
MANUAL

Release 02.2025

Application Note for
Complex Trigger Language

Application Note for Complex Trigger Language

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 Complex Trigger Language .. 

 Application Note for Complex Trigger Language ... 1

 History .. 5

 Introduction ... 6

 Basic Structure of CTL Programs .. 7

 Complex Statements 8

 Agents 9

 Core Agents 9

 Bus Monitors 11

 Default Agent 11

 State Machines 12

 Using CTL State Machines 12

 Multiple State Machines 13

 TRACE32 Commands Using CTL Programs ... 14

 CTL Onchip Triggers Logic 14

 CTL for Trace Find 14

 CTL Streaming Trace Trigger 15

 CTL for Onchip Triggers Logic .. 16

 CTL for TriCore MCDS 17

 Supported Targets 17

 Multicore Support 17

 Selective Bus Trace 17

 Automatic Configuration of the Trace Source Multiplexers 18

 TriCore Data Trace: COREx Vs. SRI-CPUx 18

 Limitations 19

 Examples 20

 CTL for Arm ETM 31

 Supported Targets 31

 Limitations 31

 Examples 31

 Examples for CTL Trace Find ... 36

 Use case 1: Checking Variable Access 36
Application Note for Complex Trigger Language | 2©1989-2025 Lauterbach

 Use case 2: Checking Timing Constraints - Address Duration 38

 Use case 3: Checking Timing Constraints - Address Distance 40

 Keyword Reference: CTL Conditions/Triggers .. 42

 BREAKPOINT ABCDE breakpoint 42

 BusTrigger Incoming trigger signal 42

 BMC Benchmark counter event 42

 COUNT Trigger on event counter 42

 CLOCKS Trigger on clock cycles counter 43

 CTM Cross trigger 43

 EXTIN External input 43

 FALSE Never condition 44

 FLAG Flag status 44

 MACHINE Machine comparator 44

 Program Program access comparator 45

 ProgramFail Conditional instruction execution 45

 ProgramPass Conditional instruction execution 46

 Read Read access 46

 ReadWrite Read or write access 47

 SingleShot Single shot comparators 48

 SingleShot.Program Single shot program execution 48

 SingleShot.ProgramFail Single shot conditional execution 48

 SingleShot.ProgramPass Single shot conditional execution 49

 SingleShot.Read Single shot read access 49

 SingleShot.ReadWrite Single shot read or write access 50

 SingleShot.Write Single shot write access 50

 NoSingleShot Non single shot comparators 51

 NoSingleShot.Program Non single shot program execution 51

 NoSingleShot.ProgramFail Non single shot conditional execution 51

 NoSingleShot.ProgramPass Non single shot conditional execution 52

 NoSingleShot.Read Non single shot read access 52

 NoSingleShot.ReadWrite Non single shot read or write access 52

 NoSingleShot.Write Non single shot write access 53

 STATE.LEAVE Leave the state transition (edge sensitive) 54

 STATE.ENTER Enter the state transition (edge sensitive) 54

 STATE.TRACEON Active state of a TraceON action 55

 TASK Task comparator 55

 TIME Time counter comparator 56

 TRUE Always condition 56

 Var Specify source-level expressions 57

 Var.Program Flat function execution 57

 Var.Read Variable read access 57

 Var.ReadWrite Variable read or write access 58

 Var.status tbd. 58
Application Note for Complex Trigger Language | 3©1989-2025 Lauterbach

 Var.Write Variable write access 58

 Write Write access 59

 ZONE Zone comparator 59

 Keyword Reference: CTL Actions ... 60

 Break Stop the program execution 60

 BusCLOCKS tbd. 60

 BusCount tbd. 60

 BusTIME tbd. 60

 BusTrigger tbd. 61

 CLEAR Clear flag 61

 CTM Cross trigger 61

 ENABLE Enable counter 62

 EVENT Trace event 62

 EXTOUT External output 63

 FOUND Add the trace sample to the search items result 63

 GOTO Change active state 63

 INCrement Increment counter 64

 RELOAD Reload counter 64

 SET Set flag 65

 Spot Shortly stop the program execution 65

 TraceData Sample specified data event 66

 TraceEnable Enable the trace on the specified event 67

 TraceOFF Switch OFF the trace sampling 68

 TraceON Switch ON the trace sampling 69

 TraceTIME tbd. 69

 TraceTrigger Stop sampling to the trace buffer on specified event 69

 CTL Programming Errors ... 70
Application Note for Complex Trigger Language | 4©1989-2025 Lauterbach

Application Note for Complex Trigger Language

Version 13-Feb-2025

History

15-Aug-2024 Added subchapter ‘CTL for Arm ETM’.

15-Feb-2023 Added onchip CTL support for miniMCDS.

29-Jun-2022 Initial version.

NOTE: This manual is still under construction.
Application Note for Complex Trigger Language | 5©1989-2025 Lauterbach

Introduction

Complex Trigger Language (CTL) is a high-level parallel programming language. The main idea behind CTL
is to offer TRACE32 users a simple and powerful interface to debug and trace complex scenarios without
any specific knowledge about the low-level onchip triggers logic. The language is defined to grant a fine
control of the debug logic and trace sources. CTL enables the user to fully benefit from the debug and trace
capabilities offered by the target while keeping the entire focus on debugging and testing.

Additionally to onchip triggers logic, CTL supports Trace.Find as a target. This empowers TRACE32 with an
advanced trace find feature. When operating in SPY mode, the trace find results could be used as a test
vehicle for onchip triggers. This enables CTL for targets that do not provide any hardware support to
implement complex triggers.

This document is divided into the following sections:

1. Basic Structure of CTL Programs

2. TRACE32 Commands Using CTL Programs

3. CTL for Onchip Triggers Logic

Separate sub-sections discuss peculiarities of each implementation for onchip CTL and present
selected use cases with example CTL programs:

- CTL for TriCore MCDS

- CTL for Arm ETM

4. Examples for CTL Trace Find

5. Keyword Reference: CTL Conditions/Triggers

6. Keyword Reference: CTL Actions

7. CTL programming errors

NOTE: In this document, simple triggers refer to breakpoints that are enabled via
Break.Set commands.
CTL is not intended to replace simple triggers, although most breakpoints could
be easily written in CTL as well. The reason is that the onchip trigger unit
programmed by CTL might behave differently from the trigger logic
programmed by simple triggers. E.g. for TriCore the stopping breakpoints set
via simple triggers are programmed to OCDS (break-before-make breakpoints).
While the CTL Break actions are programmed to MCDS (the cores are stopped
a few instructions after the trigger event).
Application Note for Complex Trigger Language | 6©1989-2025 Lauterbach

Basic Structure of CTL Programs

CTL makes an abstraction of the target architecture whenever possible. Apart from a few exceptions, e.g.
special bus agents, the syntax is architecture-independent and valid for all CTL targets.

Following is the list of elements composing CTL programs:

• Complex statements

• Agents (optional)

• Levels (optional)

• Comments (start with // or ; and end with the next line break).

CTL is not white space sensitive, but it is recommended to use indentations for better readability of the
program.

CTL keywords are not case-sensitive. The following examples of CTL programs are similar:

Upper case letters indicate the short forms of CTL keywords and must not be omitted. All lower case letters
can be omitted. Following is a short form of the above example program:

; this is a comment
// this is also a comment
[<agent>::]
[<level>:]
 IF <condition> ; this is another comment
 <action>

if var.program(sieve)
 traceenable program

IF Var.Program(sieve)
 TraceEnable Program

if v.p(sieve)
 te p
Application Note for Complex Trigger Language | 7©1989-2025 Lauterbach

Complex Statements

Complex statements are the basic elements of any CTL program.

Each complex statement is composed of:

• One condition

• One or multiple action(s) to be performed when the condition is satisfied

A CTL condition starts with the keyword IF followed by a logical combination of one or more sub-
expressions. The condition’s sub-expressions could be issued from different or similar qualifier types
(program comparators, memory address comparators, access types,...).

A line break separates the condition from its associated action(s).

Multiple actions of a complex statement must be separated by line breaks.

Example:

Details about CTL conditions and actions are provided in the following sections:

• Keyword Reference: CTL Conditions/Triggers

• Keyword Reference: CTL Actions

// Enable program trace for the first instruction of the function sieve
IF Program(ENTRY:sieve)
 TraceEnable Program

NOTE: Given that CTL is a parallel programming language, the order in which the
complex statements appear in a CTL program is not important. All the complex
statements are evaluated in parallel.

If the CTL program is implementing a state machine, all the complex statements
belonging to the active state are evaluated in parallel. Complex statements
belonging to the inactive levels of the state machine are not evaluated.
Application Note for Complex Trigger Language | 8©1989-2025 Lauterbach

Agents

Each CTL condition is evaluated for a specified agent, and likewise, each CTL action is to be performed by a
specified agent. The syntax to specify an agent is as follows:

The CTL syntax allows using agents with global scopes or local scopes.

Local scope agents are to be specified as prefixes to the associated actions and/or sub-expressions of the
CTL conditions.

Example:

An agent that is not prefixing any action or condition’s sub-expression is a global scope agent.

The scope of a global agent starts from the specification of the agent name and ends with the specification
of another global scope agent name.

Example:

Two types of agents are to be distinguished:

• Core agents

• Bus agents/monitors

Core Agents

The syntax to specify a core agent is as follows:

The index n refers to the logical core number controlled by the TRCAE32 PowerView instance.

<agent_name>::

IF CORE0::Program(ENTRY:sieve0)||CORE1::Program(ENTRY:sieve1)
 INCrement mycounter

CORE0::
 IF Program(sieve0)
 TraceEnable Program
 IF Var.Write(mstatic1)
 TraceEnable Write Address Data
CORE1::
 IF Var.Program(func2)
 TraceEnable Write Address Data

CORE<n>::
Application Note for Complex Trigger Language | 9©1989-2025 Lauterbach

SplitCORE:: and JoinCORE:: are multicore agents. These are used to specify that a complex statement
is to be evaluated for all the cores that are assigned to the PowerView instance (except for limitations from
the target). The difference between SplitCORE:: and JoinCORE:: is as follows:

• SplitCORE:: specifies that each statement is to be evaluated for each core separately.

• JoinCORE:: specifies that all cores collaborate to evaluate a statement.

Example 1:

The TRACE32 PowerView instance is controlling 2 cores of the target CPU (CORE.ASSIGN 1. 2.).

In the following CTL program CORE1:: is used as global scope agent:

This enables program flow trace of the second core if write access to the variable mstatic is performed by
the same core.

Example 2:

The TRACE32 PowerView instance is controlling 2 cores of the target CPU (CORE.ASSIGN 1. 2.).

In the following CTL program SplitCORE:: is used as a global scope agent:

When loading this CTL program, the complex statements is programmed for both cores separately. This
means that:

• The program flow trace of the first core is enabled when the latter performs a write access to the
variable mstatic.

• The program flow trace of the second core is enabled when the latter performs a write access to
the variable mstatic.

Example 3:

The TRACE32 PowerView instance is controlling 2 cores of the target CPU (CORE.ASSIGN 1. 2.).

In the following CTL program JoinCORE:: is used as global scope agent:

CORE1::
 IF Var.Write(mstatic)
 TraceEnable Program

SplitCORE::
 IF Var.Write(mstatic)
 TraceEnable Program

JoinCORE::
 IF Var.Write(mstatic)
 TraceEnable Program
Application Note for Complex Trigger Language | 10©1989-2025 Lauterbach

When loading this CTL program, both cores collaborate to evaluate the complex statement. This means that
the program flow trace of both cores is enabled when one of both cores performs a write access to the
variable mstatic.

Bus Monitors

When using bus agents the trace sources are observed at the level of bus transactions. Thus, no program
trace or program triggers are available for bus agents.

The list of bus agents is architecture-dependent. The list of available agents varies also depending on the
target CPU.

In some cases, the bus name is used as the CTL agent. In other cases, bus agents refer either to bus
masters initiating the transaction (e.g. DMA) or bus slaves incurring the transaction (e.g. memory units).

Examples of bus agents:

• SPB:: is to be used for observing the transactions on the Shared Peripheral Bus (SPB) of a
TriCore AURIX device.

• SRI-LMU:: is to be used for observing accesses to Local Memory Unit and EMEM of an AURIX
TC2x device via the Shared Resource Interface (SRI) fabric.

• SRI-DMA:: is to be used for observing DMA transactions on AURIX TC3x device via the SRI
fabric.

Default Agent

If no agent is specified, SplitCORE:: is used as the default agent.

In the following example, both CTL programs are equivalent.

Example:

IF Var.Program(sieve)
 TraceEnable Program

SplitCORE::
IF Var.Program(sieve)
 TraceEnable Program
Application Note for Complex Trigger Language | 11©1989-2025 Lauterbach

State Machines

Using CTL State Machines

State machines could be used for debugging sequential events. The syntax to specify levels of state
machines is as follows:

The scope of a state machine level starts from the specification of the level name and ends with the
specification of another level name.

The complex statements belonging to the scope of a state machine level are only evaluated when the level is
active.

The first level specified in a CTL program is handled as the start level.

Transitions between different levels of a state machine are to be specified using GOTO <target_level>
actions.

Example:

In this example, the CTL program implements a state machine with 2 levels/states.

The state machine is initially at the start state. As soon as core0 executes the entry point of sieve()
function, a state transition to level1 occurs. When executing the return instruction of the function
sieve(), a state transition back to the level start occurs.

This implicates that level1 is active as long as core0 is executing the function sieve() or one of its
nested functions. The level start is active otherwise.

Only when level1 is active the stopping statement is evaluated.

<level_name>:

CORE0::
start:
 // transition to level1 statement
 IF Program(ENTRY:sieve)
 GOTO level1
level1:
 // transition back to start level
 IF Program(RETURN:sieve)
 GOTO start
 // stopping statement
 IF Var.Write(mstatic1==2)
 Break
Application Note for Complex Trigger Language | 12©1989-2025 Lauterbach

Activating this CTL program will cause the target to Break when the following conditions are fulfilled:

• The agent core0 is executing the function sieve() or one of its nested functions.

• The agent core0 writes the value 2 to the variable mstatic1.

If initially, core0 is already in sieve(), the stopping statement would not be evaluated until the next
execution of sieve(), triggering a state machine transition to level1.

Multiple State Machines

CTL allows programming multiple state machines. Levels that belong to a state machine are to be prefixed
by the state machine name as follows:

Example:

In the following CTL program m1 and m2 are independent state machines:

• m1 specifies that the target is to be stopped if func1() is called by func9() or one of its nested
functions.

• m2 specifies that the target is to be stopped if the variable mstatic1 is written outside func2()
or one of its nested functions.

<state_machine>.<level_name>:

//--
// implementation of the state machine m1
//--
m1.start:
 IF Program(ENTRY:func9)
 GOTO m1.level1
m1.level1:
 IF Program(RETURN:func9)
 GOTO m1.start
 IF Program(ENTRY:func1)
 Break

//--
// implementation of the state machine m2
//--
m2.level0:
 IF Program(ENTRY:func2)
 GOTO m2.level1
 IF Var.Write(mstatic1)
 Break
m2.level1:
 IF Program(RETURN:func2)
 GOTO m2.level0
Application Note for Complex Trigger Language | 13©1989-2025 Lauterbach

TRACE32 Commands Using CTL Programs

CTL could be used with different targets:

• CTL for Onchip Triggers Logic

• CTL for Trace Find

• CTL Streaming Trace Trigger

This section presents different CTL targets and their corresponding TRACE32 commands.

CTL Onchip Triggers Logic

CTL for onchip trigger logic (or Onchip CTL) requires that the target CPU provides the onchip logic to
implement complex triggers. While the complexity level is limited by the onchip resources provided by the
trigger unit, onchip CTL has the fastest response time compared to other CTL targets.

The following table recapitulates the list of TRACE32 commands that are used for onchip CTL.

More information about CTL onchip triggers can be found in the chapter CTL for Onchip Triggers Logic.

CTL for Trace Find

Using CTL for trace find allows searching for the occurrence(s) of complex events in the trace recording, e.g.
sequential events happening in a specific or even arbitrary order.

After the CTL program for trace find is activated, the commands Trace.Find and Trace.FindAll are to be
used to find the matching items in the trace recording that are fulfilling the complex search criteria as
specified by the CTL program.

CTL for trace find does not require any onchip triggering logic. Thus, CTL for trace find has unlimited
complexity and can be used with any target providing trace capabilities.

When using <trace>.Mode STREAM, it is possible to analyze trace results while streaming using the option
/SPY:

Break.Program Opens interactive softkey-driven editor for CTL programs

Break.ReProgram Activates existing program file

Break.ViewProgram Opens a window that shows the state of the CTL trigger unit

Break.CLEAR Resets onchip trigger logic that is programmed by CTL. This
command doesn’t reset simple triggers.

Trace.FindAll /SPY
Application Note for Complex Trigger Language | 14©1989-2025 Lauterbach

The search result could be used as a test vehicle for onchip triggers: The trace stream file is processed and
analyzed at runtime (while the target is running and the trace is armed) to search for items fulfilling the
complex search criteria as specified by the CTL program. The target and/or the trace recording could be
stopped (Break or TraceTrigger) when the scenario of interest is recorded and detected.

Compared to Onchip CTL, CTL for Trace Find has a longer response time. The response time is affected by:

• The processing capacity of the host computer.

• The bandwidth of the whole trace transmission chain (from TRACE32 debug and trace tool to the
hard drive of the host computer).

The following table recapitulates the list of the TRACE32 commands that are used for CTL Trace Find.

CTL Streaming Trace Trigger

tbd.

Trace.FindProgram Opens interactive softkey-driven editor for trace find CTL programs

Trace.FindReProgram Activates existing program file for trace find target

Trace.FindViewProgram Opens a window that shows the state of the CTL trace find program

RTS.Program tbd.

RTS.ReProgram tbd.

RTS.ViewProgram tbd.

RTS.CLEAR tbd.
Application Note for Complex Trigger Language | 15©1989-2025 Lauterbach

CTL for Onchip Triggers Logic

To use onchip CTL, the target CPU must provide hardware support to implement complex triggers.

The following subsections are independent. Each is discussing onchip CTL implementation for a specific
target architecture. Selected use cases and example CTL programs are presented.

- CTL for TriCore MCDS

- CTL for Arm ETM
Application Note for Complex Trigger Language | 16©1989-2025 Lauterbach

CTL for TriCore MCDS

Supported Targets

Onchip CTL is only supported for AURIX devices with available MCDS modules (MCDS, MCDSlight, or
miniMCDS). CTL support for miniMCDS requires TRACE32 release 2023/02 or newer.

The PRACTICE function MCDS.Module.NAME() could be used to check the name of the MCDS module for
the selected CPU.

Multicore Support

The MCDS module of TriCore devices is restricted to generating trace and trigger information for a limited
number of cores. The consequence is that the multicore agents are restricted to the TriCore cores that are
assigned to the PowerView instance, and that are selected as core agents via the MCDS window or using
the commands MCDS.ProgramTrace.Agents and MCDS.DataTrace.Agents.

Selective Bus Trace

CTL provides a simple interface for selective bus trace. The complex statements are to be assigned to the
appropriate bus agents.

• The agent SPB:: is to be used for tracing and triggering over the System Peripheral Bus (SPB).

• The TriCore MCDS module is using trace multiplexers to select which trace sources are to be
observed on the Shared Resource Interconnect (SRI) fabric. SRI agent names are formed by the
SRI- prefix, followed by the name of the trace source as defined by Trace Source Multiplexer
setting options in the Infineon documentation. Following are some examples:

- SRI-LMU:: AURIX TC2x agent name to observe access to LMU SRAM and EMEM via SRI.

- SRI-OLDA:: AURIX TC3x agent name to observe access to Online Data Acquisition via SRI.

- SRI-DMA:: AURIX TC3x agent name to observe DMA transactions via SRI.

- SRI-CPU1:: AURIX TC2x/TC3x agent name to observe access to TriCore1 local memories
via SRI.

Not all trace sources are available for all target CPUs. The exhaustive list of available bus agents for each
CPU selection could be displayed by clicking on the advanced button of the MCDS window.
Application Note for Complex Trigger Language | 17©1989-2025 Lauterbach

Automatic Configuration of the Trace Source Multiplexers

When activating a CTL program, an automatic configuration of the MCDS trace source multiplexers is
performed. TRACE32 combines the list of agents issued from the following configurations and configures
the trace source multiplexers accordingly:

• The list of agents that are used by the compiled CTL program.

• The list of core agents that are selected by the commands MCDS.ProgramTrace.Agents and
MCDS.DataTrace.Agents

• The list of bus trace agents that are selected by the command MCDS.BusTrace.Agents

• The status of the peripheral trace that is configured by the command MCDS.PERipheralTrace

An error is thrown if there is no valid MCDS configuration to observe all the selected agents at the same
time. The user must decide which agents are most important to be observed for his use case.

TriCore Data Trace: COREx Vs. SRI-CPUx

Using the MCDS module of AURIX devices there are 2 options to observe memory accesses relatively to a
TriCore core:

• Observe the read/write accesses performed by the core (e.g. when executing a load or store
instruction). In this configuration, the TriCore core is observed as a bus master.

• Observe the read/write accesses to the core local memories via the SRI fabric. In this configuration,
the TriCore core is observed as a bus slave incurring the access.

Different CTL agents are to be used in both cases.

Example:

CORE0:: is used to observe the first core assigned to the PowerView instance as a master. In this case,
memory accesses performed by the core are to be observed.

SRI-CPU0:: is used to observe TriCore0 as an SRI slave. In this case, accesses to the core local
memories via SRI are to be observed. The agents are distinguished by the physical index of the TriCore
cores (SRI-CPU1:: refers to TriCore1, …, SRI-CPU5:: refers to TriCore5).

MCDS module of AURIX TC2x allows a selected TriCore to be observed as a core (read/write accesses
generated by the core are observed) and SRI slave at the same time. E.g. a CPU source Multiplexer could
be configured to observe the core accesses, and a SRI source multiplexer could be configured to observe
the same core as SRI slave.

When a CTL program is activated, the configuration of the trace source multiplexers
performed by the same PowerView instance via the commands
MCDS.SOURCE.Set is discarded.
Application Note for Complex Trigger Language | 18©1989-2025 Lauterbach

As opposed to AURIX TC2x, MCDS module of AURIX TC3x only allows the core to be observed either as a
master or as an SRI slave but not both at the same time. CTL throws an error when a user program causing
such a conflict is enabled.

Limitations

• The current implementation of onchip CTL for TriCore doesn’t support complex statements that
combine conditions and actions issued from different agents.

• JointCORE:: agent is currently not supported by onchip CTL for TriCore.

• Due to known behavior of the MCDS module, there is a dead time of up to 2 MCDS clock cycles
during counters, flags, and state changes. This must be considered by the user when writing CTL
programs or analyzing the test results.
Application Note for Complex Trigger Language | 19©1989-2025 Lauterbach

Examples

In this section, selected CTL use-cases for TriCore MCDS are presented.

Use case 1: Debug Memory Overwrite

User Story - Part 1:

In this example, an AURIX TC3x emulation device is used (e.g. TC397XE)

The user expects the variable vdouble to be only changed by the function func2c. But this gets
overwritten by other values than the function func2c is expected to write.

As a first test, the following CTL program is used to check if TriCore0 is performing any write access to
vdouble from outside the function func2c.

CTL Program:

By prefixing a qualifier with “Var.”, the address range of the specified source-level expression is used.

Results:

The test shows that the startup code _c_init_entry and other functions (WorkSieve and func7) are
also writing to vdouble (see the trace chart in the following screenshot).

CORE0::
 IF Var.Write(vdouble)&&!Var.Program(func2c)
 TraceEnable Program
Application Note for Complex Trigger Language | 20©1989-2025 Lauterbach

User Story - Part 2:

The variable vdouble is located in the DSPR of TriCore0. The user requirement is to check that no other
TriCore cores or bus agents are also writing to this variable. To achieve this, TriCore0 is to be observed as
SRI slave using the agent SRI-CPU0::

Considering that the write access might be part of a 64-bit burst write, the address range needs to be
extended to cover a 64-bit aligned range. PRACTICE functions and other arithmetic calculations could be
invoked by the CTL program. In this example the PRACTICE function ADDRESS.OFFSET() is used to
retrieve the variable address in-order to calculate the 64-bit address range to be observed.

CTL Program:

Results:

This second test proves that no other write access to vdouble is performed by any agent other than
TriCore0: The resulting Trace.List window in the following screen shot is empty.

SRI-CPU0::
 IF Write((Address.OFFSET(vdouble)&(~0x7))++0x7)
 TraceEnable Write Address Data
Application Note for Complex Trigger Language | 21©1989-2025 Lauterbach

Use case 2: Trace Complex Events Using CTL Flags

In this example, an AURIX TC3x emulation device is used (e.g. TC397XE)

User Story:

In the used test application the variable mcount is incremented each iteration of the function mainloop.
The user needs to measure the runtime of the function sieve which is called once by mainloop iteration.
Runtime measurement is to be started after a specified number of iterations.

The user requirements for this test case are as follows:

• Trace all write accesses to mcount (the address and the write values are to be sampled).

• Starting from the iteration number 20000 of the function mainloop, the entry and return instructions
of the function sieve are to be traced.

• The measurements are to be stopped after collecting 1000 runtime samples.

CTL Program:

CTL flags can be used to implement the test requirements:

Results:

The Trace.List window shows that program trace (for the entry and return instructions of the function sieve)
is started after the value 20000 (0x4E20) is written to mcount.

IF Var.Write(mcount)
 TraceEnable Write Address Data

IF Var.Write(mcount==20000.)
 SET myFlag

IF (Program(ENTRY:sieve)||Program(RETURN:sieve))&&FLAG(myFlag)
 TraceEnable Program

IF Var.Write(mcount==21000.)
 Break
Application Note for Complex Trigger Language | 22©1989-2025 Lauterbach

The window Trace.STATistic.AddressDURation shows that 1000 runtime measurements of the function
sieve are recorded (samples: 1000). In a single iteration, the execution time of sieve took longer time
(max: 36.12µs) than in usual runs (avr:4.741µs)

Application Note for Complex Trigger Language | 23©1989-2025 Lauterbach

Use case 3: Counting Events

User Story:

In the used test application the variable mcount is incremented each iteration of the main loop.

The user needs to start sampling the program flow after a given number of iterations. The user requirements
for this test case are as follows:

• Trace all write accesses to mcount (the address and the write values are to be sampled).

• Starting from the 5th iteration of the main loop, the program flow trace is to be enabled.

• The target is to be stopped after the 10th iteration of the main loop.

CTL Program:

In the following example program, a CTL counter “mycounter” is used to count the number of write access
to the variable mcount.

Results:

Test results shown in the following screenshot could be interpreted as follows:

IF Var.Write(mcount)
 TraceEnable Write Address Data
 INCrement mycounter

IF COUNT(mycounter>=5.)
 TraceEnable Program

IF COUNT(mycounter>=10.)
 Break

A The status bar shows the state “stopped by MCDS”. This indicates that an MCDS trigger has stopped
the target.

B The trace find window shows that the target executed the main loop for exactly 10 iterations (10 writes to
mcount are recorded).

C The trace list window shows that the program flow trace was enabled starting from the 5th iteration.

D The trace chart shows that the program trace was enabled during the last 5 iterations: The leaf function
sieve which is called once per main loop was called exactly 5 times.
Application Note for Complex Trigger Language | 24©1989-2025 Lauterbach

B

A DC
Application Note for Complex Trigger Language | 25©1989-2025 Lauterbach

Use case 4: Check Timing Constraint - Address Duration

User Story:

In a real-time context, the execution time of the function mainloop must not exceed a maximum specified
time of 35 µs. In rare cases, it happens that the execution time exceeds 60 µs.

An AURIX TC3x emulation device is used, but the target board doesn’t provide an AGBT interface. Only an
onchip trace buffer of 2MBytes is available. The user estimates that, when the error case occurs, the
program flow history available in the onchip trace buffer should be enough to track down the issue. The
requirements are as follows:

• Unconditional program flow trace must be enabled.

• To track the number of execution loops, all write accesses to the variable mcount must be
recorded.

• When detecting the error case (i.e. the execution time of the function mainloop exceeds a
maximum specified duration of 35 µs) the trace recording must be kept enabled till the next return
of the function mainloop is executed.
Application Note for Complex Trigger Language | 26©1989-2025 Lauterbach

CTL Program:

//--
// State independent complex statements
//--

// Enable unconditional program flow trace
IF TRUE()
 TraceEnable Program

// Sample all write access to mcount
IF Var.Write(mcount)
 TraceData

//--
// State Machine implementation to stop
// tracing and Break if the mainloop
// execution time exceeds 35µs.
//--
level0:
 IF Program(ENTRY:mainloop)
 GOTO level1

level1:
 // Restart the timer at entry to level1
 IF STATE.ENTER()
 RELOAD task_timer

 // Keep counting as long as level1 is active
 IF TRUE()
 ENABLE task_timer

 // mainloop return with no timeout detected
 // => Go back to level0
 IF Program(RETURN:mainloop)
 GOTO level0

 // A timeout is detected => Go to level3
 IF TIME(task_timer>=35.us)
 GOTO level3

level3:
 // level3 is only reached if a time-out is detected
 // => Stop tracing and break at return of the mainloop
 IF Program(RETURN:mainloop)
 TraceTrigger
 Break
Application Note for Complex Trigger Language | 27©1989-2025 Lauterbach

Results:

A The status bar shows the state “stopped by MCDS”. This indicates that an MCDS trigger has stopped
the target.

B The Trace.STATistic.AddressDURation window shows that the execution time of the function
mainloop has once exceeded the duration of 35 µs.

C The maximum measured duration of mainloop is 61.660 µs.

D The Trace.Chart.sYmbol window shows that the function sieve took a longer execution time than
the usual runs. The user must examine the program flow trace and focus his analysis on the
function sieve.

A

C

B

D

Application Note for Complex Trigger Language | 28©1989-2025 Lauterbach

Use case 5: Check Timing Constraint - Address Distance

User Story:

In a real time context, a function func10 must be called at least once every 35 µs. In rare cases, the time
distance between 2 consecutive calls exceeds 60 µs.

An onchip trace configuration on AURIX TC3x emulation device is used. The user needs to examine the
program flow trace when the timing constraint is violated. The requirements are as follows:

• Unconditional program flow must be enabled.

• When the timing constraint is violated, the program flow recording is to be kept enabled until the
next call of func10 is executed.

CTL Program:

// Enable unconditional program flow trace
IF TRUE()
 TraceEnable Program

// Set monitoring flag and reload the distance timer at every
// execution of the func10 entry
IF Program(ENTRY:func10)
 SET monitoring_flag
 RELOAD distance_tmr

// Keep incrementing the distance timer as long as the monitoring
// flag is set
IF FLAG(monitoring_flag)
 ENABLE distance_tmr

// Set a time-out flag when the value of the distance monitoring
// timer exceeds 35 µs
IF Time(distance_tmr>35.us)
 SET timeout_flag

// Stop trace recording at the first execution of func10 entry
// following a time-out
IF FLAG(timeout_flag)&&Program(ENTRY:func10)
 TraceTrigger
Application Note for Complex Trigger Language | 29©1989-2025 Lauterbach

Results:

A The Trace.STATistic.AddressDIStance window shows that, over 1208 recorded trace samples, the
timing constraint is violated once.

B The maximum recorded time distance between consecutive calls of func10 is 60.86 µs.

C The watchpoint mark the occurrence of the TraceTrigger action

D The column “ti.back” shows that the distance between the last 2 calls of func10 exceeds 35 µs for
the first time.

C

B

D

A

Application Note for Complex Trigger Language | 30©1989-2025 Lauterbach

CTL for Arm ETM

Supported Targets

CTL is available exclusively on Arm cores that include an Embedded Trace Macrocell (ETM). To verify if your
core under debug supports ETM, use the PRACTICE function ETM(). Execute the following command to
check for ETM availability:

Alternatively, you can use the following PRACTICE script to verify whether you can use CTL with your
device:

Limitations

The CTL is fundamentally reliant on the resources of the ETM in your core(s) under debug. For example, if
you want to stop program execution when an invalid value is written to a variable, you will need an ETM that
offers both address and data value comparators. The ETM.state window provides a good overview of the
available resources.

Examples

In this section, selected CTL use-cases for Arm ETM are presented.

PRINT ETM()

IF ETM()
 PRINT "Your device contain ETM and you can use CTL"
ELSE
 PRINT "Your device does not contain ETM and you cannot use CTL"
Application Note for Complex Trigger Language | 31©1989-2025 Lauterbach

Use case 1: Monitor interrupt disable period

Used Core: Cortex-R7

ETM Version: ETMv4

The objective is to stop the program execution when the interrupt disable period of the CPU (Cortex-R7)
surpasses a certain limit (longer than the specified duration). Essentially, the user aims to determine which
driver is responsible for keeping interrupts disabled for too long. The user employs the global functions
local_irq_disable() and local_irq_enable() to manage the disabling and enabling of interrupts.
It is necessary to stop the program execution (BREAK command) when the interrupt disable period reaches
or exceeds 100ms.

CTL Program:

Result:

The program execution is stopped, and the status bar displays “stopped by ETM” when the interrupt disable
period surpasses 100ms.

irq_on:
// Start level
// Transition to irq_off state when function local_irq_disable is entred
 IF Program(ENTRY:local_irq_disable)
 GOTO irq_off

irq_off:
// Transition back to irq_on state when the local_irq_enable function
// returns.
 IF Program(RETURN:local_irq_enable)
 GOTO irq_on

// Initialize the timer when entering this state
 IF STATE.ENTER()
 RELOAD timer_irq_off

// Continuously enable the timer while in this state
 IF TRUE()
 ENABLE timer_irq_off

 // Check if the timer has reached or exceeded 100 milliseconds.

 IF TIME(timer_irq_off>=100.ms)
 Break
Application Note for Complex Trigger Language | 32©1989-2025 Lauterbach

Use case 2: Check for unintended write accesses to a variable

Used Core: Cortex-R5

ETM version: ETMv3.3

This demo is based on the standard demo application sieve;
~~/demo/arm/hardware/zynq_ultrascale/ultra96-rev2/ultra96-amp/ultra96-
rev2_amp_onchip_etf_trace_sram.cmm

The user expects the variable vdouble to be modified exclusively by the function func2c. However,
vdouble is being overwritten by values that are not generated within func2c.

As an initial test, the following CTL program is used to check whether the program running on the Cortex-R5
core performs any write access to vdouble from outside the func2c function.
Application Note for Complex Trigger Language | 33©1989-2025 Lauterbach

CTL Program:

Results:

The Trace.List window displays the program locations outside the func2c function that have written to
vdouble:

Use case 3: Stop program execution on instruction cache miss event

Used Core: Cortex-R7

ETM version: ETMv4

The goal of this CTL program is to stop program execution when an instruction cache miss occurs. It
leverages the availability of PMU (BMC in TRACE32) events as ETM inputs through the extended external
input facility. This allows for precise troubleshooting and performance analysis.

The CTL program looks like this:

Result:

The test results show “stopped by ETM” in the status bar immediately after the next instruction cache miss:

// Check for any write access to the variable vdouble and
// ensure that the write access does NOT occur within the function func2c
IF Var.Write(vdouble)&&!Var.Program(func2c)
// Advice ETM to generate program trace information
// when both conditions are met
 TraceEnable Program

IF BMC(ICMISS)
 Break
Application Note for Complex Trigger Language | 34©1989-2025 Lauterbach

NOTE: This applies only when the Arm core is equipped with both BMC and ETM.
Application Note for Complex Trigger Language | 35©1989-2025 Lauterbach

Examples for CTL Trace Find

Use case 1: Checking Variable Access

User Story:

The user needs to find all write access to a variable vlong from outside the function main.

Trace Find Program: vlong_access.ct

Results:

The results could be explored using the TRACE32 PowerView:

1. Click on the compile button in the CTL Trace Find editor.

2. Open a trace chart window with the /Track option by executing the command
Trace.Chart.sYmbol /Track

3. Navigate through the matching items using the button Find. Each time the trace chart window
will be updated; the function that is performing the access is highlighted. Alternatively, the
FindAll button could be used to list all the matching items in the Trace.FindAll window.

IF Var.Write(vlong)&&!Var.Program(main)
 FOUND
Application Note for Complex Trigger Language | 36©1989-2025 Lauterbach

A scripting approach could also be used. The following PRACTICE script prints the names of matching
items’ functions to the message area window.

// activate the CTL find program from the file vlong_access.ct
Trace.FindReProgram ~~~~/vlong_access.ct

// search for the first trace record fulfilling the CTL program search
// criteria
Trace.Find

WHILE FOUND()
(
 // print the name of the matching item’s function to the area window
 PRINT sYmbol.FUNCTION(TRACK.ADDRESS.PROG())

 // search for the next trace record fulfilling the CTL program search
 // criteria
 Trace.Find
)

Application Note for Complex Trigger Language | 37©1989-2025 Lauterbach

Use case 2: Checking Timing Constraints - Address Duration

User Story:

The user needs to perform post-mortem analysis of a trace recording. The trace is loaded to a TRACE32
Instruction Set Simulator. The user needs to verify that the execution time of the function mainloop does
not exceed a specified time of 35 µs.

Trace Find Program: check_address_duration.ct

A PRACTICE script could be used to set bookmarks for all the trace records breaking the timing constraint.

start_level:
 // Detected Entry of the main loop
 IF Program(ENTRY:mainloop)
 GOTO check_level

check_level:
 // Reset the task_timer
 IF STATE.ENTER()
 RELOAD task_timer

 // Enable the task timer as long as check_level is active
 IF TRUE()
 ENABLE task_timer

 // Go back to start_level at Return from the function
 // mainloop
 IF Program(RETURN:mainloop)
 GOTO start_level

 // task_timer exceeds 35 µs
 // => a timout is detected
 IF TIME(task_timer>=35.us)
 GOTO timout_level

timout_level:
 // Search for the next return from mainloop and
 // mark it as FOUND and go back to start_level to
 // continue the test
 IF Program(RETURN:mainloop)
 FOUND
 GOTO start_level
Application Note for Complex Trigger Language | 38©1989-2025 Lauterbach

Script:

Results:

In this example, the timing constraint was broken four times. These are identified by the bookmarks “BM_1”,
“BM_2”, “BM_3”, and “BM_4”.

PRIVATE &index
Trace.FindReProgram ~~~~/check_address_duration.ct
BookMark.RESet

&index=1.

// Find the first trace record matching the CTL find program criteria
Trace.Find
WHILE FOUND()
(
 // Compose a unique bookmark name
 &bookmark="BM_"+"&index"
 // Set a bookmark for the FOUND trace record
 Trace.Bookmark "&bookmark" TRACK.RECORD()
 &index=&index+1.
 // Find the next trace record matching the CTL find program criteria
 Trace.Find
)

Application Note for Complex Trigger Language | 39©1989-2025 Lauterbach

Use case 3: Checking Timing Constraints - Address Distance

User Story:

Runtime analysis of the user application program flow using Trace.STATistic.AddressDIStance shows that
a function classifyAbs is called at least once each 1 ms. In some cases (3 times/4095 samples) the time
distance between consecutive calls of classifyAbs exceeds 6 ms. A trace find program can be used to
locate the trace samples where the timing constraint gets violated.

Trace Find Program: check_address_distance.ct

The trace find program could compiled/activated via the command Trace.FindReProgram . Trace samples
of interest can be listed using the command Trace.FindAll e.g. as follows:

// For each trace sample corresponding to the entry of the function
// classifyAbs:
// + Set a flag “monitoring_flag”
// + Reload the distance monitoring timer “distance_tmr”
IF Program(ENTRY:classifyAbs)
 SET monitoring_flag
 RELOAD distance_tmr

// As long as the monitoring flag is set, keep incrementing
// the distance monitoring timer
IF FLAG(monitoring_flag)
 ENABLE distance_tmr

// In case the monitoring timer exceeds a limit of 1 ms
// + The timout flag is set
// + The monitoring flag is cleared
// + The distance timer is reset
IF Time(distance_tmr>1.0ms)
 SET timeout_flag
 CLEAR monitoring_flag
 RELOAD distance_tmr

// The next trace sample representing the entry of the function
// classifyAbs with the timeout flag set is added to the trace find
// results of interest (FOUND)
// The timeout flag is cleared for processing the rest of the trace
// samples
IF Program(ENTRY:classifyAbs)&&FLAG(timeout_flag)
 FOUND
 CLEAR timeout_flag

// Activate the trace find program
Trace.FindReProgram ~~~~/check_address_distance.ct
// Display the trace find results
Trace.FindAll
Application Note for Complex Trigger Language | 40©1989-2025 Lauterbach

Results:

A The Trace.STATistic.AddressDIStance window shows that, over 4095 recorded trace samples, the
timing constraint is violated 3 times.

B The maximum recorded time distance between consecutive calls of classifyAbs is 6.265 ms.

C The time displayed in ti.back column of Trace.FindAll window is not corresponding to the time
distance between 2 consecutive calls of classifyAbs. Actually, this represents the time distance
between 2 samples of classifyAbs violating the timing constraint.

D The window Trace.FindAll, Address classifyAbs CYcle Program /Track is to be used to examine the
maximum time distance between 2 consecutive calls of classifyAbs

B

C

A

D

Application Note for Complex Trigger Language | 41©1989-2025 Lauterbach

Keyword Reference: CTL Conditions/Triggers

BREAKPOINT ABCDE breakpoint

BusTrigger Incoming trigger signal

BMC Benchmark counter event

This condition is only supported if the target processor provides an Embedded Trace Macrocell (ETM) and
BenchMark Counters. Refer to the corresponding “Processor Architecture Manuals”.

Example:

COUNT Trigger on event counter

Format: BREAKPOINT (<type>)

<type>: Alpha | Beta | Charly | Echo

Format: BusTrigger (<channel>)

Format: BMC (<event>)

IF BMC(dcachemiss)
 INCrement counter1

Format: COUNT (<name/count>)
Application Note for Complex Trigger Language | 42©1989-2025 Lauterbach

CLOCKS Trigger on clock cycles counter

Example:

Enable program trace for 100 clock cycles starting from the execution of the first instruction of the sieve
function.

CTM Cross trigger

This condition is only supported if the target processor provides an Embedded Trace Macrocell (ETM) and a
CoreSight Trigger Matrix (CTM).

EXTIN External input

This condition is only supported if the target processor provides an Embedded Trace Macrocell (ETM).

Format: CLOCKS (<name/count>)

start:
 IF Program(ENTRY:sieve)
 GOTO level1
level1:
 // Reset the clock counter at state change to level1
 IF STATE.ENTER()
 RELOAD clock_counter

 // Enable Program trace and clock_counter as long as
 // level1 is active
 IF TRUE()
 TraceEnable Program
 ENABLE clock_counter

 // Stop tracing when the clock_counter reach the limit of 100 cycles
 IF CLOCKS(clock_counter>=100.)
 TraceTrigger

Format: CTM (<channel>)

Format: EXTIN (<channel>)
Application Note for Complex Trigger Language | 43©1989-2025 Lauterbach

FALSE Never condition

FLAG Flag status

Example:

Enable program trace for the address range of the function sieve if the variable mstatic1 has a value of
2:

MACHINE Machine comparator

This condition is only supported if the target processor provides an Embedded Trace Macrocell (ETM) and
hypervisor extensions. Once the Hypervisor Awareness is configured in TRACE32, you can perform
comparisons on specific machine within your CTL program.

Example: selective trace on a specific machine in hypervisor setup

Format: FALSE ()

Format: FLAG (<name/value>)

IF Var.Write(mstatic1==2)
 SET myflag

IF Var.Write(mstatic1!=2)
 CLEAR myflag

IF Var.Program(sieve)&&FLAG(myflag)
 TraceEnable Program

Format: MACHINE (<machine>)

IF MACHINE("FreeRTOS")
 TraceEnable Program

NOTE: The command Break.CONFIG.UseMachineID ON should be set
Application Note for Complex Trigger Language | 44©1989-2025 Lauterbach

Program Program access comparator

If nothing is specified in front of a function name, ENTRY is default.

Example:

ProgramFail Conditional instruction execution

Format: Program (<item>)

<item>: [<logical_operator>] [ENTRY: | RETURN: | RANGE:] <addr/data>

<logical_
operator>:

~ | == | != | < | <= | >= | >

ENTRY: Address of the function entry point.

RETURN: Address of the function exit (function epilogue)

RANGE: Function address range

IF Program(ENTRY:sieve)
 TraceON Program

IF Program(RETURN:sieve)
 TraceOFF Program

Format: ProgramFail (<item>)

<item>: [<logical_operator>] [ENTRY: | RETURN: | RANGE:] <addr/data>

<logical_
operator>:

~ | == | != | < | <= | >= | >
Application Note for Complex Trigger Language | 45©1989-2025 Lauterbach

ProgramPass Conditional instruction execution

Read Read access

Example:

Format: ProgramPass (<item>)

<item>: [<logical_operator>] [ENTRY: | RETURN: | RANGE:] <addr/data>

<logical_
operator>:

~ | == | != | < | <= | >= | >

Format: Read (<item>)

<item>: [<logical_operator>] <addr/data>

<logical_
operator>:

~ | == | != | < | <= | >= | >

IF Read(flags)
 TraceEnable ALL
Application Note for Complex Trigger Language | 46©1989-2025 Lauterbach

ReadWrite Read or write access

Example 1:

Example 2:

Format: ReadWrite (<item>)

<item>: [<logical_operator>] <addr/data>

<logical_
operator>:

~ | == | != | < | <= | >= | >

IF ReadWrite(mstatic1)
 TraceData DEFault

IF ReadWrite(vint==1000)
 SET myFlag

IF FLAG(myFlag)&&Program(ENTRY:sieve)
 Break
Application Note for Complex Trigger Language | 47©1989-2025 Lauterbach

SingleShot Single shot comparators

The SingleShot conditions are only supported if the target processor provides an Embedded Trace
Macrocell with a single shot comparator (e.g. ETMv4).

SingleShot.Program Single shot program execution

Example:

SingleShot.ProgramFail Single shot conditional execution

Format: SingleShot.Program (<item>)

<item>: [<logical_operator>] [ENTRY: | RETURN: | RANGE:] <addr/data>

<logical_
operator>:

~ | == | != | < | <= | >= | >

IF SingleShot.Program(ENTRY:sieve)
 TraceEnable Program

Format: SingleShot.ProgramFail (<item>)

<item>: [<logical_operator>] [ENTRY: | RETURN: | RANGE:] <addr/data>

<logical_
operator>:

~ | == | != | < | <= | >= | >
Application Note for Complex Trigger Language | 48©1989-2025 Lauterbach

SingleShot.ProgramPass Single shot conditional execution

SingleShot.Read Single shot read access

Example:

Format: SingleShot.ProgramPass (<item>)

<item>: [<logical_operator>] [ENTRY: | RETURN: | RANGE:] <addr/data>

<logical_
operator>:

~ | == | != | < | <= | >= | >

Format: SingleShot.Read (<item>)

<item>: [<logical_operator>] <addr/data>

<logical_
operator>:

~ | == | != | < | <= | >= | >

IF SingleShot.Read(mstatic1)
 TraceData Read Address Data
Application Note for Complex Trigger Language | 49©1989-2025 Lauterbach

SingleShot.ReadWrite Single shot read or write access

Example:

SingleShot.Write Single shot write access

Example:

Format: SingleShot.ReadWrite (<item>)

<item>: [<logical_operator>] <addr/data>

<logical_
operator>:

~ | == | != | < | <= | >= | >

IF SingleShot.ReadWrite(mstatic1)
 TraceData DEFault

Format: SingleShot.Write (<item>)

<item>: [<logical_operator>] <addr/data>

<logical_
operator>:

~ | == | != | < | <= | >= | >

IF SingleShot.Write(flags)
 TraceEnable ALL
Application Note for Complex Trigger Language | 50©1989-2025 Lauterbach

NoSingleShot Non single shot comparators

The NoSingleShot conditions are only supported if the target processor provides an Embedded Trace
Macrocell with a single shot comparator (e.g. ETMv4).

NoSingleShot.Program Non single shot program execution

Example:

NoSingleShot.ProgramFail Non single shot conditional execution

Format: NoSingleShot.Program (<item>)

<item>: [<logical_operator>] [ENTRY: | RETURN: | RANGE:] <addr/data>

<logical_
operator>:

~ | == | != | < | <= | >= | >

IF NoSingleShot.Program(ENTRY:sieve)
 TraceEnable Program

Format: NoSingleShot.ProgramFail (<item>)

<item>: [<logical_operator>] [ENTRY: | RETURN: | RANGE:] <addr/data>

<logical_
operator>:

~ | == | != | < | <= | >= | >
Application Note for Complex Trigger Language | 51©1989-2025 Lauterbach

NoSingleShot.ProgramPass Non single shot conditional execution

NoSingleShot.Read Non single shot read access

NoSingleShot.ReadWrite Non single shot read or write access

Format: NoSingleShot.ProgramPass (<item>)

<item>: [<logical_operator>] [ENTRY: | RETURN: | RANGE:] <addr/data>

<logical_
operator>:

~ | == | != | < | <= | >= | >

Format: NoSingleShot.Read (<item>)

<item>: [<logical_operator>] <addr/data>

<logical_
operator>:

~ | == | != | < | <= | >= | >

Format: NoSingleShot.ReadWrite (<item>)

<item>: [<logical_operator>] <addr/data>

<logical_
operator>:

~ | == | != | < | <= | >= | >
Application Note for Complex Trigger Language | 52©1989-2025 Lauterbach

NoSingleShot.Write Non single shot write access

Format: NoSingleShot.Write (<item>)

<item>: [<logical_operator>] <addr/data>

<logical_
operator>:

~ | == | != | < | <= | >= | >
Application Note for Complex Trigger Language | 53©1989-2025 Lauterbach

STATE.LEAVE Leave the state transition (edge sensitive)

Example:

STATE.ENTER Enter the state transition (edge sensitive)

Example:

Format: STATE.LEAVE ()

start:
 IF Program(ENTRY:sieve)
 GOTO level1

 IF STATE.LEAVE()
 RELOAD blink_counter

level1:
 IF Program(RETURN:sieve)
 GOTO start

 IF Program(ENTRY:Blink)
 INCrement blink_counter

 IF COUNT(blink_counter>2)
 Break

Format: STATE.ENTER ()

start:
 IF Program(ENTRY:sieve)
 GOTO level1

level1:
 IF STATE.ENTER()
 RELOAD blink_counter

 IF Program(RETURN:sieve)
 GOTO start

 IF Program(ENTRY:Blink)
 INCrement blink_counter

 IF COUNT(blink_counter>2)
 Break
Application Note for Complex Trigger Language | 54©1989-2025 Lauterbach

STATE.TRACEON Active state of a TraceON action

This condition is only supported if the target processor provides an Embedded Trace Macrocell (ETM)
versions older than ETMv4.

TASK Task comparator

This condition is only supported if the target processor provides an Embedded Trace Macrocell (ETM).

Once awareness is configured, you can perform comparisons on specific tasks within your CTL program.

Example: Selective trace on specific task

Format: STATE.TRACEON ()

Format: TASK (<task>)

If TASK("sieve")
 TraceEnable Program
Application Note for Complex Trigger Language | 55©1989-2025 Lauterbach

TIME Time counter comparator

Example:

TRUE Always condition

Example:

Format: TIME (<name/time>)

start:
 IF Program(ENTRY:sieve)
 GOTO level1

level1:
 IF ENTRY()
 RELOAD sievetimer
 TraceON Program

 IF TRUE()
 ENABLE sievetimer

 IF Program(RETURN:sieve)
 TraceOFF Program
 GOTO start

 IF TIME(sievetimer>200.us)
 Break

Format: TRUE ()

start:
 IF Program(ENTRY:sieve)
 GOTO level1
level1:

 IF TRUE()
 TraceEnable Program

 IF Program(RETURN:sieve)
 GOTO start
Application Note for Complex Trigger Language | 56©1989-2025 Lauterbach

Var Specify source-level expressions

Var prefix allows to specify the source-level expression in the syntax of the used programming language
(e.g. C, C++).

Then condition will consider the full function/variable range.

Var.Program Flat function execution

Example:

Var.Read Variable read access

Format: Var.Program (<item>)

<item>: [<logical_operator>] [ENTRY: | RETURN: | RANGE:] <var/data>

<logical_
operator>:

~ | == | != | < | <= | >= | >

// Trace all write access when executing instructions in the sieve
// function address range
IF Var.Program(sieve)
 TraceData Write Address Data

Format: Var.Read (<item>)

<item>: [<logical_operator>] <var/data>

<logical_
operator>:

~ | == | != | < | <= | >= | >
Application Note for Complex Trigger Language | 57©1989-2025 Lauterbach

Var.ReadWrite Variable read or write access

Var.status tbd.

Var.Write Variable write access

Example:

Format: Var.ReadWrite (<item>)

<item>: [<logical_operator>] <var/data>

<logical_
operator>:

~ | == | != | < | <= | >= | >

Format: Var.status (<item>)

<item>: [<logical_operator>] <var>

<logical_
operator>:

~ | == | != | < | <= | >= | >

Format: Var.Write (<item>)

<item>: [<logical_operator>] <var/data>

<logical_
operator>:

~ | == | != | < | <= | >= | >

IF Var.Write(vint==1000)
 SET myflag
Application Note for Complex Trigger Language | 58©1989-2025 Lauterbach

Write Write access

Example:

ZONE Zone comparator

This condition is only supported if target processor provides an Embedded Trace Macrocell (ETM).

Format: Write (<item>)

<item>: [<logical_operator>] <addr/data>

<logical_
operator>:

~ | == | != | < | <= | >= | >

IF Write(0x70001000!=0x55)
 TraceEnable ALL

Format: ZONE (<zone>)
Application Note for Complex Trigger Language | 59©1989-2025 Lauterbach

Keyword Reference: CTL Actions

Break Stop the program execution

Example:

BusCLOCKS tbd.

BusCount tbd.

BusTIME tbd.

Format: Break

// Stop if any write access to mstatic1 is generated by an instruction
// from outside the sieve function range

IF var.Write(mstatic1)&&!Var.Program(sieve)
 Break

Format: BusCLOCKS <counter>

Format: BusCount <counter>

Format: BusTIME <counter>
Application Note for Complex Trigger Language | 60©1989-2025 Lauterbach

BusTrigger tbd.

This action is only supported if the target processor provides an Embedded Trace Macrocell (ETM) and a
CoreSight Trigger Matrix (CTM).

CLEAR Clear flag

Example:

CTM Cross trigger

This condition is only supported if the target processor provides an Embedded Trace Macrocell (ETM) and a
CoreSight Trigger Matrix (CTM).

Format: BusTrigger [DEFault | 0 | 1]

DEFault tbd.

0 tbd.

1 tbd.

Format: CLEAR <flag>

IF Program(ENTRY:sieve)
 SET flag_sieve

IF Program(RETURN:sieve)
 CLEAR flag_sieve

IF Var.Write(mstatic1)&&!FLAG(flag_sieve)
 TRACEENABLE Program Write Address Data

Format: CTM [0 | 1 | 2 | 3]
Application Note for Complex Trigger Language | 61©1989-2025 Lauterbach

ENABLE Enable counter

Enable counting while the condition is verified.

Example:

EVENT Trace event

0 tbd.

1 tbd.

2 tbd.

3 tbd.

Format: ENABLE <counter> | <timer>

IF Program(ENTRY:sieve)
 SET flag_sieve

IF Program(RETURN:sieve)
 CLEAR flag_sieve

IF FLAG(flag_sieve)
 ENABLE timer_sieve
 TRACEENABLE Program

IF TIME(timer_sieve>10.us)
 TraceTrigger

Format: EVENT [0 | 1 | 2 | 3]
Application Note for Complex Trigger Language | 62©1989-2025 Lauterbach

EXTOUT External output

FOUND Add the trace sample to the search items result

Example:

GOTO Change active state

Example:

Format: EXTOUT [0 | 1 | 2 | 3]

0 tbd.

1 tbd.

2 tbd.

3 tbd.

Format: FOUND

IF Program(ENTRY:sieve)
 FOUND

Format: GOTO <state>

start:
 IF Program(ENTRY:sieve)
 GOTO level1

level1:
 IF Program(RETURN:sieve)
 GOTO start
 IF Var.Write(mstatic1)
 TraceData Write Address Data
Application Note for Complex Trigger Language | 63©1989-2025 Lauterbach

INCrement Increment counter

Example:

RELOAD Reload counter

Example:

Format INCrement <counter>

IF Program(ENTRY:sieve)
 INCrement sieve_cnt
 TraceEnable Program

IF COUNT(sieve_cnt==10.)
 Break

Format RELOAD <counter>

start:
 IF Program(ENTRY:sieve)
 GOTO level1

level1:
 IF Program(RETURN:sieve)
 GOTO start
 IF Program(ENTRY:Blink)
 INCrement blink_counter
 IF STATE.ENTER()
 RELOAD blink_counter
 IF COUNT(blink_counter>2)
 Break
Application Note for Complex Trigger Language | 64©1989-2025 Lauterbach

SET Set flag

Example:

Spot Shortly stop the program execution

Example:

Format SET <flag>

IF Var.Write(mstatic1)
 Set myflag

IF Program(ENTRY:sieve)&&FLAG(myflag)
 Break

Format Spot

IF Program(ENTRY:sieve)
 Spot
Application Note for Complex Trigger Language | 65©1989-2025 Lauterbach

TraceData Sample specified data event

Example:

By using the action TraceData, the status of unconditional program trace is not changed. E.g. if unconditional
program trace is enabled, the resulting trace recording will contain unconditional program trace additionally
to the selective data trace for the specified events.

Format TraceData [DEFault | Read | Write | ReadWrite | Address | Data]

DEFault Is equivalent to ReadWrite Address Data.

Read Sample read cycles.

Write Sample write cycles.

ReadWrite Sample read and write cycles.

Address Sample cycle address.

Data Sample cycle data.

NOTE: TraceData [Read | Write | ReadWrite] without specifying Address or Data will
sample cycle address and data.

// Trace all the write cycles that are performed by the instructions
// in the address range of the function sieve
IF Var.Program(sieve)
 TraceData Write Address Data
Application Note for Complex Trigger Language | 66©1989-2025 Lauterbach

TraceEnable Enable the trace on the specified event

Example 1:

Example 2:

Format TraceEnable <parameter>

<parameter>: [DEFault | ALL | Program | Read | Write | ReadWrite | Address | Data]

DEFault Sample the event depending on the condition. e.g. if the condition is a program
condition the program cycles are sampled.

ALL Sample program, read, and write cycles. For the read and write cycles, the
sample address and data are included.

Program Sample program cycles.

Read Sample read cycles.

Write Sample write cycles.

ReadWrite Sample read and write cycles.

Address Sample cycle address.

Data Sample cycle data.

NOTE: TraceEnable [Read | Write | ReadWrite] without specifying Address or Data
will sample cycle address and data.

// Trace program and all the write cycles that are performed by the
// instructions in the address range of the function sieve
IF Var.Program(sieve)
 TraceEnable Program Write Address Data

// Trace all the write cycles to mstatic1

IF Var.Write(mstatic1)
 TraceEnable DEFault
Application Note for Complex Trigger Language | 67©1989-2025 Lauterbach

TraceOFF Switch OFF the trace sampling

Format TraceOFF <parameter>

<parameter>: [DEFault | ALL | Program | Read | Write | ReadWrite | Address | Data]

DEFault tbd.

ALL Switch off sampling program, read, and write cycles.

Program Switch off sampling program cycles.

Read Switch off sampling read cycles.

Write Switch off sampling write cycles.

ReadWrite Switch off sampling read and write cycles.

Address Switch off sampling cycle address.

Data Switch off sampling cycle data.
Application Note for Complex Trigger Language | 68©1989-2025 Lauterbach

TraceON Switch ON the trace sampling

TraceTIME tbd.

TraceTrigger Stop sampling to the trace buffer on specified event

A trigger delay could be specified in number of cycles or percentage of the trace buffer size.

Format TraceON <parameter>

<parameter>: [DEFault | ALL | Program | Read | Write | ReadWrite | Address | Data]

DEFault tbd.

ALL Switch on sampling program, read, and write cycles.

Program Switch on sampling program cycles.

Read Switch on sampling read cycles.

Write Switch on sampling write cycles.

ReadWrite Switch on sampling read and write cycles.

Address Switch on sampling cycle address.

Data Switch on sampling cycle data.

Format TraceTIME

Format TraceTrigger <cycles> | <percent>
Application Note for Complex Trigger Language | 69©1989-2025 Lauterbach

CTL Programming Errors
Application Note for Complex Trigger Language | 70©1989-2025 Lauterbach

	Application Note for Complex Trigger Language
	History
	Introduction
	Basic Structure of CTL Programs
	Complex Statements
	Agents
	Core Agents
	Bus Monitors
	Default Agent

	State Machines
	Using CTL State Machines
	Multiple State Machines

	TRACE32 Commands Using CTL Programs
	CTL Onchip Triggers Logic
	CTL for Trace Find
	CTL Streaming Trace Trigger

	CTL for Onchip Triggers Logic
	CTL for TriCore MCDS
	Supported Targets
	Multicore Support
	Selective Bus Trace
	Automatic Configuration of the Trace Source Multiplexers
	TriCore Data Trace: COREx Vs. SRI-CPUx
	Limitations
	Examples

	CTL for Arm ETM
	Supported Targets
	Limitations
	Examples

	Examples for CTL Trace Find
	Use case 1: Checking Variable Access
	Use case 2: Checking Timing Constraints - Address Duration
	Use case 3: Checking Timing Constraints - Address Distance

	Keyword Reference: CTL Conditions/Triggers
	BREAKPOINT ABCDE breakpoint
	BusTrigger Incoming trigger signal
	BMC Benchmark counter event
	COUNT Trigger on event counter
	CLOCKS Trigger on clock cycles counter
	CTM Cross trigger
	EXTIN External input
	FALSE Never condition
	FLAG Flag status
	MACHINE Machine comparator
	Program Program access comparator
	ProgramFail Conditional instruction execution
	ProgramPass Conditional instruction execution
	Read Read access
	ReadWrite Read or write access
	SingleShot Single shot comparators
	SingleShot.Program Single shot program execution
	SingleShot.ProgramFail Single shot conditional execution
	SingleShot.ProgramPass Single shot conditional execution
	SingleShot.Read Single shot read access
	SingleShot.ReadWrite Single shot read or write access
	SingleShot.Write Single shot write access
	NoSingleShot Non single shot comparators
	NoSingleShot.Program Non single shot program execution
	NoSingleShot.ProgramFail Non single shot conditional execution
	NoSingleShot.ProgramPass Non single shot conditional execution
	NoSingleShot.Read Non single shot read access
	NoSingleShot.ReadWrite Non single shot read or write access
	NoSingleShot.Write Non single shot write access
	STATE.LEAVE Leave the state transition (edge sensitive)
	STATE.ENTER Enter the state transition (edge sensitive)
	STATE.TRACEON Active state of a TraceON action
	TASK Task comparator
	TIME Time counter comparator
	TRUE Always condition
	Var Specify source-level expressions
	Var.Program Flat function execution
	Var.Read Variable read access
	Var.ReadWrite Variable read or write access
	Var.status tbd.
	Var.Write Variable write access
	Write Write access
	ZONE Zone comparator

	Keyword Reference: CTL Actions
	Break Stop the program execution
	BusCLOCKS tbd.
	BusCount tbd.
	BusTIME tbd.
	BusTrigger tbd.
	CLEAR Clear flag
	CTM Cross trigger
	ENABLE Enable counter
	EVENT Trace event
	EXTOUT External output
	FOUND Add the trace sample to the search items result
	GOTO Change active state
	INCrement Increment counter
	RELOAD Reload counter
	SET Set flag
	Spot Shortly stop the program execution
	TraceData Sample specified data event
	TraceEnable Enable the trace on the specified event
	TraceOFF Switch OFF the trace sampling
	TraceON Switch ON the trace sampling
	TraceTIME tbd.
	TraceTrigger Stop sampling to the trace buffer on specified event

	CTL Programming Errors

