LAUTERBACH A

Application Note for
Trace-Based Code Coverage

Release 09.2024

Application Note for Trace-Based Code Coverage

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
Lo T [0703 T - T [r—~
Application Note for Trace-Based Code COVErageccccrurmmminsmmmsssnissssmssnsssssssssssssssssnes 1
L 1= (o 6
INtended AUAIENCE ... r e annmmnnnn e 7
Lo T o 11T T) o 8
Supported Code Coverage Metrics 8
Code Coverage and Certification 9
Trace-Based Code Coverage 11
Introduction to the Approach 11
Processors/Chips Suitable 13
Code Coverage Measurement 14
Evaluation of the Code Coverage Measurement 14
Report Generation 15
MC/DC, Condition and DeciSion COVEragecccuermrmmmmsmmmmmmmssmmmmmsssssmmssssssmsssssssss 16
Multiple Code Coverage Modes 16
Preconditions for a Trace-Based Code Coverage 16

The Individual Code Coverage Modes 17

A Comparison of the Different Code Coverage Modes 19
Causes for Observability Gaps: An Overview 20
Evaluation of Switch Case Statements 21
Code Coverage WOrkfIOWSccciiiicemniiinimnnincss s s s s s ssmss s ssmms s s smmmn s s 22
Workflows for Source Code Metrics 22
General Procedure 22
Statement Coverage Workflow 23
Condition Coverage Workflow 28
Decision Coverage Workflow 30
MC/DC Workflow 32
Function Coverage Workflow 34

Call Coverage Workflow 36
Workflows for Address-Based Metrics 38
General Procedure 38
Object Code Coverage Workflow 39
©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 2

Object Code Based (ocb) Decision Coverage Workflow

BUIIA PrOCESS ...ccceccciiiiiiiiiissssssssmemmmsens s s ssssssssssssmmsmss s s s s ssssassssssnssmmnsnssnnssesssssssssnnnmmnsnnsnnssnssnns
Introductory Notes
General Recommendations for the Build Toolchain
Build Process Requirements for All Code Coverage Metrics at a Glance
Verification of Alignment with Production Code
Build Process Call Coverage
Build Process MC/DC, Condition and Decision Coverage
Decision Making Process
Build Process for Code Coverage Mode Targeted Instrumentation/No Instrumentation
Build Process Code Coverage Mode Breakpoint Assisted
Build Process Code Coverage Mode Full Instrumentation

Trace Data Collection OVEIVIEWccccceccerrrrresmerirsssmerrrsssssmessesssmeesssssssmsssssssanmessesssnsessesssns
SMP Multicore Systems
iIAMP Multicore Systems
TRACES32 Tool Configurations
Choose the Appropriate Trace Data Collection Variant

Best Practices for Trace Recordingcccccvivimmmmmnnnssmmsmmnnsssssssnssss s s sss s s smsss s
Reduce the Amount of Trace Data
Ensure a Fault-Free Trace Recording
Disable Timestamps for Trace Streaming

Steps in Preparation for Trace Data Collectionccccccciiiniissmriinisss s snsenens
Notes on the Individual Test Variants
Preparation for Statement, Function, Object Code, ocb Decision Coverage
Preparation for Call Coverage
Preparation for MC/DC, Condition and Decision Coverage
Preparation for Targeted Instrumentation/No Instrumentation
Preparation for Code Coverage with Breakpoints
Preparation for Full Instrumentation

Trace Data Collection and Code Coverage Measurementcocvivemricssmmnnsnninsssssssnsnns
Incremental Code Coverage
Data Collection
Example Script
Summary
Incremental Code Coverage in STREAM Mode
Data Collection
Example Script
Summary
RTS Mode Code Coverage
Data Collection
Example Scripts
Summary

41

43
43
43
43
45
46
47
47
52
57
58

60
60
60
61
62

64
64
65
65

67
67
68
69
70
70
72
75

77
77
77
79
79
80
80
83
83
84
84
87
89

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage

SPY Mode Code Coverage 90
Operation States 90
Data Collection 92
Example Script 94
Summary 95

Code Coverage with Virtual Targets 96

ART Mode Code Coverage 98
Data Collection 99
Example Script 100

Code Coverage Evaluation in TRACE32cccoccmiiiinmmmmnmssnnsssssssssssss s s ssssssmssns 101

Object Code Coverage Evaluation in TRACE32 101
Evaluation 101
Example Script 105

Object Code Based (ocb) Decision Coverage Evaluation 106
Evaluation Strategy 106
Evaluation 107

Comment YOUr RESUILS ... rrrsccer s cer s ssme s s s cme s e e s e e s smmme s e e e e s mmnn e 112
TRACE32 Merge and Report TOO!Iccccceiimiiimmmmmmiissss s sssssss s s ssssssss s s ssssssssnnsnns 114
Appendix A: TRACE32 Coverage Report Utilitycccoocmmiiiiicmmninincmsnniesnssessssssssceenns 117
Appendix B: Assemble Multiple Test Runs at Address Levelcccooviimmrnniimernnnsseeen 119

Save and Restore Code Coverage Measurement 119

Save and Restore Trace Recording 121

Appendix C: Assembler-Only Functions and Code Coveragecccoeeammmmmmnrninnssssssssnnnns 123
Object Code Coverage 123
Source Code Metrics 124
Appendix D: Data COVEIrageccciiirsrrriiisssmrimsssssssisssssssssssssssssssssnssssssssanssssssssnnssssnsssnnses 126
Trace Data Collection 126
Evaluation 127
Appendix E: Trace Decoding in Detailcccoriiiemmmmmninmsrnnssess s s ensssss s s snsnnees 130

Trace Decoding for Static Applications 130
Decoding in Stopped State for Static Applications 130
Decoding in Running State for Static Applications 130
RTS Decoding for Static Applications 131

Trace Decoding for Applications Using a Rich OS 132
Decoding in Stopped State (Rich OS) 132
Decoding in Running State (Rich OS) 132
RTS Decoding (Rich OS) 132

Appendix F: Coding GUIdelINESccccciiicemiiiiniissrnnees s s s s s s ssss s ssmssnnas 134
Appendix G: Object Code Coverage Tags in Detailccccccvvemmmininccmmnninsnnesssnseeens 137
Standard Tags 137
©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 4

Tags for Arm-ETMv1/v3/v4 for Arm/Cortex Architecture 138
Appendix E: Data Coverage in Detailcccccciiiiiecmminnismniinssss s s sssss s ssssssnns 140

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 5

Application Note for Trace-Based Code Coverage

Version 05-Oct-2024

History

08-Aug-2024 Chapter 'Build Process' revised.

08-Aug-2024 Since statement coverage, decision/condition/MCDC coverage, and function/call coverage
are preferably evaluated in a web browser, the evaluation chapters for TRACES32 have been
removed.

10-Jul-2024 Description of --filelist parameter added to chapter TRACE32 Merge and Report Tool'.
02-Jul-2024 “Notes on Branch Coverage” added to chapter 'Code Coverage and Certification'.
02-Jul-2024 “Notes on Statement Coverage” added to chapter 'Statement Coverage Workflow".
19-Jun-2024 Chapter 'Introduction’ revised.

29-May-2024 Subchapter 'Evaluation of Switch Case Statements' added to chapter 'MC/DC, Condition and
Decision Coverage'.

26-Jan-2024 The manual has been completely revised to integrate the new code coverage modes
targeted and full instrumentation.

07-Sep-2023 EN50128 (railway) added to 'Trace-Based Code Coverage and Certification'. The chapter
now also lists the safety levels and the TRACES32 tool classification of the individual
standards.

19-Aug-2020 Initial version of the manual.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 6

Intended Audience

This manual is intended for the following users:

. Those who create executable files for measuring code coverage
. Those who perform code coverage measurements

U Those who evaluate code coverage measurements

. Those who generate code coverage reports

Although this is a general manual, the screenshots were taken using a TriCore™ AURIX™ TC297T, unless
stated otherwise. Your screen may look different.

You only need to read the relevant chapters of this manual. Reading the entire manual may result in some
repeated information.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 7

Introduction

Supported Code Coverage Metrics

TRACES2 supports the following code coverage metrics:

Statement coverage

Statement coverage ensures that every statement in the program has been invoked at least once.
Condition coverage

All conditions in the program have evaluated both true and false.

Decision coverage

Every point of entry and exit in the program has been invoked at least once and every decision in the
program has taken all possible outcomes at least once.

MC/DC coverage

Every point of entry and exit in the program has been invoked at least once and every decision in the
program has taken all possible outcomes at least once. And each condition in a decision is shown to
independently affect the outcome of that decision.

Function coverage

Every function in the program has been invoked at least once.
Call coverage

Every function call has been executed at least once.

Cbject code coverage

Object code coverage ensures that each object code instruction was executed at least once and
all conditional instructions (e.g. conditional branches) have evaluated to both true and false.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 8

Code Coverage and Certification

Measuring code coverage is a prerequisite for certification in order to evaluate the completeness of test

cases and to prove that no unintended functionality is present. TRACE32 supports the following standards:

DO-178C (avionics)
Safety integrity levels: five levels from E to A, with level A being the highest level
Tool classification for TRACE32 code coverage: TQL-5

Supported code coverage metrics: statement coverage, decision coverage, MC/DC

EN 50128 (railway)
Safety integrity levels: five levels, SIL 0 to 4, with SIL 4 being the highest level
Tool classification for TRACE32 code coverage: T3

Supported code coverage metrics: statement coverage, branch coverage (decision coverage in
TRACES32), compound condition coverage (condition coverage in TRACES32)

IEC 61508 (industrial)
Safety integrity levels: five levels, basic integrity, SIL 1 to 4, with SIL 4 being the highest level
Tool classification for TRACE32 code coverage: T3

Supported code coverage metrics: statement coverage, branch coverage (decision coverage in
TRACE32), condition coverage, MC/DC as well as function coverage

IEC 62304 (medical)
Safety integrity levels: three levels, class A to C, with class C being the highest level
Tool classification for TRACE32 code coverage: T3

Supported code coverage metrics: the standard does not contain any directives in this regard;
select suitable subset according to software development plan

ISO 26262 (automotive)
Safety integrity levels: five levels, QM, ASIL A to D, with ASIL D being the highest level
Tool classification for TRACE32 code coverage: TCL2/3

Supported code coverage metrics: statement coverage, branch coverage (decision coverage in
TRACES2), condition coverage, MC/DC as well as function coverage.

For those whose application requires tool qualification, Lauterbach offers a Tool Qualification Support Kit
(TQSK for short). It contains everything needed to qualify a TRACES32 tool for use in safety-critical projects. If
you are interested, refer to the TRACE32 customer portal.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage |

9

https://www.lauterbach.com/register_tqsk.html

Notes on Branch Coverage

Standards like ISO 26262 require branch coverage. Due to the similarity between branch coverage and
decision coverage, Lauterbach considers it justified to offer only decision coverage. How does Lauterbach
justify this? Let's first take a look at the definitions for the two metrics.

Definition of Branch Coverage: Branch coverage measures whether all possible branches of every
conditional statement in the source code have been executed.

Definition of Decision Coverage: Every point of entry and exit in the program has been invoked at least
once and every decision in the program has taken all possible outcomes at least once.

Decision coverage is somewhat stricter as it must consider decisions within assignments, such as
a =b || (c && 4);.Although the two metrics differ in the calculation of the reported coverage rate, this
simplification can be justified with regard to the definitions.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 10

Trace-Based Code Coverage

Introduction to the Approach

Before we delve into TRACES32 trace-based code coverage, let's first examine conventional code coverage.

Conventional code coverage operates by instrumenting the source code so that coverage data is stored in
the target's RAM during test execution. Once the test run is complete, the conventional code coverage tool
retrieves and processes this data for code coverage analysis.

Now, let's move on to TRACE32 trace-based code coverage which requires two main conditions:

1. The core(s)-under-test must have the capability to generate trace data to monitor the program
flow.
2. TRACE32 works best with low compiler optimization levels for easier object-to-source code

mapping. Consequently, TRACE32’s trace-based code coverage cannot be conducted on
production code.

The code coverage analysis in TRACE32 relies on object code, as only this is captured in the
program flow trace recording. Source code lines are tagged for code coverage based on an
appropriate mapping between the object code and the source code. This mapping works better when
a lower level of compiler optimization is used.

During testing, trace data on the program flow is collected. TRACES32 retrieves and processes this data for
code coverage analysis.

For complex metrics such as Modified Condition/Decision Coverage (MC/DC), condition coverage, and
decision coverage, it may be necessary to instrument individual lines of source code. TRACE32's lightweight
instrumentation has only a minimal impact on code size and timing behavior.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 11

CONVENTIONAL Code Coverage TRACE32 TRACE-BASED Code Coverage

Source
Files

Code Coverage Tool

FULL SOURCE CODE
INSTRUMENTATION

ot

Build Process

Build Executable

Run Test on Target Hardware and
SAVE CODE COVERAGE DATA
IN TARGET RAM

1t

Code Coverage Tool

¢ READ CODE COVERAGE DATA VIA
FUNCTIONAL INTERFACE OF THE TARGET

¢ Perform Code Coverage Analysis
¢ Generate Code Coverage Report

A

Code Coverage
Report

Can Be Required
for Complex Metrics

2
TRACE32 Debug & Trace Tool

! LIGHTWEIGHT SOURCE CODE |
{ INSTRUMENTATION

Source
Files

Build Process

Build Executable WITH LOW
COMPILER OPTIMIZATION LEVEL

TRACE32 Debug & Trace Tool

Run Test on Target Hardware and
RECORD PROGRAM FLOW TRACE

A

TRACE32 Debug & Trace Tool

e READ RECORDED PROGRAM FLOW
e Perform Code Coverage Analysis
* Generate Code Coverage Report

A
A

Code Coverage

*/ Report

Figure: Workflow comparison, conventional code coverage vs. TRACE32 trace-based code coverage.

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage

12

TRACE32 trace-based code coverage is characterized by the following:

. No additional target resources are required beyond the program flow trace.
. Lightweight instrumentation results in minimal code and time overhead.

J It supports a wide range of code coverage metrics.

. It can be used in all test phases.

. It supports both C and C++.

J It can be used to generate comprehensive reports.

o Complete test automation is possible with TRACE32 PRACTICE, Python, or the TRACE32
Remote API.

Processors/Chips Suitable

The question now arises: which processors/chips have a trace interface suitable for code coverage
measurement with TRACE32?

. All processors/chips with an off-chip trace interface are suitable

You can find these processors/chips on the page https://www.lauterbach.com/supported-
platforms/chips, where they are tagged with "Off-Chip Trace" in the "Supported TRACE32
Solutions" column.

. Some processors/chips with an on-chip trace are suitable

Processors/chips with on-chip trace are tagged with "On-Chip Trace" in the "Supported
TRACERS2 Solutions" column on the page https://www.lauterbach.com/supported-
platforms/chips. The on-chip trace should be at least 1 MB in size so that it makes sense for the
TRACERS2 code coverage.

. Some chips that allow debugging and tracing via the USB stack are suitable

You can find these processors/chips on the page https://www.lauterbach.com/supported-
platforms/chips, where they are tagged with "USB Direct" in the "Supported TRACE32
Solutions" column. However, it's always best to consult with Lauterbach's sales team to confirm
compatibility.

For the processors/chips mentioned above, code coverage measurement is conducted on the target
hardware. In the early stages of testing, code coverage measurement can also be performed using
simulators or virtual targets. The safety standards allow this for the test phases software unit and module
integration testing. See also TRACE32 Instruction Set Simulator and ISO 26262. However, virtual targets
become slow due to tracing and require a significant amount of memory.

If Lauterbach does not offer a TRACES32 Instruction Set Simulator for the core architecture you are using,
you can also use the TRACE32 Advanced Register Trace (Trace.METHOD ART). This is a single-step
trace, which makes program execution very slow. This method is therefore only suitable for unit testing.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 13

https://www.lauterbach.com/supported-platforms/chips
https://www.lauterbach.com/supported-platforms/chips
https://www.lauterbach.com/supported-platforms/chips
https://www.lauterbach.com/supported-platforms/chips
https://www.lauterbach.com/supported-platforms/chips
https://www.lauterbach.com/supported-platforms/chips
https://support.lauterbach.com/downloads/files/trace32-instruction-set-simulator-and-iso-26262

Code Coverage Measurement

TRACE32 offers two variants for code coverage measurement:
Incremental Code Coverage

In this variant, the two steps of RECORDING and PROCESSING are repeated consecutively until sufficient
measurement data has been recorded and processed.

RECORDING: Run the program and record the program flow in the trace memory. Stop the program
execution when the trace memory is full.

PROCESSING: Read the trace content, process it, and save the code coverage results in the TRACE32
internal code coverage system.

Continuous Code Coverage

This variant allows code coverage processing while the program is running. However, it is only compatible
with processors/chips that support off-chip trace. The following steps occur simultaneously:

. Execute the program and record the program flow in the trace memory.
. Stream the recorded program flow to the host.
. Process the program flow and save the code coverage results in the TRACES32 internal code

coverage system.

Continuous code coverage requires simpler scripts and is naturally faster due to the simultaneity of the
steps. However, it is only effective for off-chip trace up to a certain bandwidth. Incremental code coverage, on
the other hand, requires more complex scripts and is slower, but it has the advantage of being consistently
reliable.

Evaluation of the Code Coverage Measurement

TRACE32 offers two variants for code coverage evaluation:

. Web Browser Variant

This variant is recommended for code coverage metrics such as statement, decision, condition,
MC/DC, call, and function coverage.

Typically, code coverage is not measured in a single test run but is approached incrementally.
This requires consolidating multiple code coverage measurements into a summarized report.
This is done in two steps:

- Export the result of each individual code coverage measurement stored in TRACE32's internal
coverage system to a JSON file.

- Merge the JSON files and generate an HTML file to evaluate a specific code coverage metric.

. Evaluation in TRACE32

The individual code coverage measurement results for address-based code coverage metrics,
including object code and object code-based decision coverage, can be merged and evaluated
within the TRACE32 PowerView GUI.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 14

Report Generation

The HTML file generated for evaluating code coverage measurements in a web browser can also serve as a
report.

When evaluating in the TRACES32 PowerView GUI, you can generate an HTML report at any time using the
TRACES32 Coverage Report Utility.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 15

MC/DC, Condition and Decision Coverage

Mastering these metrics presents a slightly greater challenge.

. Achieving complete code coverage may require the instrumentation of individual lines of source
code or marking them with breakpoints. Lauterbach offers multiple code coverage modes for this
purpose.

. TRACES32 must convert case statements into if-then expressions to perform code coverage.

Multiple Code Coverage Modes

This chapter needs you to know exactly what a decision and a condition are. So, just to make sure, here's an

explanation.

while | (((!(Identity(a) >= -45) && Identity (b)) && Identity(c) || 4

U A condition (yellow in the line above) is a logical indivisible, atomic expression. It can only be true
or false.

J A decision (framed by turquoise rectangle) is a logical expression which can be composed of
several (atomic) conditions separated by logical operators such as Il, &&, !. It results in true or
false.

Preconditions for a Trace-Based Code Coverage

For MC/DC, condition, or decision coverage evaluation to be conducted based on the recorded program
flow, four criteria must be met:

1. TRACERS2 needs to understand the structure and location of conditions and decisions within the
source code. Since the compiler-generated debug information does not include these details,
Lauterbach provides a Clang-based command-line tool called t32cast. This tool analyzes the
C/C++ source files and generates an extended code analysis (.eca) file for each source file,
supplying the required condition and decision details.

2. Decisions consist of one or more atomic conditions. Each condition in the source code must be
represented by a conditional branch or a conditional instruction at the object code level.

3. An exact mapping between the conditions/decisions in the source code and the conditional
branches/instructions in the object code is required.

4. The conditional branches or instructions in the recorded program flow trace must enable the
observation of whether a source code condition was evaluated as true or false.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 16

= [BrListMix Complex(f /COVerage] =] [-E | S
M Step W Over \AiDiverge < Return ¢ up » Go Il Break | M%Mode & ||t Find: coverage.c

id dec/cond true false coverage addr/Tine |code label mnemonic comment i
[1. 1. 1. 115 T

mc,/dc (a & T(b > -100 T T(c > 42)) && Identity(d) < 36) [~
6 1. L] - ok P:90000500 [001104DF ComplexIf:jeq cI—' , #0x0,0x90000522
1t di5,#-0x64

ok P:90000504 [FFFICO3E mov
6 2. . . ok P:90000508 3

dls,)% 64
di5,d5,0x90000522
d 2A

ok P:9000050C |24
6 3 - - ok P:9000050E
ok P:90000512 |7402 d4,d7
ok P:90000514 |002BO06D 0x9000056A
ok P:90000518 [24DA d15,#0x24
6 4. - - ok P:9000051A |0004F27F d2,d15,0x90000522
stmt 116 outcome = TRUE;
ok P:9000051E (1252 movl6 d2,#0x1

ok P:90000520 |023C_ jl6 0x90000524

Figure: This screenshot illustrates the mapping between conditional branches in the object code, tagged as
derived from the program flow trace, to the respective source code lines representing a decision, thereby
tagging the decision line for MC/DC coverage.

Experience has demonstrated that criteria 2, 3, and 4 are not consistently met in all test scenarios. This
results in gaps in code coverage. Lauterbach refers to these gaps as observability gaps.

The Individual Code Coverage Modes

The observability gap refers to a condition in the source code that TRACE32 cannot determine whether it
was evaluated as true or false. Consequently, no code coverage result can be displayed for the
corresponding decision. Condition, decision and MC/DC coverage becomes incomplete if these gaps are
not addressed.

To prevent these gaps, it's helpful to write code in a way that's friendly to code coverage (please refer to
“Appendix F: Coding Guidelines”, page 134 for details). Moderate optimization also enhances the clarity
and intuitiveness of the code coverage analysis for the user.

Lauterbach offers several code coverage modes to address observability gaps, with Targeted
Instrumentation being the most commonly used in practice. The choice of mode primarily depends on the
number of gaps detected.

. Code coverage mode No Instrumentation

Selecting this mode assumes there are no observation gaps, allowing the build process to
remain unchanged.

J Code coverage mode Targeted Instrumentation

If there are a moderate number of observability gaps, Lauterbach suggests initially reviewing
them before deciding on their necessity for closure. Should you opt to address these gaps,
employing the code coverage mode Targeted Instrumentation is advisable.

Employing this code coverage mode can add complexity to your build process. It's good to know
that for every observability gap within each function, a corresponding hook function pair is
necessary, resulting in increased memory consumption. However, the effect on code size and
application runtime remains small.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 17

L Code coverage mode Breakpoint Assisted

If you aim to address a moderate number of observability gaps without any code instrumentation,
you can opt for the Breakpoint Assisted code coverage mode. Here, observability gaps are
identified prior to code coverage measurement and promptly handled. Breakpoints are
strategically placed to stop the program execution, enabling status checks and recording of
necessary information. This mode significantly impacts application runtime.

o Code coverage mode Full Instrumentation

Various factors can contribute to a significant number of gaps: high compiler optimization,
unusual core architectures, or core/compiler combinations lacking support. For an exhaustive
examination of these potential causes, refer to the chapter “Causes for Observability Gaps: An
Overview”, page 20.

When dealing with high compiler optimization levels, consider the following:

- If maintaining a high optimization level is essential, Lauterbach recommends employing Full
Instrumentation code coverage mode. This approach introduces numerous instrumentation
points, moderately increasing both the program code size and runtime. However, from a
technical standpoint, full instrumentation is straightforward, requiring only two hook functions,
thereby allowing for further compiler optimizations.

Full instrumentation, however, necessitates adjustments of the build process. But it offers high
robustness and serves as a reliable fallback option.

- Alternatively, reducing the compiler's optimization level may be considered. Although this
increases the program's size and runtime slightly, it should reduce the number of observability
gaps to a level where Targeted Instrumentation code coverage mode with fewer
instrumentation points becomes viable.

In some cases, using either full or targeted instrumentation modes can result in a similar program
size, meaning they have essentially the same impact.

Please keep in mind that adding or modifying source code can create new
observability gaps or close existing ones. Therefore, the transition between
code coverage mode No Instrumentation and code coverage mode Targeted
Instrumentation is particularly fluid.

TRACE32 utilizes body-less hook functions for instrumentation, which are
visible in the recorded program flow. They monitor whether an instrumented
source code condition has been evaluated as true or false.

TRACE32 instrumentation doesn't need any data memory.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 18

A Comparison of the Different Code Coverage Modes

The following table provides an overview of what has been stated:

Analysis

program flow

program flow

program flow

No Full Targeted Breakpoint
Instrumentation Instrumentation Instrumentation Assisted
Number of No High Low No
Instrumentation Sites
Instrumentation — Two A pair of —
Technique instrumentation instrumentation
hooks hooks per
observability
gap within each
function
Code Size Unchanged Moderately Slightly larger Unchanged
larger
Impact on Runtime No Modest Small High
Build Process Unchanged Simple Complex Unchanged
adaptation adaptation
Code Coverage Based on Based on Based on Based on

program flow
and

status
information

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage |

19

Causes for Observability Gaps: An Overview

Lastly, for those interested in wrapping up this chapter, here's an overview of what causes observability
gaps.

No dedicated compiler support for the TRACE32 code coverage analysis

The large number of core architectures and the associated diversity of compilers represents a challenge for
Lauterbach. An impressive number of cores offer the possibility to generate program flow trace. And there
are a big number of compilers, especially for commonly used core architectures. The result is a large
amount of possible core architecture/compiler pairings. There is no generic heuristic for mapping source
code decisions to conditional branches/instructions at object code level that generates an exact result for
every possible pairing. In practice, TRACES32 has to tailor the mapping to the core architecture/compiler
combination. Much, especially for common core/compiler combinations is already tailored.

For not yet supported core architecture/compiler pairings, for which the generic heuristic of TRACES32 does
not provide an exact result, criterion 3 described on page 16 is not to be met. This results in observability

gaps.
Macros

When a macro used in a decision or condition contains its own decisions or conditions, the compiler
expands all macros before compiling, treating the expanded statement as one line of code. This causes the
original locations of decisions or conditions within the macro to be lost. As a result, criterion 3 described on
page 16 is not met, and it becomes impossible to map the decisions inside the macro to the conditional
branches or instructions. This results in observability gaps.

Highly-optimized code

Highly-optimized code is not recommended for trace-based code coverage. For one, individual conditions
may not be represented by conditional branches/instructions at the object code level. Criterion 2 described
on page 16 is violated here. However, this can be remedied. Highly optimized code is particularly
challenging because it may not possible to map the decisions/conditions exactly to the conditional
branches/instructions. The violation of criterion 3 described on page 16 cannot be resolved in all cases.

Limitations of the trace protocol

The instruction set for a core architecture may contain conditional instructions. The compiler uses these to
implement source code conditions at object code level. For trace-based code coverage to work, the trace
protocol used must generate details about the execution of these conditional instructions. Unfortunately, this
is not always the case. Currently there is no option that advises the compiler not to use conditional
instruction. Observability gaps in program tracing are therefore inevitable. Criterion 4 as described on

page 16 is violated.

If you're uncertain about the properties of your core/trace protocol, the COVerage.INFO command can offer
clarity.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 20

Instruction set complexity

The issues discussed mostly apply to cores using basic RISC architecture. But in complex Systems-on-
Chips (SoCs), there are also special cores and coprocessors, like DSPs or customizable cores with user-
defined instructions. These require TRACE32 to be adjusted for their instruction sets. So, it's wise to reach
out to Lauterbach for help in such cases.

Evaluation of Switch Case Statements

To evaluate MC/DC, condition and decision for switch case statements, TRACE32 performs an implicit
conversion into an equivalent if-then expression. The equivalent if-then expression has the property that in
cases where several code paths lead to a single point, all code paths need to be executed at least once
before full code coverage is achieved. The following code example illustrates this concept:

Switch case statement Equivalent if-then expression
switch (color) { if (color == RED) {
case RED: offset = 10;
offset = 10; }
break; else if (color == BLUE) {
case BLUE: offset = 8;
offset = 8§; }
break; else if (color == ORANGE) {
case ORANGE: offset = 6;
offset = 6; }
break; else if (color == YELLOW) {
case YELLOW: offset = 2;
case GREEN: }
offset = 2; else if (color == GREEN) {
break; offset = 2;
default: }
offset = -1; else {
break; offset = -1;
} }

Please note: In contrast to the original switch case statement, the converted if-then expression achieves
complete code coverage only when color had both the values YELLOW and GREEN.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 21

Code Coverage Workflows

Workflows for Source Code Metrics

This chapter addresses the code coverage metrics statement coverage, decision coverage, condition
coverage, modified condition/decision coverage (MC/DC), and both call and function coverage.

General Procedure

The general procedure involves initially measuring the code coverage in TRACE32 and subsequently
evaluating it in a web browser.

Measure Code Coverage in TRACE32

It It

Build Process TRACE32

Build
Executable

Measure
Trace-Based
Code Coverage

Source
Files

Export
Code Coverage
Result

Figure: After generating the appropriate executable, code coverage measurement can be conducted in
TRACE32. The resulting data must be exported as a JSON file.

Evaluate Code Coverage in a Web Browser

t32covtool Tool

Evaluate
Code Coverage

Merge Code Coverage
Measurements

Figure: The data resulting from multiple code coverage measurements can be summarized in an HTML file
and intuitively evaluated in a web browser.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 22

Statement Coverage Workflow

To perform a statement coverage evaluation, follow these steps.
1. Build the Executable

Ensure to follow the guidelines in “General Recommendations for the Build Toolchain”, page 43.
2. Choose a trace data collection variant

Choose the variant that best fits your test scenario:

- Incremental code coverage measurement in Leash mode.

- Incremental code coverage measurement in STREAM mode.

- Continuous code coverage measurement RTS.

- Continuous code coverage measurement SPY.

Refer to “Trace Data Collection Overview”, page 60 for assistance in decision-making.
3. Load necessary files

Load the files relevant for statement coverage into TRACE32. See “Preparation for Statement,
Function, Object Code, ocb Decision Coverage”, page 68.

4, Configure and perform code coverage measurement

Configure the trace for the trace data collection variant chosen in step 2 and perform the code
coverage measurement.

- General information on trace configuration and recording is in "“Best Practices for Trace
Recording”, page 64.

- Specific guidelines for individual trace data collection variants and the actual code coverage
measurement steps can be found in “Trace Data Collection and Code Coverage Measurement”,
page 77.

5. Export results

After the code coverage measurement is complete, export the results to a JSON file using the
command COVerage.EXPORT.JSONE.

6. Generate an HTML report

Generate an HTML report from one or more JSON files as described in “TRACE32 Merge and
Report Tool”, page 114.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 23

7. Evaluate the statement coverage intuitively

Evaluate the statement coverage intuitively using a web browser.

Statement coverage is achieved under the following conditions:

- Single Object Code Block: If only one block of object code is generated for a source code line,
statement coverage is achieved when at least the first object code statement of this block is executed.

- Multiple Non-Adjacent Object Code Blocks: If several non-adjacent blocks of object code are
generated for a source code line, statement coverage is achieved when at least the first object code

state of each of these blocks is executed.

If you are unfamiliar with the term "Multiple Non-Adjacent Object Code Blocks," we recommend
reading “Debugging of Optimized Code” in Training Basic Debugging, page 140

(training_debugger.pdf).

TRACER32 uses the following two tags to mark source code lines for statement coverage:

stmt: Statement coverage achieved.

incomplete: Statement coverage not achieved.

At the module and function levels, the tags used are:

stmt: All source code lines of the function/module are tagged stmt.

incomplete: At least one source code line of the function/module is tagged with incomplete.

Navigation: Application

(5 | TRACE3Z ListModule X |+
&« > © @ (] file:///C:/Usersfamartin/AppData/Local/Temp/report/index.html
3] Lesezeichen importier.. [4] Erste Schritte T< Title Case Converter—... (@ NeuerTab Jik Office Phonebook D @ examplexml

~ = m]

EE] @ @ 8

[Weitere Lesezeichen

X

TRACE32© Code-Coverage Report

Coverage metric. STATEMENT
Current working directory: C:\T32_ARM'\demo\coverage'merge_demo\merge_unittests
TRACE32 software version: TRACE32 N.2024.06.000169998
Date: 2024-06-24T08:16:45 +01:00

Exec Total Coverage

Lines: [368 432 [85.185%
Functions: | 15 | 15 |[100.000%
Branches: | 41 | 82 || 50.000%

Source Files

source coverage | statement |0% 50% 100%| lines | ok
C:\T32 ARM\demo\coverage'merge demo\merge unittestsicontrol flow.c stmt 100% [1| 214 | 214
\mnt\c\Reposidemo'\demo'coverage'merge demo'merge unittests\unittest1\cri0.s incomplete 62303% |————— 85 53
\mnt\c\Reposi\demo'demo'\coverage'merge_demo'merge unittests\unittest1\unittest1.c stmt 100% [1 18 18
\mnt\c\Reposidemo'demo'\coverage'merge_demo'merge unittests\unittest2\crt0.s incomplete 62353% ([85 1)
\mnt\c\Repos\demo'\demolcoverage\merge demo'merge unittests\unittest2\unittest2.c stmt 100% [1 30 30
TOTAL incomplete | 85.186% | I 432 | 368

TRACE32 t32covtool 1.4.9

Figure: Statement coverage evaluation in a web browser.

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage

24

Notes on Statement Coverage

In rare instances, TRACES2 Trace-Based Code Coverage may not provide precise measurements,

especially with short if-blocks. Compiler optimizations can condense these blocks, potentially resulting in
false positive statement coverage results. Let's first cover the basics and then go through a few examples.

Debug information, usually loaded with the executable, includes details about which object code

corresponds to each source code line (command sYmbol.List.LINE). The List.Mix window displays this

information. Optimizations may cause the compiler to omit object code for certain source code lines.

TRACE32 does not display line numbers for these.

54 [BeListMix] [E=N =R
M Step W Over | MAyDiverge | & Return ¢ Up p Go 1l Break " Mode | g=f L. Find: I—I control_flow.c
addr/1ine |code label mnemonic comment i
"~
134 iFla==3){ /% # FUNC3_WHILE_IF3 */
SR:FFFFO4ES [E51B3008 Tdr r3, [rll,#-0x8]
SR:FFFFO4EC |E3530003 cmp r3,#0x3
SR:FFFFO4FO0 |14000004A bne OxFFFF0520
135 b+=3+3%a*b; /*# FUNC3_WHILE_IF3_SIMPLE
SR:FFFF04F4 [E51B3008 1dr r3, [rl1,#-0x8]
SR:FFFF04F8 [E51B200C 1dr r2,[ril1,#-0x0C]
SR:FFFFO4FC |E0030392 mu’l r3,rz,r3
135 b+=3+3%a*b; /*# FUNC3_WHILE_IF3_SIMPLE
SR:FFFF0500 |[E2832001 add r2,r3,#0x1
SR:FFFF0504 [E1403002 cpy r3,r2
SR:FFFF0508 [E1A03083 151 r3,r3,#0x1
SR:FFFF050C |[E0833002 add r3,ri,r?
135 b+=3+3%a*b; /*# FUNC3_WHILE_IF3_SIMPLE */
SR:FFFF0510 [E51B200C 1dr r2,[rll1,#-0x0C]
SR:FFFF0514 |[E0823003 add ri,r2,r3
SR:FFFF0518 [E50B300C str r3, [ril,#-0x0C]
136 break; /% # FUNC3_WHILE_IF3_BREAK */
SR:FFFF051C [EAO00005 b OXFFFF0538
_ b=o0; /% # FUNC3_WHILE_IF3_DEAD */
1 W

Figure: In TRACES2, the source code statement b = 0; does not have line numbers.

TRACE32's code coverage analysis relies on the object code, as only the object code is recorded in the
program flow trace. Source code lines are tagged for statement coverage through an appropriate mapping

between the object code and the source code. However, TRACES32 ignores source code lines without line

numbers/corresponding object code when performing statement coverage. Consequently, some statements
are not invoked but are not explicitly tagged as incomplete in the TRACE32 statement coverage evaluation.

Here are some illustrative examples.

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage |

25

Dead Code

As part of compiler optimizations, dead code elimination leads to no object code being generated for dead
code at source code level. Since TRACE32 ignores source code lines without object code during statement
coverage, it is advisable to review the code coverage report to identify any dead code. In the TRACE32
Code-Coverage Report, these source code lines are displayed next to the following line that has object code
and are shown in a lighter color.

[

3
134 de if (a == 3) { /% # FUNC3_WHILE IF3 */ T
135 stmt b +=3 + 3% a*b; /%3# FUNC3_WHILE IF3_SIMPLE %/ L
136 stmt break; /% # FUNC3_WHILE IF3_BRERE *%/ L
137 b= 0; /% # FUNC3_WHILE IF3_DERD %/

Dead| | .-
130

code at
=4

I
S
=

stmt a += 1; /* # FUNC3_WHILE SIMPLE */

|=

Figure: In the TRACES32 Code-Coverage Report the statements b = 0; is displayed along with the next
statement. It is shown in a lighter color.

To achieve complete statement coverage, these lines of source code must be removed.
Short if-Block (conditional branch)

Here is a small source code example where the compiler generates object code only for the statement
if (a == 5),butnotforthe break; statement. And the object code generated for the if statement
includes a conditional branch.

if (a == 5)
CMP R3, #5

BNE func_end

break;
b = a+c
RETURN b;

TRACE32 interprets statement coverage as: "A source code line achieves statement coverage when at least
the first object code statement generated for this line has been executed." Based on this, the i f statement
would achieve statement coverage as soon as the CMP instruction is executed, regardless of whether

a == 5 istrue or not. This interpretation is incorrect.

For precise statement coverage, it is essential to verify that a == 5 was evaluated both true and false. To
achieve this, you need to inspect the object code coverage for the conditional branch BNE in case of this type
of compiler optimization. As long as the conditional branch is only tagged with "taken" or "“'not taken"
statement coverage has not been achieved.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 26

Short if-Block (conditional instruction)

Here is a small source code example where the compiler generates object code only for the statement
if (a == 5),butnotfortheb = 7; statement. And the object code generated for the i £ statement
includes a conditional instruction.

if (a == 5)
CMP R3, #5

MOVEQ R4, #7
b =17;

TRACES2 interprets statement coverage as: "A source code line achieves statement coverage when at least
the first object code statement generated for this line has been executed." Based on this, the if statement
would achieve statement coverage as soon as the CMP instruction is executed, regardless of whether

a == 5 istrue or not. This interpretation is incorrect.

For precise statement coverage, it is essential to verify that a == 5 was evaluated both true and false. To
achieve this, you need to inspect the object code coverage for the conditional instruction MOVEQ in case of
this type of compiler optimization. However, this is only possible if the trace protocol of the core under debug
supports conditional instructions. You can use the COVerage.INFO command or the
CPU.Feature(CONDTRACE) function to check this.

J If the trace protocol does not support conditional instructions, statement coverage cannot be
verified for this type of compiler optimization.

. If the trace protocol supports conditional instructions indicating whether the condition code check
passed or failed, you need to inspect the object code coverage. As long as the conditional
instruction is only tagged with "only exec" or "not exec," statement coverage has not been
achieved.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 27

Condition Coverage Workflow

Before starting the evaluation for condition coverage, it is recommended to review chapter “MC/DC,
Condition and Decision Coverage”, page 16.

To perform a condition coverage evaluation, follow these steps.

1.

Build the executable

When performing condition coverage analysis, it's possible to encounter observability gaps.
TRACER32 offers various code coverage modes to address these, outlined in chapter “The Individual
Code Coverage Modes”, page 17. Your choice of mode will depend on your application specifics.
Refer to “Decision Making Process”, page 47 for guidance in selecting the appropriate mode.

Generate all files needed for condition coverage, as detailed in chapter “Build Process MC/DC,
Condition and Decision Coverage”, page 47. Each code coverage mode has a dedicated sub-
chapter there. Ensure adherence to the guidelines provided in “Build Process Call Coverage”,
page 46.

Choose a trace data collection variant

Choose the variant that best fits your test scenario:

- Incremental code coverage measurement in Leash mode.

- Incremental code coverage measurement in STREAM mode.

- Continuous code coverage measurement RTS.

- Continuous code coverage measurement SPY.

Refer to “Trace Data Collection Overview”, page 60 for assistance in decision-making.
Load relevant files into TRACE32

Load the files relevant for the condition coverage into TRACES32, see “Preparation for MC/DC,
Condition and Decision Coverage”, page 70. Read the sub-chapter on the code coverage mode
that you decided to use in step 1.

Configure and perform code coverage measurement

Configure the trace for the trace data collection variant chosen in step 2 and perform the code
coverage measurement.

- General information on trace configuration and recording is in "“Best Practices for Trace
Recording”, page 64.

- Specific guidelines for individual trace data collection variants and the actual code coverage
measurement steps can be found in “Trace Data Collection and Code Coverage Measurement”,
page 77.

Export results

After the code coverage measurement is complete, export the results to a JSON file using the
command COVerage.EXPORT.JSONE.

Generate an HTML report

Generate an HTML report from one or more JSON files as described in “TRACE32 Merge and
Report Tool”, page 114

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 28

Evaluate the condition coverage intuitively

Evaluate the condition coverage intuitively via a web browser. TRACE32 uses the following two tags
to mark source code condition statements for condition coverage:

cc: Condition coverage achieved — both true and false evaluations for all conditions in the source
code statement have been achieved.

incomplete: Condition coverage not achieved — at least one condition in the source code statement
has not been evaluated for both true and false.

At the module and function levels, the tags used are:

stmt+cc: All source code lines of the function/module are tagged either with cc or stmt
(statement coverage achieved).

incomplete: At least one source code line of the function/module is tagged with incomplete.

5] | TRACE32 ListModule x o+ N = O >
<« C o O filey///C:/Users/amartin/AppData/Local/Temp/report/index.html E/ ® & =
-3) Lesezeichen importier... [0 Erste Schritte T<€ Title Case Converter—... @ MeuerTab [Office Phonebook D (3 examplexml [Weitere Lesezeichen

Navigation: Application TRACE320 Code-Coverage Report
Coverage metric. CONDITION Exec Total Coverage
Current working directory: C:\T32_ARM\demo\coverage'merge_demo'merge_unittests Lines. 368 432 85185%
TRACE32 software version: TRACE32 N.2024.06.000169998 Functions: | 15 | 15 |[100.000%
Date: 2024-06-26T09:46:54 +01:00 Branches: | 41 || 82 || 50.000%
Source Files

source coverage | condition 0% 50% 100%| lines | ok
C\T32 ARM\demolcoverage\merge_demo'merge_unittests\control_flow.c stmi+cc 100% [1| 214 | 214
\mnt\c\Repos\demoldemo\coverage\merge_demo'merge_unittests\unittest1\crt0.s incomplete 0% | 85 0
\mnt\c\Repos'demo\demo'\coverage\merge demo'merge unittests\unittest1\unittest1.c stmt+cc 100% [18 18
\imnt\c\Repos\demol\demol\coveragelmerge demo\merge_unittestsiunittest2\crt0.s incomplete 0% | 85 0
\mnt\c\Repos\demoldemo\coverage\merge_demo\merge_unittests\unittest?\unittest? ¢ stmi+cc 100% [] 30 30
TOTAL incomplete | 60.648% | [] 432 | 262

TRACE32 t32coviool 1.4.9

Figure: Condition coverage evaluation in a web browser.

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage

29

Decision Coverage Workflow

Before starting the evaluation for decision coverage, it is recommended to review chapter “MC/DC,
Condition and Decision Coverage”, page 16.

To perform a decision coverage evaluation, follow these steps.
1. Build the executable

When performing decision coverage analysis, it's possible to encounter observability gaps. TRACE32
offers various code coverage modes to address these, outlined in chapter “The Individual Code
Coverage Modes”, page 17. Your choice of mode will depend on your application specifics. Refer to
“Decision Making Process”, page 47 for guidance in selecting the appropriate mode.

Generate all files needed for decision coverage, as detailed in chapter “Build Process MC/DC,
Condition and Decision Coverage”, page 47. Each code coverage mode has a dedicated sub-
chapter there. Ensure adherence to the guidelines provided in “Build Process Call Coverage”,
page 46.

2. Choose a trace data collection variant

Choose the variant that best fits your test scenario:

- Incremental code coverage measurement in Leash mode.

- Incremental code coverage measurement in STREAM mode.

- Continuous code coverage measurement RTS.

- Continuous code coverage measurement SPY.

Refer to “Trace Data Collection Overview”, page 60 for assistance in decision-making.
3. Load relevant files into TRACE32

Load the files relevant for the decision coverage into TRACE32, see “Preparation for MC/DC,
Condition and Decision Coverage”, page 70. Read the sub-chapter on the code coverage mode
that you decided to use in step 1.

4, Configure and perform code coverage measurement

Configure the trace for the trace data collection variant chosen in step 2 and perform the code
coverage measurement.

- General information on trace configuration and recording is in "“Best Practices for Trace
Recording”, page 64.

- Specific guidelines for individual trace data collection variants and the actual code coverage
measurement steps can be found in “Trace Data Collection and Code Coverage Measurement”,
page 77.

5. Export results

After the code coverage measurement is complete, export the results to a JSON file using the
command COVerage.EXPORT.JSONE.

6. Generate an HTML report

Generate an HTML report from one or more JSON files as described in “TRACE32 Merge and
Report Tool”, page 114.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 30

7. Evaluate the decision coverage intuitively

Evaluate the decision coverage intuitively via a web browser. TRACE32 uses the following two tags to
mark source code decision statements for decision coverage:

dc: Decision coverage achieved — the decision in the source code statement have taken all

possible outcomes at least once.

incomplete: Decision coverage not achieved — at least one possible outcome is missing for the

decision.

At the module and function levels, the tags used are:

stmt+dc: All source code lines of the function/module are tagged either with dc or stmt

(statement coverage achieved).

incomplete: At least one source code line of the function/module is tagged with incomplete.

(5] | TRACE32: ListMeodule X |+

Navigation: Application

&« C @ O filex/#/C:/Users/amartin/AppData/Local/Temp/report/index.html

3] Lesezeichen importier... [Erste Schritte T< Title Case Converter—... (@ NeuerTab ik Office Phonebook D @ examplexml

@ @ 9

m]

x

[Weitere Lesezeichen

TRACE320© Code-Coverage Report

Coverage metric. DECISION

Exec Total Coverage

Current working directory: C:\T32_ARM\demo'\coverage'merge_demo'merge_unittests Lines: 368 432 85185%
TRACE32 software version: TRACE32 N.2024.06.000169998 Functions: | 15 [15 |[100:000%
Date: 2024-06-28T08:21:19 +01:00 Branches: | 41 | 82 |[50.000%
Source Files
source coverage | decision |0% 50% 100%| lines | ok
C\T32 ARM\demo\coverage\merge_demo\merge_unittests\control_flow.c stmt+dc 100% [1| 214 | 214
\mnt\c\Repos\demo'ldemo\coverage\merge_demo\merge_unittests\unittest1\cri0 s incomplete 0% | 85 0
\imnt\c\Repos\demol\demol\coverage\merge demo'merge unittestsiunittest1\unittest1.c stmt+dc 100% [18 18
\mnt\c\Repos\demol\demol\coverage\merge demo'merge unittests\unittest2\cri0.s incomplete 0% | 85 0
\mnt\c\Repos\demo'demo\coverage\merge_demo\merge_unittests\unitiest?\unittest? ¢ stmt+dc 100% [] 30 30
TOTAL incomplete | 60.648% |] 432 | 262

TRACE32 t32covtool 1.4.9

Figure: Decision coverage evaluation in a web browser.

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage

31

MC/DC Workflow

Before starting the evaluation for Modified Condition/Decision Coverage, it is recommended to review
chapter “MC/DC, Condition and Decision Coverage”, page 16.

To perform an MC/DC, follow these steps.
1. Build the executable

When performing MC/DC analysis, it's possible to encounter observability gaps. TRACES32 offers
various code coverage modes to address these, outlined in chapter “The Individual Code Coverage
Modes”, page 17. Your choice of mode will depend on your application specifics. Refer to “Decision
Making Process”, page 47 for guidance in selecting the appropriate mode.

Generate all files needed for MC/DC, as detailed in chapter “Build Process MC/DC, Condition and
Decision Coverage”, page 47. Each code coverage mode has a dedicated sub-chapter there.
Ensure adherence to the guidelines provided in “Build Process Call Coverage”, page 46.

2. Choose a trace data collection variant

Choose the variant that best fits your test scenario:

- Incremental code coverage measurement in Leash mode.

- Incremental code coverage measurement in STREAM mode.

- Continuous code coverage measurement RTS.

- Continuous code coverage measurement SPY.

Refer to “Trace Data Collection Overview”, page 60 for assistance in decision-making.
3. Load relevant files into TRACE32

Load the files relevant for MC/DC into TRACE32, see “Preparation for MC/DC, Condition and
Decision Coverage”, page 70. Read the sub-chapter on the code coverage mode that you decided
to use in step 1.

4, Configure and perform code coverage measurement

Configure the trace for the trace data collection variant chosen in step 2 and perform the code
coverage measurement.

- General information on trace configuration and recording is in "“Best Practices for Trace
Recording”, page 64.

- Specific guidelines for individual trace data collection variants and the actual code coverage
measurement steps can be found in “Trace Data Collection and Code Coverage Measurement”,
page 77.

5. Export results

After the code coverage measurement is complete, export the results to a JSON file using the
command COVerage.EXPORT.JSONE.

6. Generate an HTML report

Generate an HTML report from one or more JSON files as described in “TRACE32 Merge and
Report Tool”, page 114

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 32

7. Evaluate MC/DC intuitively

Evaluate MC/DC intuitively via a web browser. TRACES2 uses the following two tags to mark source

code decision statements for MC/DC:

mc/dc: MC/DC achieved — Each condition in the decision is shown to independently affect the

outcome of the decision.

incomplete: MC/DC not achieved — at least one condition in the decision has not yet been shown to

independently affect the outcome.

At the module and function levels, the tags used are:

stmt+mc/dc: All source code lines of the function/module are tagged either with mc/dc or stmt

(statement coverage achieved).

incomplete: At least one source code line of the function/module is tagged with incomplete.

Navigation: Application

[E] TRACE3Z: ListModule x| +
L C @ [B] file:/f/C:/Users/amartin/AppData/Local/Temp/report/index.html
3] Lesezeichen importier... [Erste Schritte T Title Case Converter—... (@ Meuer Tsb ik Office Phonebook D @) examplexml

~ = @\ X
% W ¥ @ 8 =

[Weitere Lesezeichen

TRACE32© Code-Coverage Report

Coverage metricc. MCDC

TRACES32 software version: TRACE32 N.2024.07.000171124
Date: 2024-07-23T08:51:22 +01:00

Current working directory. C:\T32_ARM\demo'\coverage'merge_demo\merge_unittests

Exec Total Coverage
Lines: | 368 | 432 | 85.185%
Functions: |15 [15 |[100.000%
Branches: [41 [82 || 50.000%

Source Files

source coverage mcdec (0% 50% 100%| lines | ok
C:\T32_ARM\demo\coverage\merge demo\merge unittests\control flow.c stmt+mcidc 100% [1| 214 | 214
‘imntic\Repos\demoldemo\coverage\merge demo'merge unittests\unittest1\cri0.s incomplete 0% | 85 0
\mnt\c\Repos\demo'demol\coverage\merge_demo\merge_unittests\unitiest1\unittesti c | stmi+mc/de 100% [18 18
\mnt\c\Repos\demo'demol\coverage'\merge_demo\merge_unittests\unittest?\cri0.s incomplete 0% | 85 0
‘mntic\Repos\demo'demo\coverage\merge demo\merge unittests\unittest2\unittest?2 ¢ | stmt+mcidc 100% [] 30 30
TOTAL incomplete | 60.648% [432 | 262

TRACE32 t32covtool 1.5.2

Figure: MC/DC evaluation in a web browser.

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage | 33

Function Coverage Workflow

To perform function coverage evaluation, follow these steps.
1. Build the executable

Create your executable file, ensuring that function inlining is disabled for clearer and more
intuitive results. Be sure to follow the guidelines provided in “Build Process Call Coverage”,
page 46.

2. Choose a trace data collection variant

Choose the variant that best fits your test scenario:

- Incremental code coverage measurement in Leash mode.

- Incremental code coverage measurement in STREAM mode.

- Continuous code coverage measurement RTS.

- Continuous code coverage measurement SPY.

Refer to “Trace Data Collection Overview”, page 60 for assistance in decision-making.
3. Load necessary files

Load the files relevant for function coverage into TRACE32. See “Preparation for Statement,
Function, Object Code, ocb Decision Coverage”, page 68.

4, Configure and perform code coverage measurement

Configure the trace for the trace data collection variant chosen in step 2 and perform the code
coverage measurement.

- General information on trace configuration and recording is in "“Best Practices for Trace
Recording”, page 64.

- Specific guidelines for individual trace data collection variants and the actual code coverage
measurement steps can be found in “Trace Data Collection and Code Coverage Measurement”,
page 77.

5. Export results

After the code coverage measurement is complete, export the results to a JSON file using the
command COVerage.EXPORT.JSONE.

6. Generate an HTML report

Generate an HTML report from one or more JSON files as described in “TRACE32 Merge and
Report Tool”, page 114.

7. Evaluate the function coverage intuitively

Evaluate the function coverage intuitively via a web browser. TRACE32 uses the following two tags to
mark the functions for function coverage:

func: Function coverage achieved — at least one function's object code instructions has been
executed.

incomplete: Function coverage not achieved — none of the function's object code instructions has
been executed.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 34

(5] | TRACE3Z ListModule x | + v — m} 5

(3 C [files///C:/Users/amartin/AppData/Local/Temp/report/indexhtml X Ty @ 8 =
3] Lesezeichen importier... [Erste Schritte T< Title Case Converter—... @ Neuer Tab ik Office Phonebook D @ examplexml [Weitere Lesezeichen
Navigation: Application TRACE320© Code-Coverage Report

Coverage metric. FUNCTION Exec Total Coverage
Current working directory: C:\T32_ARM\demo'\coverage'merge_demo'merge_unittests Functions: | 15 || 15 |/ 100.000%

TRACE32 software version: TRACE32 N.2024.06.000169998
Date: 2024-07-03T09:36:23 +01:00

Source Files

source coverage | function [0% 50% 100%| lines | ok
C:\T32_ARM\demo'coverage'merge demo\merge_unittests\control_flow.c func 100% [1 11 1
\mnf\c\Repos\demo'\demo'coverage\merge_demo\merge_unittests\unittest1\cri0.s incomplete 0% | 0 0
\mnt\c\Repos\demol\demo\coverage'merge demo'merge unittests\unittest1\unittest1.c func 100% [] 2 2
‘mntic\Repos\demoldemo\coverage\merge demo\merge unittests\unitiest2\cri0.s incomplets 0% | 0 0
\mnf\c\Repos\demo'demo'coverage\merge_demo\merge_unittests\unitiest?\unittest? c func 100% [1 2 2
TOTAL func 100% [1| 15 |15

TRACE32 t32covtool 1.4.9

Figure: Function coverage evaluation in a web browser.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 35

Call Coverage Workflow

To perform call coverage evaluation, follow these steps.

1.

Build the executable

Generate all files needed for call coverage, as detailed in chapter “Build Process Call Coverage”,
page 46. Ensure adherence to the guidelines provided in “Build Process Call Coverage”, page 46.

Choose a trace data collection variant

Choose the variant that best fits your test scenario:

- Incremental code coverage measurement in Leash mode.

- Incremental code coverage measurement in STREAM mode.

- Continuous code coverage measurement RTS.

- Continuous code coverage measurement SPY.

Refer to “Trace Data Collection Overview”, page 60 for assistance in decision-making.
Load necessary files

Load the files relevant for call coverage into TRACE32. See “Preparation for Call Coverage”, page
69.

Configure and perform code coverage measurement

Configure the trace for the trace data collection variant chosen in step 2 and perform the code
coverage measurement.

- General information on trace configuration and recording is in "“Best Practices for Trace
Recording”, page 64.

- Specific guidelines for individual trace data collection variants and the actual code coverage
measurement steps can be found in “Trace Data Collection and Code Coverage Measurement”,
page 77.

Export results

After the code coverage measurement is complete, export the results to a JSON file using the
command COVerage.EXPORT.JSONE.

Generate an HTML report

Generate an HTML report from one or more JSON files as described in “TRACE32 Merge and
Report Tool”, page 114.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 36

7. Evaluate the call coverage intuitively

Evaluate the call coverage intuitively via a web browser. TRACE32 uses the following two tags to
mark the functions for call coverage:

call: Call coverage achieved — all unconditional branches that represent a function call have been
executed at least once. If a function does not include an unconditional branch that represent a
function call, the function is tagged with call if at least one corresponding object code instruction
generated for the function has been executed.

incomplete: Call coverage not achieved — at least one unconditional branch that represent a
function call has not been executed. Or no object code instruction generated for the function has been
executed for all call-less functions.

(5] | TRACE32 ListMedule X |+ ~ =] s

C @ O filey/#/C:/Usersfamartin/AppData/Local/Tempy/report/index.html A @ @ & =

3] Lesezeichen importier.. [Erste Schritte T< Title Case Converter—... @ Neuer Tab ik Office Phonebook D & examplexml [Weitere Lesezeichen
Navigation: Application TRACE320© Code-Coverage Report

Coverage metric: CALL Exec Total Coverage

Current working directory: C:\T32_ARM\demo'\coverage'merge_demo'merge_unittests Functions: | 15 | 15 |/ 100.000%

TRACE32 software version: TRACE32 N.2024.06.000169998
Date: 2024-07-04T06:16:18 +01:00

Source Files

source coverage call |0% 50% 100%| lines | ok
C\T32_ ARM\demo\coverage\merge_demo\merge_unittests\control_flow.c call 100% | I] 1 1"
imnt\c\Repos\demo'\demo\coverage'merge _demo'merge_unittests\unittest1\cri0.s incomplete | 0% || 0 0
imnt\c\Reposidemo'demo'coverageimerge demo'merge unittests\unittest1\unittest1.c call 100% | [2 2
\mnt\ic\Repos\demo'demolcoverage'merge demo'merge unittests\unittest?\cri0.s incomplete 0% | 0 0
imnt\c\Reposidemo'\demo\coverage\merge _demo'merge_unittests\unittest?\unitiest? c call 100% | I] 2 2
TOTAL call 100% | [1| 15 |15

TRACE32 t32covtool 1.4.9

Figure: Call coverage evaluation in a web browser.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 37

Workflows for Address-Based Metrics

This chapter addresses object code coverage and object code based (ocb) decision coverage.

General Procedure

For the address-based code coverage metrics, all measurement and evaluation steps were conducted in
TRACE32. Finally, an HTML report can be generated for documentation purposes.

In TRACE32: Measure Code Coverage, Evaluate Code Coverage and Generate Final Report

e Lt

Build Process TRACE32

Comment
Code Coverage
Results

Evaluate
Code Coverage

Merge
Code Coverage
Measurements

Create Final Report in HTML J

Source Build Measure
Files Executable Trace-Based
Code Coverage

A

HTML

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 38

Object Code Coverage Workflow

To perform a object code coverage evaluation, follow these steps.

1.

Build the executable

Ensure to follow the guidelines in “Build Process Call Coverage”, page 46.

Choose a trace data collection variant

Select the variant that best fits your test scenario:

- Incremental code coverage measurement in Leash mode.

- Incremental code coverage measurement in STREAM mode.

- Continuous code coverage measurement RTS.

- Continuous code coverage measurement SPY.

Refer to “Trace Data Collection Overview”, page 60 for assistance in decision-making.
Load necessary files

Load the files relevant for object code coverage into TRACE32. See “Preparation for Statement,
Function, Object Code, ocb Decision Coverage”, page 68.

Configure and perform code coverage measurement

Configure the trace for the trace data collection variant chosen in step 2 and perform the code
coverage measurement.

- General information on trace configuration and recording is in “Best Practices for Trace
Recording”, page 64.

- Specific guidelines for individual trace data collection variants and the actual code coverage

measurement steps can be found in “Trace Data Collection and Code Coverage Measurement”,

page 77.
Assemble the results of various code coverage measurements

Ensure you only assemble test runs carried out with the identical executable(s). Instructions for this
process can be found in “Appendix B: Assemble Multiple Test Runs at Address Level”, page
119.

Evaluate object code coverage.

Evaluation details can be found at “Object Code Coverage Evaluation in TRACE32”, page 101.

149 B:COVerage ListFunc.s¥mbol \coverage
Fsetup...| A Goto... | @ List +add | Pload.. RBsae.. @mnit
coverage lobjectcode [0% 50% 100 |branches
P:90000440--900009BD partial 52, 6315 [55.769% 5 7.
P:90000440--9000044D 0k | 100, 000% | 100, 0005 3 0.
P:9000044E--90000455 ok | 100. 000% | ee—— - 0. 0.
P:90000456--90000463 ok | 100. 000% | ee———— (100 . 000% 1. 0.
P:90000464--90000475 ok | 100. 000% | ee———— (100 . 000% 4 0.
P:90000476--90000485 ok | 100.000% 100. 000% 0.
P:90000486--90000495 ok | 100.000% 100. 000% 0.
P:900004 96--900004CF never 0. 000% 0.000% C 0.
P:900004D0--900004FF e 0. 000% 0.000% C 0.
P:90000500--90000527 partial 35. 000% |se— 37.500% 1 1.
P:90000528--90000569 never 0. 000% 0.000% (0.
P:9000056A--9000056F never 0. 000% - 0. 0.
P:90000570--90000591 partial 58. 823% | e— 41.666% 1. 2.
P:90000592--90000547 ok | 100. 000% | ee———— - 0. 0.
P:900005A8--900005C9 ok | 100. 000% | ee———— (100 . 000% 0.
P:900005CA--90000615 partial 8L, 578% |m—— - C 0.
P:90000616--90000647 92. 000% |se— 90. 000% 1.
P:90000648--9000065D ok | 100. 000% | ee———— (100 . 000% 1 0.
P:9000065E--90000673 rnaryExprTrans ok | 100. 000% | ee——— (100 . 000% 1 0.

Figure: Object code coverage evaluation in TRACES32.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage |

39

7. Comment uncovered code
Add comments to the uncovered code ranges, see “Comment Your Results”, page 112.
8. Generate final HTML report

Generate your final code coverage report as described “Appendix A: TRACE32 Coverage
Report Utility”, page 117.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 40

Object Code Based (ocb) Decision Coverage Workflow

The code coverage metric ocb decision coverage is old fashioned and no longer really needed. However, it
can be helpful for special problems. If such a situation arises, our support team will inform you.

To perform a ocb decision coverage evaluation, follow these steps.
1. Build the executable
Ensure to follow the guidelines in “Build Process Call Coverage”, page 46.

It is recommended to disable most if not all optimizations to avoid false-positive or false-negative
results. Please also check “Appendix F: Coding Guidelines”, page 134.

2. Choose a trace data collection variant

Select the variant that best fits your test scenario:

- Incremental code coverage measurement in Leash mode.

- Incremental code coverage measurement in STREAM mode.

- Continuous code coverage measurement RTS.

- Continuous code coverage measurement SPY.

Refer to “Trace Data Collection Overview”, page 60 for assistance in decision-making.
3. Load necessary files

Load the files relevant for object code coverage into TRACES32. See “Preparation for Statement,
Function, Object Code, ocb Decision Coverage”, page 68.

4, Configure and perform code coverage measurement

Configure the trace for the trace data collection variant chosen in step 2 and perform the code
coverage measurement.

- General information on trace configuration and recording is in “Best Practices for Trace
Recording”, page 64.

- Specific guidelines for individual trace data collection variants and the actual code coverage
measurement steps can be found in “Trace Data Collection and Code Coverage Measurement”,
page 77.

5. Assemble the results of various code coverage measurements

Ensure you only assemble test runs carried out with the identical executable(s). Instructions for this
process can be found in “Appendix B: Assemble Multiple Test Runs at Address Level”, page
119.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 41

6. Evaluate object code coverage

Evaluation details can be found at “Object Code Based (ocb) Decision Coverage Evaluation”,
page 106.

19 B:COV.ListModule =R =

& Setup.. | (3 Goto.. | (EPList +Add | Pload. | 5 Save. @ it

address tree coverage | decision |0% 50% 100 Tines dec bytes
08000000~ -080001E7 cre0 incomplete 0.000% [388.
P:080001E8--0800028F | [\main incomplete 0.000% 11. 168.
P:08000290--08001603 | [\coverage incomplete | 95.508% |m— 334, 4980.
P:08000290--08000327 (3 wideDataTypesFor sturt+de | 100, 000% (e 9. 152.
P:08000328--0800038F (3 wideDataTypesthile statrde | 100, 000% (mem— 1. 152,
P:080003C0--0800044F (# wideDataTypesDowhile incomplete 80.000% |s— 10. 144.
P:08000450--0800056F (WideDataTypesTf stit+de | 100.000% |m— 20. 288.
P:08000570--08000647 [z TestWideDataTypes stirt+de | 100. 000% |m— 12. 216.
P:08000648--08000668 (¥ Identity stut+de | 100, 000% |mm—— 3. 36.
P:0800066C--08000697 (3 SetTrue incomplete 0.000% 3. 44,
P:08000698--080006C 3 (@ setFalse SEME+de | 100. 000% |me— 3. 44.
P:080006C4--0800074F (¥ TestFunctionLikeMacro incomplete | 80.000% |——— 5. 140.
P:08000750--080007F7 [z ComplexBooleanPar ameter stwt+dc | 100.000% 7 168.

Figure: ocb decision coverage evaluation in TRACE32.
7. Comment uncovered code

Add comments to the uncovered code ranges, see “Comment Your Results”, page 112.
8. Generate final HTML report

Generate your final code coverage report as described “Appendix A: TRACE32 Coverage
Report Utility”, page 117.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 42

Build Process

Introductory Notes

General Recommendations for the Build Toolchain

The recommendations outlined here apply to all code coverage metrics. TRACE32 code coverage performs
optimally at low compiler optimization levels, enhancing the mapping between object and source code. Code
coverage analysis relies on object code captured as program flow trace, and accurate mapping is more
effective with lower optimization levels. Consequently, TRACES32’s trace-based code coverage cannot be
conducted on production code.

NOTE: It is recommended to configure the toolchain so that code optimizations are
disabled and no jump tables are used. The following list shows recommended
compiler configurations for selected toolchains:

. GNU Compiler Collection (GCC) or Clang: -00 -fno-jump-tables
. TASKING VX-Toolset: -00 --switch=1linear
. Wind River Diab Compiler: -Xoptimized-debug-off -Xdebug

-source-line-barriers-on -Xswitch-table-off

Build Process Requirements for All Code Coverage Metrics at a Glance

In addition to the general recommendations for the build toolchain, further adjustments may be needed for
individual code coverage metrics. The following changes could be required:

. Special compiler configuration

Special compiler configurations may be required to enhance the mapping between the object
code and the source code.

o Generation of .eca files

The .eca files supply TRACE32 with essential information needed to map the program flow's
object code to the source code level, information that is not included in the compiler-generated
debug information. Lauterbach provides the command line tool t32cast for this purpose.

o Source code instrumentation

Source code instrumentation may be required if gaps in code coverage persist after mapping the
program flows's object code to the source code level.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 43

Low compiler optimization levels are a well-known reason why TRACE32’s trace-based code coverage
cannot be performed on production code. Additionally, some code coverage metrics necessitate specific

compiler configurations, and in some cases, code instrumentation. Therefore, there are several other factors
that restrict the use of production code for TRACE32’s trace-based code coverage.The table below offers an

overview.
Special Compiler .eca Files Instrumentation
Configuration
Statement — — —
Condition — yes, to provide likely
condition details
Decision — yes, to provide likely
decision details
MC/DC — yes, to provide likely
condition/decision
details
Function disable function — —
inlining
Call — yes, to provide —
function call details
Object Code — — —
ocb Decision disable most — —
(deprecated) optimizations

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage

44

Verification of Alignment with Production Code

For safety-related projects, it is essential that the code used for coverage testing mirrors the production code

exactly. Thus, both code variants should be tested side by side throughout the entire test lifecycle. The

recommended testing workflow for such projects is illustrated in the figure below.

Testing Workflow

Production Code

Test Case A

Not-Optimized Code /
Instrumented Code

Test Case A

Test Result A

A

Test Result A

Code Coverage
Measurement Data

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage

45

Build Process Call Coverage

TRACES2 requires the following inputs for call coverage measurement in addition to the C/C++ source files:

o A folder with the .eca files
o A non-instrumented executable
ECA files

To measure call coverage, TRACES32 needs to know the locations of function calls. This information is not
contained in the debug information generated by the compiler. Therefore, Lauterbach provides a Clang-
based command line tool called t32cast. This tool analyzes the C/C++ sources and generates an extended
code analysis file (.eca) for each source file, containing the required location information. To generate these
files, use the following command:

t32cast eca -o foo.c.eca foo.c

More details can be found in “Command Line Parameters of t32cast” in Application Note for t32cast,
page 10 (app_t32cast.pdf).

It is recommended to integrate t32cast into your build process so that the ECA files are generated alongside
the executable.

Build Process Call Coverage

“
Source

Files ; Static Code Analysis

.eca

Extended
Code Analysis

Executable Data

Figure: Build process for call coverage; all input/outputs of the build process that need to be loaded to
TRACERS2 for call coverage measurement are marked in this figure with an arrow pointing downwards.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 46

Build Process MC/DC, Condition and Decision Coverage

If you have already chosen a code coverage mode, you can proceed directly to the relevant chapter.

J “Build Process for Code Coverage Mode Targeted Instrumentation/No Instrumentation”, page
52.

J “Build Process Code Coverage Mode Breakpoint Assisted”, page 57.

J “Build Process Code Coverage Mode Full Instrumentation”, page 58.

Decision Making Process

As detailed in “Multiple Code Coverage Modes”, page 16, several code coverage modes are available for
measuring MC/DC, condition, and decision coverage. Before adapting the build process for TRACE32 code
coverage measurement, you must choose the appropriate code coverage mode. Additionally, consider
whether you can use a TRACES2 Instruction Set Simulator instead of a TRACE32 Debugger with the target
during the build process.

Decide on the Appropriate Code Coverage Modes

The objective of this step is to choose the correct mode from the four TRACE32 code coverage modes,
based on the number of observability gaps. To determine this number, follow these steps:

Note that you only need a TRACES32 debugger connected to the target hardware to detect observability
gaps — trace recording is not required. The TRACES32 debugger is aware of the trace protocol properties
based on the core configuration in the debugger.

1. Build the executable
Please refer to “General Recommendations for the Build Toolchain”, page 43.
2. Generate ECA files

Use t32cast to generate the ECA files for all C/C++ files. The .eca files contain the conditions/decision
details necessary for detecting observability gaps. To create an ECA file with t32cast, use the
command::

t32cast eca -o foo.c.eca foo.c

More details can be found in “Command Line Parameters of t32cast” in Application Note for
t32cast, page 10 (app_t32cast.pdf).

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 47

3. Load files into TRACE32

Load all files needed for observability gap detection into TRACE32. The following files must be

loaded:

- Executable, which includes the paths to the source files

- Generated .eca files

Load All Files Needed for the Observability Gap Detection

Source
Files

Code Analysis

Extended

Data

TRACE32 with Debugger and Target

Verify that the object code is mapped to the

decisions/conditions of the source code, so that
no observability gaps are present, considering the

characteristics of the trace protocol used.

A

The following commands can be used for this purpose.

; basic debugger setup for the target

; load the elf executable

7

Data.LOAD.Elf "my app.elf"

; load the

.eca files

sYmbol .ECA.LOADALL /SkipErrors

the elf file includes the paths to the source files

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage

48

4. Perform observability gaps detection

Set up and execute the mapping between decisions/conditions in the source code and the object
code.

; clear message AREA
AREA .CLEAR

; Configure TRACE32 to account for the trace protocol in the
; mapping
sYmbol .ECA.BINary.ControlFlowMode.Trace ON

; perform mapping
sYmbol .ECA.BINary.PROCESS
; TRACE32 generates warnings when gaps in the mapping are detected

5. Inspect Observability Gaps

There are two ways to inspect the observabiltiy gaps:

; lnspect warnings 1in message AREA
AREA.view

onitorec
yt monitorec

ottt

e

e
]
]

Figure: A warning is displayed in the message area for each condition/decision where no mapping
can be established between the source code and the object code.

; display decision/condition mapping overview
sYmbol .ECA.BINary.view

2 [B:sVmbol. ECA.BINary.view] = =R
FilterMapped FilterType tree control
ALL ~ ALL ~ Expand/Collapse All
[tree type |address mapped |dec mapped cond
“\coverage_tcZ\coverage ..000450--0x90000AC7 | 25 32 51 63 A~
“M\coverage_tc2\main ..000ACB--0x900004D5 0 0 0 0
“M\coverage_tc2\Global P:0xFFFFFFFF--0x0 J0 0 0 0 v

Figure: The mapped/dec columns indicate the number of decisions in the software module (dec) and
how many were successfully mapped. The mapped/cond columns show the number of conditions
(cond) in the software module and how many were successfully mapped.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 49

The following function returns the number of detected observability gaps as a decimal.

| sYmbol.ECA.BINary.GAPNUMBER()

The result can indicate no, few, or many observability gaps. Note that using fewer optimization switches
should result in fewer observability gaps. Based on the result, you need to choose the appropriate code
coverage mode. The different code coverage modes are explained in “Multiple Code Coverage Modes”,
page 16.

Decide on the Use of TRACE32 Instruction Set Simulator

A TRACE32 debugger can be used in conjunction with the target hardware to detect observability gaps, no
trace recording is needed. In some cases, a TRACES32 Instruction Simulator (ISS) can also be sufficient.
The benefit of using the TRACES32 ISS is that it eliminates the need for a debugger/target configuration
during the build process. The TRACES32 ISS does not require a license for use in this context.

Unlike the TRACES32 debugger, the TRACES2 ISS does not automatically know the trace protocol properties
after core configuration. Before using the ISS, ensure it identifies the same observability gaps as the
debugger/target configuration.

Use the following command to export the observability gaps detected with a debugger/target configuration to
a JSON file:

; export observabiltiy gaps from target test to JSON file
s¥Ymbol.ECA.BINary.EXPORT.GAPS gaps_ from target_ test.json

Next, perform the same test as described in “Decide on the Appropriate Code Coverage Modes”, page
47 with a TRACES32 Instruction Set Simulator and export the detected observability gaps to a JSON file as
well:

; export observabiltiy gaps from ISS test to JSON file
sYmbol.ECA.BINary.EXPORT.GAPS gaps_from iss_test.json

If both JSON files are identical, a TRACES32 Instruction Set Simulator can be used for the build process.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 50

Here is some background information: The TRACES32 ISS provides program flow information through a bus
trace, which differs from the flow trace protocol of the target hardware. While both trace types can be used to
check whether conditional branches were evaluated as true or false, their properties may vary for conditional
instructions.The table below provides an overview of key architectures, answering the following questions:

. ISA: Does the ISA of the core under debug include conditional instructions?

. Trace Target: Does the trace protocol of the core under debug generate information on the
execution of conditional instructions?

J Trace ISS: Does the bus trace of the TRACES32 ISS provide information on the execution of
conditional instructions?

J Build with ISS: TRACE32 ISS suitable for build process. When the Trace Target and the Trace
ISS share the same properties, the TRACE32 ISS can be used during the build process to detect
the observability gaps.

Instruction Set Simulator for the Xtensa
core architecture.

ISA Trace Target Trace ISS Build with ISS

Cortex-A Yes Yes for ETMv3, Yes Yes
Cortex-R ETMv4.1 and higher
Cortex-M

No for PTM and

ETMv4.0")
C6000 No Lauterbach does not provide an No

Instruction Set Simulator for the C6000

core architecture.
C7000 No Lauterbach does not provide an No

Instruction Set Simulator for the C7000

core architecture.
PowerArchitecture Yes Yes?) No No
RH850 Yes No No Yes
RISC-V No No No3) Yes
AURIX™ TriCore™ Yes No No Yes
Xtensa Yes Lauterbach does not provide an No

1) If the TRACES32 Instruction Set Simulator provides details on the execution of conditional instructions, but
the program flow trace of the real target does not provide such information, you can disable the conditional
instruction information in the TRACES32 ISS bus trace using the SIM.ConditionTracelnfo OFF command.

2)If NEXUS.HTM is OFF, the program flow trace will not include any information on the execution of

conditional instructions.

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage | 51

3) The TRACE32 Instruction Set Simulator for RISC-V supports only standard and ratified ISAs; custom

ISAs are not supported.

Build Process for Code Coverage Mode Targeted Instrumentation/No Instrumentation

In addition to the C/C++ source files, TRACES32 requires the following inputs for code coverage
measurement in code coverage mode target instrumentation/no instrumentation:

J A folder with the .eca files
J A non-instrumented executable, in the case that no observabiltiy gaps were detected
. An instrumented executable, in the case that observabiltiy gaps were detected

Build Process Code Coverage with Targeted Instrumentation/No Instrumetation

.............

Source
Files

..

Targeted Instrumentation

C/C++

Instrumented

»| Static Code Analysis

Source Files

Executable

Extended

Code Analysis
Data

Instrumented
Executable

TRACE32

Detect
Observability Gaps

JSON

List of Detected
Observability

...............

A =

Figure: All inputs/outputs of the build process that may need to be loaded into TRACES32 for coverage

measurement in code coverage mode target instrumentation/no instrumentation are indicated in this figure

by a downward-pointing arrow.

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage

52

You need to extend your build process as follows:
1. Add t32cast to generate the ECA files for all C/C++ files.

To create an ECA file with t32cast, please use the command:

t32cast eca --export-cfg -o foo.c.eca foo.c

More details can be found in “Command Line Parameters of t32cast” in Application Note for
t32cast, page 10 (app_t32cast.pdf).

2. Add TRACE32 to perform the observability gap check.

TRACER32 can be called from the Make file with a script that performs the check automatically. Please
refer to “Command Line Arguments for Starting TRACE32” in TRACES32 Installation Guide, page
53 (installation.pdf) for details. This could look like the following:

t32ecagaps.json: $(NAME).elf $(ECA)
S (T32GRP) \t32marm.exe -c ../common/trace32.cfg -s ../common/export_gaps.cmm $(NAME).elf

You should have checked in step “Decide on the Use of TRACE32 Instruction Set Simulator”,
page 50, if you can use a TRACES2 Instruction Set Simulator instead of a debugger/target
configuration.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 53

The script that runs in TRACE32 must include the following steps.

LOCAL &instrumented tree
&instrumented tree="./instrumented sources"

; basic debugger setup for the target or basic ISS setup

; load the elf executable
; the elf file includes the paths to the source files
Data.LOAD.Elf "my app.elf"

; load the .eca files
sYmbol .ECA.LOADALL /SkipErrors

; delete file og_detected.txt, if existing
IF FILE.EXIST(&instrumented tree/og detected.txt)
(

RM &instrumented_tree/og detected.txt

; Configure TRACE32 to account for the trace protocol used in the
; mapping
sYmbol .ECA.BINary.ControlFlowMode.Trace ON

; perform mapping
sYmbol .ECA.BINary.PROCESS

; Create a file named og detected.txt to serve as a flag indicating
; that an instrumented executable needs to be generated
IF sYmbol.ECA.BINary.GAPNUMBER()>0.
(
OPEN #1 &instrumented tree/og detected.txt /Create
WRITE #1 "Observability gaps have been detected,"
WRITE #1 "necessitating the generation of an instrumented”
WRITE #1 "executable."
CLOSE #1
)
sYmbol .ECA.BINary.EXPORT.AdJoinGAPS

3.A Ifthe file og_detected. txt does not exist, the non instrumented executable my_app.elf
can be used for code coverage measurement in no instrumentation mode.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 54

3.B Ifthefile og_detected. txt does exist, use t32cast to perform targeted instrumentation.
The result of this step should be a structure of directories (instrumented_tree in the figure below).

- For each source file that contains observabiltiy gaps, there is an instrumented version of this file in
the instrumented_tree directory (hatched rectangles for instrumented source files in the figure
below).

- For each source file that does not contain observabiltiy gaps, there is a copy of the original source
in the instrumented_tree directory (white rectangles for not-instrumented source files in the figure
below).

4<

original_tree)
control.c | [~
diagnosis.c _J

—(instrumented_tree >

IJ:

start startl.c | [~
control control.c | [~

diagnosis diagnosis.c H

Figure: The instrumentation does not add any extra lines of source code. By preserving the structure
of the original_tree directory in the instrumented_tree directory, TRACES32 can be configured to
use the original, non-instrumented sources during testing.

1L

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 55

To perform the code instrumentation task with t32cast, please use the following commands:

; create additional C source files with definitions of the

; lnstrumentation hooks

t32cast instrument --mode=mcdc --gen-instr-source-files
--probe-dir=instrumented tree

; the files t32pp.c and t32pp.h created this way have to be compiled
; together with the instrumented source files

; process all source files

; use JSON files with observabiltiy gaps as input for targeted
; instrumentation and instrument all decisions for which
; a observabiltiy gap was detected

; source files without observabiltiy gaps should be simply
; copied to instrumented_tree

t32cast instrument --mode=mcdc

--filter=instrumented_ tree\foo.c.json

-0 instrumented_tree\foo.c original_ tree\foo.c

Whereby the switch mode=mcdc must also be used for condition and decision coverage.

4.B Build the instrumented executable.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 56

Build Process Code Coverage Mode Breakpoint Assisted

In addition to the C/C++ source files, TRACES32 requires the following inputs for code coverage
measurement in breakpoint assisted code coverage mode:

o A folder with the .eca files

o A non-instrumented executable

Build Process for Code Coverage with Breakpoints
Source

Files » Statlc Code Analysis

-eca

Extended
Code Analysis

Executable Data

Figure: All input/outputs of the build process that are required for coverage measurement in breakpoint
assisted code coverage mode are marked with an arrow pointing downwards.

The build process must be extended so that t32cast creates an ECA file for each source code file that is
compiled. Please use the command:

t32cast eca -o foo.c.eca foo.c

More details can be found in “Application Note for t32cast” (app_t32cast.pdf).

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 57

Build Process Code Coverage Mode Full Instrumentation

TRACES2 requires the following inputs for code coverage with full instrumentation in addition to the C/C++

source files:
J A folder with the .eca files
J An instrumented executable
Build Process for Full Instrumentation
[:] t32cast
Source » Full Instrumentation " Instrumented
Files | Static Code Analysis A Source Files
u .eca
Extended
Code Analysis Instrumented
Data Executable

Figure: All input/outputs of the build process that are required for coverage measurement in code coverage
mode full instrumentation are marked with an arrow pointing downwards.

The build process must be extended so that t32cast creates an ECA file for each source code file that is
compiled. Please use the command:

t32cast eca -o foo.c.eca foo.c

More details can be found in “Application Note for t32cast” (app_t32cast.pdf).

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 58

In addition, all C/C++ source files must be instrumented with t32cast, resulting in a directory structure
containing all the instrumented source files. The instrumentation does not add any extra lines of source
code. By preserving the structure of the original_tree directory in the instrumented_tree directory,
TRACE32 can be configured to use the original, non-instrumented sources during testing.

; create additional C source files with definitions of the
instrumentation hooks

t32cast instrument --mode=mcdc --gen-instr-source-files
--probe-dir=<instr_ dir>

the files t32pp.c and t32pp.h created this way have to be compiled

together with the source files

I

7

; instrument all decisions/conditions in all source files
t32cast instrument --mode=mcdc -o <instr dir\file> <org dir\file>

Note that the --mode=mcdc switch must be used also for condition and decision coverage.

Finally, an instrumented executable must be generated.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 59

Trace Data Collection Overview

SMP Multicore Systems

If code coverage is performed on an SMP system, it is typically sufficient to prove that the object or source
code line was executed by one of the cores. For this reason the core number of the trace records is ignored,
when the trace information is transferred to the code coverage system.

IAMP Multicore Systems

The machine ID is used to load the executable and debug symbols onto a debug cluster in an iA MP
system. For example:

; application_subsysteml.elf is loaded to the symbol space of machine 1
Data.LOAD.E1f application_subsysteml.elf 0xl1l:::0 /NoClear /NoCODE

This machine ID is required to link the object code to the source code. Therefore, the machine ID is stored
along with the object code address in the internal TRACE32 code coverage system. Since the JSON file for
code coverage metrics — such as statement coverage, decision coverage, condition coverage, modified
condition/decision coverage (MC/DC), and both call and function coverage — contains only the source
code, it does not include the machine ID.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 60

TRACE32 Tool Configurations

The following TRACE32 tools are suitable for code coverage:

. TRACE32 Debugger and Off-Chip Trace

A PowerTrace module is required for trace recording. Trace.METHOD Analyzer is automatically
selected as soon as TRACE32 detects a PowerTrace module in its hardware configuration.

Some processors, like most Cortex-M processors, can export program flow via a 4-bit trace
interface. In such scenarios, a TRACE32 CombiProbe or a MikroTrace can also serve the
purpose. Trace.METHOD CAnalyzer is automatically selected as soon as TRACES32 detects a
TRACE32 CombiProbe or a MikroTrace module in its hardware configuration.

. TRACE32 Debugger and On-Chip Trace

The Trace.METHOD Onchip command configure TRACE32 for onchip tracing. Onchip tracing is
also possible via XCP.

. The Trace.METHOD HAnalyzer command configures TRACE32 for USB tracing. Since this trace
memory is located on the host computer, you must define its size in advance using the
HAnalyzer.SIZE command.

. TRACE32 Instruction Set Simulator

The TRACE32 Instruction Set Simulator simulates the instruction set, but does not model timing
characteristics and peripherals. However, the simulator provides a bus trace so that code coverage is easy
to perform.

There is also the option of performing the code coverage analysis with a TRACES2 Instruction Set Simulator
(Trace.METHOD Analyzer).

. TRACE32 Advanced Register Trace (ART)

If Lauterbach does not offer an Instruction Set Simulator for the core architecture you are using, you can also
use the TRACES32 Advanced Register Trace (Trace.METHOD ART). This is a single-step trace, which
makes program execution very slow. This method is therefore only suitable for unit testing.

o TRACE32 Debugger for virtual targets with trace support

TRACE32 Debuggers for virtual targets should, because of their limitations, only be used for code coverage
if needed. For details refer to “Code Coverage with Virtual Targets”, page 96.

A TRACES32 debug and trace tool is of course the best choice, as it allows testing in the target environment
and thus integrates hardware and software. But for test phases that do not have these requirements, a
TRACERS2 Instruction Set Simulator can be a good choice. It has a number of advantages: it allows early
testing when the target hardware is not yet available, scales well and delivers results quickly.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 61

Choose the Appropriate Trace Data Collection Variant

The following overview is intended to help new users to make a decision for the appropriate trace data
collection method. It is deliberately simplified and complex details are avoided.

If you are using a TRACE32 Advanced Register Trace (Trace.METHOD ART), please refer to “ART Mode
Code Coverage”, page 98.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 62

'$s950 You Joy ajgeyins Ajjeied Alup

‘spod soel) Yipimpued

auou
'suod soely yipimpueqg-ybiy 1oy 8|qeyins JoN -UB1y 1o} B|qENNS 10N suonoL)say
SOUON
e Ie e e abesanon
pauoddns
DIOD Ddd 10} SnXaN -

XXGDdS ILS/XXXGDJIN 10} SNXSN - $]0203}04d
XI¥NY uoeuyu| 10} SADIA - e e 2 adel|
XOUOD/WIY 40} PANLT ‘NLd “CALINT - payoddng

1g-¢¢ A-OSId 10} 8qoidqiquioy -

IN-X8u09) 10} 8q0idIquio) -

Hg-¢¢ A\-OSIY 10} 8qoidqIquiog - ng-z¢ A-OSIY @oel 1 -

IN-X8109 10} 8q0idIquIo) - IN-Xau09 a%eu) -

ng-z¢ A-OSIY @oelnr - 808l | I8MOd -

IN-X8uo) aoeur - sjable} |enuiA Jo adel] -

aoel | Jamod - aoely diyouQ -
Joje|nwig - saoel]
}oS uononisu| Ze30VHL - payoddng

"deys Buipiodal a|buls e ul papiodal

8(Ued jey} ejep JO JUnowe 8y}

Syl Alowisw 8ok} 8y} Jo 9ZIs 8y |

‘abesanod ‘elep juswainsesw

9p09 Jo} passadold uay} weions Jayieb o} Aiessaosu

"oBeJan00 8p00 Jo} Blep | SI Bjep paplodal 8y] ‘Paejasliod ale sdajs Buipiooals a|diyn

ay) sseo04d 0} papuadsns uea(Sey ejep jualoiyns "abelanod 8pod Joy passadold usy}
‘abesan0o apod Ajjeaipouad si Buiweans | souo paddojs aq ued weiboud | si ejep papiodal ay] |y sl Aowsw | juswainsesiy
Joj passaooid pue ‘}soy 8y} 0} paweasis [}soy ay) 0} paweals pue 8y "Jsoy 8y} 0} paweal)s 8oeJ) 8y} 9ouo paddols si wesboid abeianon
‘papiooal AjSnosue)NWIS Si Bjep 8oel] | paplodal S| ejep aoel) ay | pue papiodal SI ejep adel| 8y} pue ‘papiodal S ejep 8okl | 9po)
jueuep
S1y AdS 9PON NVIYLS Ul (doeqjiey) apo ysea ul uoi399j|09
shonupuo’) snonupuo) |ejuaWAIOU| |ejuaWIaIOU| ejeQq 99el]

63

Application Note for Trace-Based Code Coverage

©1989-2024 Lauterbach

Best Practices for Trace Recording

Reduce the Amount of Trace Data

It is recommended to reduce the amount of trace data to the required minimum to make best use of the
available trace memory. If trace information is exported off-chip via a dedicated trace port this reduction
can also help to avoid an overload of the trace port.

It is recommended to configure the onchip trace logic:

J to generate only trace information for the program flow.
J to generate additionally trace information for the task switches if a rich OS such as Linux is used.
J to not generate chip timestamps if supported by the trace protocol.

Details of how to do this can be found in the manuals:

. Arm: “Training Arm CoreSight ETM Tracing” (training_arm_etm.pdf), “Training Cortex-M
Tracing” (training_cortexm_etm.pdf)

. MPC5xxx/SPC5xxx, QorlQ and RH850: “Training MPC5xxx/SPC5xx Nexus Tracing”
(training_nexus_mpc5500.pdf)

J TriCore: “Training AURIX Tracing” (training_aurix_trace.pdf)

. For other processor architectures, please refer to the corresponding “Processor Architecture
Manuals”.

For target systems using a rich OS such as Linux a method of determining task switches must also be
included in the trace data. More information can be found here:

“Training Linux Debugging” (training_rtos_linux.pdf).

- For other operating systems, please refer to the corresponding “OS Awareness Manuals”
(rtos_<os>.pdf).

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 64

Ensure a Fault-Free Trace Recording

Before you start with code coverage, it is recommended to check if the trace recording is working properly.
Here is a simple script:

Go
Break
SILENT.Trace.Find FLOWERROR /ALL
IF FOUND.COUNT () !=0.
(
PRIVATE &msg
&msg="FLOWERRORS were found in the analyzed trace recording."
sgmsg="&msg It is recommended to check"
s&msg="&msg 1f the trace recording works properly."
ECHO FOUND.COUNT () "&msg"
)
ELSE
(
ECHO "The analyzed trace recording does not contain FLOWERRORS."
)
ENDDO

The code coverage analysis can tolerate individual FLOWERRORS. However, it is recommended to ensure
that the number of FLOWERRORS is as small as possible.

The code coverage analysis can tolerate gaps in the trace caused by TARGET FIFO OVERFLOWSs but this
will result in gaps in the coverage data.

Disable Timestamps for Trace Streaming

All general rules applying to trace streaming are described under Trace.Mode STREAM.

Raw trace data TRACES32 tool timestamps

Raw trace data Data stream to host

Trace port ——

Trace buffer

TRACE32 TRACE32
trace tool debug module

Since the timestamps that TRACES32 assigns for the trace records have no significance for code coverage,
they do not have to be streamed to the host computer. This considerably reduces the data rate. Please use
the command Trace.PortFilter MAX for this purpose.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 65

The current PortFilter setting is displayed in the TRACES32 state line when you enter the command
Trace.PortFilter followed by a space.

B::Trace.PortFilter
PortFilter : AUTO -> PACK

[ok] OFF MIN PACK MAX AUTO
P:9000055A \\coverage_tc2\coverage\ComplexWhile+0x32

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 66

Steps in Preparation for Trace Data Collection

Notes on the Individual Test Variants

This chapter describes which files need to be loaded into TRACES32 for trace data recording and code
coverage analysis. In fact, some files are only required for the code coverage analysis. First, general notes
on the individual test variants:

Incremental code coverage (one test run with repeated cycles)

With incremental code coverage, the following two steps must be repeated until the test is complete.

1. Run program execution and record program flow to trace memory.
2. Upload trace contents to the host and perform code coverage analysis in TRACE32 PowerView
GUL.

For this test scenario, we recommend loading all files in advance.
Incremental code coverage (two separate test runs)

In this test variant, the recording of the trace data and the code coverage analysis are mostly carried out by
two different teams.

1. The trace team is exclusively responsible for trace recording. Each individual trace recording is
saved in a file (command Trace.SAVE). The trace files are then passed on to the code coverage
team for analysis.

This means that the trace team does not have to load any files that are only required for code
coverage. Files that are only required for the code coverage analysis are therefore marked with (code
coverage only) in this chapter.

2. The code coverage team is exclusively responsible for the code coverage analysis. Each
individual trace file is loaded (command Trace.LOAD), the code coverage analysis is performed
and the result is added incrementally to the preceding analysis results.

The code coverage team must always load all files.
Live code coverage (RTS, SPY)

With live code coverage, everything is done at the simultaneous. Run program execution and record
program flow, stream trace data to host and perform code coverage analysis in TRACE32 PowerView GUI.

For this test variant, all files must be loaded in advance. Since everything has to be performed quickly here,
the executable must be mirrored in the TRACE32 Virtual Memory. (The code is usually read from the target
memory to perform the decoding of the trace data. But this procedure is too slow for live code coverage.)

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 67

Preparation for Statement, Function, Object Code, ocb Decision Coverage

All trace data collection variants can be used here.

Statement, Function, Object Code and ocb Decision Coverage

Source
Files

Load all Needed Files

The following files need to be loaded into TRACE32:
J Executable, which includes paths to all source files

J TRACES32 OS Awareness, if an operating system is used by the target application

The following commands can be used for this purpose:

; basic debug and trace setup

; load the elf executable
; the elf file includes the paths to the source files

Data.LOAD.El1lf "my app.elf"

; mirror the executable to the TRACE32 Virtual Memory
; live code coverage (RTS, SPY) only
Data.LOAD.El1lf "my app.elf" /VM

; load the 0OS Awareness
TASK.CONFIG myos.t32

; detect memory address ranges at the end of functions that were
; address range

sYmbol .CLEANUP.AlignmentPaddings

inserted due to memory alignment and removes them from the function

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage

| 68

Preparation for Call Coverage

All trace data collection variants can be used here.

Call Coverage

Extended
Code Analysis
Data

Source
Files

* Load all Needed Files

The following files need to be loaded into TRACE32:
J Executable, which includes paths to all source files
. Generated .eca files (code coverage only)

J TRACES32 OS Awareness, if an operating system is used by the target application

The following commands can be used for this purpose:

; basic debug and trace setup

; load the elf executable
; the elf file includes the paths to the source files
Data.LOAD.El1lf "my app.elf"

; mirror the executable to the TRACE32 Virtual Memory
; live code coverage (RTS, SPY) only
Data.LOAD.El1lf "my app.elf" /VM

; load the .eca files
sYmbol.ECA.LOADALL /SkipErrors

; load the 0S Awareness
TASK.CONFIG myos.t32

; detects memory address ranges at the end of functions that were

; inserted due to memory alignment and removes them from the function
; address ranges.

sYmbol .CLEANUP.AlignmentPaddings

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 69

Preparation for MC/DC, Condition and Decision Coverage

The preparation is different for the individual code coverage modes:

. “Preparation for Targeted Instrumentation/No Instrumentation”, page 70.
. “Preparation for Code Coverage with Breakpoints”, page 72.
. “Preparation for Full Instrumentation”, page 75

Preparation for Targeted Instrumentation/No Instrumentation

MC/DC, Condition and Decision Coverage

or Extended
So_u sl Code Analysis
Files Data

® Load all Needed Files
* Run Static Preprocessing for Code Coverage

A

The following files need to be loaded into TRACE32:

o Not-instrumented executable or the instrumented executable. Each executable includes the
paths to all source files.

NOTE: Please note that TRACE32 performs the code coverage analysis for the
instrumented executable with the original, non-instrumented source code
files.

For this reason, the paths to the source code files included in the
instrumented executable file must always be adapted accordingly. The
sYmbol.SourcePATH command group offers various ways of doing this.
An introduction to this topic can be found in “Option and Commands to
Get the Correct Paths for the HLL Source Files” in Training Source
Level Debugging, page 9 (training_source_level_debugging.pdf)

. Generated .eca files (code coverage only)

. TRACES32 OS Awareness, if an operating system is used by the target application.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 70

After loading all the necessary files, static preprocessing must be performed to prepare the MC/DC,
condition or decision coverage analysis (code coverage only).

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 71

The following framework can be used for this purpose:

; basic debug and trace setup
; load appropriate executable

; adjust the links to source files in "my app_targeted.elf" so that
; they refer to the non-instrumented source files
IF FILE.EXIST(gaps.json)
(
Data.LOAD.E1lf "my app targeted.elf"
sYmbol.SourcePATH.Translate "c:/my_ app/instrumented" "c:/my app/source"
PRINT "Executable with targeted instrumentation loaded."
)
ELSE
(
Data.LOAD.E1lf "my app.elf"
PRINT "Not-instrumented executable loaded."

; load the .eca files
sYmbol .ECA.LOADALL /SkipErrors

; load the 0OS Awareness
TASK.CONFIG myos.t32

; detects memory address ranges at the end of functions that were

; inserted due to memory alignment and removes them from the function
; address ranges

sYmbol .CLEANUP.AlignmentPaddings

; Configuration of static preprocessing in preparation for
, code coverage analysis

; consider conditional opcodes in the object code
sYmbol .ECA.BINary.ControlFlowMode.Trace ON

; consider source code instrumentation probes in "my_ app_targeted.elf"
IF &instrumented

(
sYmbol .ECA.BINary.ControlFlowMode.INSTR ON

; perform the static analysis for MC/DC, condition and decision coverage
sYmbol .ECA.BINary.PROCESS

IF sYmbol.ECA.BINary.GAPNUMBER()>0.

(
PRINT sYmbol.ECA.BINary.GAPNUMBER() " observability gaps detected. \
Please check the remaining observability gaps."

Preparation for Code Coverage with Breakpoints

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage

MC/DC, Condition and Decision Coverage

Source
Files

Extended
Code Analysis
Data

® Load all Needed Files
e Run Static Preprocessing for Code Coverage

A

The following files need to be loaded into TRACE32:

o Not-instrumented executable, which includes the links to all source files.

o Generated .eca files.

J TRACES32 OS Awareness, if an operating system is used by the target application.

After loading all the necessary files, static preprocessing must be performed to prepare the MC/DC,
condition or decision coverage analysis.

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage

73

The following framework can be used for this purpose:

; basic debug and trace setup

; load executable
Data.LOAD.El1lf "my app.elf"

; load the .eca files
sYmbol .ECA.LOADALL /SkipErrors

; load the 0S Awareness
TASK.CONFIG myos.t32

; detects memory address ranges at the end of functions that were

; inserted due to memory alignment and removes them from the function
; address ranges

sYmbol .CLEANUP.AlignmentPaddings

; Configuration of static preprocessing in preparation for
, code coverage analysis

; consider conditional opcodes in the object code
sYmbol .ECA.BINary.ControlFlowMode.Trace ON

; perform the static analysis for MC/DC, condition and decision coverage
sYmbol .ECA.BINary.PROCESS

Now trace data collection for code coverage can be started. For details refer to “Trace Data Collection and
Code Coverage Measurement”, page 77.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 74

Preparation for Full Instrumentation

MC/DC, Condition and Decision Coverage
Extended

So.urce Code Analysis
Files Data

¢ Load all Needed Files
¢ Run Static Preprocessing for Code Coverage

A
The following files need to be loaded into TRACE32:
J Instrumented executable
NOTE: Please note that TRACES32 performs the code coverage analysis for the
instrumented executable with the original, non-instrumented source code
files.

For this reason, the paths to the source code files included in the
instrumented executable file must always be adapted accordingly. The
sYmbol.SourcePATH command group offers various ways of doing this.
An introduction to this topic can be found in “Option and Commands to
Get the Correct Paths for the HLL Source Files” in Training Source
Level Debugging, page 9 (training_source_level_debugging.pdf)

. Generated .eca files (code coverage only)

J TRACES32 OS Awareness, if an operating system is used by the target application.

After loading all the necessary files, static preprocessing must be performed to prepare the MC/DC,
condition or decision coverage analysis (code coverage only).

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 75

The following framework can be used for this purpose:

; basic debug and trace setup

; load executable
Data.LOAD.El1lf "my app full.elf"

; load the .eca files
sYmbol .ECA.LOADALL /SkipErrors

; adjust the paths to source files in "my_ app_full.elf" so that
; they refer to the non-instrumented source files
sYmbol.SourcePATH. Translate "c:/my app/instrumented" "c:/my app/source"

; load the 0S Awareness
TASK.CONFIG myos.t32

; detects memory address ranges at the end of functions that were

; inserted due to memory alignment and removes them from the function
; address ranges

sYmbol .CLEANUP.AlignmentPaddings

; Configuration of static preprocessing in preparation for
, code coverage analysis

; configure TRACE32 to consider trace event of conditional
; branches/instructions as source for monitoring

; decisions/conditions for code coverage

sYmbol .ECA.BINary.ControlFlowMode.Trace ON

; configure TRACE32 to consider trace source code instrumentation probes
; in "my_app_full.elf" as source for monitoring decisions/conditions for
; code coverage

sYmbol .ECA.BINary.ControlFlowMode.INSTR ON

; perform the static analysis for MC/DC, condition and decision coverage
sYmbol .ECA.BINary.PROCESS

IF sYmbol.ECA.BINary.GAPNUMBER()>O0.

(
PRINT sYmbol.ECA.BINary.GAPNUMBER() " observability gaps detected. \
Please check the remaining observability gaps."

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 76

Trace Data Collection and Code Coverage Measurement

This chapter provides detailed instructions for performing the different variants of trace data collection.

J “Incremental Code Coverage”, page 77.

J “Incremental Code Coverage in STREAM Mode”, page 80.
J “RTS Mode Code Coverage”, page 84.

J “SPY Mode Code Coverage”, page 90.

Incremental Code Coverage

Incremental coverage is supported by all processor architectures which provide information about program
flow that is saved to trace buffer and all TRACES32 configurations. It also supports all code coverage metrics
supported by TRACE32. It is a reliable fallback methods that can be used in the vast majority of
situations.

Data Collection

1. Set the trace to Leash Mode either via the Trace configuration window or via the command
Trace.Mode Leash. This ensures that the target will halt when the trace buffer becomes nearly
full, preventing loss of data. Stack or Fifo mode can also be used if Leash Mode is not supported.

2. Enable the Autolnit checkbox or use the command Trace.Autolnit ON to ensure that the trace
buffer is always cleared before the trace recording is started.

;c;':::l a‘Ci:'\;_TCZQXT & B::Trace EI@
r
& CTS Settings... METHOD
MCDS Settings... Oonchip @ Analyzer | CAnalyzer | Hanalyzer (Integrator Probe O1Probe OlLA
4 List R O ART O LoGGER (O SNOOPer O FDX O NONE
nm Timing ¥
il Chart N state used ACCESS TDelay
() DISable auto - 0. 4 Tronchip
S2 savetrace data... ® OFF 0. 0% v TRACEPORT
52 Load reference data... O Arm SIZE CLOCK #2 MCDS
Reset Ortrigger [1610612736. | | | | 100.0MHz @ BMC
O break
SPY Mode Mode
O Fifo [sLave » advanced
commands (O stack
@ Init @ Leash
& SnapShot (O STREAM
] st FIPE
[] AutoArm RTS

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage | 77

3. Start program execution and wait until it stops.

4. After program execution has stopped, the trace data can be added to the coverage system with the
COVerage.ADD command or by using the +ADD button in the COVerage Configuration window, or

by selecting ‘Add Tracebuffer’ from the Cov menu (shown in the image below).

Cov Window Hel
P & B:COVerage.state EI@
12 Configuration...
j : METHOD
@ List Ranges
(@ List Functions @® MNCremental SPY RTS (U ART
@ List Modules
@ List Variables state Option
OFF StaticInfo Trace
(& Add Tracebuffer ® &
= ON RTS
@ Create Report... &
SourceMetric
Reset .
commands ObjectCode ~ commands
+ ADD =2 Load
@ Init &3 Save
RESet (9 List
(L3 istMadle
(L9 ListFunc
18 LISTLIne
(L9 Listvar
5. The code coverage measurement can be displayed by using the ListFunc button in the
COVerage Configuration window.
148 B::COV.ListFunc (=N ==
B setup...| (Y Goto... | @it +add | Bload.. Psae. @mnit
address tree coverage objectcode (0% 50% 100 |branches bytes
P:90000440--900009BD © \coverage partial 98.293% 92.307% 46. 3. 2. 1406. 382.
P:90000440--9000044D ® BooleanAssignmentNotOp ok 100. 000% 100. 000% 3. 0. 0. 14. 14,
P:9000044E--900004 55 0] eanAssignmentRelExpr ok 100. 000% - 0. 0. 0. 8. 8.
P:900004 56--90000463 oleanAssignmentRelExprTrans ok 100. 000% 100. 000% 1. 0. 0. 14. 14.
P:900004 64--9000047 5 oleanExprCoupledTern ok 100. 000% 100. 000% 4. 0. 0. 18. 18.
P:90000476--90000485 0] eanExprMixedOps ok 100. 000% 100. 000% 3 0. 0. 16. 16.
P:900004 86--90000495 01 eanExpr Same0ps ok 100. 000% 100. 000% 3 0. 0. 16. 16.
P:900004 96--900004CF mp] expowhi ok 100. 000% 100. 000% 5 0. 0. 58. 58.
P: 900004 D0--900004FF mp lexFor ok 100. 000% 100. 000% 5 0. 0. 48. 48.
P:90000500--90000527 mplexIf ok 100. 000% 100. 000% 4 0. 0. 40.
P:90000528--90000569 mplexwhile ok 100. 000% 100. 000% 5 0. 0. 0. 66.
P:9000056A--9000056F lentity ok 100. 000% - 0. 0. 0. 0. 6.
P:90000570--90000591 ®MultiLine partial 58. 823% |me— 41.666% 1 2. 1 2 34.

Details on the code coverage analysis itself are provided in the chapter “Code Coverage Evaluation
in TRACE32”, page 101.

6. If more trace data is required, repeat step 3 and 4 until the desired level of coverage is obtained.

If the data recording and the code coverage analysis are executed by different teams, it is possible to save

the collected trace data and process it at a later point in time. Please refer to the commands Trace.SAVE

and Trace.LOAD.

You can use the COVerage.EXPORT.JSONE command to export the result of the test run. With the
Lauterbach command line tool t32covtool, you can accumulate coverage data that was collected at different

times, with different builds and different target configurations. For details refer to “TRACE32 Merge and

Report Tool”, page 114.

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage

78

Example Script

The entire process can be automated by creating a PRACTICE script. It is assumed that the preconditions
listed in “Best Practices for Trace Recording”, page 64 are satisfied before running the script. In the
example script default settings are commented out.

// Trace.METHOD as automatically selected by TRACE32
Trace.Mode Leash
// Trace.AutoArm ON
Trace.AutoInit ON
COVerage.RESet
// COVerage.METHOD INCremental
RePeaT 10.
(
Go.direct
WAIT !STATE.RUN /()
COVerage.ADD
)
COVerage.ListFunc

// export test result for later reuse
COVerage.EXPORT.JSONE coverage_datal

Summary

A characteristic feature of incremental code coverage is that the individual steps are executed one by one.
Trace information is recorded while the program is running. After the program has been stopped, the
command COVerage.ADD ensures that:

J the raw trace data is uploaded to the host computer
J the raw trace data is decoded to reconstruct the complete program flow
. the program flow is finally added to the code coverage system

This workflow is summarized in the diagram below.

running 1 stopped 1 running L stopped
1 I 1
D T Uploading 3 Beceding
| | | |
' Command: COVerage.ADD ' ' Command: COVerage.ADD '

Details about the code coverage analysis itself are provided in the chapter “Code Coverage Evaluation in
TRACE32”, page 101.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 79

Incremental Code Coverage in STREAM Mode

If a TRACES32 trace hardware tool such as PowerTrace is used it is possible to stream the trace data to a file

on the host file system. Information about the general conditions for trace streaming can be found in the

command description of the Trace.Mode STREAM command.

If the trace data is streamed to the host computer, longer recording times can be achieved. Incremental code
coverage in STREAM mode supports all code coverage metrics supported by TRACES32.

In case of large amounts of trace data, processing may take a long time. TRACES32 provides two alternative

methods to avoid this situation.

The first method is RTS, which is supported for all major architectures. RTS means that trace data is

processed while being recorded and the code coverage results are displayed dynamically. Please see “RTS
Mode Code Coverage”, page 84 for additional information.

If RTS is not supported for your core architectures, then SPY Mode Code Coverage can be an alternative.
Please see “SPY Mode Code Coverage”, page 90 for more details.

Data Collection

1. Set the trace to STREAM Mode either via the Trace Configuration window or via the
Trace.Mode STREAM command.

2. Enable the Autolnit checkbox or use the command Trace.Autolnit ON to ensure that the trace

buffer is always cleared before the trace recording is started.

£ List
nm Timing

iy Chart

Reset

Trace Perf Cov TC2%T
/& Configuration...
& CTS Settings...

MCDS Settings...

g Save trace data...

g Load reference data...

& BuTrace

METHOD

O onchip ® Analyzer

state

O pisable
@® OFF

O Arm

O trigger
O break
O spy

commands
@ Init

& SnapShot
i List
1 AutoArm

AutoInit

CAnalyzer

used

=

0.
SIZE

O ART

Mode
O Fifo
O stack
O Leash
® STREAM
PIPE
RTS

HAnalyzer () Integrator

ACCESS

Probe

O LOGGER () SNOOPer O FDX

TDelay

(o] 2)

OtProbe OlLA
O NONE

auto i

0.

ZJF TrOnchip

0%

CLOCK

[]

Mode
M sLave

% MCDS
) BMC

» advanced

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage

80

3. TRACERS2 by default opens a streaming file in the directory for temporary files
(OS.PresentTemporaryDirectory()).

The streaming file can be optionally set using the command Trace.STREAMFILE. It is
recommended to use the fastest drive available on the host, ideally not the boot drive.

Trace.STREAMFILE "d:\temp\mystream.t32"

4., The maximum size allowed for a streaming file can be optionally set with the help of the
Trace.STREAMFileLimit command.

; limit the size of the streaming file to 5 GBytes
Trace.STREAMFileLimit 5000000000.

Please be aware, that the trace recording is stopped, when the size limit for the streaming file is
reached.

5. Since code coverage does not need any timestamp information, please use the command
Trace.PortFilter MAX to instruct TRACES32 to stream only the raw trace data. Further
background information can be found in the chapter “Disable Timestamps for Trace Streaming”,

page 65.

6. Start the program execution.

7. The program execution on the target must be stopped in order to perform the code coverage
analysis.

- The user may manually stop the program execution.
- A breakpoint may be used to stop the program execution.

- With the help of a script, the program execution may be stopped after a specific period of time.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 81

8. After the program execution has stopped, the trace data can be added to the coverage system with
the COVerage.ADD command or by using the +ADD button in the COVerage Configuration
window, or by selecting ‘Add Tracebuffer’ from the Coverage menu (shown in the image below).

Cov | Window Help & B:COVerage.state EI@
12 Configuration...
1 @ List Ranges LIETEEY
@ IEHEnnetions ® NCremental SPY RTS ART
@ List Modules
@ List Variables state Option
OFF StaticInfo &TI’BCE
Create Report... @on &RTS
SourceMetric
L=l commands ObjectCode ~ commands
+ ADD =2 Load
@ Init &3 Save
RESet (38 List
(i) ictMdile
L8 LIStLine
(L3 Listvar
9. Intermediate results can be displayed by using the ListFunc button in the COVerage
Configuration window.
19 B:COV.ListFunc =0 e ==
&setup... (A Goto... | 1ERList +Add | Bload.. Bsae. @i

tree

coverage [objectcode (0% 50% 100 lbranches
08, 293% | me— 92.307%

address
P :90000440--3000098D

6. 3. 382.
P:90000440--9000044D 100. 000% | ee— (100 . 000% 3. 0. 14.
P:9000044E--900004 55 100. 000% | ee— - 0. 0. 8.
P:900004 56--90000463 100. 000% 100. 000% 1. 0. 14,
P:90000464--9000047 5 100. 000% | me— (100, 000% 4 0. 18.
P:90000476--900004 85 100. 000% | ee————— (100 . 000% 3 0. 16.
P:900004 86--90000495 100. 000% | me— (100 . 000% 3 0. 16.
P:900004 96--900004CF 100. 000% | me— (100 . 000% 5 0. 58.
P:900004D0--900004FF 100. 000% | e——— (100, 000% 5 0. 48.
P:90000500--90000527 100. 000% 100. 000% 4 0. 40.
P:90000528--90000569 ok | 100. 000% | ee——— (100 . 000% 5 0. 66.
P:9000056A--9000056F Identity ok | 100. 000% | ee——————— - 0. 0. 6.

P:90000570--90000591 MultiLine partial 58. 823% |m— 41.666% 1. 2 0. v
>

Details on the code coverage analysis itself are provided in the chapter “Code Coverage Evaluation
in TRACE32”, page 101.

10. Steps 6 and 8 can be repeated until the desired level of coverage is obtained.

If the data is recorded at a test site and there is no time for evaluation, it is possible to save the collected raw
trace data and process it at a later point in time. Please refer to the commands Trace.STREAMSAVE and
Trace.STREAMLOAD.

You can use the COVerage.EXPORT.JSONE command to export the result of the test run. With the
Lauterbach command line tool t32covtool, you can accumulate coverage data that was collected at different
times, with different builds and different target configurations. For details refer to “TRACE32 Merge and
Report Tool”, page 114.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 82

Example Script

In this example script default settings are commented out. It is assumed that the preconditions listed in
“Best Practices for Trace Recording”, page 64 are satisfied before running the script.

// Trace.METHOD Analyzer or Trace.METHOD CAnalyzer
// Trace.AutoArm ON
Trace.AutoInit ON

Trace.Mode STREAM
Trace.STREAMFile "D:\streamfile.t32"
Trace.STREAMFileLimit 5000000000.

Trace.PortFilter MAX

COVerage.RESet
// COVerage.METHOD INCremental

Go

WAIT 10.s

Break
COVerage.ADD
COVerage.ListFunc

// export test result for later reuse
COVerage .EXPORT.JSONE coverage_datal

Summary

The advantage of incremental code coverage with streaming is that larger amounts of trace data can be
recorded in a single test run. However, before the recorded trace data can be processed, the program
execution must be stopped. The command COVerage.ADD ensures that:

J the raw trace data is decoded to reconstruct the complete program flow

. the program flow is added to the code coverage system

This workflow is summarized in the diagram below.

running I stopped
|

Recording
Streaming l |
I Command: COVerage.ADD |

Details about the code coverage analysis itself are provided in the chapter “Code Coverage Evaluation in
TRACE32”, page 101.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 83

RTS Mode Code Coverage

TRACE32 can process the trace data during recording. This operation mode of the trace is called RTS.

RTS is currently supported for the following processor architecture/trace protocols:
o Arm ETMv3, PTM and Arm ETMv4

. Nexus for MPC5xxx and QorlQ

J TriCore MCDS

If RTS is not supported for your core architectures, then SPY mode code coverage could be an alternative.
Please refer to “SPY Mode Code Coverage”, page 90.

RTS requires a TRACES32 trace hardware tool such as PowerTrace and streaming of the trace data to a file
on the host file system has to work without issues. Information on the general conditions for trace streaming
can be found in the command description of the Trace.Mode STREAM command.

RTS mode code coverage supports only the following code coverage metrics: statement coverage, function
coverage, object code coverage and ocb decision coverage.

Data Collection

1. Switch the RTS system to ON in the RTS.state window or with the help of the RTS.ON command.

& B:RTS (=N HoR >
rts utilisation
() OFF
® 0N 26266560, EITors
35211988, StopOnError

commands database no access to code

RESet 1. MB [StopOnNoaccesstocode

& Init taskswitches fifofulls

[stopOnFifofull
Il PROfile state bad addreszes

COVerage stopped | []5topOnBadaddress
@Listl\dodule unknown tasks
ISTATistic [stopOnUnknowntask
= | ListModule diagnostics

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 84

2. Open a COVerage.ListFunc window by using the ListFunc button in the COVerage

Configuration window or by using the command COVerage.ListFunc. Please be aware that trace

data recorded in RTS mode are only processed by TRACES32 as long as one window in TRACE32

displays code coverage information.

Cov | TC2%xT Window
&g:nﬁglraﬁnn_

& B:COVerage

—— METHOD
[E® List Ranges) .
i . INCremental SPY RTS ART
[g, List Functions
[g, List Modules X
@ state Option
List Variables
OFF StaticInfo 2 Trace
3 Add Tracebuffer ® ON 2 RTS
E] Create Report.. SourceMetric
Reset commands ObjectCode hd commands
ADD Load
Init g Save
RESet (9 List
(LB | ictadila
(9 ListFunc
L8 ListLine
(L9 Listvar
3. Start the program and observe the measured code coverage.
189 B::COV.ListFunc
B setup...| (Y Goto... | @List +add | Bload.. Psae. @mnit
address tree coverage lobjectcode [0% 50% 100 |branches
P:90000440--900009BD | = ‘\coverage partial 98, 293 | 92.307% 6 3. 2.
P:90000440--9000044D BooleanAssignmentNotop ok | 100.000% 100. 000% 3 0. 0.
P:9000044E--900004 55 0] eanAssignmentRelExpr ok | 100.000% - 0. 0. 0.
P:900004 56--90000463 oleanAssignmentRelExprTrans ok | 100.000% 100. 000% 1. 0. 0.
P:90000464--9000047 5 oleanExprCoupledTerms ok | 100.000% 100. 000% 4 0. 0.
P:90000476--90000485 0] eanExpriixedops ok | 100.000% 100. 000% 3 0. 0.
P:900004 86--900004 95 07 eanExpr SameOps ok | 100.000% 100. 000% 3 0. 0.
P: 900004 96--900004CF mp 1 exDowh ok | 100.000% 100. 000% 5 0. 0.
P:900004D0--900004FF mplexFor ok | 100.000% 100. 000% 5 0. 0.
P:90000500--90000527 mplexIf ok | 100.000% 100. 000% 4 0. 0.
P:90000528--90000569 mplexwhile ok | 100.000% 100. 000% 5 0. 0.
P:9000056A--9000056F lentity ok | 100.000% - 0. 0. 0.
P:90000570--90000591 ®MultiLine partial 58. 823% | e— 41.666% 1. 2 2

Details on the code coverage analysis itself are provided in the chapter “Code Coverage Evaluation
in TRACE32”, page 101.

4. Stop the program exucution when your tests are completed.

RTS discards the trace data after it is processed by default. If you want to keep the trace data for additional

verification tasks perform these configuration steps before setting up RTS mode code coverage as

described above.

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage

85

1. Set the trace to STREAM mode either via the Trace Configuration window or the
Trace.Mode STREAM command.

2. Enable the Autolnit checkbox or use the command Trace.Autolnit ON to ensure that the trace
buffer is always cleared before the trace recording is started.

Trace Perf Cov TC2WT & BiTrace EI@
&‘hﬁw@“L METHOD
& cr Seﬁlnss... O oOnchip @ Analyzer | Canalyzer | HAnalyzer (Integrator (' Probe ~ O1TProbe OLA
- FiDSSE&mg&” , OarRT OLoGGER O snooPer O FDX O NONE
Y 151
zai Timing ¢ state used ACCESS TDelay
fi Chart ’ () DISable auto - 0. 4 Tronchip
g Save trace data... ® OFF 0. 0% ~ TRACEPORT
52 Load reference data... Oarm SIZE cLOCK B MCDs
Reset O trigger l:l &) BMC
O break
Ospy Mode Mode
O Fifo I sLAVE » advanced
commands O stack
@ Init O Leash
& SnapShot (® STREAM
£ List PIPE
A aitnArm RTS

AutoInit

3. TRACERS2 by default opens a streaming file in the directory for temporary files
(OS.PresentTemporaryDirectory()).

The streaming file can be optionally set by using the command Trace.STREAMFILE. It is
recommended to use the fastest drive available on the host, ideally not the boot drive.

Trace.STREAMFILE "d:\temp\mystream.t32"

4, The maximum size allowed for a streaming file can be optionally set with the help of the
command Trace.STREAMFileLimit.

; limit the size of the streaming file to 5 GBytes
Trace.STREAMFileLimit 5000000000.

Please be aware, that the trace recording is stopped, when the size limit for the streaming file is
reached.

5. Since code coverage does not need any timestamp information, please use the command
Trace.PortFilter MAX to instruct TRACES32 to stream only the raw trace data. Further
background information can be found in the chapter “Disable Timestamps for Trace Streaming”,
page 65.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 86

You can use the COVerage.EXPORT.JSONE command to export the result of the test run. With the
Lauterbach command line tool t32covtool, you can accumulate coverage data that was collected at different
times, with different builds and different target configurations. For details refer to “TRACE32 Merge and
Report Tool”, page 114.

Example Scripts

This example script discards the trace data after it is processed; default settings are commented out. It is
assumed that the preconditions listed in “Best Practices for Trace Recording”, page 64 are satisfied
before running the script.

// Trace.METHOD Analyzer or Trace.METHOD CAnalyzer

; Set breakpoint to end of test run
Break.Set vTestComplete

COVerage.RESet
RTS.ON
COVerage.ListFunc

Go

WAIT !STATE.RUN()

// export test result for later reuse
COVerage .EXPORT.JSONE coverage_datal

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 87

This example script saves the trace data to a streaming file; default settings are commented out.

// Trace.METHOD Analyzer or Trace.METHOD CAnalyzer
// Trace.AutoArm ON
Trace.AutoInit ON

Trace.Mode STREAM
Trace.STREAMFile "D:\streamfile.t32"
Trace.STREAMFileLimit 5000000000.

Trace.PortFilter MAX

; Set breakpoint to end of test run
Break.Set vTestComplete

COVerage.RESet
RTS.ON
COVerage.ListFunc

Go
WAIT !STATE.RUN /()
Trace.List

// export test result for later reuse
COVerage .EXPORT.JSONE coverage_datal

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 88

Summary

The big advantage of RTS mode code coverage is that all necessary steps run in parallel. Large amounts of
trace data can be processed quickly. Code coverage measurement becomes available immediately.

The following steps are performed concurrently with trace data collection:

J The raw trace data are streamed to the host computer, optionally it can be saved to the
streaming file

The raw trace data are decoded to reconstruct the program flow

The program flow is added to the code coverage system

The code coverage results are updated

running | Stopped
|

Recording
Streaming
RTS Decoding

Details about the code coverage analysis itself are provided in the chapter “Code Coverage Evaluation in
TRACE32”, page 101.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 89

SPY Mode Code Coverage

TRACE32 supports processing of trace data while being recorded for all architectures:
. TRACE32 trace hardware tool such as PowerTrace is required

J Streaming of the trace data to a file on the host file system is working without issues

Information about the general conditions for trace streaming can be found in the description of
the command Trace.Mode STREAM.

SPY mode code coverage achieves lower processing speeds than RTS mode code coverage, but supports
all code coverage metrics supported by TRACES32.

Operation States

For SPY mode code coverage, trace streaming is periodically suspended in order to decode the raw trace
data and to process it for code coverage. Please be aware that TRACES32 does not suspend trace streaming
if the trace memory of the TRACES32 trace tool, that operates as a large FIFO, is filled more the 50%.

running 1 stopped
1

Recording

Streaming Streaming Streaming

P
1s

Legend:

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 90

TRACE32 indicates the current trace state by changing between Arm and SPY.

. Arm: Trace data is being recorded and streamed to the streaming file on the host computer.
J SPY: Trace data is being recorded and the content of the streaming file is processed for code
coverage.
& BuTrace EIIEI
METHOD
Oonchip @ Analyzer | CAnalyzer | Hanalyzer (Integrator Probe O1Probe OlLA
O ART O LoGGER (O SNOOPer O FDX O NONE
state used ACCESS TDelay
(O DISable | auto ~ 0. ZJF TrOnchip
C OFF 806289408, 0% TRACEPORT
O Arm SIZE CLOCK % MCDS
O trigger l:l &3 BMC
O break
> @sSpPy Mode Mode

O Fifo [sLave » advanced

commands O stack
@ Init O Leash
& SnapShot (® STREAM
4 List PIPE
[AutoArm RTS
[AutoInit
components trace Data Var List other previous
runing || ML up

The Trace field of the TRACE32 state line
changes between Arm and SPY

=1

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 91

Data Collection

1. Set the trace mode to STREAM either via the Trace configuration window or via the
Trace.Mode STREAM command.

2. Enable the Autolnit checkbox or use the command Trace. ON to ensure that the trace buffer is

always cleared before the trace recording is started.

Trace Perf Cov TC2WT
/& Configuration...
& CTS Settings...
MCDS Settings...
List >
Timing ¥
Chart ¥

Save trace data...

ROED & Bl

Load reference data...

Reset

& BuTrace EI@
METHOD
Oonchip @ Analyzer | CAnalyzer | Hanalyzer (Integrator Probe O1Probe OlLA
OarT OLoGGER O snOOPer O FDX (O NONE
state used ACCESS TDelay
(O DISable auto ~ 0. ZJF TrOnchip
® OFF 0. 0% v TRACEPORT
O Arm SIZE CLOCK % MCDS
O trigger l:l &3 BMC
O break
O spy Mode Mode
O Fifo SLAVE » advanced
commands O stack
@ Init O Leash
& SnapShot (® STREAM
i# List PIPE
AutoArm RTS

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage

92

3. TRACERS2 by default opens a streaming file in the directory for temporary files
(OS.PresentTemporaryDirectory()).

The streaming file can be optionally set using the command Trace.STREAMFILE. It is
recommended to use the fastest drive available on the host, ideally not the boot drive.

Trace.STREAMFILE "d:\temp\mystream.t32"

4., The maximum size allowed for a streaming file can be optionally set with the help of the
command Trace.STREAMFileLimit.

; limit the size of the streaming file to 5 GBytes
Trace.STREAMFileLimit 5000000000.

Please be aware, that the trace recording is stopped, when the size limit for the streaming file is
reached.

5. Since code coverage does not need any timestamp information, please use the command
Trace.PortFilter MAX to instruct TRACES32 to stream only the raw trace data. Further
background information can be found in the chapter “Disable Timestamps for Trace Streaming”,
page 65.

6. Set the coverage method to SPY by using the command COVerage.METHOD SPY or by
selecting SPY in the COVerage configuration window.

7. Enable SPY mode code coverage by the command COVerage.ON or by selecting the ON radio
button in the state field.

Cov TC2%T Window A8 M= = e
é’g“ﬁ"“ﬁ“‘ METHOD
@) List Ranges OMCremental @SPY | RTS | ART
[g, List Functions
[g_, List Modules e Option
s OoFF [staticInfo 2 Trace
€3 Add Tracebuffer @®on PRTS
E*) Create Report... SourceMetric
Reset commands ObjectCode ~ commands
+ ADD =2 Load
@ Init &3 Save
RESet (38 List
(i) ictMdile
(L8 ListLine
(L3 Listvar

8. Open a COVerage.ListFunc window by using the ListFunc button in the COVerage configuration
window or by using the command COVerage.ListFunc. Please be aware that trace data recorded in
SPY mode code coverage is only periodically processed by TRACES2, if at least one window in
TRACER32 displays code coverage information.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 93

9. Start the program and observe directly the results of the code coverage.

149 B::COV.ListFunc

& Setup...
address

M Goto... | @List

tree

+add | Sload... | 5 save...

@ Init

coverage lobjectcode [0% 50%
98. 2!

100 |branches

P:90000440--9000098D
P:90000440--9000044D
P:9000044E--900004 55
P:900004 56--90000463
P:900004 64--9000047 5
P:90000476--900004 85
P:900004 86--900004 95
P: 900004 96--900004CF
P:900004D0--900004FF
P:90000500--90000527
P:90000528--90000569
P:9000056A--9000056F
P:90000570--90000591

]

<

\coverage
® Boo] eanAssignmentNotOp
BooleanAssignmentRe Expr
BooleanAssignmentReExprTrans
Boo]eanExprCoupledTerms
BooleanExprMixedops

® BooleanExpr SameOps
ComplexDoWwhile

ComplexFor

ComplexIf

Complexwhile

Identity

Multiline

partial
ok

ok
partial

. 293%
100. 000%
100. 000%
100. 000%
100. 000%
100. 000%
100. 000%
100. 000%
100. 000%
100. 000%
100. 000%
100. 000%

58.823%

92.307%
100. 000%
100. 000%
100. 000%
100. 000%
100. 000%
100. 000%
100. 000%
100. 000%
100. 000%

41.666%

20. v

>

Details on the code coverage analysis itself are provided in the chapter “Code Coverage Evaluation
in TRACE32”, page 101.

10. Stop the program execution when your tests have completed.

You can use the COVerage.EXPORT.JSONE command to export the result of the test run. With the
Lauterbach command line tool t32covtool, you can accumulate coverage data that was collected at different

times, with different builds and different target configurations. For details refer to “TRACE32 Merge and

Report Tool”, page 114.

Example Script

In the script the default settings are commented out. It is assumed that the preconditions listed in “Best
Practices for Trace Recording”, page 64 are satisfied before running the script.

// Trace.METHOD Analyzer or Trace.METHOD CAnalyzer

// Trace.AutoArm ON
Trace.AutoInit ON

Trace.
Trace.
Trace.

Trace.

; Set

Break.

COVerage
COVerage
COVerage.
COVerage

Go
WAIT

Mode STREAM

STREAMFile

STREAMFileLimit 5000000000.

PortFilter MAX

breakpoint to end of test run

Set vTestComplete

List

.RESet
.METHOD SPY
ON
.ListFunc

I|STATE.RUN ()
Trace.

"D:\streamfile.t32"

// export test result for later reuse
COVerage .EXPORT.JSONE coverage_datal

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage |

94

Summary

SPY Mode Code Coverage can process trace data concurrently while recording. However, it does not
achieve the same processing speeds as RTS mode code coverage.

The following steps are involved:

J Trace information is recorded continuously.
. The raw trace data is streamed to a file on the host computer, but the streaming is periodically
suspended:

- to decode the raw trace data to reconstruct the program flow
- to add the program flow to the code coverage system

- to update code coverage results

running [stopped

Recording

Streaming Streaming

P
1s 1s

Legend:

Details about the code coverage analysis itself are provided in the chapter “Code Coverage Evaluation in
TRACE32”, page 101.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 95

Code Coverage with Virtual Targets

Tracing the program execution on a virtual target slows down its performance. To minimize this impact,
Lauterbach works closely together with manufacturers such as Synopsys. The basic idea is that some parts
of the code coverage processing are offloaded to the virtual target. This information is uploaded to the
TRACE32 code coverage system with the command COVerage.ADD after the program execution has been
stopped. The MCD interface comes with built-in support for this.

To use this feature the following conditions must be met:
J PBI=MCD must be specified in the TRACES32 configuration file, usually ~~/config.t32.

. The Virtual Target must support program address tagging.

COVerage.Mode FastCOVerage ON must be set. If the Virtual Target does not support program
address tagging, TRACES2 will display the error message “function not implemented”.

Cov TC2%xT Window &B‘.‘.CO\F&rage EI@
4? Gonfiguration.. METHOD
@.? List Ranges @ mcremental SPY RTS OART
[g, List Functions
[} List Modules state Option
@ List Variables OFF [V] staticinfo &Tmce
@ Add Tracebuffer OIT .
SourceMetric
B CreateReport.. commands ObjectCode v commands
Reset + ADD 2 Load
& Init Mode E3 save
RESet FastCOVerage 38 List
(30 ListModule
@L'Ls‘tFunc
(L3 ListLine
(3 ListVar

The program addressed tagged in the virtual target can be used for:
J Object code coverage (see “Object Code Coverage Evaluation in TRACE32”, page 101)

. Decision coverage (ocb) (see “Object Code Based (ocb) Decision Coverage Evaluation”, page
106)

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 96

https://www.lauterbach.com/mcd_api.html

An example script might look like this:

COVerage.RESet

COVerage.METHOD INCremental

COVerage.Mode FastCOVerage ON

Go

; Use a breakpoint or time-out to control length of runtime
Break

COVerage.Add

COVerage.ListFunc

Details about the code coverage analysis itself are provided in the chapter “Code Coverage Evaluation in
TRACE32”, page 101.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 97

ART Mode Code Coverage

ART is an acronym for Advanced Register Trace. The ART trace operates by single stepping on assembler

level. After each step, the contents of the CPU registers are uploaded to TRACES32 and stored in a similar
fashion as a program flow trace.

This pseudo-trace data can be used for code coverage. This is not supported for all processor architectures.
The Coverage.METHOD ART can only be selected if supported. Please be aware that ART has a
significant impact on the real-time performance of the target. Each step takes 5 to 10 ms.

Cov | TC2%xT Window &B::COVerage.state EI@
el METHOD

€ List Ranges O INCremental SPY | RTS | @ART
[g, List Functions

@ List Modules

= state Option
s @® oFF [staticInfo & Trace
€3 Add Tracebuffer Oon PRTS
E*) Create Report... SourceMetric
Reset commands ObjectCode ~ commands
ADD =2 Load
@ Init &3 Save
RESet (38 List
(B ListModule
(L3 ListFunc
(L3 ListLine
(L3 Listvar

Trace data recorded with ART can be used for:
. Object code coverage (see “Object Code Coverage Evaluation in TRACE32”, page 101)

J Decision coverage (ocb) (see “Object Code Based (ocb) Decision Coverage Evaluation”, page
106)

Where possible, it is recommended to use the TRACES32 Instruction Set Simulator with Trace.METHOD
Analyzer instead of ART. This has a better performance and supports all code coverage metrics.

The TRACE32 Instruction Set Simulator simulates the instruction set, but does not model timing
characteristics and peripherals. However, the simulator provides a bus trace so that code coverage is easy
to perform. For details on how to start the TRACE32 Instruction Set Simulator refer to “Section
PBIl=<driver>" in TRACE32 Installation Guide, page 48 (installation.pdf).

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 98

Data Collection

Before you start do not forget to switch debugging to mixed or assembler mode by using the Mode.Asm or
Mode.Mix commands.

1. Select Trace.METHOD ART in the Trace configuration window.

2. Set the size of the ART buffer, using either the command ART.SIZE <n> or by entering the value
in the SIZE field of the Trace configuration window.

Trace Pedf Cov TC2%xT &B-.'.Trace EI@
¢ Configuration.. METHOD
&CTSSEﬁ'”Q_S"' Oanalyzer | Cénalyzer - Onchip @ART (OLOGGER Osnoorer OFDX — OLA
MCDS Settings... Hanalyzer () Integrator () Probe IProbe
List >
i Timing ¥ e el
iorlfehar ’ O DiSable
g Save trace data... ® OFF 0.
g Load reference data... O Arm SIZE
Reset Otrigger
O break
Mode
commands @ Fifo
@ Init O stack
& SnapShot
! [JBreakpoints
[AutoArm
AutoInit

3. Set COVerage.METHOD ART in the COVerage configuration window.
4. Enable ART code coverage with COVerage.ON.

il TC29 1 Window & B:COVerage.state EI@
&_’ R METHOD
@) List Ranges O INCremental SPY (JRTS @ART
[g, List Functions
[g_, L?st Mo.dules e Option
s OoFF [staticInfo & Trace
3 Add Tracebuffer @ on 2 RTS
E*) Create Report... SourceMetric
Reset commands ObjectCode ~ commands
ADD =2 Load
@ Init &3 save
RESet (38 List
(B ListModule
(L3 ListFunc
(L3 ListLine
(L3 Listvar

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 99

5. Open a COVerage.ListFunc window, single step the target and observe the result.

(L3 B::COV ListFunc oo =]
J2setup...|| ¥ Goto... | WP List +Add | Pload... | Psave.. @mit
address tree coverage [objectcode |0% 50% 100 |branches bytes
P:40000030--400013C0 | = \diabc partial 4.232% = 1 5009. 212
P:40000030--4000004B funco never 0. 000% 0 28. 0
P :4000004C--4000007F funcl ok 100. 000% 0 52. 2
P:40000080--40000113 func2 partial 59.459% 1 148. 88
P:40000114--40000173 func2a never 0.000% (96. (
P:40000174--400001CF funczb never 0.000% (92. C
P:400001D0--400002A7 func2c never 0.000% 0 216. 0
P:400002A8--4000030F func2d never 0.000% 0 104. 0
P:40000310--4000032F func3 never 0.000% 0 32. 0
P:40000330--4000039F funcd never 0.000% 0 112. 0
P:400003A0--400003EB func§ never 0.000% 0 76. 0
P:400003EC--40000477 funcé never 0.000% 0 140. 0
P:40000478--40000508 func? never 0.000% 0 148. 0
P :4000050C--4000070F funcg never 0.000% 0 516. 0
P:40000710--40000797 func9 never 0.000% 0 136. 0
P:40000798--40000BEF func10 never 0.000% (1112. (
P :40000BF0--40000C87 funcll never 0.000% C C C 1s52. [

Details about the code coverage analysis itself are provided in the chapter “Code Coverage Evaluation in

TRACE32”, page 101.

Example Script

A simple example is shown below.

Mode .Mixed

Trace.RESet

Trace.METHOD ART
Trace.SIZE 65535.

COVerage.RESet
COVerage .METHOD ART

COVerage .ON

Step 65534.

COVerage.ListFunc

7

7

; Set the size of the ART buffer

Single step on assembler level to capture data
Open a Window to see results

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage

100

Code Coverage Evaluation in TRACE32

Only two address-based code coverage metrics—Object Code Coverage and the outdated Object Code-
Based (OCB) Decision Coverage — have to be evaluated in TRACE32. All other code coverage metrics are
preferably evaluated in a web browser.

Object Code Coverage Evaluation in TRACE32

Object code coverage: Object code coverage ensures that each object code instruction was executed at
least once and all conditional instructions (e.g. conditional branches) have evaluated to both true and false.

There are two tagging schemes:

L ok | only exec | not exec | never

This is the tagging scheme for all trace protocols that provide details on the execution of conditional
branches and conditional instructions. Refer also to the COVerage.INFO command. Currently, this
tagging scheme is used only for Arm/Cortex cores with Arm-ETMv1 or Arm-ETMv3 protocols, as well
as Arm-ETMv4 with ETM.COND ON.

. ok | taken | not taken | never

This tagging scheme is used by all trace protocols that provide details solely on the execution of

conditional branches. It is currently applied by most core architectures.

For details refer to “Appendix G: Object Code Coverage Tags in Detail”, page 137.

Evaluation

If you want to use the trace data stored in the code coverage system for object code coverage, select the
SourceMetric ObjectCode in the COVerage configuration window or use the command
COVerage.Option SourceMetric ObjectCode.

Cov | TC2%xT Window
& Configuration...
@ List Ranges

@ List Functions

@ List Modules

@ List Variables

@ Add Tracebuffer
E*) Create Report...

Reset

& B:COVerage.state
METHOD
® NCremental

state
OFF
®on

commands
+ ADD
@ Init
RESet

SPY RTS

Option
StaticInfo

& Trace
P RTS

SourceMetric
ObjectCode ~

commands

=2 Load

§Sa\re

(L9 List
(B ListModule
(L3 ListFunc
(L3 ListLine
(L3 Listvar

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage

101

The following commands show a tabular analysis:

COVerage.ListModule

COVerage.ListFunc

COVerage.ListLine

The following command shows the tagging on source and object code level.

I List.Mix /COVerage

This TRACE32 command displays the object code tagging for the function MultiLine:

List.Mix MultiLine /COVerage

4 BuList Mix MultiLine /COVerage = =R
M Step ® Over || A Diverge ¢ Return ¢ up » Go Il Break | % Mode &= t- Find: coverage.c
true false coverage addr/1ine |code label mnemonic comment i
"~
static unsigned MultiLine(struct Compound *compound)
not taken 198 if ((compound->a = TRUE
ok P:90000570 |[4F54 MultiLine:Td16.w d15, [a4]
not taken P:90000572 |151E jeqlé d15,#0x1,0x9000057C
ok 199 || compound-=b == TRUE
ok P:90000574 |414C 1di6.w d15, [a4]0x4
ok P:90000576 |L31E jeqlé d15,#0x1,0x9000057C
taken 200 || compound->c =— TRUE)
ok P:90000578 |424C 1di6.w d15,[a4]0x8
taken P:90000574A |195E jnel6 d15,#0x1,0x9000058C
taken 201 &% (compound—>d =— TRUE
ok P:9000057C |434C 1di6.w d15, [a4]0x0C
taken P:9000057E |151E jeqlé d15,#0x1,0x90000588
never 202 || compound->e — TRUE
never P:90000580 |444C 1d16.w di15, [a4]0x10
never P:90000582 |131E jeqlé d15,#0x1,0x90000588
never 203 || compound—>f — TRUE)
never P:90000584 |454C 1d16.w di5,[a4]0x14
never P:90000586 |135E jnel6 d15,#0x1,0x9000058C
ok 204 return TRUE;
ok P:90000588 |1282 movl6 d2,#0x1
ok P:9000058A (033C jl6 0x90000590
ok 206 return FALSE;
ok P:9000058C |0282 movl6 d2,#0x0
ok P:9000058E (013C jl6 0x90000590
ok 207 |+
ok P:90000590 |9000 retle
- b

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage |

102

The screenshot on the previous page was taken with the Infineon TriCore™ debugger. Its instruction set
contains no conditional instructions beyond conditional branches. Thus the object code is tagged as follows:

ok

The object code instruction is fully covered.

If the object code is a conditional branch it is tagged with ok if the
conditional branch has be at least once faken and not taken.

All other object code instructions are tagged with ok if they have
been executed at least once.

never

The object code instruction has never been executed.

taken

If the object code is a conditional branch it is tagged with taken if the
conditional branch has be at least once taken, but never not taken.

not taken

If the object code is a conditional branch it is tagged with not taken if
the conditional branch has be at least once not taken, but never
taken.

This TRACE32 command displays a tabular analysis of all functions of the module "coverage". A module
usually corresponds to a source code file.

COVerage.ListFunc.sYmbol \coverage

2 BusYmbolINFO ‘\coverage

(o8)

| 2 Symbols | %% Dump = List Q, view | E&mmu
moduTe
\\coverage_tcZ'coverage
P:90000440--900009BD
module info
a e: ELF-C
TASKING VX-toolset for TriCore: C compiler
.\coverage. c
L B::COVerage.ListFunc.s¥mbol \coverage EI@
2 Setup...|| (¥ Goto... | (G List + Add | P load... | EPsave..| @ it
address tree coverage |objectcode [0% 50% 100
P:90000440--900009BD | = ‘coverage partial 52, 6315 |we— ~
P :90000440--9000044D BooleanAssignmentNotOp ok | 100.000%
P :9000044E--90000455 BooleanAssignmentRelExpr ok | 100.000%
P:90000456--90000463 BooleanAssignmentRelExprTrans ok | 100.000%
P :90000464--90000475 BooleanExprCoupledTerms ok | 100.000%
P:90000476--90000485 BooleanExprMixedOps ok | 100.000%
P :90000486--90000495 BooleanExprSameQps ok | 100.000%
P : 900004 96--900004CF ® ComplexDowhile never 0. 000%
P:900004D0--900004FF ComplexFor never 0.000%
P :90000500--90000527 ® ComplexIf partial 35. 000% |——
P:90000528--90000569 ® Complexwhile never 0. 000%
P : 9000056A--9000056F Identity never 0. 000%
P:90000570--90000591 ®MultiLine partial 58. 823% |——
P:90000592--900005A7 NestedExpr ok 100.000%
P : 900005A8--900005C9 NestedExprTrans ok | 100.000%
P :900005CA--90000615 RunCover ageDemo partial B1. 578% | ——
P:90000616--90000647 SwitchCase taken 92, 000% | e——
P:90000648--9000065D TernaryExpr ok | 100.000% v
< >

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage

103

Further details are displayed if you open the window in its full size:

£ B=COVerage ListFunc.s¥mbol \coverage (= |
2 setup...| (¥ Goto... | (@ List +Add | Pload... | E25ave.. @ mit
address tree coverage [objectcode (0% 50% 100 branches bytes i
P:90000440--9000098BD | = \coverage partial 52.631% 55.769% 25. 7. 1. 19 1406. 40, [
P :90000440--9000044D Boo]eanAssignmentNotOp ok 100. 000% 100. 000% 3. 0. 0. 0. 14. 14.
P :9000044E--90000455 Boo]leanAssignmentRelExpr ok 100. 000% - 0. 0. 0. 0. 8. 8.
P :90000456--90000463 Boo]eanAssignmentRelExprTrans ok 100. 000% 100. 000% 1. 0. 0. 0. 14. 14.
P :90000464--90000475 BooleanExprCoupledTerms ok
P:90000476--90000485 BooleanExpriixedops ok | |branches bytes
P:90000486--90000495 BooleanExprSame0ps ok T5. 760% pL 7 1 19 1406 =40
P :90000496--900004CF = ComplexDowhile never . - o . - . " M
P:900004D0--900004FF & ComplexFor never | |100.000% 3. 0. 0. 0. 14. 14
P:90000500--90000527 ® ComplexIf partial _ 0 0 0 0 8]
P:90000528--90000569 = Complexwhile never o o o - =
P:9000056A--9000056F Id_‘entity never 100. 000% 1. 0. 0. 0 14. 14
P:90000570--90000591 ®MultiLine partia n 0 0 0]
P :90000592--900005A7 NestedExpr ok 100. 000% - . . 18. - h
P:900005A8--900005C9 NestedExprTrans ul1< 100. 000% 3 0. 0. 0 16. 16
P :900005CA--90000615 RunCoverageDeno partia 9 3 0 0 0 6
P :90000616--90000647 SwitchCase taken 100. 000% . . . = 16. - 2
P :90000645--90000650 @ TernaryExpr ok 0. 000% 0. 0. 0. 5 58. 0
P:9000065E--9000067 3 @ TernaryExprTrans ok 0. 000% 0. 0. 0. 5 48, 0. |v
- 37.500% 1. 1. 0. 2 40.
0.000% 0. 0. 0. 5 66.
- 0. 0. 0. 0 6.
41.666% 1. 2. 1. 2 34.
- 0. 0. 0. 0 22.
100. 000% 2. 0. 0. 0 34.
- 0. 0. 0. 0 76.
90. 000% 4. 1. 0. 0 50.
100. 000% 1. 0. 0. 0 22.
100. 000% 1. 0. 0. 0 22. 22

Conditional branches

branches

Percentage calculated according to the
following formula:

2 x ok + taken + nottaken
2 x (ok + taken + nottaken + never)

ok

Number of conditional branches that are both
taken and not taken

taken Number of conditional branches that are only
taken

not taken Number of conditional branches that are only
not taken

never Number of conditional branches that are
neither taken nor not taken

Byte count

bytes

Number of bytes

ok

Number of bytes that are already tagged as ok

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage |

104

Example Script

// Demo script "~~/demo/t32cast/eca/measure_mcdc.cmm"

// Select code coverage metric object code
COVerage.Option SourceMetric ObjectCode

// List code coverage results at source and object code level
List.Mix MultiLine /COVerage

// List code coverage results at function level
COVerage.ListFunc.sYmbol \coverage

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 105

Object Code Based (ocb) Decision Coverage Evaluation

Lauterbach regards this code coverage metric as outdated. However, it can be helpful for special problems.
If such a situation arises, our support team will inform you.

Evaluation Strategy

Decision coverage: Every point of entry and exit in the program has been invoked at least once and every
decision in the program has taken on all possible outcomes at least once.

TRACEB32 Interpretation: ocb decision coverage is achieved if full object code coverage is achieved.
However, the following should be considered:

Unoptimized code can lead to false negative results. False negative means that decisions are tagged as
incomplete although decision coverage has already been achieved. That means ocb decision coverage may
need more test cases than the standard decision coverage

Optimized code can lead to false positive results if a condition is no longer represented by a conditional
branch/instruction or the trace protocol provides no information about the state of conditional instructions.
False positive means that decision coverage is indicated too early.

Since the source code is not analyzed for ocb decision coverage, TRACE32 does not know where decisions
are located. Therefor source code lines are tagged as follows:

. dc+stmt | incomplete
=} [BuList P:0x90000500 /COV] EI@
M step B Over | M Diverge | « Return ¢ up » Go I Break | [%|Mode | &ef t. Find: coverage.c
id dec/cond true false coverage addr/1ine [source |
1 ~
unsigned outcome = FALSE;
stmt+de 115 if (a && !(b > -100 || !(c > 42)) && Identity(d) < 36) {
stmt+dc 116 A outcome = TRUE;
else {
stmt+dc 119) outcome = FALSE;
stmt+dc 121 | return outcame;
stmt+dc 122 |}
v

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 106

Evaluation

If you want to use the trace data stored in the code coverage system for ocb decision coverage, select the

SourceMetric Decision in COVerage state window or use the command

COVerage.Option SourceMetric Decision.

You cannot specifically select ocd decision coverage in TRACE32. TRACES32 automatically performs it if no
.eca data was loaded during the code coverage measurement.

Cov | TC2%xT Window
/2 Configuration...
@ List Ranges

@ List Functions

@ List Modules

@ List Variables

@ Add Tracebuffer
E*) Create Report...

Reset

& B:COVerage.state
METHOD
® NCremental

state
OFF
®on

commands
+ ADD
@ Init
RESet

SPY RTS ART

Option
StaticInfo

SourceMetric

Decision i

& Trace
2 RTS

commands
=2 Load
§Sa\re
(38 List
(B ListModule
(L3 ListFunc
(L3 ListLine
(L3 Listvar

The following commands show a tabular analysis:

COVerage.ListModule

COVerage.ListFunc

The following command shows the tagging on source code level.

I List.HIl /COVerage

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage

107

This TRACE32 command displays the ocb decision coverage tagging for the function ComplexDoWhile:

List.HLL ComplexDoWhile /COVerage

=¥ [BiList P:0% 90000496 /COV] [N E=E T
M Step B Over | JyDiverge & Return ¢ up b Go Il Break | Y% Mode & t. Find: coverage.c
id dec/cond true false coverage addr/Tine |source |
stmt+dc 57 [static unsigned CompTexDowhile(int const a, int const b, int const c, int const d)}
stmt+dc 59| unsigned num_cycles = Ou;
do { o
stmt+dc 62 if (num_cycles > 1u) {
stmt+dc 63 i reak;
stmt+dc 65) Hu\n_(yc'l es++;
stmt+dc 67 while (((!(Identity(a) »= -45) && Identity(b)) && Identity(c)) || d):
stmt+dc 69| return num_cycles;
stmt+dc 70 [} v

Source code lines are tagged as follows:

dc+stmt The source code line achieved full object code coverage and thereby
either decision or statement coverage.

incomplete The source code line did not achieve full object code coverage and
thereby no decision or statement coverage.

Object code instructions get object code tagging, if ocb decision coverage is performed.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 108

This TRACE32 command displays a tabular analysis of all functions of the "coverage" module. A module

usually corresponds to a source code file.

COVerage.ListFunc.sYmbol \coverage

2 BusYmbolINFO ‘\coverage

(o8)

0

| 2 Symbols | %% Dump

= List

Oy, View

3 mmu

oduTe
\\coverage_tcZ'coverage

P:90000440--9000098BD

: ELF-C

- ZCoverage.cC

: TASKING VX-toolset for TriCore: C compiler

L B::COVerage.ListFunc.s¥mbol \coverage EI@
2 Setup...|| (¥ Goto... | (G List + Add | P load... | EPsave..| @ it
address tree coverage | decision [0% 50% 100 |
P:90000440--900009BD | = ‘coverage Tncomplete 74.390% |m— ~
P :90000440--9000044D BooleanAssignmentNotOp stmt+dc | 100.000%
P :9000044E--90000455 ® BooleanAssignmentRelExpr stmt+dc | 100.000%
P:90000456--90000463 ooleanAssignmentRelExprTrans stmt+dc | 100.000%
P :90000464--90000475 ooleanExprCoupledTerms stmt+dc | 100.000%
P:90000476--90000485 ooleanExprMixedips stmt+dc | 100.000%
P :90000486--90000495 ooleanExprSame0ps stmt+dc | 100.000%
P : 900004 96--900004CF omplexDowhile incomplete 0. 000%
P : 900004D0--900004FF ComplexFor stmt+dc | 100.000%
P :90000500--90000527 ComplexIf stmt+dc | 100.000%
P:90000528--90000569 ® Complexwhile incomplete 33.333% |—
P:9000056A--9000056F Identity stmt+dc 100.000%
P :90000570--90000591 ®EMultiLine incomplete 44, 444%
P:90000592--900005A7 NestedExpr stmt+dc | 100.000%
P : 900005A8--900005C9 NestedExprTrans stmt+dc | 100.000%
P : 900005CA--90000615 RunCover ageDemo incomplete B8. 235% |— v
< >
Tags for Object Code Based (ocb) Decision Coverage
. stmt+dc: All source code lines of the function/module are tagged with stmt+dc.
. incomplete: At least one source code line of the function/module is tagged with incomplete.

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage

109

Further details are displayed when you open the window in its full size:

£ B:COVerage ListFunc.s¥mbol \coverage =N ===
2 setup...| A Goto... | @List +add | Sload. | Psave.. @ mit
address tree coverage | decision [0% 50% 100 Tines dec bytes i
P:90000440--9000098D | = \coverage Tncomplete | 74. 306% |mmms 207. 154. 1406. 1012. |
P:90000440--39000044D ® BooleanAssgnmentNotop stmt+dc | 100, 000% (m— 2. 2. 14. 1a.
P:9000044E--90000455 ® BooleanAssignmentRe] Expr Stit+dc | 100, 000% |m— 2. 2. 8. 8
P+ 900004 56--30000463 BooleanssignmentRelExprTrans Stmtdc | 100 000% |m— 1. 1 14. 14
P:00000464--30000475 u]leanExpr(uupledTerms 5tmt+§c 100, 000% |me—— 5. 5 18. 18
P:90000476--90000485 0leanExprMixedOps stmt+dc | 100 14
P: 900004 86--30000495 oleanExprSameOps stmt+dc | 100 ines _ dec bytes __
P: 900004 96--900004CF mplexDohile incomplete 0 207. 154. 1406. 1012.
P:300004D0--900004FF mplexFor stmt+dc | 100 2 2 14 14
P:90000500--90000527 omplexIf stmt+dec | 100 . - . -
P:90000528--90000569 ® Complexwhile incomplete | 33 2. 2. 8. 8
P:9000056A--3000056F ® Identity stmt+dc | 100 4 4 14 14
P:90000570--90000591 ®MuTtiline incomplete | 44 . . .
P:90000592--900005A7 # NestedExpr stmt+dc | 100 5. 5. 18. 18
P:900005A8--300005C9 NestedExprTrans stmt+dc | 100 5 5 16 16
P:900005CA--30000615 RunCoverageDemo incomplete 88 5' 5' 16' 16
= 8. 0. 58. 0. o
8. 8. 48. 48
5. 5. 40. 40
9. 3. 66. 26
2. 2. 6. 6
9. 4. 34. 20
2. 2. 22. 22
7. 7. 34. 34
17. 15. 76. 70
Line count
lines Number of source code lines within the
function/module
ok Number of source code lines tagged with
stmt+dc
Byte count
bytes Number of bytes within the function/module
ok Number of bytes tagged with stmt+dc

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 110

Example Script

// Demo script "~~/demo/t32cast/eca/measure_mcdc.cmm"

// Select code coverage metric decision
COVerage.Option SourceMetric Decision

// List code coverage results at source code line level
List.Hll ComplexDoWhile /COVerage

// List code coverage results at function level
COVerage.ListFunc.sYmbol \coverage

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 111

Comment Your Results

Address-based bookmarks can be used to comment not covered code ranges, which are fine but not

testable in the current system configuration.

5] [BeList P:0:d2EC /COV] = EoR 5
[M Step][W Over][+ Mext][+ Return][¢ up][» Go][1l Break] ¥ Mode] Find: jpeg.c
coverage addr/1ine |code 1abel mnemonic |comment Loy
ol SP:00001308 [7C9E2378 mr r3c,r4 -
ok 160 struct jpeg_error_mgr *err = cinfo-serr;
ok SP:0000130C |83BF0000 Twz r29,0x0(r31)
taken 162 if (msg_level < 0) { B
ok SP:00001310 |2C1E0OOD cmpwi r30,0x0
taken SP:00001314 4080003(/ bge 0x1350
* It's a warning message. Since corrupt files may generate many
* warnings, the policy implemented here is to show only the first
ﬁ/warn'ing, unless trace_level »= 3.
never 168 1 err—>num_warnings — 0 err—>trace_level >= 3
never SP:00001318 |819D006C Program Address 12,0x6C(r29
never SP:0000131C |2C0C0000 + GoTil 12,0x0
never SP:00001320 |41820010 en

4 a Breakpoint...
e Breakpoints
i Display Memory

gE Toggle Bookmark
Af Set PC Here
% Edit Source

i View Info

k1330 i

iE] [BList P:0:d 2EC /COV] [=] =]
[Mistep |[% over || $next |[[Return|[@ up |[»Go |[M Break |[¥ Mode | Find: ipeg.c
coverage addr/1ine |code 1abel mriemonic |comment Ly
ol SP:00001308 [7C9E2378 mr r3o,r4 -
ok 160 struct jpeg_error_mgr *err = cinfo-serr;
ok SP:0000130C [83BF0000 Twz r29,0x0(r31)
taken 62 if (msg_level < 0) { D
ok SP:00001310 |2C1EQOOD cmpwi r30,0x0
taken SP:00001314 4080003C/ bge 0x1350
* It's a warning message. Since corrupt files may generate many
* warnings, the policy implemented here is to show only the first
ﬁ/warn'ing, unless trace_level »>= 3.
err—>num warnings — 0 |[[err
never SP:00001318 e R R N - =
never SP:0000131C ﬁ% Bu:BM.CHAMNGE "" SP:0:1318
never SP:00001320 5
— name o
error_notest2
— address / symbol
emit_message\9 v
— remark
Mot testable in current configuration -
 —— [set | [Dpeete | [cancel

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage

112

List all bookmarks:

I BookMark.List

@ B:BookMark.List

=8 Eon

(3 Delete Al || 52 store... | 22 Load... |[glf Create..)
bookmark addr /record symbol/time source line remark N
"ATTocation” C:000011F0 [Jpeg_mem_availabTe J:\ANDY\mpc55xx-Jpegi.jpeg. C 63. Mot testabTe in current system configuration .
"Decompress" €:0000166C i]?_input_buffer\5+0x4 1:%ANDY\mpc55xx-]peg\]peg. 386. Mo decompress data available
"Output_array" C:00007788 |jcopy_sample_rows J:\AND\mpc55xx-]Jpegijutils. c 1119. Mo test pattern
"Flash" €:00001CC8 111a5i:_b‘iu_setup\13 J:\AND\mpc55xx-]peg\]peg. c 11160. Mo MAND flash in this configuration
N"Error_notest2" €:00001318 [emit_message'9 J:\ANDYmpc55xx-Jpeg\jpeg. c 1168. Mot testable in current configuration s
4 [| 3

The current bookmarks can be saved to a file and reloaded later on.

I STOre <file> BookMark

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage | 113

TRACE32 Merge and Report Tool

Typically, code coverage is not measured in a single test pass, but is approached gradually. This creates the

need for:
. saving the results from single test passes.
. merging the saved results and/or to generate an overall report.

As already described, the COVerage.EXPORT.JSONE command allows you to export information on the
functions and source code lines from the code coverage system to a JSON file. Lauterbach offers the

command line tool t32covtool to merge the exported results and/or create an overall report. t32covtool runs
on Windows and Linux.

t32covtool can be used for the source metrics statement, full decision,
condition coverage, MC/DC as well as call and function coverage.

It cannot process object code metrics and is therefore not suitable for object
code and object code based decision coverage.

The command line tool t32covtool and its options.

I t32covtool <options> <input>

-f Optional, overwrite output directory if existing.
--force-overwrite

-h Print help.
--help

-j Merge JSON files into a summary JSON file.
--output-json <file>

-l The <input> to t32covtool can be either a number of JSON files or a
-filelist <file> .txt file containing a list of JSON files (option --filelist). Using a .txt file
is particularly recommended when there are many JSON files. In the
.Ixt file, each JSON file should be listed on a separate line, as shown
in the example.

o
Datei Bearbeiten Suchen Ansicht Kodierung Sprachen Einstellingen Werkzeuge Makro Ausfiihren
Erwciterungen Fenster ?

o &= = s & (&) |t g @ & | BE|S ERERRE >

Blisone it £ |

1 export_testl.json
2 export_test2.jisen
3 export_test3.json

length:55 lines: 3 Ln:1 Col:1 Pos:1 Windows (CRLF) UTF-8 INS

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 114

-m Choose source code metric for report. Supported metrics are:
--source-metric <metric> statement, decision, condition, mcds, call, function

-0 <dir> Optional, set output directory.
--outputdir <dir>

-V Print version.
--version

Example 1

Generate an HTML report

- specify the source metric decision.

- specify report_24 as output directory, advise t32covtool to overwrite the directory if it already exists.
- specify the input files.

t32covtool --source-metric decision
--outputdir report_24 --force-overwrite
export_unittestl.json export_unittest2.json export_unittest3.json

Example 2

Generate an HTML report

- specify the source metric statement.

- specify report_24 as output directory, advise t32covtool to overwrite the directory if it already exists.
- specify jsone_list.txt that include list of input files.

t32covtool --source-metric statement
--outputdir report_24 --force-overwrite
--filelist jsone_list.txt

Example 3

Generate an html report and a summary JSON file

- specify the source metric decision.

- specify report_24 as output directory, advise t32covtool to overwrite the directory if it already exists.
- specify the files name for the accumulated JSON.

- specify jsone_list.txt that include list of input files.

t32covtool --source-metric decision
--outputdir report_24 --force-overwrite -—--output-json sum.json
--filelist jsone_list.txt

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 115

Example 4

Generate an accumulated JSON file.
- specify the files name for the accumulated JSON.
- specify jsone_list.txt that include list of input files.

t32covtool --output-json sum.json
--filelist jsone_list.txt

You can find a sample script for using the command line tool t32covtool at
~~/demo/coverage/merge_demo/merge_unittests/demo.cmm.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 116

Appendix A: TRACE32 Coverage Report Utility

After the code coverage measurement is completed, a code coverage report has to be generated in order to
document the results. TRACES32 includes a Coverage Report Utility for this purpose.

Choose Create Report... in the Cov menu to open the TRACE32 Coverage Report Utility.

Cov | TC2%xT Window
& Configuration...
@ List Ranges

@ List Functions

@ List Modules

@ List Variables

@ Add Tracebuffer
E) Create Report...

Reset

£ Coverage Report Utility 7.0.0+r16185 = =R

Hierarchic code coverage report split over multiple files

Options:

DECISION | Source Code Metric: What code coverage criteria should be used for HLL lines?
ASK ~ | Existing: What should happen, if the output-folder already exists?

3. | Compression Level
XML viewable via browser. Some browser need opt. '--allow-file-access-from-files'
SORDER | Order: In what order should source code lines be displayed?

SINGLE ~ . |DECISION * Format: What format should be used to display the code coverage?

[Data: Include data sections [Jaline: Show absolute line numbers
Parameters:
| C:T32_TriCore_29_June/demo/t32cast/eca/report_2020-07-06 | 1! | Output Folder

SYMBOL | Filter: What do the items in the whitelist represent?

e

Address range
or list of symbols

(%) Create Report

o)

Open report in browser when finished Help

Push the Create Report button to generate a standard report.

The implementation of the dialog can be found in the following PRACTICE script:
" ~~/demo/coverage/multi_file_report/create_report.cmm™ .

The comments in the script contain information against which browsers the script was tested and which

additional setting might be necessary. It is recommended to read this in advance.

PEDIT ~~/demo/coverage/multi_file_ report/create_report.cmm

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage

117

If you start the script with parameters, the script is directly executed.

CD.DO ~~/demo/coverage/multi_file_report/create_report.cmm \
"manual" "SYMBOL" "\coverage" \
"METRIC=DECISION EXISTING=REPLACE COMPRESSION=2"

Note

For larger projects it is recommended to copy the object code into the TRACE32 Virtual Memory. This
makes the creation of the report faster. Here a short script example.

Data.Load.elf my_project /VM ; Load your code again, this time
; into the TRACE32 Virtual Memory.

Trace.ACCESS VM ; Advise TRACE32 to use the code
; loaded to the TRACE32 Virtual
; Memory for trace decoding

; Create your report

Trace.ACCESS auto ; Reset the TRACE.ACCESS to its
; default

If you use dynamic memory management (MMU) with SYStem.Option MMUSPACES ON, the following
command sequence is recommended:

TRANSlation.SHADOW ON ; Allow several address spaces
; in TRACE32 Virtual Memory

Data.LOAD.El1f my_project 0x2::0 /VM ; Load your code again, e.g. to
; space ID 0x2, this time into
; the TRACE32 virtual memory

Trace.ACCESS VM ; Advise TRACE32 to use the code
; loaded to the TRACE32 Virtual
; Memory for trace decoding

; Create your report

Trace.ACCESS auto ; Reset the TRACE.ACCESS to its
; default
TRANSlation.SHADOW OFF ; Reset TRANSlation.SHADOW to

; its default

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 118

Appendix B: Assemble Multiple Test Runs at Address Level

There are two ways to assemble multiple test runs.

. Save and reload the data content of the code coverage system
. Save and reload the complete trace information
NOTE: Please make sure that you only assemble test runs that were carried out with

the identical executable(s).

Save and Restore Code Coverage Measurement

COVerage.SAVE <file> This command saves the following data in the specified <file>:
object code coverage tagging based on addresses
the MC/DC status of all conditions based on their addresses

The default extension is .acd (Analyzer Coverage Data).
To assemble the results from several test runs, you can use:

J Your TRACES32 debug and trace tool connected to your target hardware.

J Alternatively you can use a TRACES2 Instruction Set Simulator (see “Section PBl=<driver>" in
TRACE32 Installation Guide, page 48 (installation.pdf)).

Before you load an acd file into TRACE32 with the following command you need to make sure, that:

. the test executable has been loaded into memory
. the debug symbol information for the test executable has been loaded
J if needed for the selected code coverage metric, .eca files are loaded

COVerage.LOAD <file> /Replace Load coverage data from <file> into the TRACE32 code
coverage system. All existing coverage data is cleared.

COVerage.LOAD <file> /Add Add coverage data from <file> to the TRACE32 code
coverage system.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 119

Example script

Save data content of the code coverage system:

COVerage.SAVE testrunl.acd

COVerage.SAVE testrun2.acd

Assemble coverage data from several test runs:

; Basic setups

Data.LOAD.E1f jpeg.elf ; Load code into memory and
; debug info into TRACE32

// sYmbol.ECA.LOADALL /SkipErrors ; Load .eca files if needed
COVerage.LOAD testrunl.acd /Replace

COVerage.LOAD testrun2.acd /Add

COVerage.Option SourceMetric Statement ; Specify code coverage metric

COVerage.ListFunc ; Display code coverage for
; all functions

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 120

Save and Restore Trace Recording

I Trace.SAVE <file> Save trace buffer contents to <file>.

Saving the trace buffer contents enables you to re-examine your tests in detail any time.

To assemble the results from several test runs, you can use:
J Your TRACES32 debug and trace tool connected to your target hardware.

J Alternatively you can use a TRACES2 Instruction Set Simulator (see “Section PBl=<driver>" in
TRACE32 Installation Guide, page 48 (installation.pdf)).

In either case you need to make sure, that the debug symbol information for the test executable has been
loaded into TRACE32 PowerView.

Trace.LOAD <file> Load trace information from <file>to TRACE32.

The default extension is .ad (Analyzer Data).

COVerage.ADD Add loaded trace information into the TRACES32 code
coverage system.

Example script

Save trace buffer contents of several tests to files.

Trace.SAVE testl.ad

Trace.SAVE test2.ad

Reload saved trace buffer contents and add them to the code coverage system.

; Basic setups

Data.LOAD.El1f jpeg.elf ; Load debug info into TRACE32

// sYmbol.ECA.LOADALL /SkipErrors ; Load .eca files if needed

Trace.LOAD testl.ad ; Load trace information from
; file

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 121

COVerage.ADD

Trace.LOAD test2.ad

COVerage.ADD

COVerage.Option SourceMetric Statement

COVerage.ListFunc

Trace.LOAD test2.ad
Trace.List

add the trace information
into code coverage system

load trace information from
next file

add the trace information
into code coverage system

specify code coverage metric

Display coverage for all
functions

load trace information from
file for detailed
re-examination

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 122

Appendix C: Assembler-Only Functions and Code Coverage

Object Code Coverage

Code that is not part of a source code function is discarded for the object code coverage. If you want to

include this code you have to assign a function name to it:

sYmbol.INFO <symbol>

sYmbol.RANGE(<symbol>)
specified symbol.

sYmbol.NEW.Function <name> <addressrange> Create a function.

sYmbol .NEW.Function t32_ malloc sYmbol.RANGE(_ _malloc)

sYmbol .NEW.Function t32_ insert sYmbol.RANGE(__insert)

The manually created functions are assigned to the \\Usen\Global module.

Display details about a debug symbol.

Returns the address range used by the

£ B:COVerage ListModule (=N~
& setup... | A Goto... | EdList +Add | & Load... | 5 save... @ Init
address tree coverage [objectcode [0% 50% 100 |branches bytes i
P:00012320--000125D7 ijeg thrans never 0.000% 0.000% 0. 0. 0. 17. 696. 0. &
P:000125D8--00012CDB \\jpeg\jdapistd partial 24, 498% |mm— 22.368% 7. 0. 3. 28. 1796. 440.
P:0001544C--00015C97 \\jpeg\chario never 0.000% 0.000% 0. 0. 0. 12. 588. 0.
none ‘\\Jpeg\Global
none = \\User\Global
P:000131CC--000131EF ®t32__insert ok | 100. 000% |se—— 0. 0. 0. 36. 36.
P:000132F8--000134DB ®t32__malloc partial 68, 595K |m— 79.166% 9. 0. 1. 2. 484. 32. %
< >

The object code lines of the assembler functions are marked with the same tags as the object code lines of

source code functions.

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage |

123

Source Code Metrics

Code that is not part of a source code function is discarded for coverage. If you want to include this code you
have to assign a function to it:

sYmbol.INFO <symbol> Display details about a debug symbol.
sYmbol.RANGE(<symbol>) Returns the address range used by the
specified symbol.
sYmbol.NEW.Function <name> <addressrange> Create a function.
sYmbol.NEW.Module <name> <addressrange> Create a module.

Functions created with the sYmbol.NEW.Function command are grouped under the module name
\\WUsen\Global. No address range is assigned to this module. Alternatively, several functions can be
aggregated under a newly created module. An address range has to be assigned to the new module
\Global\<name> when it is created and it then includes all functions that are located within its address
range.

sYmbol .INFO _ malloc
sYmbol.INFO __ insert

sYmbol .NEW.Module t32_module P:0x000131cc--0x00134db

sYmbol .NEW.Function t32_ malloc sYmbol.RANGE(__malloc)

sYmbol .NEW.Function t32_insert sYmbol.RANGE(__ insert)

€] B:COVerage ListModule
Zcetup... A Goto.. (@ List +add | Rload.. Bsave..| @ mnit
address tree coverage | statement 0% 50% 100 lines
P:000116D8--0001231F \\jpeg\jdmaster Tncomplete 52.941% |— 204,
P:00012320--00012507 “\jpeg\jdtrans incomplete 0.000% 44,
P:000125D8--00012CDB ‘\\Jpeg\jdapistd incomplete 26.415% |m— 106.
P:000131CC--000134DB = \\User\t32_module |incomplete 71.538% |m— 130.
P:000131CC--000131EF ®t32__insert stmt | 100, 000 |e— 9.
P:000132F8--000134DB t32_malloc incomplete 659, 421% |—————— 121.

Depending on the selected source code metric, the assembler functions or the modules are tagged as

follows:
Metric Tag Description
all source code incomplete At least one assembler line within the function
metrics is tagged with never, taken or not taken.
Statement stmt All assembler lines are tagged with ok.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 124

Metric Tag Description

Decision stmt+dc All assembler lines are tagged with ok.
CONDition stmt+cc All assembler lines are tagged with ok.
MCDC stmt+mc/dc All assembler lines are tagged with ok.
Function func All assembler lines are tagged with ok.
Call call All assembler lines are tagged with ok.

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage

125

Appendix D: Data Coverage

Trace Data Collection

Since off-chip trace ports usually do not have enough bandwidth to make all read/write accesses (and the
program flow) visible, they are rather unsuitable for data coverage. For test phases in which testing in the
target environment is not yet required, a TRACES32 Instruction Set Simulator can be used well for data
coverage.

Since TRACES2 Instruction Set Simulators provide full program and data flow trace based on a bus trace
protocol, no special setup is required.

4 BrTrace List oo s
B setup...|| 1 Goto... | FyFind... | el Chart | EProfile | I MIPS & Mare Y Less
record run |address cycle |data symbaol ti.back i
00000444 P:900408BA Tetch 0378 ycoverage'coverage'\TestMuTti1 Tine+0xZ8 0.100us
st16.w [a10]0x0C,d15 =
+00000445 D:70003FF4 wr-data 00000001 0.100us ™
+00000446 P:900408BC fetch 01DA ‘\coverage'coverage'\TestMultiline+0x2A 0.100us ¥
compound. e = TRUE; A~
mov1l6 d15,#0x1
+00000447 P:900408BE fetch 0478 M\ coverage'coverage\TestMultiline+0x2C 0.100us
st16.w [al0]0x10,d15
+00000448 D:70003FF8 wr-data 00000001 0.100us
+00000449 P:900408C0 fetch 01DA ‘\coverage'coverage'\TestMultiline+0x2E 0.100us
compound. f = TRUE; v
< >

If you want to use an onchip trace or an offchip trace port for data tracing, please refer to the following
documents for setup details:

. Arm: “Training Arm CoreSight ETM Tracing” (training_arm_etm.pdf), “Training Cortex-M
Tracing” (training_cortexm_etm.pdf)

. MPC5xxx/SPC5xxx, QorlQ and RH850: “Training MPC5xxx/SPC5xx Nexus Tracing”
(training_nexus_mpc5500.pdf)

. TriCore: “Training AURIX Tracing” (training_aurix_trace.pdf)

J For other processor architectures, please refer to the corresponding “Processor Architecture
Manuals”.

Please note that data coverage only makes sense if the trace does not contain a high number of TARGET
FIFO OVERFLOWS.

It is recommended to use incremental coverage for data coverage (see “Incremental Code Coverage”,
page 77).

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 126

Evaluation

If you want to use the trace data stored in the coverage system for data coverage, select the SourceMetric
ObjectCode in the COVerage configuration window or use the command
COVerage.Option SourceMetric ObjectCode.

Cov | TC2%xT Window
/2 Configuration...
@ List Ranges

@ List Functions

@ List Modules

@ List Variables

@ Add Tracebuffer
E*) Create Report...

Reset

& B:COVerage.state
METHOD
® NCremental

state
OFF
®on

commands
+ ADD
@ Init
RESet

Option
StaticInfo

& Trace
2 RTS

SourceMetric
ObjectCode ~

commands

=2 Load

§Sa\re

(38 List
(B ListModule
(L3 ListFunc
(L3 ListLine
(L3 Listvar

The following commands show a tabular analysis:

COVerage.List

COVerage.ListVar

The following command shows the tagging per address.

I Data.View %Var <address>/COVerage

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage

127

This TRACE32 command shows the coverage tagging on address range level:

COVerage.List

@ B:COVerage.List EI@
2 Setup...|| (3 Goto... (L8 Modules (9 Functions|| (L8 Lines + Add 2 Load... | B2 Save... @ Init
address coverage
P:00000000--4000401F |never ~
P:40004020--40004023 read and write ‘Ndiabchdiabchfunc2\fstatic
P:40004024--40004027 |never “Mdiabchdiabch funcdstatl
P:40004028--4000402B |read and write ‘Mdiabchdiabc funcdstat?2
P:4000402C--4000402F |never “Wdiabchdiabchfunc26'xl
P:40004030--40004033 jwrite only “Mdiabchdiabchvfloat v
< >

This TRACE32 command shows the coverage tagging at address level starting with the address of the

variable fstatic:

Data.View %Var fstatic /COVerage

Q [B::Data.View %aVar fstatic /COVerage]

coverage address | data [value
never SD:4000401F | 00

readwrite SD:40004020 | 98 fstatic = -1735838008

readwrite SD:40004021 | 89

readwrite SD:40004022 | 36

readwrite SD:40004023 | C8
never SD:40004024 | 48 statl = 1207966566 t
never SD:40004025 | 00 t1+0x1
never SD:40004026 | 1B t1+0x2
never SD:40004027 | 66 1+0x3

readwrite SD:40004028 | 48 stat? = 1207966297

readwrite SD:40004029 | 00 +0x1

readwrite SD:40004024 | 1A +0x2

readwrite SD:4000402B | 59 2+0%3
never SD:4000402C | 48 x1[0] = 72 X
never SD:4000402D(00 x1[1] = 0O x1+0x1
never SD:4000402E | 10 x1[2] = 16 x1+0x2
never SD:4000402F | 31 x1[3] = 49 *x1+0x3
write 5SD:40004030| 3F wfloat = 1.6 t
write 5D:40004031 | cC | at+0x1 v

< >

The data addresses are tagged as follow:

readwrite The data address was read at least once and written at least once.
read The data address has been read at least once.

write The data address has been written at least once.

never The data address was neither read nor written

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage

128

This TRACE32 command displays the data coverage at variable level.

COVerage.ListVar

@ B:COVerage.ListVar EI@
& Setup...|| A Goto... | (@BList +add | Bload... | E2save..| @ nit
address tree coverage |read 0% 50% 100 |
D:400040D4--400040D7 funcptr write | 0.000% ~
D:400040E8--400040F7 vbfield p-rd p-wr | 75.000% | ee———
D:400040F8--40004108 ast p-wr read 100.000%
D:40004110--40004127 viripplearray p-write | 0.000%
D:40004128--40004134A flags readwrite |100. 000% v
< >

Each static variable occupies a fixed address range. This results in the following tagging for variables:

readwrite Read and write accesses were performed for all addresses within
the address range of the variable.

read Only read accesses were performed for all addresses within the
address range of the variable.

write Only write accesses were performed for all addresses within the
address range of the variable.

p-write Write accesses were performed only to a part of the address range
of the variable. No read accesses were performed.

p-read Read accesses were performed only to a part of the address range
of the variable. No write accesses were performed.

p-wr read Write accesses were performed only to a part of the address range
of the variable. Read accesses were performed for all addresses.

p-rd write Read accesses were performed only to a part of the address range
of the variable. Write accesses were performed for all addresses.

p-rd p-wr Both read and write accesses were performed only to a part of the
address range of the variable.

never Not a single address of the address range of the variable was read
or written.

The tags rdwr ok, write ok, read ok and partial indicate that TRACES32 cannot clearly recognize whether
the address range contains program code or data. Please check your TRACE32 configuration or contact

your local technical support.

A complete list of all data coverage tags can be found in “Appendix E: Data Coverage in Detail”, page

140.

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage | 129

Appendix E: Trace Decoding in Detail

Before the recorded trace data can be analyzed, it must be decoded first.

P : 900004CE trace

-0003813128
P:90000682 ptrac

-0003813126

77
77

mov1l6 d5, #0x0
77 CompTlexDowhile
<

Raw trace data

Comp1 exDolhi '\ e

£ BrTrace.List MCDS []
& seup...| L Goto... | #1Find...| Ml chart| ElProfile| B MIPS | 4 More| X Less
record /mcds |
-0003813132 [T PTU_TCX T12 0Ox8 A0x08 ~
-0003813131 p
-0003813130 |1 PTU_TCX TT3 OxE ~0x06 =
-0003813129 v
-0003813128 PTU_TCX TT3 Ox4 AOx02 A
~0003813127
-0003813126 |1 PTU_TCX TT1 0x22C 4 BTrace.List /Track (=N~
-0003813125
0003813124 & setup...| 13 Goto... | #4Find... | Adchart | EProfile | EMEFS % More X Less
-0003813123 |1 PTU_TCX TT2 OxE AOxOE record run address cycle |data symbo]l i
-0003813122 return num_cycTes; A
-0003813121 |1 PTU_TCX TT3 Ox0 AOxOE mov J.J d2,d11 =
-0003813120 jl 0x900004CE =
< -0003813130 | P 900004CE ptrace ‘\coverage_tc2\coverage\ComplexDowhile+0x38 7
— 70 J— ~
retl6

'\e—46 0, 0, 0

—46000
-46, 0, 0, O

Decoded trace data

Trace Decoding for Static Applications

The object and source code is required to decode trace raw data recorded of static programs.

Decoding in Stopped State for Static Applications

This decoding is used for incremental code coverage and incremental code coverage in stream mode.

TRACES32 state: program execution stopped, no recording of trace data.

TRACE32 can read the object code from the target memory. Links to the source code files are part of the

debug symbol information maintained by TRACE32.

Decoding in Running State for Static Applications

This decoding is used in SPY mode code coverage.

TRACES32 state: program execution is running, trace data is recorded, but trace streaming is stalled while

trace decoding is performed.

TRACE32 can read the object code from the target memory, if the core allows the debugger to read memory
while the program execution is running (see also Run-time Memory Access).

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage |

130

However, TRACE32 can decode the trace data much faster if it does not have to access the target memory.
That is why it is highly recommended to copy the object code into the TRACE32 Virtual Memory. This is
achieved by the /PlusVM option when the program is loaded. The PlusVM option directs TRACES2 to load
the object code into the target memory plus into the TRACE32 virtual memory.

Data.LOAD.Elf ~~~~/tricore/coverage_tc2.elf /RelPATH /PlusVM

The Data.COPY command is another possibility. It allows to copy the content of the target memory directly
to the TRACE32 Virtual Memory.

I Data.Copy <address_range> VM:

NOTE: The object code required for trace decoding must be available in the TRACE32
Virtual Memory before the program execution and the trace recording is started.

RTS Decoding for Static Applications

This decoding is used in RTS mode code coverage.
TRACES32 state: program execution is running, trace data is recorded and streamed to the host computer.

If trace data is decoded at program runtime and processed while streaming, decoding has to be as fast as
possible. An important prerequisite is that the object code is located in the TRACE32 Virtual Memory. This
is achieved by the /PlusVM option when the program is loaded. The PlusVM option directs TRACE32 to
load the object code into the target memory plus into the TRACE32 virtual memory.

Data.LOAD.E1lf ~~~~/tricore/coverage_tc2.elf /RelPATH /PlusVM

The Data.COPY command is an another possibility. It allows to copy the content of the target memory
directly to the TRACE32 Virtual Memory.

I Data.Copy <address_range> VM:

NOTE: The object code required for trace decoding must be available in the TRACE32
Virtual Memory before the program execution and the trace recording is started.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 131

Trace Decoding for Applications Using a Rich OS

Also in this case, the object code and source code are needed to decode the trace raw data. But paging
used by the operating system makes decoding more complex.

Since the onchip trace logic generates the program flow data based on virtual addresses, TRACE32 has to
know the valid memory space for each trace record in order to read the object code from the physical
memory for trace decoding. A task or context switch in the trace recording normally identifies the memory
space for the subsequent logical addresses.

Decoding in Stopped State (Rich OS)

This decoding is used for incremental code coverage and incremental code coverage in stream mode.

TRACER32 state: program execution stopped, no recording of trace data.

Trace decoding is performed in three steps:

1. TRACERS2 reads the current task list and all task page tables with the help of the TRACE32 OS
Awareness from the target, when the program execution is stopped.

2. Task/context switches from the trace recording are decoded with the help of the task list.

3. The object code for each task is then read with the help of its page table. Links to the source
code files are part of the debug symbol information, which TRACE32 maintains for each memory
space.

Reading the object code fails, when a task/context switch from the trace recording can not be
decoded with the help of the current task list, e.g. because the task was terminated.

Decoding in Running State (Rich OS)

This decoding is used in Spy mode code coverage.

TRACER3?2 state: program execution is running, trace data is recorded, but trace streaming is stalled while
trace decoding is performed.

TRACE32 has no access to the current task list and the task page tables while the program execution is
running. The TRACE32 Virtual Memory must contain the task list, all task page tables and the object code
to enable TRACES32 to decode the raw trace data.

This requires a complex setup. Please contact the Lauterbach support in this case.

RTS Decoding (Rich OS)

This decoding is used in RTS mode code coverage.

TRACES32 state: program execution is running, trace data is recorded and streamed to the host computer.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 132

TRACE32 has no access to the current task list and the task page tables while the program execution is
running. The TRACE32 Virtual Memory must contain the task list, all task page tables and the object code
to enable TRACERS2 to decode the raw trace data.

This requires a complex setup. Please contact the Lauterbach support in this case.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 133

Appendix F: Coding Guidelines

The following coding guidelines are recommended for full decision and condition coverage as well as for
MC/DC. If you follow these coding guidelines you avoid false negative results. False negative means that a
decision/conditions is tagged as incomplete although coverage has already been achieved.

Nevertheless, it is possible that the compiler itself generates such constructs at high optimization levels.

Avoid Simple Decisions in Assignment Context

It is likely that these conditions are not represented by a conditional branch/instruction at object code level.

In this example no conditional branch/instruction was generated for the condition a==b.

18 - — dincomplete
o

P:9000044E
P:90000452

374
P:90000454

373

21005408 Bool
013C

9000

= [BuList P:0x9000044E /COV] [l s
M Step W Over | A Diverge 4 Return ¢ up » Go Il Break | !%Mode & ||t Find: coverage.c
id dec/cond true false coverage addr/Tine |code label mnemonic comment |
~
/* Relational expression as decision

Expression showing a decision in non-branching context. Compilers ma
choose to model Boolean assignments with conditional or unconditiona
instructions instead of conditional branches that are not suitable for
the trace-based measurement of code coverage.

return a=0>b

q d2,d4,d5

j16 0x90000454

retlé v

It is recommended to write the source code in a way that ensures that the conditional branches/instructions
required for the trace-based code coverage are generated.

54 [BrList P:0x90000456 /COV] = EER(==]
M step M Over | A Diverge | 4 Return ¢ up » Go 1l Break || ¥ Mode |&=f||t- Find: coverage.c
id dec/cond true false coverage addr/Tine |code label mnemonic comment |
q ralen transformation for relational exp ~
a in
00 to
of expression.
17 1. i il dc 357 if (a ==b) {
17 1. - - ok P:90000456 |3004545F EBooleanA.:jne d4,d5,0x900004 5
stmt 358 return TRUE;
ok P:9000045A [12 movl6 d2, #0x1
ok P:9000045C . jle 0x90000462
stmt 360 return FALSE;
ok P:9000045E (02 movl6 d2,#0x0
ok P:90000460 (01 jl6 0x90000462
stmt 361 |}
ok P:90000462 |9000 retl6 v

A few examples:

; source code not suitable for

; trace-based code coverage

return a == b;

I

7

if

}

source code suitable for
trace-based code coverage

(a == b) {
return TRUE;

return FALSE;

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage |

134

source code not suitable for
trace-based code coverage

I

I

identity(a != b);

source code not suitable for
trace-based code coverage

’

’

return (a >= b) ? a : b;

Avoid Nesting of Decisions

; source code suitable for
; trace-based code coverage

tmp = FALSE;

if (a != b) {
tmp = TRUE;

}

identity(tmp) ;

source code suitable for
trace-based code coverage

’

’

if (a >= b) {
return a;

}

return b;

It is very likely that not all conditions are represented by a conditional branch/instruction at object code level.

This is illustrated by the following example:

source code not suitable for
trace-based code coverage

’

’

return a > (b + (b && c));

source code suitable for
trace-based code coverage

’

’

if (b && c) {
tmp = 1;

if (a > (b + tmp)) {
return TRUE;

}
return FALSE;

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage | 135

In this example no conditional branches/instructions were generated for the conditions.

[BuList P:0x0000592 /COV] =x
M Step B Over || JADiverge | ¢ Return ¢ up b Go Il Break % Mode @ +.| "3 Find: ‘ | coverage.c
id dec/cond true false coverage addr /1ine |code |1abel mnemonic |comment =
/* Decision with nested Boolean expression -~

Expression showing a nested Boolean expression. Compilers may choose to
model nested expressions with conditional or unconditional instructions
instead of conditional branches that are not suitable for the trace-
based measurement of code coverage.

13 — — — incomplete 2?1 return (a > (b + ((float) b <))),

6
ok :9000059A FOG].OF}? extr.u dlS,dlS,OxO,?Oxl
ok F542 addle d5,d15
ok :900005A0 21204508 1t d2,d5,d4
ok P:900005A4 (013C jle6 0x900005A6
stmt 72
ok P:900005A6 [9000 retl6 v

If the code is written in a way that suits for trace-based code coverage, all necessary conditional
branches/instructions were generated.

B::List P:0x900005A8 /COV

M Step W Over | JMAuDiverge ¢ Return ¢ up P Go Il Break | !%|Mode |&2f t.| % Find: ‘ | coverage.c
id dec/cond true false coverage addr/Tine |code |1abel mnemonic [comment =
.{. - -~
/* Equivalence transformation for decision with nested Boolean expression
* Equivalent expression after transformation. The nested Boolean
* expression is extracted and put into a branching context. Compilers
* typically choose to use conditional branches for modelling this type of
* structure.
stmt 249 'injt tmp = 0;
ok P:900005A8 0082 NestedEx.. :mov16 do, #0x0
11 1. 1. 1. dc 251 if ((float) b <) {
ok P:900005AA |[F141054B itof di5,d5
ok P:900005AE |[FOOLGF4E cmp. T d15,d15,d6
ok P:900005B2 |[FOG10F37 extr.u d15,d15,0x0,#0x1
11 1. - * ok P:900005B6 |026E jz16 d15,0x900005BA
stmt 252 tmp = 1;
ok P: 90000588 1082} movl6 d0,#0x1
12 1. 1. 1. dc 255 if (a = (b + tmp)) {
ok P:900005BA |0542 addl6 ds5,do
12 1. L] . ok P:900005BC |0004457F jge d5, d4,0x900005¢C4
stmt 256 return TRUE;
ok P:900005C0 (1282 mov16 d2,#0x1
ok P:900005C2 033(} j16 0x900005C8
stmt 258 return FALSE;
ok P:900005C4 |0282 movl6 d2,#0x0
ok P:900005C6 [013C j16 0x900005C8
stmt 259 [}
ok P:900005C8 |9000 retl6 v

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage |

136

Appendix G: Object Code Coverage Tags in Detail

Standard Tags

Standard tagging applies to all core architectures and all trace protocols. The only exception are Arm/Cortex
cores that use the protocols Arm-ETMv1 or Arm-ETMVv3, as well as Arm-ETMv4. However, for the Arm-
ETMv4 protocol, this only applies if no trace information about the execution of conditional non-branch
instructions is generated in order to save bandwidth (command ETM.COND OFF).

The following tags are used for object code coverage tagging:

Tag Tagging object Description
ok conditional branch The conditional branch has be at least once
taken and not taken.
conditional instruction The object code instruction has been executed
at least once with its condition code true and
once with its condition code false.
all other object code The object code instruction has been executed
instructions at least once.
taken conditional branch The conditional branch has be at least once
taken, but never not taken.
conditional instruction The object code instruction has been executed
at least once with its condition code true, but
never with its condition code false.
not taken conditional branch The conditional branch has be at least once not
taken, but never taken.
conditional instruction The object code instruction has been executed
at least once with its condition code false, but
never with its condition code true.
never all object code instructions The object code instruction has never been
executed.

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage | 137

The following tags apply for analysis at the source code, function or module level:

Tag Tagging object Description
ok range of object code All object code instructions within the range are
instructions tagged with ok.
partial range of object code Not all object code instructions within the range
instructions are tagged with ok.
branches range of object code All object code instructions within the range
instructions were executed, but there is at least one
conditional branch/conditional instruction that
is only faken and one that is only not taken.
taken range of object code All object code instructions within the range
instructions were executed, but there is at least one
conditional branch/conditional instruction that
is only taken.
not taken range of object code All object code instructions within the range
instructions were executed, but there is at least one
conditional branch/conditional instruction that
is only not taken.
never range of object code Not a single object code instruction within the
instructions range has been executed.

Tags for Arm-ETMv1/v3/v4 for Arm/Cortex Architecture

The following tags are used for object code coverage tagging:

Tag

Tagging object

Description

ok

conditional branch

The conditional branch has be at least once
taken and not taken.

conditional instruction

The object code instruction has been executed
at least once with its condition code true and
once with its condition code false.

all other object code
instructions

The object code instruction has been executed
at least once.

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage | 138

Tag

Tagging object

Description

only exec conditional branch The conditional branch has be at least once
taken, but never not taken.
conditional instruction The object code instruction has been executed
at least once with its condition code true, but
never with its condition code false.
not exec conditional branch The conditional branch has be at least once not
taken, but never taken.
conditional instruction The object code instruction has been executed
at least once with its condition code false, but
never with its condition code true.
never all object code instructions The object code instruction has never been

executed.

The following tags apply for analysis at the source code, function or module level:

Tag Tagging object Description
ok range of object code All object code instructions within the range are
instructions tagged with ok.
partial range of object code Not all object code instructions within the range
instructions are tagged with ok.
cond exec range of object code All object code instructions within the range
instructions were executed, but there is at least one
conditional branch/conditional instruction that
is only only exec and one that is only not exec.
only exec range of object code All object code instructions within the range
instructions were executed, but there is at least one
conditional branch/conditional instruction that
is only only exec.
not exec range of object code All object code instructions within the range
instructions were executed, but there is at least one
conditional branch/conditional instruction that
is only not exec.
never range of object code Not a single object code instruction within the

instructions

range has been executed.

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage | 139

Appendix E: Data Coverage in Detail

The data addresses are tagged as follow:

readwrite The data address was read at least once and written at least once.
read The data address has been read at least once.

write The data address has been written at least once.

never The data address was neither read nor written

Each static variable occupies a fixed address range. This results in the following tagging for variables:

readwrite Read and write accesses were performed for all addresses within
the address range of the variable.

read Only read accesses were performed for all addresses within the
address range of the variable.

write Only write accesses were performed for all addresses within the
address range of the variable.

p-write Write accesses were performed only to a part of the address range
of the variable. No read accesses were performed.

p-read Read accesses were performed only to a part of the address range
of the variable. No write accesses were performed.

p-wr read Write accesses were performed only to a part of the address range
of the variable. Read accesses were performed for all addresses.

p-rd write Read accesses were performed only to a part of the address range
of the variable. Write accesses were performed for all addresses.

p-rd p-wr Both read and write accesses were performed only to a part of the
address range of the variable.

never Not a single address of the address range of the variable was read
or written.

rdwr ok The address range achieved full object code coverage, and at least
one read and one write access occurred to address range.

write ok The address range achieved full object code coverage, and at least
one write access occurred to address range.

©1989-2024 Lauterbach

Application Note for Trace-Based Code Coverage | 140

read ok The address range achieved full object code coverage, and at least
one read access occurred to address range.

partial The address range did not achieve full object code coverage. The
amount of read and write accesses that have taken place is not
further specified.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 141

The coverage status of HLL source code statements that have associated data values is indicated by the
following tags if a data trace is available:

rdwr ok: The HLL source code statement(s) have been fully covered. All associated assembly
instructions have been fully covered and at least one read and write access to the data values
has been recorded.

write ok: The HLL source code statement(s) have been fully covered. All associated assembly
instructions have been fully covered and at least one write access to the data values has been
recorded.

read ok: The HLL source code statement(s) have been fully covered. All associated assembly
instructions have been fully covered and at least one read access to the data values has been
recorded.

partial: The HLL source code statement(s) have not been fully covered. At least one of the
associated assembly instructions has not been fully covered. The amount of read and write
accesses that have taken place is not further specified.

readwrite: The HLL source code statement(s) have never been executed. None of the associated
assembly instructions has been executed and all of the data values have been read and written
at least once.

write: The HLL source code statement(s) have never been executed. None of the associated
assembly instructions has been executed and all of the data values have been written at least
once and not read.

read: The HLL source code statement(s) have never been executed. None of the associated
assembly instructions has been executed and all of the data values have been read at least once
and not written.

p-rd write: The HLL source code statement(s) have never been executed. None of the
associated assembly instructions has been executed and all of the data values have been written
at least once. In addition at least one data value has been read.

p-wr read: The HLL source code statement(s) have never been executed. None of the
associated assembly instructions has been executed and all of the data values have been read at
least once. In addition at least one data value has been written.

p-rd p-wr: The HLL source code statement(s) have never been executed. None of the associated
assembly instructions has been executed and at least one of the data values has been read and
one written.

p-write: The HLL source code statement(s) have never been executed. None of the associated
assembly instructions has been executed and at least one of the data values has been written.

p-read: The HLL source code statement(s) have never been executed. None of the associated
assembly instructions has been executed and at least one of the data values has been read.

never: The HLL source code statement(s) have never been executed. None of the associated
assembly instructions has been executed and neither read nor write accesses to the data values
have been recorded.

©1989-2024 Lauterbach Application Note for Trace-Based Code Coverage | 142

	Application Note for Trace-Based Code Coverage
	History
	Intended Audience
	Introduction
	Supported Code Coverage Metrics
	Code Coverage and Certification
	Trace-Based Code Coverage
	Introduction to the Approach
	Processors/Chips Suitable
	Code Coverage Measurement
	Evaluation of the Code Coverage Measurement
	Report Generation

	MC/DC, Condition and Decision Coverage
	Multiple Code Coverage Modes
	Preconditions for a Trace-Based Code Coverage
	The Individual Code Coverage Modes
	A Comparison of the Different Code Coverage Modes
	Causes for Observability Gaps: An Overview

	Evaluation of Switch Case Statements

	Code Coverage Workflows
	Workflows for Source Code Metrics
	General Procedure
	Statement Coverage Workflow
	Condition Coverage Workflow
	Decision Coverage Workflow
	MC/DC Workflow
	Function Coverage Workflow
	Call Coverage Workflow

	Workflows for Address-Based Metrics
	General Procedure
	Object Code Coverage Workflow
	Object Code Based (ocb) Decision Coverage Workflow

	Build Process
	Introductory Notes
	General Recommendations for the Build Toolchain
	Build Process Requirements for All Code Coverage Metrics at a Glance
	Verification of Alignment with Production Code

	Build Process Call Coverage
	Build Process MC/DC, Condition and Decision Coverage
	Decision Making Process
	Build Process for Code Coverage Mode Targeted Instrumentation/No Instrumentation
	Build Process Code Coverage Mode Breakpoint Assisted
	Build Process Code Coverage Mode Full Instrumentation

	Trace Data Collection Overview
	SMP Multicore Systems
	iAMP Multicore Systems
	TRACE32 Tool Configurations
	Choose the Appropriate Trace Data Collection Variant

	Best Practices for Trace Recording
	Reduce the Amount of Trace Data
	Ensure a Fault-Free Trace Recording
	Disable Timestamps for Trace Streaming

	Steps in Preparation for Trace Data Collection
	Notes on the Individual Test Variants
	Preparation for Statement, Function, Object Code, ocb Decision Coverage
	Preparation for Call Coverage
	Preparation for MC/DC, Condition and Decision Coverage
	Preparation for Targeted Instrumentation/No Instrumentation
	Preparation for Code Coverage with Breakpoints
	Preparation for Full Instrumentation

	Trace Data Collection and Code Coverage Measurement
	Incremental Code Coverage
	Data Collection
	Example Script
	Summary

	Incremental Code Coverage in STREAM Mode
	Data Collection
	Example Script
	Summary

	RTS Mode Code Coverage
	Data Collection
	Example Scripts
	Summary

	SPY Mode Code Coverage
	Operation States
	Data Collection
	Example Script
	Summary

	Code Coverage with Virtual Targets
	ART Mode Code Coverage
	Data Collection
	Example Script

	Code Coverage Evaluation in TRACE32
	Object Code Coverage Evaluation in TRACE32
	Evaluation
	Example Script

	Object Code Based (ocb) Decision Coverage Evaluation
	Evaluation Strategy
	Evaluation

	Comment Your Results
	TRACE32 Merge and Report Tool
	Appendix A: TRACE32 Coverage Report Utility
	Appendix B: Assemble Multiple Test Runs at Address Level
	Save and Restore Code Coverage Measurement
	Save and Restore Trace Recording

	Appendix C: Assembler-Only Functions and Code Coverage
	Object Code Coverage
	Source Code Metrics

	Appendix D: Data Coverage
	Trace Data Collection
	Evaluation

	Appendix E: Trace Decoding in Detail
	Trace Decoding for Static Applications
	Decoding in Stopped State for Static Applications
	Decoding in Running State for Static Applications
	RTS Decoding for Static Applications

	Trace Decoding for Applications Using a Rich OS
	Decoding in Stopped State (Rich OS)
	Decoding in Running State (Rich OS)
	RTS Decoding (Rich OS)

	Appendix F: Coding Guidelines
	Appendix G: Object Code Coverage Tags in Detail
	Standard Tags
	Tags for Arm-ETMv1/v3/v4 for Arm/Cortex Architecture

	Appendix E: Data Coverage in Detail

