking the device forever.

TRACE32 provides several methods to minimize the risks of accidentally writing wrong content to FLASH
and consequently locking the device without recovering possibilities. To fully benefit from these mechanisms,
it is mandatory to understand the TRACE32 FLASH programming strategies for TriCore AURIX devices and
to learn about recommended procedures and good practices when writing FLASH scripts. This is the
intention of this document.

This document is only discussing peculiarities of TRACE32 internal FLASH programming for TriCore AURIX
devices. The document “Onchip/NOR FLASH Programming User’s Guide” (norflash.pdf) covers
TRACE32 internal FLASH programming in general and is recommended as basic knowledge for this
application note.

The first section summarizes the TRACE32 FLASH programming commands and which methods have to
be used or avoided according to the TriCore specificities. The second section presents different types of
TRACE32 FLASH scripts for TriCore, their location in the TRACE32 installation and their intended usage.
The last two sections are separately covering FLASH programming for TC2xx and TC3xx. Chip specific
behaviors, protection mechanisms, practical use-cases and scripting examples are provided.

In this document, the term AURIX is used to designate all TC2xx and TC3xx devices.

The procedures and scripts presented in this document are designed to avoid
common risks and mistakes resulting in a locked device. TRACE32 FLASH
scripts consider critical content as valid when it passes number of formal
checks. Formal checks are, e.g., correct address alignment, presence of magic
patterns matching CRCs, etc. When formal checks have passed, the Startup
Software (SSW) will consider the content as valid and will evaluate it.

The TRACE32 FLASH scripts are continuously improved and extended to cover
a maximum of protection but there is no guarantee that all cases are covered.
For example, the scripts may not warn if a user actively enables locking.
In no case using TRACE32 FLASH scripts will replace reading the TriCore User
Manuals and Errata Sheets.
Application Note FLASH Programming TriCore | 4©1989-2025 Lauterbach

FLASH Programming Commands

TRACE32 offers three FLASH programming methods. Each method uses different groups of FLASH
programming commands:

• FLASH.Erase / FLASH.Program

• FLASH.ReProgram

• FLASH.AUTO

Details on how these commands work and information about their parameters and option are explained in
“Onchip/NOR FLASH Programming User’s Guide” (norflash.pdf).

For TriCore, the commands FLASH.Erase and FLASH.Program have to be used with care. Using these
commands might result in incorrect ECC and erroneous FLASH content. This especially happens when the
programmed file format fragmentation does not cover the entire ECC line.

The command FLASH.ReProgram is the convenient choice when programming a content that will make big
changes to many FLASH sectors. Loading an application ELF file is a typical example.

The command FLASH.AUTO is the best fit when making small patches or changing some bytes in the
FLASH.
Application Note FLASH Programming TriCore | 5©1989-2025 Lauterbach

Organization of TriCore FLASH Scripts

Three categories of FLASH scripts for the TriCore architecture are available in the TRACE32 installation:

• FLASH declaration scripts

• FLASH feature scripts

• FLASH demo scripts

This section presents their organization and intended usage for writing user’s FLASH scripts.

FLASH Declaration Scripts

Internal FLASH programming for AURIX devices is using a target-controlled method, where the FLASH
programming algorithm (or FLASH driver) is executed from the device RAM under control of TRACE32
PowerView. Every AURIX device has a different FLASH structure and consequently a different FLASH
mapping. Thus it is necessary to specify the FLASH mapping before the FLASH programming commands
can be used.

The FLASH mapping declaration is done via the TRACE32 FLASH declaration scripts located in the
installation directory under “~~/demo/tricore/flash”. Each device series has a FLASH declaration
script. For example, the script tc39x.cmm is intended to be used for all TC39x devices. Obviously, the script
tc27x.cmm is for all TC27x devices.

The FLASH declaration scripts are intended as “library” scripts and have to be used as-is. Those scripts
must not be modified or partly copied to the user’s FLASH scripts. Instead, they have to be called from the
user’s FLASH scripts with the appropriate arguments.

Example:

The “PREPAREONLY” argument instructs the FLASH declaration script to declare the FLASH and exit
without FLASH programming.

The argument “CPU=<cpu>” selects the used CPU derivative. This argument is optional if the debugger to
target communication is already established.

The argument “DUALPORT=1” enables data transfer via dual-port memory access and ensures a
continuous running of the FLASH algorithm until the FLASH programming is finished. This results in a higher
FLASH programming performance.

Other important information and details about all the script arguments can be found in the script header.

Some devices, using the same CPU selection, might be available with different FLASH sizes and
consequently require different FLASH declarations. This is handled transparently if the device is already
supported by the used FLASH declaration script version. A TRACE32 software update can be requested

DO ~~/demo/tricore/flash/tc39x.cmm CPU=TC397XE PREPAREONLY DUALPORT=1
Application Note FLASH Programming TriCore | 6©1989-2025 Lauterbach

from support@lauterbach.com if the device is not supported by the used TRACE32 software version (i.e.
the CPU selection is missing) and/or by the FLASH declaration script (an error “Unsupported Pflash Size”
is thrown by the script).

FLASH Feature Scripts

Like FLASH declaration scripts, FLASH feature scripts are located in the installation directory under
“~~/demo/tricore/flash”. They have to be used as-is by calling them from the user’s FLASH scripts
using appropriate arguments.

The feature scripts are used to help programming various features including checks for valid content.

Examples of FLASH feature scripts for TC2xx:

• tc2xx-ucb.cmm

• tc2xx-bmhd.cmm

• tc2xx-hsm-config.cmm

• tc23x-hsm.cmm, tc27x-hsm.cmm, tc29x-hsm.cmm

Examples of FLASH feature scripts for TC3xx:

• tc3xx-ucb.cmm

• tc3xx-hsm-config.cmm

• tc3xx-swap.cmm

Details about the scripts’ arguments and intended usage are documented in the script headers. Use-cases
and examples will be detailed later in this document.

FLASH Demo Scripts

The TRACE32 demo directory for the TriCore architecture includes FLASH demo scripts for Infineon
reference boards. These demo scripts are located in the installation under
“~~/demo/tricore/hardware” and are organized by board name and chip derivative.

Example:

NOTE: Do not move the FLASH declaration scripts from their default location. This leads to
problems when performing a TRACE32 software update, since the copied scripts
won’t be updated to the newest version. This prevents to benefit from eventual
script improvements and support of new devices.

PEDIT ~~/demo/tricore/hardware/triboard-tc3x7/tc387qp/demo_flash.cmm
Application Note FLASH Programming TriCore | 7©1989-2025 Lauterbach

These scripts are intended to be copied and used as templates to create customised users’ scripts.

TRACE32 script search dialog can be used to search an appropriate FLASH demo script. The dialog can be
opened from the menu “Help -> Demo Scripts...”. Using the chip name and appropriate keywords to refine
the search, the matching scripts from the TRACE32 installation are listed.

In this example, the matching FLASH demo script is entitled “Demo script for TC387QP on TriBoard-
TC3x7 (Flash, sieve app)”. By selecting the script, a more detailed description is displayed.

The FLASH demo scripts have a unified layout with three main parts.

The first part of the script initiates the debugger/target communication. This includes setting the CPU
selection and setting up all the required configurations to start the debugger/target communication
successfully.
Application Note FLASH Programming TriCore | 8©1989-2025 Lauterbach

Before starting the FLASH programming, it is very important to disable all external (and internal) watchdogs
to avoid resetting the target while the FLASH programming is in progress. It is also very important to start
FLASH programming from a “clean” known state of the target. In this example, the command SYStem.Up is
used to reset the target and halt the CPU at the reset vector.

After a successful startup of the debugger/target communication, the state “system ready” is displayed in
the status bar.

The second part is the FLASH preparation. This is done by calling the FLASH declaration script with the
“PREPAREONLY” argument.

After the FLASH preparation the command FLASH.List can be used to examine the declared FLASH
mapping.

DO ~~/demo/tricore/flash/tc38x.cmm CPU=TC387QP PREPAREONLY
Application Note FLASH Programming TriCore | 9©1989-2025 Lauterbach

The third part of a FLASH demo script is the FLASH programming. The command FLASH.ReProgram ALL
enables the FLASH programming for all “TARGET” sectors, then the ELF file of the demo application (or
any other binary format) is loaded using the appropriate Data.LOAD command.

After executing FLASH.ReProgram OFF the effective FLASH programming to the device is started.

The rest of this demo script shows the FLASH programming of the BMHDs. This part will be detailed in the
following sections.
Application Note FLASH Programming TriCore | 10©1989-2025 Lauterbach

TC2xx Devices

Erased FLASH

For TriCore AURIX devices the data is stored in FLASH with error correcting codes “ECC” in order to protect
against data corruption. These ECC can correct a certain amount of bit errors.

For PFLASH, the ECC are calculated over the data and the address bits. After an erase, the state of the data
as well as the state of the ECC is “all-0”. As the ECC of 0x0 is not 0x0, the stored ECC does not match with
the ECC of the actual data. Thus, an erased PFLASH range is resulting in ECC errors.

The ECC is automatically evaluated by the chip when reading data. Thus, reading from an erased PFLASH
sector returns “bus error” indicated as “????????” in, e.g., a Data.dump window.

For DFLASH, a different ECC algorithm is used. ECC are calculated over the data bits only and the “all-0”
state for data and checksums do not result in “bus errors” when reading from erased DFLASH sectors.

Bus errors that are caused by uncorrectable ECC errors can be disabled by configuring
FLASH0_MARP.TRAPDIS and FLASH0_MARD.TRAPDIS register fields.

After changing the configuration of FLASH0_MARP.TRAPDIS field to disable the uncorrectable ECC error
reporting, the erased range is displayed like in the following screenshot.

Some bits still show the value 1. The displayed values don’t reflect the real physical FLASH content, but this
reflects the content obtained after applying the ECC correction. The result is not the same for all the
PFLASH lines because for PFLASH, the address of the ECC line is used for calculating the ECC.
Application Note FLASH Programming TriCore | 11©1989-2025 Lauterbach

The real PFLASH content can be displayed by additionally disabling the ECC correction in the
corresponding PFLASH register filed FLASH0_ECCRPp.ECCORDIS like the example in the following
screenshot.

To ensure that all PFLASH and ECCs are initialized, the command FLASH.ReProgram can be used with
the option “/FILL” to fill all erase sectors with 0.

Example:

NOTE: Configuring FLASH0_MARP and FLASH0_MARD to mask the bus error traps or
disabling the ECC correction in FLASH0_ECCRPp are not presented here as
programming options. These are only mentioned for better understanding of the
chip behavior.

FLASH.ReProgram ALL /Erase /FILL
Data.LOAD.Elf application.elf
FLASH.ReProgram OFF
Application Note FLASH Programming TriCore | 12©1989-2025 Lauterbach

TRACE32 Methods for Safe FLASH Programming

NOP Sectors

TRACE32 FLASH declaration scripts declare sensitive sectors as “NOP” to protect them against unwanted
FLASH programming. TRACE32 PowerView silently discards all erase and write operations to “NOP”
sectors.

When it is required to make changes to “NOP” sectors, the command FLASH.CHANGEtype has to be
used to modify the FLASH sector type to “TARGET”. Only then, FLASH operations for that range are
performed by TRACE32 PowerView.

To prevent unintended bricking of the device the FLASH declaration scripts for TC2xx declare the tuning
protection configurations and the HSM code as “NOP” sectors. The following is an extract from tc27x.cmm
FLASH declaration script.

These sectors can safely be used for the application if the user makes sure that the code he is programming
will not lock the device.

The FLASH programming scripts for TC2xx does not provide checks to ensure that the code programmed to
the tuning protection sectors or HSM code sectors is safe. For the tuning protection sectors, the user has to
ensure this by himself. For the HSM code sectors it is strongly recommended to use the checks provided by
the HSM feature scripts e.g. tc29x-hsm.cmm. Details and scripting examples are provided in the
recommended procedures paragraph for HSM.

FLASH sectors that are declared by TRACE32 FLASH scripts as “NOP” need
to be handled with special care. Before making any changes to these sectors, it
is mandatory to read the Infineon documentation for understanding the effects
of the modifications.

FLASH.Create 1. 0xA0014000++0x3FFF 0x4000 NOP Long /INFO "Tuning Protec."
FLASH.Create 1. 0xA0018000++0x3FFF 0x4000 NOP Long /INFO "HSM code sect."

NOTE: It is strongly recommended to use the command FLASH.CHANGEtype to
change a sector from “NOP” to “TARGET”. After programming, change the
sector back to “NOP” to avoid unintended programming with invalid content.
Application Note FLASH Programming TriCore | 13©1989-2025 Lauterbach

Protecting Boot Mode Headers

For TC2xx devices, the option “/BootModeHeaDer” is used with the command FLASH.Create to make
TRACE32 PowerView aware of the boot mode header regions. TRACE32 will then ensure that the old
content of the boot mode headers will be preserved if nothing is programmed to them after an erase.

Example:

The resulting FLASH declaration can be viewed using the command FLASH.List. The following FLASH
declaration is obtained after executing the FLASH declaration script for TC277TF device using the
parameter “PREPAREONLY”.

&s0_s2="0xA0000000--0xA000BFFF" ; PS0, S0..S2
&bmhd0="0xA0000000--0xA000001F" ; Range of BMHD0
FLASH.Create 1. &s0_s2 0x4000 TARGET Long /BootModeHeaDer &bmhd0

 DO ~~/demo/tricore/flash/tc27x.cmm CPU=TC277TF PREPAREONLY
Application Note FLASH Programming TriCore | 14©1989-2025 Lauterbach

Recommended Procedures

In order to prevent unwanted locking of a device the following procedures must be followed. They combine
the FLASH declaration script and the FLASH feature scripts.

Boot Mode Headers

When booting an AURIX device, at least one boot mode header should contain valid data. For some early
TC2xx devices, having no valid boot mode header is fatal. This will lock the device with no recovering
possibilities.

The FLASH declaration scripts can be used to check if at least one valid Boot Mode Header is going to be
programmed to the device. The script needs to be called using the argument “CHECKBMHD” as follows:

This check has to be performed before the effective FLASH programming is started via the command
FLASH.ReProgram OFF.

If at least one valid boot mode header is found, the script execution returns the result “BMHD_OK”. Then
the user script can continue the FLASH programming. If no valid boot mode header is found, the check will
return “BMHD_MISSING” and the user script must abort the FLASH programming.

Here is the script example with the full programming flow:

NOTE: The procedures and script examples presented in this document requires
TRACE32 release 2020/02 or newer.

 DO ~~/demo/tricore/flash/tc27x.cmm CHECKBMHD

; Enable FLASH programming
FLASH.ReProgram ALL

; Load the demo application
Data.LOAD.Elf application.elf

; Check if there is at least one valid BMHD
DO ~~/demo/tricore/flash/tc27x.cmm CHECKBMHD
ENTRY &bmhdResult
IF ("&bmhdResult"=="BMHD_OK")
(
 ; At least one valid BMHD is detected => make the changes to the device
 FLASH.ReProgram OFF
)
ELSE
(
 DIALOG.OK "No valid Boot Mode Header found!" "Reverting loaded data"
 FLASH.ReProgram CANCEL
 ENDDO
)
Application Note FLASH Programming TriCore | 15©1989-2025 Lauterbach

User Configuration Blocks

The FLASH feature script tc2xx-ucb.cmm is used to help programming UCBs and test for valid content.

The following example shows how the PFLASH UCB can be programmed when it is in a confirmed state
(indicated by the register field FPRO.PROINP). The main steps to achieve this are the following:

1. Perform the FLASH declaration using the appropriate FLASH declaration script.

2. Activate UCB_PFLASH programming by calling the UCB programming script using the argument
“ACTIVATE”. This combines the following steps:

- Unlocking the UCB_PFLASH password protection. This is only required if UCB_PFLASH
password protection is active.

- Changing the UCB_PFLASH sector type from “NOP” to “TARGET” to allow FLASH
programming by TRACE32 PowerView.

- Enabling FLASH programming for UCB_PFLASH using FLASH.AUTO command. The latter is
used to preserve the unchanged content of the affected FLASH sector.

Unlocking the UCB password protection requires the unlock password to be provided. This is
achieved by additionally providing the argument “PWD=<password>” like in the following example:

Alternatively, a dialog can be used to enter the password manually. This is done by using the
argument “DIALOG” instead of “PWD=<password>”.

3. Make the desired changes to the UCB via, e.g., Data.Set commands for both original and copy
UCB contents.

4. Program the modifications by calling the UCB programming script using the argument
“PROGRAM”. This will perform the following:

- Do a formal verification of the UCB_PFLASH content.

- If the provided content is formally correct the changes are programmed to the device and the
script returns “UCBOK”.

- If the formal checks detected invalid content the FLASH programming is aborted and the
script returns the result “UCBFAIL”.

In both cases the NOP protection of UCB_PFLASH sector is restored.

&pwd="0x0_0x1_0x2_0x3_0x4_0x5_0x6_0x7"
DO ~~/demo/tricore/flash/tc2xx-ucb.cmm UCB=PFLASH ACTIVATE PWD=&pwd
Application Note FLASH Programming TriCore | 16©1989-2025 Lauterbach

Here is the script example with the full programming flow:

; Perform the FLASH declaration
DO ~~/demo/tricore/flash/tc27x.cmm PREPAREONLY CPU=TC277TF
; Activate UCB modification:
; - Unlock password protection to allow programming of UCB_PFLASH
; - Allow FLASH programming by changing the sector type from NOP to
; TARGET
; - Enable FLASH programming for UCB_PFLASH using FLASH.AUTO command
DO ~~/demo/tricore/flash/tc2xx-ucb.cmm UCB=PFLASH ACTIVATE DIALOG
; Disable all write protections in PROCONP0 original and copy content
Data.Set 0xAF100000 %Long 0x0
Data.Set 0xAF100010 %Long 0x0
; Program the modifications:
; - Formal verification of the UCB_PFLASH content
; - The content is formally correct => Program the changes to the device
; - The check detected invalid content => Abort FLASH programming
; - In any case restore NOP protection for UCB_PFLASH range
DO ~~/demo/tricore/flash/tc2xx-ucb.cmm UCB=PFLASH PROGRAM
ENTRY &result
IF ("&result"=="UCBOK")
(
 PRINT "UCB_PFLASH programming successful"
)

Application Note FLASH Programming TriCore | 17©1989-2025 Lauterbach

HSM

Enabling HSM boot when no valid HSM code is present will lock the device permanently. Series-specific
HSM FLASH scripts can be used to program with maximum safety.

Example 1:

This example shows how the following HSM feature scripts can be used to check for valid HSM code and
enable the HSM boot.

 • tc23x-hsm.cmm

 • tc27x-hsm.cmm

 • tc29x-hsm.cmm

Assuming that the TriCore application is already programmed to the device, the recommended FLASH
programming flow for HSM programming is the following:

1. Disable NOP protection of HSM code and configuration sectors:

Per default, the FLASH declaration scripts declare HSM code sectors as “NOP”. It is necessary to
change these sectors types to “TARGET” to allow their programming by TRACE32 PowerView. HSM
FLASH scripts can be used to achieve this using the script argument “PREPAREONLY”.

2. Program the HSM application code:

The FLASH programming of HSM application can be done via, e.g., HSM specific ELF file or any
other binary format. The FLASH programming commands FLASH.ReProgram have to be used.

3. Check for valid HSM code and enable HSM boot:

After programming the HSM code, a post programming check could be done to verify if the
application is correctly programmed to the target FLASH using the command Data.LOAD with the
option “/DIFF”.

If any difference is found, HSM boot needs to be disabled by calling the HSM FLASH script with the
argument “DISABLE”.

DO ~~/demo/tricore/flash/tc27x-hsm.cmm CPU=TC277TF PREPAREONLY

FLASH.ReProgram ALL
Data.LOAD.Elf hsm_app.elf /NoClear /NoRegister /NosYmbol
FLASH.ReProgram OFF
Application Note FLASH Programming TriCore | 18©1989-2025 Lauterbach

If the HSM application file is correctly programmed the HSM FLASH script can safely be called with
the argument “ENABLE”. This will verify if the HSM programmed boot vectors are valid and enable
HSM by programming the register UCB_HSMCOTP. Otherwise, the HSM is kept disabled.

4. Restore the NOP protection of HSM code and configuration sectors: After HSM FLASH
programming is finished, restore the NOP protection of HSM sectors by calling the HSM FLASH
script using the argument “FINISH”.

Here is the script example with the full programming flow:

Data.LOAD.Elf hsm_app.elf /NoClear /NoRegister /NosYmbol /DIFF
IF FOUND()
(
 ; Ensure that HSM is kept disabled to avoid locking the device!
 DO ~~/demo/tricore/flash/tc27x-hsm.cmm DISABLE
 ENDDO
)
ELSE
(
 ; Check HSM code area and enable HSM
 DO ~~/demo/tricore/flash/tc27x-hsm.cmm ENABLE
)

DO ~~/demo/tricore/flash/tc27x-hsm.cmm FINISH

DO ~~/demo/tricore/flash/tc27x-hsm.cmm CPU=TC277TF PREPAREONLY

FLASH.ReProgram ALL
Data.LOAD.Elf hsm_app.elf /NoClear /NoRegister /NosYmbol
FLASH.ReProgram OFF

; Check the HSM Elf file is correctly programmed to the device
Data.LOAD.Elf hsm_app.elf /NoClear /NoRegister /NosYmbol /DIFF
IF FOUND()
(
 ; Ensure that HSM is kept disabled to avoid locking the device!
 DO ~~/demo/tricore/flash/tc27x-hsm.cmm DISABLE
 ENDDO
)
ELSE
(
 ; Check HSM code area and enable HSM
 DO ~~/demo/tricore/flash/tc27x-hsm.cmm ENABLE
)

DO ~~/demo/tricore/flash/tc27x-hsm.cmm FINISH
Application Note FLASH Programming TriCore | 19©1989-2025 Lauterbach

Example 2:

This example shows how the HSM feature script tc2xx-hsm-config.cmm can be used for an easier
configuration of the HSM related chip setting.

The script can be started in dialog mode as follows.

The HSM related setups are configured via various check-boxes. The “Refresh” button reloads the
currently programmed configuration. After selecting the desired HSM configurations the button “Program”
stores the new configuration to the device. If the selected setup enables the HSM boot, the script will first
check if the HSM boot vectors are valid, otherwise the FLASH programming is aborted to prevent
permanent locking of the device.

The button “Show” generates a script snippet with all the settings to be made, that can be copied to the
user’s FLASH script.

DO ~~/demo/tricore/flash/tc2xx-hsm-config.cmm
Application Note FLASH Programming TriCore | 20©1989-2025 Lauterbach

OTP and WOP Sectors

For TriCore AURIX devices, beside write protection with password, two types of sector specific programming
protection can be distinguished.

• FLASH sectors that are configured with OTP (One-Time Programmable) protection can not be
erased or programmed. Otherwise, FLASH programming errors will be reported by the hardware.

• FLASH sectors that are configured with WOP (Write-page Once Protection) can be programmed
once. These sectors can only be programmed if they are in erased state. Erasing these sectors is
prevented by hardware after the protection is activated. The hardware will report an error when
trying to erase them.

TRACE32 defines the FLASH sectors that must not be erased or programmed as “NOP” sectors. Thus
OTP protected sectors (as defined by Infineon) are declared by TRACE32 FLASH declaration scripts as
NOP sectors.

TRACE32 uses the “OTP” term to designate FLASH sectors that can be programmed once because erase
is prohibited. Thus, the FLASH sectors that are protected with WOP (as defined by Infineon) are declared by
TRACE32 FLASH declaration scripts using the option “/OTP”.

Sectors declared with “/OTP” can only be programmed with the command FLASH.Program and the option
“/OTP” must be specified.

Example:

More details about FLASH programming of TRACE32 OTP sectors can be found in “Onchip/NOR FLASH
Programming User’s Guide” (norflash.pdf).

FLASH.Program 0xA0000000++0x3FFF /OTP
Data.Set ...
FLASH.Program OFF
Application Note FLASH Programming TriCore | 21©1989-2025 Lauterbach

TC3xx Devices

Erased FLASH

For TriCore AURIX devices the data is stored in FLASH with error correcting codes “ECC” in order to protect
against data corruption. These ECC can correct a certain amount of bit errors.

For PFLASH, the ECCs are calculated over the data and the address bits. After an erase, the state of the
data as well as the state of the ECC is “all-0”. As the ECC of 0x0 is not 0x0, the stored ECC does not
match with the ECC of the actual data. Thus, an erased PFLASH range is resulting in ECC errors.

The ECC is automatically evaluated by the chip when reading data. Thus, reading from an erased PFLASH
sector returns “bus error” indicated as “????????” in, e.g., a Data.dump window.

For DFLASH, a different ECC algorithm is used. ECC are calculated over the data bits only and the “all-0”
state for data and checksums do not result in “bus errors” when reading from erased DFLASH sectors.

Bus errors that are caused by uncorrectable ECC errors can be masked by changing the register field
FLASHCON1.MASKUECC of the CPU associated to the corresponding PFLASH unit.

After changing the configuration in the CPU0 register field FLASHCON1.MASKUECC for disabling the ECC
error reporting, the erased range is displayed like in the following screenshot.

Some bits still show the value 1. The displayed values don’t reflect the real physical FLASH content, but this
reflects the content obtained after applying the ECC correction. The result is not the same for all the FLASH
cells because the ECC is calculated from the data values and the corresponding address.

The real erased FLASH content can be displayed by additionally disabling the ECC correction in
FLASHCON2.ECCCORDIS like in the following screenshot.
Application Note FLASH Programming TriCore | 22©1989-2025 Lauterbach

To ensure that all PFLASH and ECCs are initialized, the command FLASH.ReProgram can be used with
the option “/FILL” to fill all erase sectors with 0.

Example:

NOTE: Configuring FLASHCON1 to mask the bus error traps or disabling the ECC
correction in FLASHCON2 are not presented here as programming options.
These are only mentioned for better understanding of the chip behavior.

FLASH.ReProgram ALL /Erase /FILL
Data.LOAD.Elf application.elf
FLASH.ReProgram OFF
Application Note FLASH Programming TriCore | 23©1989-2025 Lauterbach

TRACE32 Mechanisms for Safe FLASH Programming

NOP Sectors

TRACE32 FLASH declaration scripts declare sensitive sectors as “NOP” to protect them against unwanted
FLASH programming. TRACE32 PowerView silently discards all erase and write operations to “NOP”
sectors.

When it is required to make changes to “NOP” sectors, the command FLASH.CHANGEtype has to be
used to modify the FLASH sector type to “TARGET”. Only then, FLASH operations for that range are
performed by TRACE32 PowerView.

FLASH declaration scripts for TC3xx declare the User Configuration Blocks (UCBs) and Configuration
Sector Layout (CFS) as “NOP” sectors.

Example:

FLASH sectors that are declared by TRACE32 FLASH scripts as “NOP” need
to be handled with special care. Before making any changes to these sectors, it
is mandatory to read the Infineon documentation for understanding the effects
of the modifications.

FLASH.Create 21. 0xAF400000++0x1FF 0x0200 NOP Long /INFO "BMHD0 ORIG"
FLASH.Create 22. 0xAF800000++0xFFFF 0x0200 NOP Long /INFO "CFS"
Application Note FLASH Programming TriCore | 24©1989-2025 Lauterbach

Recommended Procedures

More safety in FLASH programming can be achieved by using the FLASH declaration scripts and the
FLASH feature scripts in the recommended way.

For TC3xx devices, more automation of FLASH pre-checks was introduced starting from TRACE32 release
2018/02. The FLASH declaration scripts install automatic checkers for the FLASH programming commands
to warn the user about dangerous operations and to block fatal operations.

The pre-check has configuration options to control the user confirmation. These options are documented in
the header of the FLASH declaration scripts.

To benefit from these automatic checks, the user’s FLASH script must call the device-specific FLASH
declaration script using the parameter “PREPAREONLY”.

From the user’s FLASH script, no call to check scripts is required before effective FLASH programming. For
TC3xx these checks are performed automatically by TRACE32 PowerView.

The FLASH feature scripts for TC3xx are used to help programming the UCBs. Also, they are used as an
additional check against unwanted device locking.

User Configuration Blocks

The FLASH feature script tc3xx-ucb.cmm is used to help programming different UCBs and to test the
UCB content. Details about the supported UCBs are documented in the script header.

Example 1: BMHD UCBs

This example shows how the tc3xx-ucb.cmm script is used for programming the UCB_BMHD when they
are in a confirmed state. This is indicated by the fields PROINBMHDxO and PROINBMHDxC of the register
DMU_HF_CONFIRM0.

The recommended strategy is to start by programming the COPY UCBs first and the ORIG UCBs second.
Please refer to the Infineon documentation for details on the recommended strategy.

The main steps to achieve this are the following:

1. Perform the FLASH declaration using the appropriate FLASH declaration script.

2. Activate UCB_BMHD0_COPY programming by calling the UCB programming script using the
“ACTIVATE” argument. This combines the following steps:

DO ~~/demo/tricore/flash/tc39x.cmm CPU=TC397XE PREPAREONLY

NOTE: The procedures and script examples presented in this document requires
TRACE32 release 2020/02 or newer.
Application Note FLASH Programming TriCore | 25©1989-2025 Lauterbach

- Unlocking the UCB_BMHD password protection. This is only required if the password
protection for BMHDs is active.

- Changing the UCB_BMHD0_COPY sector type from “NOP” to “TARGET” to allow FLASH
programming by TRACE32 PowerView.

- Enabling FLASH programming for UCB_BMHD0_COPY using FLASH.AUTO command. The
latter is used to preserve the unchanged content of the affected FLASH sector.

Unlocking the UCB password protection requires the unlock password to be provided. This is
achieved by additionally providing the argument “PWD=<password>” like in the following example:

Alternatively, a dialog can be used to enter the password manually. This is done by calling the UCB
programming script using the argument “DIALOG” instead of “PWD=<password>”.

3. Make the desired changes to the UCB_BMHD0_COPY via, e.g., Data.LOAD command.

4. Program the modifications by calling the UCB programming script using the argument
“PROGRAM”. This will perform the following:

- Do a formal verification of the UCB_BMHD0_COPY content.

- If the provided content is formally correct the changes are programmed to the device and the
script returns “UCBOK”.

- If the formal checks detected invalid content the FLASH programming is aborted and the
script returns the result “UCBFAIL”.

In both cases the NOP protection of UCB_BMHD0_COPY sector is restored.

After BMHD0_COPY is programmed, repeat steps 2 to 4 to program BMHD0_ORIG. For this, in step 2 and
step 4 the script tc3xx-ucb.cmm must be called with the argument “UCB=BMHD0_ORIG” instead of
“UCB=BMHD0_COPY”. Also the address range of UCB_COPY must be replaced by the one for
UCB_ORIG as parameter of the Data.LOAD command.

&pwd="0x0_0x1_0x2_0x3_0x4_0x5_0x6_0x7"
DO ~~/demo/tricore/flash/tc3xx-ucb.cmm UCB=BMHD0_COPY ACTIVATE PWD=&pwd

DO ~~/demo/tricore/flash/tc3xx-ucb.cmm UCB=BMHD0_COPY PROGRAM
Application Note FLASH Programming TriCore | 26©1989-2025 Lauterbach

The following example summarizes the full programming flow for BMHD0_COPY.

; Perform the FLASH declaration
DO ~~/demo/tricore/flash/tc39x.cmm PREPAREONLY CPU=TC397XE
; Activate UCB modification:
; - Unlock password protection to allow programming of BMHDs
; - Allow FLASH programming by changing the sector type from NOP to
; TARGET
; - Enable FLASH programming for UCB_BMHD0_COPY using FLASH.AUTO command
DO ~~/demo/tricore/flash/tc3xx-ucb.cmm UCB=BMHD0_COPY ACTIVATE DIALOG
ENTRY &result
IF ("&result"=="UCBFAIL")
(
 PRINT "UCB_BMHD unlock failed"
 ENDDO
)
; Load data of UCB_BMHD0_COPY
Data.LOAD.S3record bmhds.s3 0xAF401000++0x1FF
; Program the modifications:
; - Formal verification of the UCB_BMHD0_COPY content
; - The content is formally correct => Program the changes to the device
; - The check detected invalid content => Abort FLASH programming
; - In any case restore NOP protection for UCB_BMHD0_COPY range
DO ~~/demo/tricore/flash/tc3xx-ucb.cmm UCB=BMHD0_COPY PROGRAM
ENTRY &result
IF ("&result"=="UCBOK")
(
 PRINT "UCB_BMHD0_COPY programming successful"
)

Application Note FLASH Programming TriCore | 27©1989-2025 Lauterbach

Example2: PFLASH UCBs

This example shows how the tc3xx-ucb.cmm script is used for programming the PFLASH UCBs when
they are in a confirmed state (indicated by the fields PROINPO and PROINPC of the register
DMU_HF_CONFIRM1).

The recommended strategy is to start by programming the COPY UCB then the ORIG UCB.

This example is only showing the steps for programming PFLASH_COPY.

1. Perform the FLASH declaration using the appropriate FLASH declaration script.

2. Activate the UCB modification: This includes unlocking the password protection of the UCB,
changing the UCB sector type from “NOP” to “TARGET” and enabling FLASH programming of
UCB_PFLASH_COPY.

3. Make the desired changes to the UCB.

4. Program the modifications: A formal verification of UCB_PFLASH_COPY content will be
performed and the changes are programmed to the device only if the formal check passes.

Here is an example script with the full programming flow of the UCB_PFLASH_COPY:

; Perform the FLASH declaration
DO ~~/demo/tricore/flash/tc39x.cmm PREPAREONLY CPU=TC397XE

; Activate UCB modification:
; - Unlock password protection to allow programming of PFLASH UCBs
; - Allow FLASH programming by changing the sector type from NOP to
; TARGET
; - Enable FLASH programming for UCB_PFLASH_COPY using FLASH.AUTO command
&pwd="0x0_0x1_0x2_0x3_0x4_0x5_0x6_0x7"
DO ~~/demo/tricore/flash/tc3xx-ucb.cmm UCB=PFLASH_COPY ACTIVATE PWD=&pwd
ENTRY &result
IF ("&result"=="UCBFAIL")
(
 PRINT "UCB PFLASH unlock failed"
 ENDDO
)

; Load data of the PFLASH_COPY UCB
Data.LOAD.S3record ucbs.s3 0xAF403000++0x1FF

; Program the modifications:
; - Formal verification of the UCB_PFLASH_COPY content
; - The content is formally correct => Program the changes to the device
; - The check detected invalid content => Abort FLASH programming
; - In any case restore NOP protection for UCB_PFLASH_COPY range
DO ~~/demo/tricore/flash/tc3xx-ucb.cmm UCB=PFLASH_COPY PROGRAM
ENTRY &result
IF ("&result"=="UCBOK")
(
 PRINT "UCB_PFLASH_COPY programming successful"
)

Application Note FLASH Programming TriCore | 28©1989-2025 Lauterbach

To extend the script for programming PFLASH_ORIG, the steps 2 to 4, need to be repeated using the
address range of the ORIG UCB. Additionally the argument “UCB=PFLASH_ORIG” needs to be used
instead of “UCB=PFLASH_COPY” when calling the script tc3xx-ucb.cmm.

The script tc3xx-ucb.cmm is also used to unlock sector specific write protection of different PFLASHs. In
this case the script needs to be called with the argument “UNLOCK” and the corresponding
“PRO=PFLASHx” (x in [0..5]).

Example:

The arguments “PRO=PFLASHx” are not to be confused with “PRO=PFLASH”. The latter is used, to
disable global write protection for all PFLASHs, and to unlock the programming of PFLASH UCBs when they
are in confirmed state.

For more details, please refer to the description of the register DMU_HF_PROTECT in the AURIXTM TC3xx
User’s Manual from Infineon.

; Unlock write protection of PFLASH0 enabled in the PFLASH UCBS
DO ~~/demo/tricore/flash/tc3xx-ucb.cmm PRO=PFLASH0 UNLOCK DIALOG

; Unlock write protection of PFLASH5 enabled in the PFLASH UCBS
DO ~~/demo/tricore/flash/tc3xx-ucb.cmm PRO=PFLASH5 UNLOCK DIALOG
Application Note FLASH Programming TriCore | 29©1989-2025 Lauterbach

HSM

When enabling HSM boot it is very important to verify that the HSM contains valid code in its FLASH area
and that the boot configuration register PROCONHSMCBS is correctly initialized. Otherwise the device gets
locked forever and there is no way for the debugger to recover the chip from this state.

TRACE32 FLASH scripts for TC3xx offer two ways to do this safely. The HSM feature script tc3xx-hsm-
config.cmm can be used for easier configuration of the HSM boot. The FLASH declaration scripts install
automatic pre-checks for the HSM boot vectors to warn about dangerous operations. The FLASH
declaration scripts block any detected fatal operation that may result, e.g., in enabled HSM with invalid boot
code and HSM boot settings.

Assuming that the TriCore application is already programmed to the device, the main programming flow is as
follows:

1. Perform the FLASH declaration using the appropriate FLASH declaration script.

2. Enable FLASH programming of the HSM code sectors via the FLASH programming command
FLASH.ReProgram.

3. Load the HSM code using the appropriate Data.LOAD command.

4. Perform FLASH programming via the command FLASH.ReProgram OFF.

5. Program the HSM boot configuration via the HSM feature script tc3xx-hsm-settings.cmm.

Example:

The HSM feature script is called either using the argument “PROGRAM_SETTING” or
“PROGRAM_REGISTER”.

In both cases the argument “UCBHSM_COTP0” or “UCBHSM_COTP1” is used to specify whether the
settings are to be programmed to the UCBs HSMCOTP0 or HSMCOTP1.

; Prepare FLASH programming
DO ~~/demo/tricore/flash/tc39x.cmm CPU=TC397XE PREPAREONLY

; HSM boot address
&bootaddr=0x80090000
; Enable FLASH programming of the address range reserved for HSM
FLASH.ReProgram &bootaddr++0xFFFF

; Load HSM application code
Data.LOAD.Elf hsm_app.elf /NoClear /NoRegister /NosYmbol

FLASH.ReProgram OFF

; Set the HSM boot configuration
&hsm_cfg="UCBHSM_COTP0 BOOTADDR=&bootaddr BOOTINDEX=0 HSMBOOT=ENABLE"
DO ~~/demo/tricore/flash/tc3xx-hsm-config.cmm PROGRAM_SETTINGS &hsm_cfg
Application Note FLASH Programming TriCore | 30©1989-2025 Lauterbach

The argument “PROGRAM_SETTING” is for programming some of the HSM settings by human readable
arguments:

• The arguments “BOOTINDEX=<value> BOOTADDR=<value>” are to be set together.
“BOOTINDEX” selects the index [0..3] of the PROCONHSMCBS to be programmed,
“BOOTADDR” sets the boot sector address for the HSM.

• “HSMBOOT=ENABLE|DISABLE” is used to enable or disable HSM booting.

Using the argument “PROGRAM_REGISTER”, the calling script needs to supply the registers values to be
programmed to the HSM UCBs. The script tc3xx-hsm-config.cmm starts an HSM configuration dialog
to calculate these registers values:

The dialog can also be started from the PowerView using the “HSM configuration” menu in the chip
specific menu.

; Open the TC3xx HSM configuration programming dialog
DO ~~/demo/tricore/flash/tc3xx-hsm-config.cmm
Application Note FLASH Programming TriCore | 31©1989-2025 Lauterbach

• The combo-box “Select HSMCOTP” needs to be configured first depending whether
HSMCOTP0 or HSMCOTP1 shall be programmed.

• The button “Program” is used to apply the changes to the device. This will automatically check if
the new configuration is valid according to the HSM code programmed to the device. The
changes are discarded otherwise.

• The button “Refresh” updates the dialog with the current configuration of the HSM UCBs as
programmed in the chip.

• The button “Show” generates a script snippet with all the changed settings. The snippet can be
copied to the user’s FLASH script.
Application Note FLASH Programming TriCore | 32©1989-2025 Lauterbach

OTP and WOP Sectors

For TriCore AURIX devices, beside write protection with password, two types of sector specific programming
protection can be distinguished.

• FLASH sectors that are configured with OTP (One-Time Programmable) protection can not be
erased or programmed. Otherwise, FLASH programming errors will be reported by the hardware.

• FLASH sectors that are configured with WOP (Write-page Once Protection) can be programmed
once. These sectors can only be programmed if they are in erased state. Erasing these sectors is
prevented by hardware after the protection is activated. The hardware will report an error when
trying to erase them.

TRACE32 defines the FLASH sectors that must not be erased or programmed as “NOP” sectors. Thus
OTP protected sectors (as defined by Infineon) are declared by TRACE32 FLASH declaration scripts as
NOP sectors.

TRACE32 uses the “OTP” term to designate FLASH sectors that can be programmed once because erase
is prohibited. Thus, the FLASH sectors that are protected with WOP (as defined by Infineon) are declared by
TRACE32 FLASH declaration scripts using the option “/OTP”.

Sectors declared with “/OTP” can only be programmed with the command FLASH.Program and the option
“/OTP” must be specified.

Example:

More details about FLASH programming of TRACE32 OTP sectors can be found in “Onchip/NOR FLASH
Programming User’s Guide” (norflash.pdf).

FLASH.Program 0xA0000000++0x3FFF /OTP
Data.Set ...
FLASH.Program OFF
Application Note FLASH Programming TriCore | 33©1989-2025 Lauterbach

DFLASH Single-Ended and Complement Sensing Mode

The DFLASH of TC3xx devices supports two operation modes.

• The single-ended mode is the normal operation mode were the full DFLASH size is available.

• The complement sensing mode is a redundant mode were only half the DFLASH size is available
and the other, invisible part is used to store the redundancy information as bit-complement.

FLASH programming for the complement sensing mode is supported since TRACE32 release 2019/09.
Whether DFLASH is configured to operate in single ended or complement sensing mode is transparently
handled by TRACE32. No special handling by the user’s FLASH script is required. As usual, the FLASH
declaration is to be done by calling the corresponding FLASH declaration script using the option
“PREPAREONLY”. Depending on the current device configuration, the corresponding FLASH mapping is
declared.

Example:

In complement-sensing mode, erased DFLASH is flickering. The Data.dump window shows random values,
including bus errors. This is a chip behavior. Only a programmed DFLASH will show stable and correct
values.

DO ~~/demo/tricore/flash/tc39x.cmm CPU=TC397XE PREPAREONLY
Application Note FLASH Programming TriCore | 34©1989-2025 Lauterbach

Support for SOTA

The majority of the TC3xx devices support a product feature named "Software Updates Over The Air
(SOTA)". This designates the ability of the device to integrate received software updates by supporting the
SWAP mechanism. The basic idea of SWAP is to split the PFLASH into two groups of banks, “A” and “B”,
allowing the application to program a new version to the inactive banks while the current version of the
application is executing from the active banks. When programming has been completed, the banks are
switched. After the next reboot of the chip, the previously inactive banks will become the active banks and
the new version of the application will start. The SWAP mechanism ensures that the application will always
execute from the same addresses, no matter which physical banks it was programmed to.

When SWAP is enabled, a chip-internal remapping redirects all read-and-fetch accesses to the active
address map while the FLASH programming operations (erase/write) keep using the physical system
address of PFLASH.

FLASH Programming with SWAP Enabled

TC3xx FLASH programming with SWAP enabled needs special handling. This is only supported with
TRACE32 release 2020/09 or newer.

TRACE32 SWAP support ensures that the address mapping (Standard Address Map or Alternate Address
Map) is always displayed as seen by the application, depending on the current configuration.

TRACE32 ensures that FLASH is programmed according to the currently selected address map. FLASH
declaration is to be done by calling the corresponding FLASH declaration script using the option
“PREPAREONLY”.

Example:

When performing the FLASH declaration, the SWAPEN status of the device and the currently selected
address map is checked and the FLASH declaration is performed according to the current setup of the
device. The user does not need to know about the current mapping. The user just needs to know if he wants
to load the application to the currently active or inactive banks.

Before enabling the SWAP mechanism on your chip, it is essential to read and
understand the Infineon related documentation including the application note
AP32404: “AURIX™ TC3xx Using the SWAP mechanism for Software Updates
Over The Air (SOTA)”. Understanding the underlying concepts is mandatory to
avoid unintended bricking of the chip.

NOTE: The SOTA feature allows the application to update itself by receiving an update over
the air. TRACE32 SWAP support is only required during the SOTA development
phase where FLASH programming and bank switching is implemented and tested.

DO ~~/demo/tricore/flash/tc39x.cmm CPU=TC397XE PREPAREONLY
Application Note FLASH Programming TriCore | 35©1989-2025 Lauterbach

If the application has to be programmed to the inactive banks, then it has to be relocated by the user. To
achieve this, TRACE32 internal debugger address translation must be configured and enabled using the
TRANSlation command group.

The following example configures the relocation for tc37x devices:

SWAP demo scripts are located in the installation directory under “~~/demo/tricore/etc/swap”.

The SWAP Feature Script

For convenience, TRACE32 offers the FLASH feature script tc3xx-swap.cmm. This script can be used to
easily configure the SWAP related chip setting. Calling the script with the appropriate arguments results in
programming the corresponding UCBs. The changes become effective with the next device reset after the
UCBs are re-evaluated by the microcontroller’s firmware (SSW).

Example:

The argument “SWAPEN=ON” enables swapping in PROCONTP register of the OTPx UCB (COPY and
ORIG) specified by the argument “OTP=<otp>”. If not specified, OTP0 is used per default.

Note that “SWAPEN=OFF” is only performed for the selected OTP (or OTP0 if no “OTP=<otp>” argument
is specified). For completely disabling the swapping feature the user needs to make sure that swapping is
disabled in all the remaining OTPs.

TRANSlation.RESet
TRANSlation.Create C:0x80000000--0x802FFFFF A:0x80300000
TRANSlation.Create C:0xA0000000--0xA02FFFFF A:0xA0300000
TRANSlation.ON

NOTE: After FLASH programming to the currently inactive banks is performed the
relocation must be disabled before loading the debug symbols. This can be
achieved using the command TRANSlation.RESet.

The mapping between the banks is not linear.
For example, for TC39x:
• PF0 and PF1 are mapped to PF2 and PF3
• PF4 is mapped to PF5
• The upper 2 Mbytes of PF4 are not accessible when the alternate

address map is installed.

DO ~~/demo/tricore/flash/tc3xx-swap.cmm SWAPEN=ON OTP=OTP1 MAP=SWITCH
Application Note FLASH Programming TriCore | 36©1989-2025 Lauterbach

“MAP=” parameter results in programming UCB_SWAP as follows:

• “MAP=ALTERNATE” results in activating the alternate address map after the device reset.

• “MAP=STANDARD” results in activating the standard address map after the device reset.

• “MAP=SWITCH” results in activating the currently inactive banks after the device reset. The
alternate address map will become active when the standard address map was active before reset
and vice versa.

• “MAP=KEEP” results in preserving the current configuration. Note that disabling the swapping
feature automatically switches back to the standard address map.

More details about all the script arguments and other important information are documented in the script
header.

When changing any of the SWAP configurations, the FLASH declaration scripts
must be called again after the next chip reboot to adjust the FLASH declaration
according to the new FLASH mapping. The FLASH declaration script detects
the chip configuration and declares FLASH accordingly.
Application Note FLASH Programming TriCore | 37©1989-2025 Lauterbach

	Application Note FLASH Programming TriCore
	Introduction
	FLASH Programming Commands
	Organization of TriCore FLASH Scripts
	FLASH Declaration Scripts
	FLASH Feature Scripts
	FLASH Demo Scripts

	TC2xx Devices
	Erased FLASH
	TRACE32 Methods for Safe FLASH Programming
	NOP Sectors
	Protecting Boot Mode Headers
	Recommended Procedures
	Boot Mode Headers
	User Configuration Blocks
	HSM

	OTP and WOP Sectors

	TC3xx Devices
	Erased FLASH
	TRACE32 Mechanisms for Safe FLASH Programming
	NOP Sectors
	Recommended Procedures
	User Configuration Blocks
	HSM

	OTP and WOP Sectors
	DFLASH Single-Ended and Complement Sensing Mode
	Support for SOTA
	FLASH Programming with SWAP Enabled
	The SWAP Feature Script

