
MANUAL

Release 02.2025

Application Note
for Trace.DRAW

Application Note for Trace.DRAW

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 Trace Application Notes ... 

 Trace Analysis .. 

 Application Note for Trace.DRAW ... 1

 Introduction .. 3

 Intended Audience 3

 Prerequisites 3

 Related Documents 3

 Restrictions 4

 Trace Licenses 4

 Data Capture ... 5

 Full Trace 5

 Filtered Trace 8

 Trace Searching ... 9

 Locate all Writes to a Variable 10

 Locate Dedicated Reads to a Variable 11

 Monitoring a Variable Over Time .. 12

 Static Analysis 12

 Variable Graphs 15

 Advanced Navigation in Trace.DRAW .. 18

 Mouse Support 18

 Synchronizing Windows 20

 Drag & Drop 20

 Track Option 21

 Synchronizing Between TRACE32 Instances 23

 Exporting Data .. 24

 Appendix: Trace.DRAW Draw Options ... 26
Application Note for Trace.DRAW | 2©1989-2025 Lauterbach

Application Note for Trace.DRAW

Version 13-Feb-2025

Introduction

Many Embedded devices feature some kind of trace port. The most prevalent are those that provide branch
trace, which is sufficient to reconstruct program flow. Some, more complete, trace interfaces can also
provide data trace - the means to track a value changing over time. This application note is designed to help
the reader understand the ways that data values can be captured, analyzed, displayed and exported.

The examples shown in this document use the target’s off-chip trace. The techniques described here are
equally applicable to an onchip trace and TRACE32 ‘pseudo-trace’ methods such as FDX, SNOOPer,
LOGGER, etc. where data is logged by the user. This also includes ITM software generated trace from
Cortex-M devices. This document will not detail how to configure the target trace port; that is covered in
more detail elsewhere.

Intended Audience

Developers who want to:

• Monitor variable values non-intrusively

• Analyze, draw or chart the value of a variable as it changes over time

• Export these data values for analysis by external tools

Prerequisites

It is assumed that TRACE32 has been correctly configured for the target and the symbols for the application
under test have been loaded. The trace port must also be configured to provide data trace and TRACE32
must be able to collect this data. The reader should also be familiar with programming embedded systems.

Related Documents

Trace covers a wide range of processors and technologies. The documents listed below contain more
information on configuring, collecting and analyzing trace data with TRACE32. This is by no means an
exhaustive list.

“MicroTrace for Cortex-M User’s Guide” (microtrace_cortexm.pdf)
Application Note for Trace.DRAW | 3©1989-2025 Lauterbach

“Training Cortex-M Tracing” (training_cortexm_etm.pdf)

“Training MPC5xxx/SPC5xx Nexus Tracing” (training_nexus_mpc5500.pdf)

“MCDS User’s Guide” (mcds_user.pdf)

“Application Note for the SNOOPer Trace” (app_snooper.pdf)

“Application Note for Trace.Find” (app_trace_find.pdf)

“Trace” in General Commands Reference Guide T, page 117 (general_ref_t.pdf)

Please also check the Processor Architecture Manual for your selected processor.

Restrictions

Some devices only provide small on-chip trace buffers for storing collected trace data; these are seldom
sufficient for managing and analyzing trace data.

Trace Licenses

A trace pre-processor or a TRACE32 PowerTrace Serial module suitable for the target architecture is
required for off-chip trace collection. On-chip trace collection can be performed via the debug interface and
an appropriate license in the debug cable is required for this.

The ‘pseudo-trace’ methods such as FDX, SNOOPer, LOGGER, etc. do not require any trace licenses.
Application Note for Trace.DRAW | 4©1989-2025 Lauterbach

Data Capture

Full Trace

Not all targets with a trace port support data trace. Please refer to the target guides for your processor for
more details.

The image below shows a typical list of all reads and writes captured via the trace port.

The columns show:

record The trace record number

address The address that was the target of a load or store operation

cycle The type of cycle (read or write) and the access width

data The value that was read or written

symbol If this matches a symbol in the application it will be shown here

ti.back The time since the previous entry in the list
Application Note for Trace.DRAW | 5©1989-2025 Lauterbach

The command Trace.ListVar may also be used which filters out just the reads and writes to variables from a
complete trace and displays the cycle type, name and value.

Please be aware of the following:

• In order to display the content of a variable of the type float, it might be necessary to combine two
cycles (see the variable vdouble in the screenshot above).

• It is not possible to display the variable value of bitfields (see ast.field1 in the screenshot above).
Application Note for Trace.DRAW | 6©1989-2025 Lauterbach

The command Trace.ListVar has many options to adjust the way the data is displayed. Another example
can be seen below which shows the variables, the values read (in gray), the values written (in black) and
time since the zero point. The zero point reference marker, which by default is the start of the debug session,
can be manually adjusted by the user, for example from the right-click Trace pull-down menu in any trace
view window.

Tracing all data accesses can place a lot of strain on the trace port bandwidth. Many devices support stall or
suppress options which causes the core to halt or to suppress the generation of certain kinds of trace data
when internal FIFOs are in danger of overflowing and losing trace data. This minimizes the rick of losing data
but may introduce some latency into a running system.

Trace data losses are called FLOWERRORs within TRACE32. “Trace Errors” in TRACE32 Concepts,
page 62 (trace32_concepts.pdf) for more details.

The following PRACTICE script snippet can be used to programmatically check for FLOWERRORs in the
trace.

Trace.Find FLOWERROR /ALL

IF FOUND.COUNT()==0
(
 PRINT "No flowerrors in the trace"
)
ELSE
(
 PRINT FOUND.COUNT() " flowerrors in the trace"
)

Application Note for Trace.DRAW | 7©1989-2025 Lauterbach

Filtered Trace

Many devices with a trace port also support some kind of on-chip event filtering to reduce the amount of
trace data that is generated. Where these are available, TRACE32 will use the breakpoint features to control
them. For more information, see Break.Set. The control features are implemented on the target chip and, as
such, are limited in number and scope. Please refer to your chipset documentation for more details about the
supported capabilities. These extra ‘trace control’ breakpoints can be accessed from the regular breakpoint
control interface. An example can be seen in the picture below.

Setting a trace breakpoint like this will prevent all other data accesses to generate trace data: only those
marked by the TraceData will be included in the generated trace.The image below shows program flow trace
and a trace packet of a data write (highlighted) and is an example of how setting a filter affects the generated
data.

Application Note for Trace.DRAW | 8©1989-2025 Lauterbach

Trace Searching

The trace data can be searched using the commands Trace.Find and Trace.FindAll. Clicking the ‘Find’
button in any trace view window will open a user interface to provide easy access to these functions. It looks
like this.

Application Note for Trace.DRAW | 9©1989-2025 Lauterbach

Locate all Writes to a Variable

To locate all writes to a variable:

1. Set the Address/Expression field to the variable name (AVG_QADC).

2. Set the Cycle drop-down list to Write.

3. Click Find All to view the results.

Selecting any of the items in this display will cause any open Trace.List window to synchronize to the same
point in time.
Application Note for Trace.DRAW | 10©1989-2025 Lauterbach

Locate Dedicated Reads to a Variable

To locate all reads from a variable where the value is less than 0x100:

1. Set the Address/Expression field to the variable name (AVG_QADC).

2. Set the Cycle drop-down list to Read.

3. Set the data value to the required range (0x00--0x100). Ranges are supported but greater than
and less than are not.

4. Click Find All to view the results.

Application Note for Trace.DRAW | 11©1989-2025 Lauterbach

Monitoring a Variable Over Time

Static Analysis

The values assigned to a variable over the duration of the trace sampling period can be displayed in a
number of formats. These will work equally well with a full trace or a filtered trace. Right-clicking a variable in
any view window will provide access to the trace analysis options. It will look like this.

If you select Value Chart this opens a window which shows how the variable value changes over time
(command Trace.Chart.DistriB). The Data and /Filter options narrow down what is to be displayed.

Application Note for Trace.DRAW | 12©1989-2025 Lauterbach

If you select State Chart a list of all values that were assigned to a variable can be displayed (command
Trace.STATistic.DistriB).

The columns shown are

Clicking the ‘Config’ button allows the user to add or remove columns from the display.

class The data value assigned to the address that is being monitored.

total The total time for which the address held this value.

min The minimum length of time that this value was held at this address.

max The maximum length of time that the variable held this value.

avr The mean length of time that the variable held this value.

count The number of times this value was assigned to the variable.

ratio The total time that this value was held as a ratio of the total time sampled.

A bar graph to show the ratio value graphically.
Application Note for Trace.DRAW | 13©1989-2025 Lauterbach

Clicking the ‘Profile’ button in the Trace.STATistic.DistriB window uses the command
Trace.PROfileChart.DistriB to show a graphical representation of the values as a percentage of a
timeslice. The width of the timeslice is dependent upon the scale of the x axis.

Application Note for Trace.DRAW | 14©1989-2025 Lauterbach

Variable Graphs

If you select Draw (Trace.DRAW.Var) the value of a variable is plotted against time. The display of
Trace.DRAW.Var refers to the variable type by default. Adding %DEFault causes TRACE32 to treat all
following arguments as variable names.

Trace.DRAW.Var %DEFault AVG_QADC
Application Note for Trace.DRAW | 15©1989-2025 Lauterbach

Trace.DRAW.Var can draw multiple variables in the same window. Each line will be colored differently:

Trace.DRAW.Var %DEFault AVG_QADC sqWave
Application Note for Trace.DRAW | 16©1989-2025 Lauterbach

Please be aware of the following:

• It only makes sense to display two or more variables in a window if they have a similar value
range.

• If one of the variables is of type float, float scale is used.

Using the command Trace.DRAW.Data for an address, the contents of a memory location can be plotted
against time. Trace.DRAW.Data requires a definition of the access bus width.

; plot a 16-bit value at address 0x672C
Trace.DRAW.Data %Decimal.Word 0x672C

; if no access width is specified, the access width is determined by the
; size of the <data_range>
Trace.DRAW.Data %Decimal 0x672C--0x672D
Application Note for Trace.DRAW | 17©1989-2025 Lauterbach

Advanced Navigation in Trace.DRAW

Mouse Support

Left-clicking a Trace.DRAW window will pop-up a balloon text with more details about the chart.

C-T Current time (selected by user) to Trigger time. This is often the end of the trace
recording unless a trigger has been programmed.

C-Z Current time to zero time. This is usually when the debugger started or a user-
defined zero point.

scale The time scale along the x axis.

other A list of all variables displayed, showing min, max and mean values.
Application Note for Trace.DRAW | 18©1989-2025 Lauterbach

An area of the chart can be selected by left-clicking and dragging. Right-clicking within this area opens a
different menu.

• The window can be zoomed to the selected area (Zoom Window).

• The selected area can be opened in a new window (Clone Window).

• The limits for statistical analyses can be set to only include the selected area.

- The set limits are used for all subsequent Trace.STATistic commands (Statistic Limits).

• The trace buffer that covers the selected area can be saved to a file. See Trace.SAVE for more
information.
Application Note for Trace.DRAW | 19©1989-2025 Lauterbach

Synchronizing Windows

Drag & Drop

The simplest way to synchronize two trace view windows is via the Drag & Drop interface.

1. Open a Trace.DRAW.Var window and a Trace.List window.

2. Left-click a point in the Trace.DRAW.Var window.

3. Left-click the same point but don’t release the mouse button press.

4. Holding the left mouse button, drag the mouse to the Trace.List window

5. The view in the Trace.List window will snap to the selected point in the other window.

It may take a little practice to get it right but the mouse hotspot is very forgiving for the second click and
subsequent drag operation.
Application Note for Trace.DRAW | 20©1989-2025 Lauterbach

Track Option

Any trace view window that is opened with the /Track option will automatically jump to synchronize with a
user placed cursor in any other trace view window. The tracking is based upon the timestamp information
captured as part of the trace data. If no timestamps are available (such as on-chip trace) then the record
number is used.

An example can be seen here. The user has left-clicked the Trace.DRAW.Var window and the Trace.List
window has synchronized to that point. The blue cross-hairs indicate where the user has clicked the mouse
button in the top window.

Application Note for Trace.DRAW | 21©1989-2025 Lauterbach

Windows linked with the /ZoomTrack option will not only jump to the user selected point but will adjust their
scale to match that of the user selected window. Consider the before and after images on this page. In the
second set, the scale of the lower window has been automatically adjusted to match that of the upper
window.

Application Note for Trace.DRAW | 22©1989-2025 Lauterbach

Synchronizing Between TRACE32 Instances

If AMP debugging is configured and the TRACE32 instances are synchronised via InterCom then the trace
displays can also be synchronized between them. This allows the /Track and /ZoomTrack options to
work across multiple TRACE32 PowerView GUI. The time synchronisation between instances of TRACE32
is configured using the command SYnch.XTrack. The image below shows the lower instance of TRACE32
synchronised and zoomed to a user click event in the upper instance of TRACE32.

Application Note for Trace.DRAW | 23©1989-2025 Lauterbach

Exporting Data

To export trace data, first configure the TRACE32 printer. This is done using the PRinTer command which
can be accessed from the ‘File’ menu. The control window looks like this.

The example above has been configured to create a CSV file with the specified name. The command line
equivalent would be:

Collect and display the required data using Trace.ListVar, Trace.FindAll or Trace.List. The example below
shows trace of both data reads (in grey) and data writes (in black).

Export the selected data by prefixing the window command with the command WinPrint or by left-clicking
the menu icon and selecting ‘Print’ or ‘Print all’ from the menu. For example:

PRinTer.FILE "C:/demos/dev/sieve_pwm/avg_qadc.csv" CSV

WinPrint.Trace.ListVar %DEFault AVG_QADC /Split
Application Note for Trace.DRAW | 24©1989-2025 Lauterbach

or alternatively:

WinPrint.Trace.FindAll ADDRess Var.RANGE(AVG_QADC) /List Var TIme.Zero
Application Note for Trace.DRAW | 25©1989-2025 Lauterbach

Appendix: Trace.DRAW Draw Options

LOG: Displays the data values in a logarithmic format.

Impulses: Draws each data value as a single pulse.

MarkedVector: Highlights the trace records that contain a data value by short, vertical lines.

MinMax: Displays the minimum and maximum data value for each range.
Application Note for Trace.DRAW | 26©1989-2025 Lauterbach

Point: Displays each data value as a dot.

Steps: Connects the dots for the data values by steps.

Vector: Connects the dots for the data values by vectors (default).
Application Note for Trace.DRAW | 27©1989-2025 Lauterbach

	Application Note for Trace.DRAW
	Introduction
	Intended Audience
	Prerequisites
	Related Documents
	Restrictions
	Trace Licenses

	Data Capture
	Full Trace
	Filtered Trace

	Trace Searching
	Locate all Writes to a Variable
	Locate Dedicated Reads to a Variable

	Monitoring a Variable Over Time
	Static Analysis
	Variable Graphs

	Advanced Navigation in Trace.DRAW
	Mouse Support
	Synchronizing Windows
	Drag & Drop
	Track Option

	Synchronizing Between TRACE32 Instances

	Exporting Data
	Appendix: Trace.DRAW Draw Options

