LAUTERBACH A

Application Note for Trace-Based
Code Coverage

Release 09.2023

Application Note for Trace-Based Code Coverage

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACES32 DOCUMENTES oeeciiiiiiceirietiessnsssnsnennnenanasmssssssssssssssssssssesesermmsensnsnsmnnnnmnnnnsnsssssssssssssnsnnes r—
Trace Application NOTES ... s s sssmssssssssssssssssssansnnnnns =
LI T = AN T 1= r—~
Application Note for Trace-Based Code COVerageccccommmmminissssssscmmmmssnssssssssssssssnnnes 1
[T o 5
Lo Yo 11T o) 6
Intended Audience 6
Prerequisites 7
Trace-Based Code Coverage and Certificationccccccccmmmiiiiiiciiisciseccccsnnnnnnnssssssnnns 8
Trace Data Collection OVEIVIEWcccccciiiiismmriisssmssrnssssss s s ssssssss s ssssssmssssssssnnens 9
TRACES32 Tool Configurations 9
Choose the Appropriate Trace Data Collection Method 10
Preconditions 12
Reduce the Amount of Trace Data 12

Ensure a Fault-Free Trace Recording 13
Disable Timestamps for Trace Streaming 14

SMP Multicore Systems 14
Trace Data Collection MOAESccoiiiiviemriinismnr s smn s s s annns 15
Incremental Code Coverage 15

Data Collection 15
Example Script 17
Summary 17
Incremental Code Coverage in STREAM Mode 18

Data Collection 18
Example Script 21
Summary 21

RTS Mode Code Coverage 22

Data Collection 22
Example Scripts 25
Summary 26

SPY Mode Code Coverage 27
Operation States 27

Data Collection 29
©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 2

Example Script

Summary
Code Coverage with Virtual Targets
ART Mode Code Coverage

Data Collection

Example Script

Supported Code Coverage Metrics

Overview

Object Code Coverage
Evaluation
Example Script

Statement Coverage
Evaluation
Example Script

Full Decision Coverage
Evaluation Strategy
Evaluation
Example Script

Object Code Based (ocb) Decision Coverage

Evaluation Strategy
Evaluation
Example Script
Condition Coverage
Evaluation Strategy
Evaluation
Example Script

Modified Condition/Decision Coverage (MC/DC)

Evaluation Strategy
Evaluation
Example Script
Function Coverage
Evaluation Strategy
Example Script
Expert Usage
Call Coverage
Evaluation
Details on Callers and Calles
Example Script
Expert Usage

Assemble Multiple Test Runs

Save and Restore Code Coverage Measurement

Save and Restore Trace Recording

31
32
33
35
36
37

38
38
40
41
46
47
47
50
51
51
52
57
58
58
60
64
65
65
67
71
72
72
74
78
79
80
83
83
84
85
89
90
91

92
92
94

©1989-2023 Lauterbach

Application Note for Trace-Based Code Coverage

3

Comment YOUr RESUILScoiiiiiiimiiiiiisr s s s e am s s e e 96

TRACE32 Coverage Report ULilityccccccmiivimmmmninmnini s ssssss s ssmsss s 98
Assembler-Only Functions and Code COVerageccccummminmmmsmsnissmmssessissssssssanssns 100
Object Code Coverage 100
Source Code Metrics 101

[Fo = O 0T - T = 103
Trace Data Collection 103
Evaluation 104
Document the Results 107
Appendix A: Trace Decoding in Detailc.ccccommriiimmmmnnnnsmsnss s 108
Trace Decoding for Static Applications 108
Decoding in Stopped State for Static Applications 108
Decoding in Running State for Static Applications 108
RTS Decoding for Static Applications 109
Trace Decoding for Applications Using a Rich OS 110
Decoding in Stopped State (Rich OS) 110
Decoding in Running State (Rich OS) 110
RTS Decoding (Rich OS) 110
Appendix B: Coding GUIdeliNEScccccciiiiiimmiinnsrr s 112
Appendix C: Conditional Non-Branch Instructionscccccciiriiiiiicccccccemnnnre e 115
Conditional Instructions 115
Appendix D: Object Code Coverage Tags in Detailccccoeecmriiiisccmnninsssn e 116
Standard Tags 116
Tags for Arm-ETMv1/v3/v4 for Arm/Cortex Architecture 117
Appendix E: Data Coverage in Detail ... s s 119

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 4

Application Note for Trace-Based Code Coverage

Version 09-Oct-2023

History

29-Jun-21 In “TRACE32 Coverage Report Utility” a note has been added to inform the customer that for
report generation in larger projects it is advisable to make the trace decoding via the
TRACE32 Virtual Memory.

29-Jun-21 As of build 166565, TRACES32 supports full decision coverage in RTS mode. The summary
table in chapter “Choose the Appropriate Trace Data Collection Method” and “RTS Mode
Code Coverage” were updated.

29-Jun-21 Standards IEC 61508 (industrial) and IEC 62304 (medical) added to chapters “Trace-based
Code Coverage and Certification”.

24-Mar-21 Chapter “Details on Callers and Calles” added.

15-Mar-21 Chapter “Data Coverage” added.

09-Mar-21 “Appendix C: Object CodeCoverage in Detail’, and “Appendix D: Read/Write Coverage”
added.

02-Mar-21 Chapter “TRACES32 Tool Configurations” added.

26-Feb-21 Chapter “Assembler Functions and Code Coverage” added.

18-Feb-21 Chapters “Trace-based Code Coverage and Certification”, and “SMP Multicore Systems”
added.

19-Aug-20 New application note.

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 5

Introduction

Many embedded systems have to be developed according to some kind of internationally recognized safety
standard. Part of the data required to prove that a system meets these standards is some form of code
coverage. Safety standard will recommend or mandate various levels of code coverage that must be
provided to meet certain tiers within that standard.

Many popular embedded devices include the option for chip level trace. These technologies vary by device
and manufacturer but the data they produce is very similar: a non-intrusive trace of the flow of execution of a
program running on that device. Analyzing this data for code coverage is the subject of this document.

Some devices only provide on-chip trace buffers for storing collected trace data; these are often very small
and therefore unsuitable for code coverage. It is up to the user to determine whether an on-chip trace buffer
can hold enough data for the required coverage reports.

Intended Audience

Developers who want to:

J Collect code coverage data
. Perform code coverage on collected trace data
J Generate reports based upon this data

Although this is a generic manual, the screenshots were always made with a TriCore™ AURIX™ TC297T, if
nothing else is mentioned. Deviations from screen displays are likely in your target environment.

The manual is written in such a way that it is sufficient to only read the relevant chapters. If you read the
manual completely, this may lead to redundancies.

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 6

Prerequisites

It is assumed that the reader understands programming of embedded systems and is familiar with the
safety/quality specification which has been chosen.

It is also assumed that TRACE32 has been correctly configured for the target and the symbols of the
application under test have been loaded. The trace port has to be configured to provide trace data and
TRACES32 must be configured to collect this data and have appropriate licenses to do so.

Opening the Trace Configuration window from the Trace menu shows the currently enabled
Trace.METHOD. The TRACES32 software will grey-out any trace methods that are not available or not

supported by the current TRACES32 configuration.

Trace Perf Cov TC2WT

/& Configuration...
& CTS Settings...

MCDS Settings...
) List >
nm Timing ¥
P Chart »

g Save trace data...

g Load reference data...

& BuTrace

[e

METHOD

O onchip ® Analyzer ' CAnalyzer

Integrator
O LoGGER (O SNOOPer O FDX (O NONE

Probe O1Probe OlLa

Reset

Trace-based code coverage can be performed for the following TRACES32 trace methods: Analyzer,

state

O pisable

@® OFF

O Arm

O trigger

O break
SPY

commands
@ Init

& SnapShot
i List
[AutoArm
[Autolnit

HAnal yzer
O ART
used ACCESS
. auto ~
327531168,
SIZE CLOCK
[1610612736. || ||
Mode Mode
@ Fifo SLAVE
(O stack
O Leash
(O STREAM
FIPE
RTS

TDelay
0. ZJF TrOnchip
0% ~ TRACEPORT
% MCDS
@) BMC

» advanced

CAnalyzer, Onchip, ART. All other methods are not suitable for code coverage.

©1989-2023 Lauterbach

Application Note for Trace-Based Code Coverage

7

Trace-Based Code Coverage and Certification

Code coverage measurement is a requirement for certification to evaluate the completeness of test cases
and to demonstrate that there is no unintended functionality. TRACES32 supports all metrics from the
following standards:

o DO-178C (avionics): statement coverage, decision coverage, MC/DC.

J IEC 61508 (industrial): statement coverage, branch coverage (decision coverage in TRACE32),
condition coverage, MC/DC as well as function coverage.

. IEC 62304 (medical): Select suitable subset according to software development plan.

. ISO 26262 (automotive): statement coverage, branch coverage (decision coverage in

TRACES32), MC/DC as well as function coverage and call coverage.

For those whose application requires tool qualification, Lauterbach offers a Tool Qualification Support Kit
(TQSK in short). It provides everything needed to qualify a TRACES32 tool for use in safety-critical project.

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 8

Trace Data Collection Overview

TRACE32 Tool Configurations

The following TRACE32 tools are suitable for code coverage:
. TRACE32 Debugger and Off-Chip Trace

. TRACE32 Debugger and On-Chip Trace

L TRACES32 Instruction Set Simulator

The TRACE32 Instruction Set Simulator simulates the instruction set, but does not model timing
characteristics and peripherals. However, the simulator provides a bus trace so that code
coverage is easy to perform.

. TRACE32 Debugger for virtual targets with trace support

TRACER32 Debuggers for virtual targets should, because of their limitations, only be used for
code coverage if needed. For details refer to “Code Coverage with Virtual Targets”, page 33.

A TRACES32 debug and trace tool is of course the best choice, as it allows testing in the target environment
and thus integrates hardware and software. But for test phases that do not have these requirements, a
TRACERS2 Instruction Set Simulator can be a good choice. It has a number of advantages: it allows early
testing when the target hardware is not yet available, scales well and delivers results quickly.

Testing of the
embedded software

TRACE32 Debugger & Trace Integration test
TRACE32 Debugger & Trace
TRACEB32 Instruction Set Simulator

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage

©

Choose the Appropriate Trace Data Collection Method

The following overview is intended to help new users to make a decision for the appropriate trace data
collection method. It is deliberately simplified and complex details are avoided.

If you are using a TRACE32 Advanced Register Trace (Trace.METHOD ART), please refer to “ART Mode
Code Coverage”, page 35.

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 10

"pasn sI SO You e Ji ajgenns AjgAnoLysal Aluo

suod
aoel) yipimpueg-ybiy

‘spod soely yipimpuedg-ybiy Joj a|gelns JoN Jo} 8|geyns 10N auou SuoIoLIISIY
abetanod uoioun4
abelanod uoisioaq SOUON
abelan0o JusWlelS e e e abesano
abeianod apo2 198lq0 pauoddns
DHOD Odd 10} snxeN
XXGOdS WLS/XXXGOdIN 104 SNXaN e e e s|02030.d
210211 uoauyu| Jo} SADIN aoeu]
XaHoD/wly Jo} A N1T ‘NLd ‘€A INLT payoddng
IN-X8u09) 1o} 8goidiquio) Jo adel
aoel | Iamod
sjebie) |enuip
IN-X8109 Joy 8goidiquio) pue adel| N-X8109 1oy 8goidiquo) pue aded] aoel) diyouQ 19piooay
aoel | Jamod aoel | lamod Joje|nwis 18 uononJisu| Ze3ove Ll payoddng
"unJ }se} yoea
Ul papJodal aq Ued ejep
O Junowe Jable| e ‘swy
Buipiooal je Jeindwod
SOy 8y} 0} paweal)s "un.J }s9} a|6uls e ul papJ0dal
S| elep aoel) 90UIS 8 Ued Jey) ejep Jo Junowe ay}
sjwi| Azowaw 8.} 8y} Jo 8ZIS ay |
"9|qISIA ‘a|qisiA Ajpidel aie "sunJ 1s9) pajeadal
Ajojelpawiwi aJe sjnsal abesanod apo) s)|nsaJ abelanod apo) | salinbal abesanod apo) ‘sun. s}
pajeadal salinbal abesanod apo)
"siseq ‘pazAjeue
‘pazAjeue | Ajswi} e uo pazAjeue pue usy} pue paplooal ‘pazAjeue uay) pue
Apoauip pue paplodal si ejep adel| pap.iooal S| ejep aoel] 1SJ1} SI B}EP B2BI] papJooal }sil S| ejep adel | uonduosaq
Buiweans yum (2eq|rey) poylai
S1d AdS [ejuswialou] [ejuswiaiou] uol3a9||09

11

Application Note for Trace-Based Code Coverage

©1989-2023 Lauterbach

Preconditions

Reduce the Amount of Trace Data

It is recommended to reduce the amount of trace data to the required minimum to make best use of the
available trace memory. If trace information is exported off-chip via a dedicated trace port this reduction
can also help to avoid an overload of the trace port.

It is recommended to configure the onchip trace logic:

. to generate only trace information for the program flow.
. to generate additionally trace information for the task switches if a rich OS such as Linux is used.
o to not generate chip timestamps if supported by the trace protocol.

Details of how to do this can be found in the manuals:

U Arm: “Training Arm CoreSight ETM Tracing” (training_arm_etm.pdf), “Training Cortex-M
Tracing” (training_cortexm_etm.pdf)

. MPC5xxx/SPC5xxx, QorlQ and RH850: “Training Nexus Tracing” (training_nexus.pdf)
. TriCore: “Training AURIX Tracing” (training_aurix_trace.pdf)

J For other processor architectures, please refer to the corresponding “Processor Architecture
Manuals”.

For target systems using a rich OS such as Linux a method of determining task switches must also be
included in the trace data. More information can be found here:

“Training Linux Debugging” (training_rtos_linux.pdf).

- For other operating systems, please refer to the corresponding “OS Awareness Manuals”
(rtos_<os>.pdf).

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 12

Ensure a Fault-Free Trace Recording

Before you start with code coverage, it is recommended to check if the trace recording is working properly.
Here is a simple script:

Go

Break

SILENT.Trace.Find FLOWERROR /ALL
IF FOUND.COUNT () !'=0.

(
PRIVATE &msg
&msg="FLOWERRORS were found in the analyzed trace recording."
s&msg="&msg It is recommended to check"
&msg="&msg if the trace recording works properly."
ECHO FOUND.COUNT () "&msg"
)
ELSE
(
ECHO "The analyzed trace recording does not contain FLOWERRORS."
)
ENDDO

The code coverage analysis can tolerate individual FLOWERRORS. However, it is recommended to ensure
that the number of FLOWERRORS is as small as possible.

The code coverage analysis can tolerate gaps in the trace caused by TARGET FIFO OVERFLOWS but this
will result in gaps in the coverage data.

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 13

Disable Timestamps for Trace Streaming

All general rules applying to trace streaming are described under Trace.Mode STREAM.

Raw trace data TRACES32 tool timestamps

Raw trace data Data stream to host

Trace port

Trace buffer

TRACE32 TRACE32
trace tool debug module

Since the timestamps that TRACE32 assigns for the trace records have no significance for code coverage,

they do not have to be streamed to the host computer. This considerably reduces the data rate. Please use
the command Trace.PortFilter MAX for this purpose.

The current PortFilter setting is displayed in the TRACE32 state line when you enter the command
Trace.PortFilter followed by a space.

E::Trace.PortFilter
PortFilter : AUTO -> PACK

[ok] OFF MIN PACK MAX AUTO
P:9000055A \\coverage_tc2\coverage\ComplexWhile+0x32

SMP Multicore Systems

If code coverage is performed on an SMP system, it is typically sufficient to prove that the object or source
code line was executed by one of the cores. For this reason the core number of the trace records is ignored,
when the trace information is transferred to the code coverage system.

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 14

Trace Data Collection Modes

Incremental Code Coverage

Incremental coverage is supported by all processor architectures which provide information about program
flow that is saved to trace buffer and all TRACES32 configurations. It also supports all code coverage metrics
supported by TRACES32. It is a reliable fallback methods that can be used in the vast majority of

situations.

Data Collection

1. Set the trace to Leash Mode either via the Trace configuration window or via the command
Trace.Mode Leash. This ensures that the target will halt when the trace buffer becomes nearly
full, preventing loss of data. Stack or Fifo mode can also be used if Leash Mode is not supported.

2. Enable the Autolnit checkbox or use the command Trace.Autolnit ON to ensure that the trace
buffer is always cleared before the trace recording is started.

Trace Perf Cov TC2WT

/& Configuration...
& CTS Settings...

MCDS Settings...
=4 List >
nm Timing ¥
P Chart »

g Save trace data...

g Load reference data...

Reset

O LOGGER () SNOOPer O FDX

Probe

(o] 2)

O
O NONE

O IProbe

ZJF TrOnchip

& B::Trace
METHOD
Oonchip @ Analyzer CAnalyzer | 'Hanalyzer [Integrator
O ART
state used ACCESS TDelay
(O DISable auto ~ 0.
® OFF 0. 0%
O Arm SIZE CLOCK
Ortrigger [1610612736. | | | | 100.0MHz
O break
SPY Mode Mode
O Fifo SLAVE
commands (O stack
@ Init @ Leash
& SnapShot (O STREAM
4 List PIPE
AutoArm RTS

AutoInit

» advanced

©1989-2023 Lauterbach

Application Note for Trace-Based Code Coverage | 15

3. Start program execution and wait until it stops.

4. After program execution has stopped, the trace data can be added to the coverage system with the

COVerage.ADD command or by using the +ADD button in the COVerage Configuration window, or

by selecting ‘Add Tracebuffer’ from the Cov menu (shown in the image below).

Cov | Window Help
12 Configuration...

] @ List Ranges

@ List Functions

@ List Modules

@ List Variables

l.'.f‘ Add Tracebuffer

") Create Report...

Reset

5. The code coverage measurement can be displayed by using the ListFunc button in the

& B:COVerage.state
METHOD
® NCremental

state
OFF
®on

commands
+ ADD

@ Init
RESet

SPY RTS ART
Option
StaticInfo
SourceMetric
ObjectCode ~

(o] 2)

& Trace
2 RTS

commands
=2 Load
EESave
(9 List

i8 1 istMadule

L8 LISILIng
(L3 Listvar

COVerage Configuration window.

14 B:COV.ListFunc (=N ==
B setup...| (Y Goto... | @it +add | Bload.. Psae. @mnit

address tree Coverage [objectcode [0% 50% 100 [branches bytes
P:90000440--9000098D [= \\coverage partial 98.293% 92.307% 46. 3. 2. 1406. 382.
P:90000440--9000044D # Boo]eanAssignmentNotop ok | 100.000% 100. 000% 3. 0. 0. 14. 14,
P:9000044E--90000455 oleanAssignmentRelExpr ok | 100.000% - 0. 0. 0. 8. 8.
P:90000456--90000463 0] eanAssignmentRe1ExprTrans ok | 100.000% 100. 000% 1. 0. 0. 14. 14.
P:90000464--90000475 o] eanExprCoupledTern ok | 100.000% 100. 000% 4. 0. 0. 18. 18.
P:90000476--90000485 0] eanExprMixedOps ok | 100.000% 100. 000% 3 0. 0. 16. 16.
P:90000486--90000495 07 eanExpr Same0ps ok | 100.000% 100. 000% 3 0. 0. 16. 16.
P:90000496--900004CF mplexpowhi ok | 100.000% 100. 000% 5 0. 0. 58. 58.
P:900004D0--900004FF mp]l exFor ok | 100.000% 100. 000% 5 0. 0. 48. 8
P:90000500--90000527 mplexTf ok | 100.000% 100. 000% 4 0. 0. 40.
P:90000528--90000569 mplexwhile ok | 100.000% 100. 000% 5 0. 0. 0. 66.
P:9000056A--9000056F entity ok | 100.000% - 0. 0. 0. 0. 6.
P:90000570--90000591 ®MultiLine partial 58. 823% | m— 41.666% 1 2. 1 2 34.

Details on the code coverage analysis itself are provided in the chapter “Supported Code Coverage

Metrics”, page 38.

6. If more trace data is required, repeat step 3 and 4 until the desired level of coverage is obtained.

©1989-2023 Lauterbach

Application Note for Trace-Based Code Coverage

16

Example Script

The entire process can be automated by creating a PRACTICE script. It is assumed that the preconditions
listed in “Preconditions”, page 12 are satisfied before running the script. In the example script default
settings are commented out.

// Trace.METHOD as automatically selected by TRACE32
Trace.Mode Leash
// Trace.AutoArm ON
Trace.AutoInit ON
COVerage.RESet
// COVerage.METHOD INCremental
RePeaT 10.
(
Go.direct
WAIT !STATE.RUN /()
COVerage.ADD
)
COVerage.ListFunc

Summary

A characteristic feature of incremental code coverage is that the individual steps are executed one by one.
Trace information is recorded while the program is running. After the program has been stopped, the
command COVerage.ADD ensures that:

J the raw trace data is uploaded to the host computer
. the raw trace data is decoded to reconstruct the complete program flow
. the program flow is finally added to the code coverage system

This workflow is summarized in the diagram below.

running 1 stopped 1 running L stopped
1 1]
Uploading J Decoding Recording JUploading J Decoding
| | | |
' Command: COVerage.ADD ' ' Command: COVerage.ADD '

Details about the code coverage analysis itself are provided in the chapter “Supported Code Coverage
Metrics”, page 38.

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 17

Incremental Code Coverage in STREAM Mode

If a TRACES32 trace hardware tool such as PowerTrace is used it is possible to stream the trace data to a file
on the host file system. Information about the general conditions for trace streaming can be found in the
command description of the Trace.Mode STREAM command.

If the trace data is streamed to the host computer, longer recording times can be achieved. Incremental code
coverage in STREAM mode supports all code coverage metrics supported by TRACES32.

In case of large amounts of trace data, processing may take a long time. TRACE32 provides two alternative

methods to avoid this situation.

The first method is RTS, which is supported for all major architectures. RTS means that trace data is

processed while being recorded and the code coverage results are displayed dynamically. Please see “RTS
Mode Code Coverage”, page 22 for additional information.

If RTS is not supported for your core architectures, then SPY Mode Code Coverage can be an alternative.

Please see “SPY Mode Code Coverage”, page 27 for more details.

Data Collection

1. Set the trace to STREAM Mode either via the Trace Configuration window or via the
Trace.Mode STREAM command.

2. Enable the Autolnit checkbox or use the command Trace.Autolnit ON to ensure that the trace

buffer is always cleared before the trace recording is started.

£ List
nm Timing

iy Chart

Reset

Trace Perf Cov TC2%T
/& Configuration...
& CTS Settings...

MCDS Settings...

g Save trace data...

g Load reference data...

& BuTrace

METHOD

O onchip ® Analyzer

state

O pisable
@® OFF

O Arm

O trigger
O break
O spy

commands
@ Init

& SnapShot
2 List
1 AutoArm

AutoInit

CAnalyzer

used

=

0.
SIZE

O ART

Mode
O Fifo
O stack
O Leash
® STREAM
PIPE
RTS

(o] 2)

Probe O1Probe OlLa

HAnalyzer () Integrator
O LoGGER (O snOOPer O FDX
ACCESS TDelay
auto ~ 0.
0% ~
CLOCK
Mode
SLAVE

O NONE

ZJF TrOnchip

% MCDS
) BMC

» advanced

©1989-2023 Lauterbach

Application Note for Trace-Based Code Coverage

18

3. TRACERS2 by default opens a streaming file in the directory for temporary files
(OS.PresentTemporaryDirectory()).

The streaming file can be optionally set using the command Trace.STREAMFILE. It is
recommended to use the fastest drive available on the host, ideally not the boot drive.

Trace.STREAMFILE "d:\temp\mystream.t32"

4., The maximum size allowed for a streaming file can be optionally set with the help of the
Trace.STREAMFileLimit command.

; limit the size of the streaming file to 5 GBytes
Trace.STREAMFileLimit 5000000000.

Please be aware, that the trace recording is stopped, when the size limit for the streaming file is
reached.

5. Since code coverage does not need any timestamp information, please use the command
Trace.PortFilter MAX to instruct TRACES32 to stream only the raw trace data. Further
background information can be found in the chapter “Disable Timestamps for Trace Streaming”,

page 14.

6. Start the program execution.

7. The program execution on the target must be stopped in order to perform the code coverage
analysis.

- The user may manually stop the program execution.
- A breakpoint may be used to stop the program execution.

- With the help of a script, the program execution may be stopped after a specific period of time.

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 19

8. After the program execution has stopped, the trace data can be added to the coverage system with

the COVerage.ADD command or by using the +ADD button in the COVerage Configuration

window, or by selecting ‘Add Tracebuffer’ from the Coverage menu (shown in the image below).

Cov | Window Help
12 Configuration...

! @ List Ranges

@ List Functions

@ List Modules

@ List Variables

l.'.f‘ Add Tracebuffer

") Create Report...

Reset

& B:COVerage.state

9. Intermediate results can be displayed by using the ListFunc button in the COVerage
Configuration window.

METHOD
(@ INCremental SPY RTS ART
state Option
OFF StaticInfo
®on
SourceMetric
commands ObjectCode i
+ ADD
@ Init
RESet

(o] 2)

& Trace
2 RTS

commands
=2 Load
§Sa\re
(9 List

(8 i atac la

18 ListLine
(L3 Listvar

189 B:COV.ListFunc

tree

address
P :90000440--3000098D
P:90000440--9000044D
P:9000044E--900004 55
P:900004 56--90000463
P:90000464--9000047 5
P:90000476--900004 85
P:900004 86--90000495
P:900004 96--900004CF
P:900004D0--900004FF
P:90000500--90000527
P:90000528--90000569
P:9000056A--9000056F
P:90000570--90000591

&setup... (A Goto... | 1ERList + Add

Identity
MultiLine

@ Init

ok
partial

coverage [objectcode (0% 50% 100 lbranches
08, 293% | me— 92.307%

100. 000% | e—— (100, 000%
100. 000% | ee— -
100. 000% 100. 000%
100. 000% |m— (100 000%
100. 000% | e———— (100, 000%
100. 000% | e—— (100. 000%
100. 000% | e—— (100, 000%
100. 000% | e——— (100, 000%
100. 000% 100. 000%
100. 000% | e——— (100, 000%
100. 000% | ee— -
58. 823% |m— 41.666%

14.
14,
18,
16.
16.

Details on the code coverage analysis itself are provided in the chapter “Supported Code Coverage

Metrics”, page 38.

10. Steps 6 and 8 can be repeated until the desired level of coverage is obtained.

If the data is recorded at a test site and there is no time for evaluation, it is possible to save the collected raw
trace data and process it at a later point in time. Please refer to the commands Trace.STREAMSAVE and

Trace.STREAMLOAD.

©1989-2023 Lauterbach

Application Note for Trace-Based Code Coverage

20

Example Script

In this example script default settings are commented out. It is assumed that the preconditions listed in
“Preconditions”, page 12 are satisfied before running the script.

// Trace.METHOD Analyzer or Trace.METHOD CAnalyzer
// Trace.AutoArm ON
Trace.AutoInit ON

Trace.Mode STREAM
Trace.STREAMFile "D:\streamfile.t32"
Trace.STREAMFileLimit 5000000000.

Trace.PortFilter MAX

COVerage.RESet
// COVerage.METHOD INCremental

Go

WAIT 10.s

Break
COVerage.ADD
COVerage.ListFunc

Summary

The advantage of incremental code coverage with streaming is that larger amounts of trace data can be
recorded in a single test run. However, before the recorded trace data can be processed, the program
execution must be stopped. The command COVerage.ADD ensures that:

J the raw trace data is decoded to reconstruct the complete program flow

. the program flow is added to the code coverage system

This workflow is summarized in the diagram below.

running I stopped
|

Recording
Streaming l |
I Command: COVerage.ADD |

Details about the code coverage analysis itself are provided in the chapter “Supported Code Coverage
Metrics”, page 38.

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 21

RTS Mode Code Coverage

TRACE32 can process the trace data during recording. This operation mode of the trace is called RTS.

RTS is currently supported for the following processor architecture/trace protocols:
o Arm ETMv3, PTM and Arm ETMv4

. Nexus for MPC5xxx and QorlQ

J TriCore MCDS

If RTS is not supported for your core architectures, then SPY mode code coverage could be an alternative.
Please refer to “SPY Mode Code Coverage”, page 27.

RTS requires a TRACES32 trace hardware tool such as PowerTrace and streaming of the trace data to a file
on the host file system has to work without issues. Information on the general conditions for trace streaming
can be found in the command description of the Trace.Mode STREAM command.

RTS mode code coverage supports only the following code coverage metrics: statement coverage, function
coverage, object code coverage and decision coverage.

Data Collection

1. RTS mode code coverage requires RTS decoding.

Setup the RTS decoding by copying the object code to the TRACE32 Virtual Memory. For
background information refer to “RTS Decoding for Static Applications”, page 109 or “RTS
Decoding (Rich 0S)”, page 110.

Data.LOAD.E1f ~~~~/tricore/coverage_tc2.elf /RelPATH /PlusVM

2. Switch the RTS system to ON in the RTS.state window or with the help of the RTS.ON command.

2 BuRTS =N =R
rts utilisation errors
QO oFF
®on 79107456. [“] StopOnError
72977226. nocode
commands database
RESet 1. MB [[] stopOnNoaccesstocode
@ Init state fifofulls
stopped]
I PROfile [[] stopOnFifofull
[coverage diagnostics
= ISTAT st

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 22

3. Open a COVerage.ListFunc window by using the ListFunc button in the COVerage

Configuration window or by using the command COVerage.ListFunc. Please be aware that trace

data recorded in RTS mode are only processed by TRACES32 as long as one window in TRACE32

displays code coverage information.

Cov | TC2%xT Window
&g:nﬁglraﬁnn_

& B:COVerage

—— METHOD
[E® List Ranges) .
i . INCremental SPY RTS ART
[g, List Functions
[g, List Modules X
@ state Option
List Variables
OFF StaticInfo 2 Trace
3 Add Tracebuffer ® ON 2 RTS
E] Create Report.. SourceMetric
Reset commands ObjectCode hd commands
ADD Load
Init g Save
RESet (9 List
(LB | ictadila
(9 ListFunc
L8 ListLine
(L9 Listvar
4. Start the program and observe the measured code coverage.
189 B::COV.ListFunc
B setup...| (Y Goto... | @List +add | Bload.. Psae. @mnit
address tree coverage lobjectcode [0% 50% 100 |branches
P:90000440--900009BD | = ‘\coverage partial 98, 293 | 92.307% 46 3. 2.
P:90000440--9000044D BooleanAssignmentNotop ok | 100.000% 100. 000% 3 0. 0.
P:9000044E--900004 55 0] eanAssignmentRelExpr ok | 100.000% - 0. 0. 0.
P:900004 56--90000463 oleanAssignmentRelExprTrans ok | 100.000% 100. 000% 1. 0. 0.
P:90000464--9000047 5 oleanExprCoupledTern ok | 100.000% 100. 000% 4 0. 0.
P:90000476--90000485 0] eanExpriixedops ok | 100.000% 100. 000% 3 0. 0.
P:900004 86--900004 95 07 eanExpr SameOps ok | 100.000% 100. 000% 3 0. 0.
P: 900004 96--900004CF mp 1 exDowhi ok | 100.000% 100. 000% 5 0. 0.
P:900004D0--900004FF mplexFor ok | 100.000% 100. 000% 5 0. 0.
P:90000500--90000527 mplexIf ok | 100.000% 100. 000% 4 0. 0.
P:90000528--90000569 mplexwhile ok | 100.000% 100. 000% 5 0. 0.
P:9000056A--9000056F lentity ok | 100.000% - 0. 0. 0.
P:90000570--90000591 ®MultiLine partial 58. 823% | e— 41.666% 1. 2 2

Details on the code coverage analysis itself are provided in the chapter “Supported Code Coverage
Metrics”, page 38.

5. Stop the program exucution when your tests are completed.

RTS discards the trace data after it is processed by default. If you want to keep the trace data for additional

verification tasks perform these configuration steps before setting up RTS mode code coverage as

described above.

©1989-2023 Lauterbach

Application Note for Trace-Based Code Coverage

23

1. Set the trace to STREAM mode either via the Trace Configuration window or the
Trace.Mode STREAM command.

2. Enable the Autolnit checkbox or use the command Trace.Autolnit ON to ensure that the trace
buffer is always cleared before the trace recording is started.

Trace Perf Cov TC2WT & BiTrace EI@
&‘hﬁw@“L METHOD
& cr Seﬁlnss... O oOnchip @ Analyzer | Canalyzer | HAnalyzer (Integrator (' Probe ~ O1TProbe OLA
- FiDSSE&mg&” , OarRT OLoGGER O snooPer O FDX O NONE
Y 151
zai Timing ¢ state used ACCESS TDelay
fi Chart ’ () DISable auto - 0. 4 Tronchip
g Save trace data... ® OFF 0. 0% ~ TRACEPORT
52 Load reference data... Oarm SIZE cLOCK B MCDs
Reset O trigger l:l &) BMC
O break
Ospy Mode Mode
O Fifo I sLAVE » advanced
commands O stack
@ Init O Leash
& SnapShot (® STREAM
£ List PIPE
[A Antnarm RTS

AutoInit

3. TRACERS2 by default opens a streaming file in the directory for temporary files
(OS.PresentTemporaryDirectory()).

The streaming file can be optionally set by using the command Trace.STREAMFILE. It is
recommended to use the fastest drive available on the host, ideally not the boot drive.

Trace.STREAMFILE "d:\temp\mystream.t32"

4, The maximum size allowed for a streaming file can be optionally set with the help of the
command Trace.STREAMFileLimit.

; limit the size of the streaming file to 5 GBytes
Trace.STREAMFileLimit 5000000000.

Please be aware, that the trace recording is stopped, when the size limit for the streaming file is
reached.

5. Since code coverage does not need any timestamp information, please use the command
Trace.PortFilter MAX to instruct TRACES32 to stream only the raw trace data. Further
background information can be found in the chapter “Disable Timestamps for Trace Streaming”,
page 14.

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 24

Example Scripts

This example script discards the trace data after it is processed; default settings are commented out. It is
assumed that the preconditions listed in “Preconditions”, page 12 are satisfied before running the script.

// Trace.METHOD Analyzer or Trace.METHOD CAnalyzer

; Load application code to target and TRACE32 Virtual Memory
Data.LOAD.El1f application.elf /PlusVM

; Set breakpoint to end of test run
Break.Set vTestComplete

COVerage.RESet
RTS.ON
COVerage.ListFunc

Go
WAIT !STATE.RUN /()

This example script saves the trace data to a streaming file; default settings are commented out.

// Trace.METHOD Analyzer or Trace.METHOD CAnalyzer
// Trace.AutoArm ON
Trace.AutoInit ON

Trace.Mode STREAM
Trace.STREAMFile "D:\streamfile.t32"
Trace.STREAMFileLimit 5000000000.

Trace.PortFilter MAX

; Load application code to target and TRACE32 Virtual Memory
Data.LOAD.E1f application.elf /PlusVM

; Set breakpoint to end of test run
Break.Set vTestComplete

COVerage.RESet
RTS.ON
COVerage.ListFunc

Go
WAIT !STATE.RUN ()
Trace.List

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 25

Summary

The big advantage of RTS mode code coverage is that all necessary steps run in parallel. Large amounts of
trace data can be processed quickly. Code coverage measurement becomes available immediately.

The following steps are performed concurrently with trace data collection:

J The raw trace data are streamed to the host computer, optionally it can be saved to the
streaming file6

The raw trace data are decoded to reconstruct the program flow

The program flow is added to the code coverage system

The code coverage results are updated

running | Stopped
|

Recording
Streaming
RTS Decoding

Details about the code coverage analysis itself are provided in the chapter “Supported Code Coverage
Metrics”, page 38.

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 26

SPY Mode Code Coverage

TRACE32 supports processing of trace data while being recorded for all architectures:
. TRACE32 trace hardware tool such as PowerTrace is required

J Streaming of the trace data to a file on the host file system is working without issues

Information about the general conditions for trace streaming can be found in the description of
the command Trace.Mode STREAM.

SPY mode code coverage achieves lower processing speeds than RTS mode code coverage, but supports
all code coverage metrics supported by TRACES32.

Operation States

For SPY mode code coverage, trace streaming is periodically suspended in order to decode the raw trace
data and to process it for code coverage. Please be aware that TRACES32 does not suspend trace streaming
if the trace memory of the TRACES32 trace tool, that operates as a large FIFO, is filled more the 50%.

running 1 stopped
1

Recording

Streaming Streaming Streaming

P
1s

Legend:

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 27

TRACE32 indicates the current trace state by changing between Arm and SPY.

. Arm: Trace data is being recorded and streamed to the streaming file on the host computer.
J SPY: Trace data is being recorded and the content of the streaming file is processed for code
coverage.
& BuTrace EIIEI
METHOD
Oonchip @ Analyzer | CAnalyzer | Hanalyzer (Integrator Probe O1Probe OlLA
O ART O LoGGER (O SNOOPer O FDX O NONE
state used ACCESS TDelay
(O DISable | auto ~ 0. ZJF TrOnchip
C OFF 806289408, 0% TRACEPORT
O Arm SIZE CLOCK % MCDS
O trigger l:l &3 BMC
O break
> @sSpPy Mode Mode

O Fifo [sLave » advanced

commands O stack
@ Init O Leash
& SnapShot (® STREAM
4 List PIPE
[AutoArm RTS
[AutoInit
components trace Data Var List other previous
runing || ML up

The Trace field of the TRACE32 state line
changes between Arm and SPY

=1

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 28

Data Collection

1. In order to decode the raw trace data quickly, it is recommended to mirror the application to the
TRACES2 Virtual Memory:

Data.LOAD.E1f application_l.elf /PlusVM

For details refer to “Decoding in Running State for Static Applications”, page 108 or “Decoding
in Running State (Rich 0S)”, page 110.

2. Set the trace mode to STREAM either via the Trace configuration window or via the
Trace.Mode STREAM command.

3. Enable the Autolnit checkbox or use the command Trace. ON to ensure that the trace buffer is
always cleared before the trace recording is started.

Trace Perf Cov TC2WT

/& Configuration...
& CTS Settings...

MCDS Settings...
=4 List >
nm Timing ¥
P Chart »

g Save trace data...

g Load reference data...

Reset

& BuTrace EI@
METHOD
Oonchip @ Analyzer | CAnalyzer | Hanalyzer (Integrator Probe O1Probe OlLA
OarT OLoGGER O snOOPer O FDX (O NONE
state used ACCESS TDelay
(O DISable auto ~ 0. ZJF TrOnchip
® OFF 0. 0% ~ TRACEPORT
O Arm SIZE CLOCK % MCDS
O trigger l:l &3 BMC
O break
O spy Mode Mode
O Fifo SLAVE » advanced
commands O stack
@ Init O Leash
& SnapShot (® STREAM
H List PIPE
AutoArm RTS

AutoInit

©1989-2023 Lauterbach

Application Note for Trace-Based Code Coverage | 29

4. TRACERS2 by default opens a streaming file in the directory for temporary files
(OS.PresentTemporaryDirectory()).

The streaming file can be optionally set using the command Trace.STREAMFILE. It is
recommended to use the fastest drive available on the host, ideally not the boot drive.

Trace.STREAMFILE "d:\temp\mystream.t32"

5. The maximum size allowed for a streaming file can be optionally set with the help of the
command Trace.STREAMFileLimit.

; limit the size of the streaming file to 5 GBytes
Trace.STREAMFileLimit 5000000000.

Please be aware, that the trace recording is stopped, when the size limit for the streaming file is
reached.

6. Since code coverage does not need any timestamp information, please use the command
Trace.PortFilter MAX to instruct TRACES32 to stream only the raw trace data. Further
background information can be found in the chapter “Disable Timestamps for Trace Streaming”,
page 14.

7. Set the coverage method to SPY by using the command COVerage.METHOD SPY or by
selecting SPY in the COVerage configuration window.

8. Enable SPY mode code coverage by the command COVerage.ON or by selecting the ON radio
button in the state field.

Cov TC2%T Window A8 M= = e
é’g“ﬁ"“ﬁ“‘ METHOD
@) List Ranges OMCremental @SPY | RTS | ART
[g, List Functions
[g_, List Modules e Option
s OoFF [staticInfo 2 Trace
€3 Add Tracebuffer @®on PRTS
E*) Create Report... SourceMetric
Reset commands ObjectCode ~ commands
+ ADD =2 Load
@ Init &3 Save
RESet (38 List
(i) ictMdile
(L8 ListLine
(L3 Listvar

9. Open a COVerage.ListFunc window by using the ListFunc button in the COVerage configuration
window or by using the command COVerage.ListFunc. Please be aware that trace data recorded in
SPY mode code coverage is only periodically processed by TRACES2, if at least one window in
TRACER32 displays code coverage information.

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 30

10. Start the program and observe directly the results of the code coverage.

149 B::COV.ListFunc

& setup...| (Y Goto... | iEBList +Add | Sload.. | BSave.. | @it

address tree coveraqe [objectcode (0% 50% 100 |branches
P:90000440--9000098D | = \coverage partial 8. 293% | | 92, 307%
P:90000440--9000044D 0] eanassignmentNotop ok | 100. 000% |me—— (100 000%
P:9000044E--90000455 oleanAssignmentRe |Expr 0k | 100 0005 |me— -
P:90000456--90000463 oleanAssignmentRe |ExprTrans ok | 100. 000% |me—— |100. 000%
P:90000464--90000475 o] eanExprCoup] edTerms ok | 100. 000% | (100, 000%
P:90000476--90000485 ol eanExpriiixedops ok | 100. 000% | (100, 000%
P:90000486--90000495 o eanExpr Sameops. ok | 100. 000% |me— 100 000%
£:90000496--900004CF mplexDowhile ok | 100. 000% |e—— (100 000%
P:900004D0--900004FF mplexFor ok | 100. 000% |me—— 100 000%
P:90000500--90000527 mp]exIf ok | 100. 000% | (100, 000%
P:90000528--90000569 mplexwhile ok | 100. 000% | (100, 000%
P:9000056A--9000056F ent ity ok | 100 000% -
P:90000570--90000591 @ Multiline partial | 58.823% |me—— 41.666%

<

Details on the code coverage analysis itself are provided in the chapter “Supported Code Coverage
Metrics”, page 38.

11. Stop the program execution when your tests have completed.

Example Script

In the script the default settings are commented out. It is assumed that the preconditions listed in
“Preconditions”, page 12 are satisfied before running the script.

// Trace.METHOD Analyzer or Trace.METHOD CAnalyzer
// Trace.AutoArm ON
Trace.AutoInit ON

Trace.Mode STREAM
Trace.STREAMFile "D:\streamfile.t32"
Trace.STREAMFileLimit 5000000000.

Trace.PortFilter MAX

; Load application code to target and TRACE32 Virtual Memory
Data.LOAD.El1f application.elf /PlusVM

; Set breakpoint to end of test run
Break.Set vTestComplete

COVerage.RESet
COVerage.METHOD SPY
COVerage.ON
COVerage.ListFunc

Go
WAIT !STATE.RUN ()
Trace.List

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 31

Summary

SPY Mode Code Coverage can process trace data concurrently while recording. However, it does not
achieve the same processing speeds as RTS mode code coverage.

The following steps are involved:

J Trace information is recorded continuously.
. The raw trace data is streamed to a file on the host computer, but the streaming is periodically
suspended:

- to decode the raw trace data to reconstruct the program flow
- to add the program flow to the code coverage system

- to update code coverage results

running [stopped

Recording

Streaming Streaming

P
1s 1s

Legend:

Details about the code coverage analysis itself are provided in the chapter “Supported Code Coverage
Metrics”, page 38.

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 32

Code Coverage with Virtual Targets

Tracing the program execution on a virtual target slows down its performance. To minimize this impact,

Lauterbach works closely together with manufacturers such as Synopsys. The basic idea is that some parts

of the code coverage processing are offloaded to the virtual target. This information is uploaded to the

TRACE32 code coverage system with the command COVerage.ADD after the program execution has been
stopped. The MCD interface comes with built-in support for this.

To use this feature the following conditions must be met:

J PBI=MCD must be specified in the TRACES32 configuration file, usually ~~/config.t32.

. The Virtual Target must support program address tagging.

COVerage.Mode FastCOVerage ON must be set. If the Virtual Target does not support program

address tagging, TRACES2 will display the error message “function not implemented”.

Cov | TC2%xT Window
/2 Configuration...
@ List Ranges

@ List Functions

@ List Modules

@ List Variables

@ Add Tracebuffer
E*) Create Report...

Reset

& B:COVerage
METHOD
® INCremental

state
OFF
®on

commands
+ ADD
@ Init
RESet

spy (RTS OART

Option
StaticInfo

SourceMetric
ObjectCode

Mode
FastCOVemge

(o] 2)

& Trace

commands
2 Load
g Save
(L8 List
(30 ListModule
[Q ListFunc
(L3 ListLine
(3 ListVar

The program addressed tagged in the virtual target can be used for:

J Object code coverage (see “Object Code Coverage”, page 40)

. Statement coverage (see “Statement Coverage”, page 47)

J Decision coverage (ocb) (see “Object Code Based (ocb) Decision Coverage”, page 58)
J Function coverage (see “Function Coverage”, page 79)

©1989-2023 Lauterbach

Application Note for Trace-Based Code Coverage

33

https://www.lauterbach.com/mcd_api.html

An example script might look like this:

COVerage.RESet

COVerage.METHOD INCremental

COVerage.Mode FastCOVerage ON

Go

; Use a breakpoint or time-out to control length of runtime
Break

COVerage.Add

COVerage.ListFunc

Details about the code coverage analysis itself are provided in the chapter “Supported Code Coverage
Metrics”, page 38.

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 34

ART Mode Code Coverage

ART is an acronym for Advanced Register Trace. The ART trace operates by single stepping on assembler

level. After each step, the contents of the CPU registers are uploaded to TRACES32 and stored in a similar
fashion as a program flow trace.

This pseudo-trace data can be used for code coverage. This is not supported for all processor architectures.
The Coverage.METHOD ART can only be selected if supported. Please be aware that ART has a
significant impact on the real-time performance of the target. Each step takes 5 to 10 ms.

Cov TC2%xT Window &B::COVerage.state EI@
&_’ Conhoations METHOD
@) List Ranges O INCremental SPY (JRTS
[g, List Functions
[g_, List Modules e Option
s @® oFF [staticInfo & Trace
€3 Add Tracebuffer Oon PRTS
E*) Create Report... SourceMetric
Reset commands ObjectCode v commands
ADD =2 Load
@ Init &3 Save
RESet (38 List
(B ListModule
(L3 ListFunc
(L3 ListLine
(L3 Listvar

Trace data recorded with ART can be used for:

J Object code coverage (see “Object Code Coverage”, page 40)

. Statement coverage (see “Statement Coverage”, page 47)

J Decision coverage (ocb) (see “Object Code Based (ocb) Decision Coverage”, page 58)
. Function coverage (see “Function Coverage”, page 79)

Where possible, it is recommended to use the TRACES32 Instruction Set Simulator with Trace.METHOD
Analyzer instead of ART. This has a better performance and supports all code coverage metrics.

The TRACE32 Instruction Set Simulator simulates the instruction set, but does not model timing
characteristics and peripherals. However, the simulator provides a bus trace so that code coverage is easy
to perform. For details on how to start the TRACE32 Instruction Set Simulator refer to “TRACE32
Instruction Set Simulator” in TRACES32 Installation Guide, page 56 (installation.pdf).

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 35

Data Collection

Before you start do not forget to switch debugging to mixed or assembler mode by using the Mode.Asm or
Mode.Mix commands.

1. Select Trace.METHOD ART in the Trace configuration window.

2. Set the size of the ART buffer, using either the command ART.SIZE <n> or by entering the value
in the SIZE field of the Trace configuration window.

Trace Pedf Cov TC2%xT &B-.'.Trace EI@
¢ Configuration.. METHOD
&CTSSEﬁ'”Q_S"' Oanalyzer | Cénalyzer - Onchip @ART (OLOGGER Osnoorer OFDX — OLA
MCDS Settings... Hanalyzer () Integrator () Probe IProbe
List >
i Timing ¥ e el
iorlfehar ’ O DiSable
g Save trace data... ® OFF 0.
g Load reference data... O Arm SIZE
Reset Otrigger
O break
Mode
commands @ Fifo
@ Init O stack
& SnapShot
! [JBreakpoints
[AutoArm
AutoInit

3. Set COVerage.METHOD ART in the COVerage configuration window.
4. Enable ART code coverage with COVerage.ON.

il TC29 1 Window & B:COVerage.state EI@
&_’ R METHOD
@) List Ranges O INCremental SPY (JRTS @ART
[g, List Functions
[g_, L?st Mo.dules e Option
s OoFF [staticInfo & Trace
3 Add Tracebuffer @ on 2 RTS
E*) Create Report... SourceMetric
Reset commands ObjectCode ~ commands
ADD =2 Load
@ Init &3 save
RESet (38 List
(B ListModule
(L3 ListFunc
(L3 ListLine
(L3 Listvar

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 36

5. Open a COVerage.ListFunc window, single step the target and observe the result.

(L3 B::COV ListFunc oo =]
J2setup...|| ¥ Goto... | WP List +Add | Pload... | Psave.. @mit

address tree coverage [objectcode |0% 50% 100 |branches bytes i

P:40000030--400013C0 | = \diabc partial 4.232% = 1 5009. 212, [a
P:40000030--4000004B funco never 0. 000% 0 28. 0
P :4000004C--4000007F funcl ok 100. 000% 0 52. 2
P:40000080--40000113 func2 partial 59.459% 1 148. 88
P:40000114--40000173 func2a never 0.000% (96. (
P:40000174--400001CF funczb never 0.000% (92. C
P:400001D0--400002A7 func2c never 0.000% 0 216. 0
P:400002A8--4000030F func2d never 0.000% 0 104. 0
P:40000310--4000032F func3 never 0.000% 0 32. 0
P:40000330--4000039F funcd never 0.000% 0 112. 0
P:400003A0--400003EB func§ never 0.000% 0 76. 0
P:400003EC--40000477 funcé never 0.000% 0 140. 0
P:40000478--40000508 ® func? never 0.000% 0. 0 148. 0
P :4000050C--4000070F ® funcd never 0.000% 0. 0 516. 0
P:40000710--40000797 @ func9 never 0.000% 0. 0 136. 0
P:40000798--40000BEF func10 never 0.000% 0. (1112. (

P :40000BF0--40000C87 funcll never 0.000% C 0. C 1s52. 0. v

Details about the code coverage analysis itself are provided in the chapter “Supported Code Coverage

Metrics”, page 38.

Example Script

A simple example is shown below.

Mode .Mixed

Trace.RESet

Trace.METHOD ART
Trace.SIZE 65535.

COVerage.RESet
COVerage .METHOD ART

COVerage .ON

Step 65534.

COVerage.ListFunc

7

7

; Set the size of the ART buffer

Single step on assembler level to capture data
Open a Window to see results

©1989-2023 Lauterbach

Application Note for Trace-Based Code Coverage |

37

Supported Code Coverage Metrics

Overview

TRACES2 supports all important code coverage metrics. The table below gives an overview of the following

subjects:
. A definition for every TRACE32 source metric
J Requirements for the object code

It is recommended to perform the code coverage on non-optimized code. This way the results can be
displayed clearly and concisely. Otherwise the interpretation of the result becomes more demanding.

For decision and condition coverage, as well as for MC/DC, conditions must be implemented at
object code level by conditional branches or conditional instructions. Conditional instructions are
only sufficient if the trace protocol in use generates details for them.

. Source code details that TRACE32 needs for the measurement

The required source code details are not part of the debug symbol information generated by the
compiler, but must be generated separately. TRACE32 provides the command line tool t32cast
for this purpose. For complete information about t32cast, see “Application Note for t32cast”
(app_t32cast.pdf).

Please note that “RTS Mode Code Coverage”, page 22 is currently not possible for all metrics
that require additional source code details.

TRACE32 SourceMetric Requirements for the Source code details
object code needed by TRACE32
ObjectCode Final code —

Object code coverage ensures that each
object code instruction was executed at
least once and all conditional instruc-
tions (e.g. conditional branches) have
evaluated to both true and false.

Statement Final code —
Statement coverage ensures that every
statement in the program has been
invoked at least once. Statement in this
context means block of source code lines.

Decision (full) Each condition in the TRACE32 has to know
Every point of entry and exit in the pro- source code has to be which source code lines
gram has been invoked at least once and represented by a contain a decision and
every decision in the program has taken all conditional how the individual
possible outcomes at least once. branch/instruction at decisions are structured

object code level

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 38

TRACE32 SourceMetric

Requirements for the
object code

Source code details
needed by TRACE32

Decision (ocb)

Every point of entry and exit in the pro-
gram has been invoked at least once and
every decision in the program has taken
on all possible outcomes at least once.

Requires appropriate
optimization level to
prevent false-positive or
false-negative results

Condition
All conditions in the program have evalu-
ated both true and false.

Each condition in the
source code has to be
represented by a
conditional
branch/instruction at
object code level

TRACES32 has to know
which source code lines
contain a decision and
how the individual
decisions are structured

MCDC

Every point of entry and exit in the pro-
gram has been invoked at least once and
every decision in the program has taken all
possible outcomes at least once. And
each condition in a decision is shown to
independently affect the outcome of that
decision.

Each condition in the
source code has to be
represented by a
conditional
branch/instruction at
object code level

TRACES32 has to know
which source code lines
contain a decision and
how the individual
decisions are structured

Function
Every function in the program has been
invoked at least once.

Final code

Inlined functions make
the interpretation of the
results more demanding

Call
Every function call has been executed at
least once.

Final code

Inlined functions make
the interpretation of the
results more demanding

TRACE32 must know
which source code lines
contain function calls

©1989-2023 Lauterbach

Application Note for Trace-Based Code Coverage | 39

Object Code Coverage

Object code coverage can be performed directly on the final code.

Object code coverage: Object code coverage ensures that each object code instruction was executed at
least once and all conditional instructions (e.g. conditional branches) have evaluated to both true and false.

There are two tagging schemes:

. ok | only exec | not exec | never
For Arm/Cortex cores that use the protocols Arm-ETMv1 or Arm-ETMv3, as well as Arm-ETMv4 with
ETM.COND ON.

. ok | taken | not taken | never
Otherwise.

For details refer to “Appendix D: Object Code Coverage Tags in Detail”, page 116.

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 40

Evaluation

If you want to use the trace data stored in the code coverage system for object code coverage, select the

SourceMetric ObjectCode in the COVerage configuration window or use the command
COVerage.Option SourceMetric ObjectCode.

Cov | TC2%xT Window
/2 Configuration...
@ List Ranges

@ List Functions

@ List Modules

@ List Variables

@ Add Tracebuffer
E*) Create Report...

Reset

& B:COVerage.state
METHOD
® NCremental

state
OFF
®on

commands
+ ADD
@ Init
RESet

Option
StaticInfo

& Trace
2 RTS

SourceMetric

ObjectCode ~

commands

=2 Load

§Sa\re

(38 List
(B ListModule
(L3 ListFunc
(L3 ListLine
(L3 Listvar

The following commands show a tabular analysis:

COVerage.ListModule
COVerage.ListFunc
COVerage.ListLine

The following command shows the tagging on source and object code level.

I List.Mix /COVerage

©1989-2023 Lauterbach

Application Note for Trace-Based Code Coverage

41

This TRACE32 command displays the object code tagging for the function MultiLine:

List.Mix MultiLine /COVerage

i} BaList.Mix MultiLine /COVerage = =R
M Step W Over || JAyDiverge |+ Return ¢ up » Go Il Break | %|Mode &= t.| % Find: | | coverage.c
true false coverage addr/1ine |code 1abel mnemonic |comment =
"~
static unsigned MultiLine(struct Compound *compound)
not taken 198 if ((compound->a = TRUE
ok P:90000570 |[4F54 MultiLine:Td16.w d15, [a4]
not taken P:90000572 |151E jeqlé d15,#0x1,0x9000057C
ok 199 || compound-=b == TRUE
ok P:90000574 |414C Td16.w d15, [a4]0x4
ok P:90000576 |L31E jeql6 d15,#0x1,0x9000057C
taken 200 || compound->c = TRUE
ok P:90000578 |424C Td16.w d15,[a4]0x8
taken P:90000574A |195E jnel6 d15,#0x1,0x9000058C
taken 201 &% (compound—>d =— TRUE
ok P:9000057C |434C Td16.w d15, [a4]0x0C
taken P:9000057E |151E jeqlé d15,#0x1,0x90000588
never 202 || compound->e =— TRUE
never P:90000580 |444C 1d16.w di15, [a4]0x10
never P:90000582 |131E jeqlé d15,#0x1,0x90000588
never 203 || compound—>f = TRUE)
never P:90000584 |454C 1d16.w di5,[a4]0x14
never P:90000586 |135E jnel6 d15,#0x1,0x9000058C
ok 204 return TRUE;
ok P:90000588 |L282 movl6 d2,#0x1
ok P:9000058A 033C} jl6 0x90000590
ok 206 return FALSE;
ok P:9000058C (0282 mov16 d2,#0x0
ok P:9000058E |013C jl6 0x90000590
ok 207 (}
ok P:90000590 |9000 retle
- b
J

©1989-2023 Lauterbach

Application Note for Trace-Based Code Coverage |

42

The screenshot on the previous page was taken with the Infineon TriCore™ debugger. Its instruction set
contains no conditional instructions beyond conditional branches. Thus the object code is tagged as follows:

ok The object code instruction is fully covered.

If the object code is a conditional branch it is tagged with ok if the
conditional branch has be at least once taken and noft taken.

All other object code instructions are tagged with ok if they have
been executed at least once.

never The object code instruction has never been executed.

taken If the object code is a conditional branch it is tagged with taken if the
conditional branch has be at least once taken, but never not taken.

not taken If the object code is a conditional branch it is tagged with not taken if
the conditional branch has be at least once not taken, but never
taken.

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 43

This TRACE32 command displays a tabular analysis of all functions of the module "coverage". A module

usually corresponds to a source code file.

COVerage.ListFunc.sYmbol \coverage

? BusYmbolINFO \coverage

| 2 Symbols | %% Dump

List

C, view | #§mmu

oduTe
\\coverage_tcZ'coverage

P:90000440--9000098BD

module info

: ELF-C

- ZCoverage. c

: TASKING VX-toolset for TriCore: C compiler

L B::COVerage.ListFunc.s¥mbol \coverage EI@
2 Setup...|| (¥ Goto... | (G List + Add | P load... | EPsave..| @ it
address tree coverage |objectcode [0% 50% 100
P:90000440--900009BD | = ‘coverage partial 52, 6315 |we— ~
P :90000440--9000044D BooleanAssignmentNotOp ok | 100.000%
P :9000044E--90000455 BooleanAssignmentRelExpr ok | 100.000%
P:90000456--90000463 BooleanAssignmentRelExprTrans ok | 100.000%
P :90000464--90000475 BooleanExprCoupledTerms ok | 100.000%
P:90000476--90000485 BooleanExprMixedOps ok | 100.000%
P :90000486--90000495 BooleanExprSameQps ok | 100.000%
P : 900004 96--900004CF ® ComplexDowhile never 0. 000%
P:900004D0--900004FF ComplexFor never 0.000%
P :90000500--90000527 ® ComplexIf partial 35. 000% |——
P:90000528--90000569 ® Complexwhile never 0. 000%
P : 9000056A--9000056F Identity never 0. 000%
P:90000570--90000591 ®MultiLine partial 58.823%
P:90000592--900005A7 NestedExpr o 100.000%
P : 900005A8--900005C9 NestedExprTrans ok | 100.000%
P :900005CA--90000615 RunCover ageDemo partial B1. 578% | ——
P:90000616--90000647 SwitchCase taken 92, 000% | e——
P:90000648--9000065D TernaryExpr ok | 100.000% v
< >

©1989-2023 Lauterbach

Application Note for Trace-Based Code Coverage

44

Further details are displayed if you open the window in its full size:

£ B=COVerage ListFunc.s¥mbol \coverage (= |
2 setup...| (¥ Goto... | (@ List +Add | Pload... | E25ave.. @ mit
address tree coverage [objectcode (0% 50% 100 branches bytes i
P:90000440--9000098BD | = \coverage partial 52.631% 55.769% 25. 7. 1. 19 1406. 40, [
P :90000440--9000044D Boo]eanAssignmentNotOp ok 100. 000% 100. 000% 3. 0. 0. 0. 14. 14.
P :9000044E--90000455 Boo]leanAssignmentRelExpr ok 100. 000% - 0. 0. 0. 0. 8. 8.
P :90000456--90000463 Boo]eanAssignmentRelExprTrans ok 100. 000% 100. 000% 1. 0. 0. 0. 14. 14.
P :90000464--90000475 BooleanExprCoupledTerms ok
P:90000476--90000485 BooleanExpriixedops ok | |branches bytes
P:90000486--90000495 BooleanExprSame0ps ok T5. 760% pL 7 1 19 1406 =40
P :90000496--900004CF = ComplexDowhile never . - o . - . " M
P:900004D0--900004FF & ComplexFor never | |100.000% 3. 0. 0. 0. 14. 14
P:90000500--90000527 ® ComplexIf partial _ 0 0 0 0 8]
P:90000528--90000569 = Complexwhile never o o o - =
P:9000056A--9000056F Id_‘entity never 100. 000% 1. 0. 0. 0 14. 14
P:90000570--90000591 ®MultiLine partia n 0 0 0]
P :90000592--900005A7 NestedExpr ok 100. 000% - . . 18. - h
P:900005A8--900005C9 NestedExprTrans ul1< 100. 000% 3 0. 0. 0 16. 16
P :900005CA--90000615 RunCoverageDeno partia 9 3 0 0 0 6
P :90000616--90000647 SwitchCase taken 100. 000% . . . = 16. - 2
P :90000645--90000650 @ TernaryExpr ok 0. 000% 0. 0. 0. 5 58. 0
P:9000065E--9000067 3 @ TernaryExprTrans ok 0. 000% 0. 0. 0. 5 48, 0. |v
- 37.500% 1. 1. 0. 2 40.
0.000% 0. 0. 0. 5 66.
- 0. 0. 0. 0 6.
41.666% 1. 2. 1. 2 34.
- 0. 0. 0. 0 22.
100. 000% 2. 0. 0. 0 34.
- 0. 0. 0. 0 76.
90. 000% 4. 1. 0. 0 50.
100. 000% 1. 0. 0. 0 22.
100. 000% 1. 0. 0. 0 22. 22

Conditional branches

branches

Percentage calculated according to the
following formula:

2 x ok + taken + nottaken
2 x (ok + taken + nottaken + never)

ok

Number of conditional branches that are both
taken and not taken

taken Number of conditional branches that are only
taken

not taken Number of conditional branches that are only
not taken

never Number of conditional branches that are
neither taken nor not taken

Byte count

bytes

Number of bytes

ok

Number of bytes that are already tagged as ok

©1989-2023 Lauterbach

Application Note for Trace-Based Code Coverage |

45

Example Script

// Demo script "~~/demo/t32cast/eca/measure_mcdc.cmm"

// Select code coverage metric object code
COVerage.Option SourceMetric ObjectCode

// List code coverage results at source and object code level
List.Mix MultiLine /COVerage

// List code coverage results at function level
COVerage.ListFunc.sYmbol \coverage

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 46

Statement Coverage

Statement coverage can be performed directly on the final code.

Statement coverage: Statement coverage ensures that every statement in the program has been invoked
at least once. Statement in this context means block of source code lines.

TRACES32 interpretation: A source code line achieves statement coverage when at least one
corresponding object code instruction has been executed.

The following tagging is performed:

. stmt | incomplete

Evaluation

If you want to use the trace data stored in the code coverage system for statement coverage, select the
SourceMetric Statement in the COVerage configuration window or use the command
COVerage.Option SourceMetric Statement.

Cov TC2%xT Window &B::COVerage EI@
&_’ g_"“ﬁ!'“""ﬁ“"‘ METHOD
(€D ListRanges @ ICremental SPY (JRTS (JART
[g, List Functions
[g_, Lfst Mo.dules e Option
oL OFF [staticinfo & Trace
(3 Add Tracebuffer ®on 2 RTS
E*) Create Report... SourceMetric
Reset commands Statement ~ commands
+ ADD =2 Load
@ Init &3 Save
RESet (38 List
(B ListModule
(L3 ListFunc
(L3 ListLine
(L3 Listvar

The following commands show a tabular analysis:

COVerage.ListModule
COVerage.ListFunc

The following command shows the tagging on source code level.

I List.HIl /COVerage

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 47

This TRACE32 command displays the statement coverage tagging for the function MultiLine:

List.Hl1l MultiLine /COVerage

BuList.HIl MultiLine /COVerage

(o] 8)

M Step ® Over || A Diverge ¢ Return ¢ up » Go Il Break | % Mode &= t- Find: coverage.c

true false coverage addr/1ine |source i
"~
static unsigned MultiLine(struct Compound *compound)
stmt 198 | if ((compound-=a == TRUE
stmt 199 || compound-=b == TRUE
stmt 200 || compound-=c == TRUE)
) stmt 201 &% (compound->d == TRUE
incomplete 202 || compound->e — TRUE
incomplete 203 || compound—>f — TRUE)) {
stmt 204 _ return TRUE;
stmt 206 | return FALSE;
stmt 207 [}
stmt

210 [static void TestMultiline(void)

The source code lines are tagged as follows:

stmt At least one corresponding object code instruction generated for the
block of source code lines has been executed.

incomplete None of the object code instructions generated for the block of
source code lines has been executed.

Object code instructions show the corresponding tags for object code coverage, if statement coverage is

selected.

©1989-2023 Lauterbach

Application Note for Trace-Based Code Coverage | 48

This TRACE32 command displays a tabular analysis of all functions of the module "coverage". A module

usually corresponds to a source code file.

COVerage.ListFunc.sYmbol \coverage

? BusYmbolINFO \coverage EI@
| 2 Symbols | %% Dump = List Q, view | E&mmu
moduTe

\\coverage_tc2'\coverage

P:90000440--9000098BD

module info
anguage: ELF-C . .
TASKING VX-toolset for TriCore: C compiler

- ZCoverage. C

L B::COVerage.ListFunc.s¥mbol \coverage EI@
2 Setup...|| (¥ Goto... | (G List + Add | P load... | EPsave..| @ it
address tree coverage | statement [0% 50% 100
P:90000440--900009BD | = ‘coverage Tncomplete 98.067% ~
P :90000440--9000044D BooleanAssignmentNotOp stmt | 100.000%
P :9000044E--90000455 BooleanAssignmentRelExpr stmt | 100.000%
P:90000456--90000463 BooleanAssignmentRelExprTrans stmt | 100.000%
P :90000464--90000475 BooleanExprCoupledTerms stmt | 100.000%
P:90000476--90000485 BooleanExprMixedOps stmt | 100.000%
P:90000486--90000495 BooleanExprSameQps stmt | 100.000%
P : 900004 96--900004CF ComplexDowhile stmt | 100.000%
P:900004D0--900004FF ComplexFor stmt | 100.000%
P:90000500--90000527 ComplexIf stmt 100.000%
P:90000528--90000569 ® Complexwhile stmt | 100.000%
P:9000056A--9000056F Identity stmt 100.000%
P :90000570--90000591 ®MultiLine incomplete F7.777% | —
P:90000592--900005A7 NestedExpr stmt | 100.000%
P:900005A8--900005C9 NestedExprTrans stmt | 100.000%
P :900005CA--90000615 RunCover ageDemo incomplete 94.117%
P:90000616--90000647 SwitchCase stmt 100.000%
P:90000648--9000065D TernaryExpr stmt | 100.000% v
< >

Tags for Statement Coverage

Statement coverage is achieved for a group of HLL source code statements as soon as one of its
associated assembly instructions has been partially executed.

. stmt: All source code line blocks of the function/module are tagged with stmt.

J incomplete: At least one source code line block of the function/module is tagged with incomplete.

If a tag marks the coverage status of HLL source code statements, the following definitions apply:

J stmt: The measured code coverage of the HLL source code statement(s) is sufficient to achieve

statement coverage.

J incomplete: The measured code coverage of the HLL source code statement(s) is not sufficient

to achieve statement coverage.

©1989-2023 Lauterbach

Application Note for Trace-Based Code Coverage

49

Further details are displayed if you open the window in its full size:

1ED B::COVerage.ListFunc.sYmbol \coverage
& setup... | A Goto... | @B List +add | Pload.. |E2save..| @ mit
address ‘tree coverage | statement [0% 50% 100 lines
P:90000440--900009BD [= ‘.coverage TncompTete 98, 0675 |me— 207. 203.
P:90000440--9000044D BooleanAssignmentNotOp stmt | 100. 000% |se—— 2. 2.
P:9000044E--90000455 BooleanAssignmentRelExpr stmt | 100. 000% |se—— 2. 2.
P:90000456--90000463 BooleanAssignmentRelExprTrans stmt | 100. 000% |se—— 4. 4.
P:90000464--90000475 BooleanExprCoupledTerms stmt | 100. 000% |se—— 5. 5.
P:90000476--90000485 ooleanExpriixedOops stmt | 100. 000% |se—— 5. 5.
P:90000486--90000495 ooleanExprSameOps stt | 100. 000% | ee— 5. 5.
P:90000496--900004CF omplexDowhile stmt | 100. 000% |se—— 8. 8.
P :900004D0--900004FF omplexFor stt | 100. 000% | ee— 8. 8.
P:90000500--90000527 omplexIf stt | 100. 000% | ee— 5. 5.
P:90000528--90000569 omplexwhile stmt | 100. 000% |se—— 9. 9.
P :9000056A--9000056F Identity stt | 100. 000% | ee— 2. 2.
P:90000570--90000591 ® MultiLine incomplete TTTT7Y | — 9. 7.
P:90000592--900005A7 estedExpr stt | 100. 000% | ee— 2. 2.
P :900005A8--900005C9 estedExprTrans stt | 100. 000% | ee— 7. 7
P:900005CA--90000615 unCoverageDemo incomplete 94, 117% |e— 17. 16.
P:90000616--90000647 witchCase stt | 100. 000% | ee— 17. 17
P:90000648--9000065D ernaryExpr stmt | 100.000% 2. 2

Line count

line Number of source code line blocks

ok Number of source code line blocks tagged with
stmt

Byte count

bytes Number of bytes

ok Number of bytes tagged with stmt

Example Script

// Demo script "~~/demo/t32cast/eca/measure_mcdc.cmm"

// Select code coverage metric statement
COVerage.Option SourceMetric Statement

// List code coverage results at source code line level
List.Hl1ll MultiLine /COVerage

// List code coverage results at function level
COVerage.ListFunc.sYmbol \coverage

©1989-2023 Lauterbach

Application Note for Trace-Based Code Coverage

50

Full Decision Coverage

The following diagram defines the terms used in this chapter:

AN
(|Alland||(B|) lor
I

Conditions

TRACE32 distinguishes between two forms of decision coverage:
. full decision coverage and

J object code coverage based decision coverage - ocb in short (for details refer to “Object Code
Based (ocb) Decision Coverage”, page 58)

Evaluation Strategy

Decision coverage: Every point of entry and exit in the program has been invoked at least once and every
decision in the program has taken all possible outcomes at least once.

To measure decision coverage accurately the following prerequisites must be fulffilled:

1. It is necessary that the code is compiled so that each condition in the source code is represented
by a distinct conditional branch/instruction at object code level. Conditional instructions, however,
require that the trace protocol includes information about conditional instructions.

Please read “Appendix B: Coding Guidelines”, page 112 to ensure that you write decisions and
conditions at source code level in such a way that your build toolchain generates conditional
branches/instructions for them.

Ensure that the compiler generates conditional branches for switch-case statements. A
dedicated compiler option is commonly available to control this. Please refer to the
documentation of your build toolchain.

2. TRACES32 has to know which source code lines contain decisions and their conditions. Moreover,
for each condition used in a decision its structure and the mapping between conditions and
conditional branches/instructions must be known.

These details are not part of the debug symbol information generated by the compiler, but must
be generated separately. TRACE32 provides the command line tool t32cast for this purpose. For
complete information about t32cast, see “Application Note for t32cast” (app_t32cast.pdf).

The t32cast command line tool generates an Extended Code Analysis (ECA) data file for each
source code file. These files have to be loaded into TRACES32 before starting the code coverage
analysis.

If these prerequisites are met, full decision coverage can be performed with the optimal number of test
cases.

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 51

TRACES32 Interpretation: A decision achieves decision coverage when all decision paths achieve
statement coverage. The following screenshot illustrates this:

=) [BuList 0x90000500 /COVerage] EI@
M Step B Over | \AyDiverge | ¢ Return ¢ up b Go Il Break | "iMode & t. Find: coverage.c

id dec/cond true false coverage addr/Tine |source |
[1. 1. 1. C 115 1T (a && T(h > -100 [T(c » 42)) && Identity(d) < 36) {

stmt 116) outcome = TRUE;

2lse {

stmt 119) outcome = FALSE;

stmt 121 | l:‘etur'n outcome;

stmt 122 |}

W

Each decision receives its own ID.

Source code lines that represent decisions are tagged as follows:

. dc | incomplete

All other source code lines use the corresponding tags for statement coverage.

Evaluation

If you want to use the trace data stored in the code coverage system for full decision coverage, select the
SourceMetric Decision in the COVerage configuration window or use the command
COVerage.Option SourceMetric Decision.

Cov | TC2%T Window & B:COVerage.state EI@
&_’ R METHOD
@? pElkangss ® INCremental SPY (RTS (ART
[g, List Functions
[g_, L?st Mo.dules e Option
s OFF [staticInfo 2 Trace
€3 Add Tracebuffer @®on PRTS
E*) Create Report... SourceMetric
Reset commands Decision ~ commands
+ ADD =2 Load
@ Init &3 Save
RESet (38 List
(B ListModule
(L3 ListFunc
(L3 ListLine
(L3 Listvar

Before you start the code coverage analysis, you have to load the .eca files created by the command line
tool t32cast:

I sYmbol.ECA.LOADALL /SkipErrors

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 52

The following commands show a tabular analysis:

COVerage.ListModule
COVerage.ListFunc

The following command shows the tagging on source code level.

I List.HIl /COVerage

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 53

This TRACE32 command displays the decision coverage tagging for the function ComplexDoWhile:

List.HLL ComplexDoWhile /COVerage

=/ [BiListHLL ComplexDoWhile /COVerage] =R =R
M Step W Over | A Diverge 4 Return ¢ up » Go Il Break | !%Mode & ||t Find: coverage.c
id dec/cond true false coverage addr/Tine |source |
stmt 57 |static unsigned CompTexDowhiTe(int const a, int const b, int const ¢, int const d) &
stmt 59| unsigned num_cycles = Ou;
do {) o
2 1. 1. 1. dc 62 if (num_cycles > 1u) {
stmt 63 R reak;
stmt 65 . Hu\n_(yc'l es++;
3 1. 1. 1. dec 67 while (((!(Identity(a) »= -45) && Identity(b)) && Identity(c)) || d):
stmt 69 [return num_cycles;
stmt 70|} b4

Decisions are tagged as follows:

dc

Decisions have taken all possible outcomes at least once.

incomplete

There is at least one possible outcome missing for the decisions.

Not executed decision paths are tagged with incomplete at source code level. Already taken decision paths

are tagged with stmt.

i=] [BrList 0x90000500 /COVerage]

[|

M Step W Over | JADiverge ¢ Return ¢ up

id dec/cond true false coverage addr/1ine |source
[i 0. 115

» Go Il Break | % Mode & t. Find: coverage.c

1. incomplete
incomplete

I
it (a & (b > -100 ['(c > 42)) &% Identity(d) < 36) { ~
116 - outcome = TRUE;

else §{
outcome = FALSE;

121 return outcome;

©1989-2023 Lauterbach

Application Note for Trace-Based Code Coverage | 54

This TRACE32 command displays a tabular analysis of all functions of the module "coverage". A module
usually corresponds to a source code file.

COVerage.ListFunc.sYmbol \coverage

(o8)

? BusYmbolINFO \coverage

| 2 Symbols | %% Dump = List Q, view | E&mmu

oduTe
\\coverage_tcZ'coverage

P:90000440--9000098BD

: ELF-C
TASKING VX-toolset for TriCore: C compiler

- ZCoverage. C

L B::COVerage.ListFunc.s¥mbol \coverage EI@
2 Setup...|| (¥ Goto... | (G List + Add | P load... | EPsave..| @ it
address tree coverage | decision [0% 50% 100
P:90000440--900009BD | = ‘coverage Tncomplete 96.135%
P :90000440--9000044D BooleanAssignmentNotOp stmt+dc | 100.000%
P :9000044E--90000455 BooleanAssignmentRelExpr incomplete 50.000%
P:90000456--90000463 BooleanAssignmentRelExprTrans stmt+dc | 100.000%
P :90000464--90000475 BooleanExprCoupledTerms stmt+dc | 100.000%
P:90000476--90000485 BooleanExprMixedOps stmt+dc | 100.000%
P :90000486--90000495 BooleanExprSameQps stmt+dc | 100.000%
P : 900004 96--900004CF ComplexDowhile stmt+dc | 100.000%
P : 900004D0--900004FF ComplexFor stmt+dc | 100.000%
P :90000500--90000527 ComplexIf stmt+dc | 100.000%
P:90000528--90000569 ® Complexwhile stmt+dc | 100.000%
P:9000056A--9000056F Identity stmt+dc 100.000%
P:90000570--90000591 ®EMultiLine stmt+dc 100.000%
P:90000592--900005A7 NestedExpr incomplete 50.000%
P : 900005A8--900005C9 NestedExprTrans stmt+dc | 100.000%
P :900005CA--90000615 RunCover ageDemo incomplete T6.470% | ——
P:90000616--90000647 SwitchCase stmt+dc | 100.000%
< >

Tags for Decision Coverage

Decision coverage is achieved for a group of HLL source code statements as soon as all of its associated
assembly instructions have been fully covered.

. stmt+dc: All source code line blocks of the function/module are tagged with dc or stmt.

. incomplete: At least one source code line block of the function/module is tagged as incomplete.

If a tag marks the coverage status of HLL source code statements, the following definitions apply:

J stmt+dc: The measured code coverage of the HLL source code statement(s) is sufficient to
achieve decision coverage.

. incomplete: The measured code coverage of the HLL source code statement(s) is not sufficient
to achieve decision coverage.

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 55

Further details are displayed when you open the window in its full size:

16 B:COVerage ListFunc s¥imbol \coverage == E=E ==
&2 setup...| A Goto... | ([EBList +add | Bload.. Esave.. @it
address tree coverage | decision [0% 50% 100 Tines dec bytes I
P:90000440--9000098D | = ‘coverage ncompTete 74.396% 207. 1%4. 32. 19. 22, 1406. 1012. [A
P:90000440--9000044D Boo]eanAssignmentNotop stmt+dc | 100.000% 2. 2. 1. 1. 1. 14. 14
P:9000044E--90000455 # BooleanAssignmentRelExpr incomplete | 50.000% |mmmmm— 2. 1. 1. 0 0. 8. 8
P:90000456--90000463 BooleanAssignmentRe1ExprTrans stmt+dec | 100.000% 4. 4. 1. 1 1. 14. 14.
P:90000464--90000475 Boo]eanExprCoupledTerms stmt+dc | 100.000% 5. 5. 1. 1 1. 18. 18.
P:90000476--900004 85 @ Brm]‘ eanExprMixedops stnrt+jc Haalasad - - - s -
P:90000486--90000495 BooleanExprsameOps stmt+dc 1
P:90000496--900004CF Comp]exDowhile incomplete lines = dec - — bytes =
P:900004D0-- 900004 FF ® ComplexFor stmt+dc 207. 154. 32. 19. 22 1406. 1012.
P:90000500--90000527 ComplexIf stmt+de 2 2 1 1 1 14 14
P:90000528--90000569 Complexwhile incomplete . o . . . o
P:9000056A--9000056F ® Identity stmt+dc 2. 1. 1. 0. 0 8. 8.
P:90000570--90000591 MultiLine stmt+dc 4 4 1 1 1 14 14
P:90000592--90000547 NestedExpr incomplete . o . . . o
P:900005A8--900005C9 ® NestedExprTrans stmt+dc 5. 5. 1. 1. 1 18. 18.
P:900005CA--90000615 RunCover ageDeno incomp]lete 5 g 1 1 16 16
P:90000616--90000647 SwitchCase incomplete . = . . . o
P:90000648--90000650 ® TernaryExpr stmt+dc 5. 5. 1. 1. 1 16. 16. |v
I 8. 0. 2. 0. 0 58. 0.
8. 8. 3. 3. 3 48. 48. |
5. 5. 1. 1. 1. 40. 40.
9. 2. 3. 0. 0. 66. 26.
2. 2. 0. 0. 0. 6. 6.
9. 9. 6. 6. 6. 34. 20.
2. 1. 1. 0. 0. 22. 22.
7. . 2. 2. 2. 34. 34.
17. 12. 3. 0. 0. 76. 0.
17. 15. 0. 0. 0. 50. 42,
2. 2 1. 1. 1 22. 22

Line count

lines

Number of source code line blocks within the
function/module

ok

Number of source code line blocks tagged with
dc or stmt

Decision count

dec Number of decisions within the function/module
true Number of decisions evaluated as true

false Number of decisions evaluated as false

Byte count

bytes

Number of bytes within the function/module

ok

Number of bytes tagged with dc or stmt

©1989-2023 Lauterbach

Application Note for Trace-Based Code Coverage | 56

Example Script

// Demo script "~~/demo/t32cast/eca/measure_mcdc.cmm"

// Select code coverage metric decision
COVerage.Option SourceMetric Decision

// Load .eca files so that TRACE32 knows which source code lines

// represent decisions
sYmbol.ECA.LOADALL /SkipErrors

// List code coverage results at source code line level
List.Hll ComplexDoWhile /COVerage

// List code coverage results at function level
COVerage.ListFunc.sYmbol \coverage

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 57

Object Code Based (ocb) Decision Coverage

The following diagram defines the terms used in this chapter:

AN
(|Alland||(B|) lor
I

Conditions

TRACE32 distinguishes between two forms of decision coverage:
J full decision coverage (for details refer to “Full Decision Coverage”, page 51) and

. object code coverage based decision coverage - ocb in short

Evaluation Strategy

Decision coverage: Every point of entry and exit in the program has been invoked at least once and every
decision in the program has taken on all possible outcomes at least once.

TRACES32 Interpretation: ocb decision coverage is achieved if full object code coverage is achieved.

This eliminates the prerequisites necessary for full decision coverage. However, the following should be
considered:

Unoptimized code can lead to false negative results. False negative means that decisions are tagged as
incomplete although decision coverage has already been achieved. That means ocb decision coverage may
need more test cases than full decision coverage

Optimized code can lead to false positive results if a condition is no longer represented by a conditional
branch/instruction or the trace protocol provides no information about the state of conditional instructions.
False positive means that decision coverage is indicated too early.

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 58

Since the source code is not analyzed for ocb decision coverage, TRACE32 does not know where decisions
are located. Therefor source code lines are tagged as follows:

. dc+stmt | incomplete
= [BList P:0x30000500 /COV] = =S
M Step B Over | M Diverge | « Return ¢ up » Go I Break | !%|Mode &= T Find: coverage.c
id dec/cond true false coverage addr/1ine [source |
1 ~
unsigned outcome = FALSE;
stmt+dc 115 if (a && (b > -100 || !{c > 42)) && Identity(d) < 36) {
stmt+dc 116) outcome = TRUE;
else {
stmt+dc 119 . outcome = FALSE;
stmt+dc 121 | return outcome;
stmt+dc 122 |}
v

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 59

Evaluation

If you want to use the trace data stored in the code coverage system for ocb decision coverage, select the
SourceMetric Decision in COVerage state window or use the command
COVerage.Option SourceMetric Decision.

Cov TC2%T Window & B:COVerage.state EI@
K Lo i METHOD
& List Ranges @MCremental /SPY | RTS | ART
[g, List Functions
[g_, L?st Mo.dules state Option
[g, List Variables OFF [StaticInfo &Trace
€3 Add Tracebuffer @®on PRTS
E*) Create Report... SourceMetric
Reset commands Decision bl commands
+ ADD £ Load
& Init §Sa\re
RESet (8 List
@Lisﬂdodule
(L8 ListFunc
(L ListLine
(L8 Listvar

The following commands show a tabular analysis:

COVerage.ListModule
COVerage.ListFunc

The following command shows the tagging on source code level.

I List.HIl /COVerage

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 60

This TRACE32 command displays the ocb decision coverage tagging for the function ComplexDoWhile:

List.HLL ComplexDoWhile /COVerage

= [BuList P:0x90000496 /COV]

[=[= =]

M Step B Over | JyDiverge & Return ¢ up b Go Il Break | Y% Mode & t. Find: coverage.c

id dec/cond true false coverage addr/Tine |source |
stmt+dc 57 [static unsigned CompTexDowhile(int const a, int const b, int const c, int const d)}
stmt+dc 59| unsigned num_cycles = Ou;

do {) o

stmt+dc 62 if (num_cycles > 1u) {
stmt+dc 63 reak;
stmt+dc 65 Hu\n_(yc'l es++;
stmt+dc 67 while (((!(Identity(a) »= -45) && Identity(b)) && Identity(c)) || d):
stmt+dc 69| return num_cycles;
stmt+dc 70 [} v

Source code lines are tagged as follows:

dc+stmt The source code line achieved full object code coverage and thereby
either decision or statement coverage.

incomplete The source code line did not achieve full object code coverage and
thereby no decision or statement coverage.

Object code instructions get object code tagging, if ocb decision coverage is performed.

©1989-2023 Lauterbach

Application Note for Trace-Based Code Coverage |

61

This TRACE32 command displays a tabular analysis of all functions of the "coverage" module. A module

usually corresponds to a source code file.

COVerage.ListFunc.sYmbol \coverage

2 BusYmbolINFO ‘\coverage

(o8)

0

| 2 Symbols | %% Dump

= List

Oy, View

3 mmu

oduTe
\\coverage_tcZ'coverage

P:90000440--9000098BD

: ELF-C

- ZCoverage.cC

: TASKING VX-toolset for TriCore: C compiler

L B::COVerage.ListFunc.s¥mbol \coverage EI@
2 Setup...|| (¥ Goto... | (G List + Add | P load... | EPsave..| @ it
address tree coverage | decision [0% 50% 100 |
P:90000440--900009BD | = ‘coverage Tncomplete 74.390% |m— ~
P :90000440--9000044D BooleanAssignmentNotOp stmt+dc | 100.000%
P :9000044E--90000455 ® BooleanAssignmentRelExpr stmt+dc | 100.000%
P:90000456--90000463 ooleanAssignmentRelExprTrans stmt+dc | 100.000%
P :90000464--90000475 ooleanExprCoupledTerms stmt+dc | 100.000%
P:90000476--90000485 ooleanExprMixedips stmt+dc | 100.000%
P :90000486--90000495 ooleanExprSame0ps stmt+dc | 100.000%
P : 900004 96--900004CF omplexDowhile incomplete 0. 000%
P : 900004D0--900004FF ComplexFor stmt+dc | 100.000%
P :90000500--90000527 ComplexIf stmt+dc | 100.000%
P:90000528--90000569 ® Complexwhile incomplete 33.333% |—
P:9000056A--9000056F Identity stmt+dc 100.000%
P :90000570--90000591 ®EMultiLine incomplete 44, 444%
P:90000592--900005A7 NestedExpr stmt+dc | 100.000%
P : 900005A8--900005C9 NestedExprTrans stmt+dc | 100.000%
P : 900005CA--90000615 RunCover ageDemo incomplete B8. 235% |— v
< >
Tags for Object Code Based (ocb) Decision Coverage
. stmt+dc: All source code lines of the function/module are tagged with stmt+dc.
. incomplete: At least one source code line of the function/module is tagged with incomplete.

©1989-2023 Lauterbach

Application Note for Trace-Based Code Coverage

62

Further details are displayed when you open the window in its full size:

£ B:COVerage ListFunc.s¥mbol \coverage =N ===
2 setup...| A Goto... | @List +add | Sload. | Psave.. @ mit
address tree coverage | decision [0% 50% 100 Tines dec bytes i
P:90000440--9000098D | = \coverage Tncomplete | 74. 306% |mmms 207. 154. 1406. 1012. |
P:90000440--39000044D ® BooleanAssgnmentNotop stmt+dc | 100, 000% (m— 2. 2. 14. 1a.
P:9000044E--90000455 ® BooleanAssignmentRe] Expr Stit+dc | 100, 000% |m— 2. 2. 8. 8
P+ 900004 56--30000463 BooleanssignmentRelExprTrans Stmtdc | 100 000% |m— 1. 1 14. 14
P:00000464--30000475 u]leanExpr(uupledTerms 5tmt+§c 100, 000% |me—— 5. 5 18. 18
P:90000476--90000485 0leanExprMixedOps stmt+dc | 100 14
P: 900004 86--30000495 oleanExprSameOps stmt+dc | 100 ines _ dec bytes __
P: 900004 96--900004CF mplexDohile incomplete 0 207. 154. 1406. 1012.
P:300004D0--900004FF mplexFor stmt+dc | 100 2 2 14 14
P:90000500--90000527 omplexIf stmt+dec | 100 . - . -
P:90000528--90000569 ® Complexwhile incomplete | 33 2. 2. 8. 8
P:9000056A--3000056F ® Identity stmt+dc | 100 4 4 14 14
P:90000570--90000591 ®MuTtiline incomplete | 44 . . .
P:90000592--900005A7 # NestedExpr stmt+dc | 100 5. 5. 18. 18
P:900005A8--300005C9 NestedExprTrans stmt+dc | 100 5 5 16 16
P:900005CA--30000615 RunCoverageDemo incomplete 88 5' 5' 16' 16
= 8. 0. 58. 0. o
8. 8. 48. 48
5. 5. 40. 40
9. 3. 66. 26
2. 2. 6. 6
9. 4. 34. 20
2. 2. 22. 22
7. 7. 34. 34
17. 15. 76. 70
Line count
lines Number of source code lines within the
function/module
ok Number of source code lines tagged with
stmt+dc
Byte count
bytes Number of bytes within the function/module
ok Number of bytes tagged with stmt+dc

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 63

Example Script

// Demo script "~~/demo/t32cast/eca/measure_mcdc.cmm"

// Select code coverage metric decision
COVerage.Option SourceMetric Decision

// List code coverage results at source code line level
List.Hll ComplexDoWhile /COVerage

// List code coverage results at function level
COVerage.ListFunc.sYmbol \coverage

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 64

Condition Coverage

The following diagram defines the terms used in this chapter:

AN
(|Alland||(B|) lor
I

Conditions

Evaluation Strategy

Condition coverage: All conditions in the program have evaluated both true and false.

To measure condition coverage accurately the following prerequisites must be fulfilled:

1. It is necessary that the code is compiled in such a way that each condition in the source code is
represented by a distinct conditional branch/instruction at object code level. Conditional
instructions, however, require that the trace protocol includes information about conditional
instructions.

Please read “Appendix B: Coding Guidelines”, page 112 to ensure that you write decisions and
conditions at source code level in such a way that your build toolchain generates conditional
branches/instructions for them.

Ensure that the compiler generates conditional branches for switch-case statements. A
dedicated compiler option is commonly available to control this. Please refer to the
documentation of your build toolchain.

2. TRACES32 has to know which source code lines contain a condition.

These source code details are not part of the debug symbol information generated by the
compiler, but must be generated separately. TRACE32 provides the command line tool t32cast
for this purpose. For complete information about t32cast, see “Application Note for t32cast”
(app_t32cast.pdf).

The t32cast command line tool generates an Extended Code Analysis (ECA) data file for each
source code file. These files have to be loaded into TRACES32 before starting the code coverage
analysis.

TRACES32 Interpretation: A condition achieved condition coverage when the execution of its conditional
branches/instructions results in both a true and false outcome.

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 65

The following screenshot illustrates this:

4/ [BaList 090000500 /COVerage] =N R
M Step B Over || A Diverge « Return ¢ up » Go Il Break | i Mode & t. Find: coverage.c
id dec/cond true false coverage addr/Tline |code label mnemoni c comment |
[1. 1. 1. = 115 T (a & (b > -100 [] I(c > 42)) && Identity(d) < 36) { ~
6 1. L] * ok P:90000500 [001104DF cComplexIf:jeq 4, #0x0, (‘XJ(I(IU(ISLL
ok P:90000504 (FFF9CO3B mov L5 #-0x64
6 &e L * ok P:90000508 |000DSF3F jlt d1s,ds, ('xJ(‘('('(‘Szc
ok P:9000050C |2ADA movl6 d15,#0x
6 3. [. ok P:9000050E |000AGFTF jge dis, d:v EIXJUEICIE\SLL
ok P:90000512 |7402 mov1l6 d4
ok P:90000514 |002B006D call E‘XJE'UE‘E'S‘QA
ok P:90000518 |24DA movl6 dl5, #0x2
6 4 L - ok P:9000051A |0004F27F jge d2 ‘dlS.(lx‘J(\(l(IOSZZ
stmt 116 outcome = TRUE;
ok P:9000051E 1282 mov1l6 d2,#0x1
ok P:90000520 (023C jl6 0x90000524
v

Each decision receives its own ID. The atomic conditions of which the decision is composed are numbered
consecutively. Each atomic condition is represented by a conditional branch/instruction.

([a) && ! ([b>-100] || ! ((c>42)) && (Identity(d)<36))
T i T T

Cond. 6.1 Cond. 6.2 Cond. 6.3 Cond. 6.4

Source code lines that contain conditions are tagged as follows:

. cc | incomplete

All other source code lines use the corresponding tags for statement coverage.

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 66

Evaluation

If you want to use the trace data stored in the code coverage system for condition coverage, select the
SourceMetric CONDition in the COVerage configuration window or use the command
COVerage.Option SourceMetric CONDition.

Cov TC2%T Window & B:COVerage.state EI@
& Configuration... METHOD
@) List Ranges @NCremental | ISPY | RTS | ART
[g, List Functions
[g_, Lfst Mo.dules state Option
(£ List Variables OFF [staticInfo &2 Trace
€3 Add Tracebuffer @ on P RTS
E*) Create Report... SourceMetric
Reset commands CONDition bl commands
+ ADD £ Load
& Init §Sa\re
RESet (8 List
@Lisﬂdodule
(L8 ListFunc
(L ListLine
(L Listvar

The following commands show a tabular analysis:

COVerage.ListModule
COVerage.ListFunc

The following command shows the tagging on source code level.

I List.HIl /COVerage

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 67

This TRACE32 command displays the condition coverage tagging for the function ComplexDoWhile:

List.HLL ComplexDoWhile /COVerage

=/ [BiListHLL ComplexDoWhile /COVerage] =R =R
M Step W Over | A Diverge 4 Return ¢ up » Go Il Break | !%Mode & ||t Find: coverage.c
id dec/cond true false coverage addr/Tine |source |
~
stmt 57 §tat'ic unsigned ComplexDoWhile(int const a, int const b, int const ¢, int const d)
stmt 59| unsigned num_cycles = Ou;
do { .
2 1 1 1 cc 62 if (num_cycles > 1u) {
stmt 63 reak;
stmt 65 nun_cycles++;
3 1 1. 1 cc 67 while (((!(Identity(a) »= -45) && Identity(b)) && Identity(c)) || d);
stmt 69| return num_cycles;
stmt 70 |3
v

Decisions are tagged as follows:

CcC

The conditions have evaluated both, true and false.

incomplete

The conditions have not evaluated both, true and false.

TRACES2 displays the result in mixed mode in such a way that it is clear which atomic conditions are still

missing for a full condition coverage.

=4 [BrList.Mix ComplexDoWhile /COVerage] [E=x E=RE==)
M Step W Over | \ADiverge | ¢ Return ¢ up » Go 1l Break || ¥%|Mode & ||t- Find: coverage.c
id dec/cond true false coverage addr/Tine |code label mnemonic comment |
3 1. 0. 1. incomplete 67 while (((!(Identity(a) >= —45) &% Identity(b)) &% Identity(c)) [d); ~
ok P:900004A8 |53402 6 d4,d8
ok P:900004AA |0060006D 0x9000056A
ok P:900004AE [OFFD303B d0,#-0x2D
3 1 - * ok P:900004B2 |000B0Z27F d2,d0, 0x900004C8
ok P:900004B6 |9402 4,d9
ok P:900004B8 [0059006D 0x9000056A
3 e * taken P:900004BC |2676 d2,0x900004C8
never P:900004BE |A402 d4,
never P:900004C0 |0055006D call 0x9000056A ; Identity
3 3. never P:900004C4 |FFEEOZDF jne d2 ,#0x0, 0x900004A0
3 4 # | not taken P:900004C8 |ECEE jnzlé d15,0x900004A0 v

Object code instructions show the corresponding tags for object code coverage, if condition coverage is

selected.

©1989-2023 Lauterbach

Application Note for Trace-Based Code Coverage |

68

This TRACE32 command displays a tabular analysis of all functions of the module "coverage". A module

usually corresponds to a source code file.

COVerage.ListFunc.sYmbol \coverage

? BusYmbolINFO \coverage EI@
| 2 Symbols | %% Dump = List C, view | #§mmu
moduTe
\\coverage_tcZ'coverage
P:90000440--900009BD
module info
anguage: ELF-C
s TASKING VX-toolset for TriCore: C compiler
sour ..\coverage.c
@ B::COVerage. ListFunc.s¥Ymbol \coverage EI@
2 Setup...|| (¥ Goto... | (G List + Add | P load... | EPsave..| @ it
address tree coverage | condition [0% 50% 100 |
P:90000440--900009BD | = ‘coverage Tncomplete 93.236% ~
P :90000440--9000044D BooleanAssignmentNotOp stmt+cc | 100.000%
P :9000044E--90000455 BooleanAssignmentRelExpr incomplete 50. 000% |—
P:90000456--90000463 ooleanAssignmentRelExprTrans stmt+cc | 100.000%
P :90000464--90000475 ooleanExprCoupledTerms stmt+cc | 100.000%
P:90000476--90000485 ooleanExprMixedips stmt+cc | 100.000%
P:90000486--90000495 ooleanExprSame0ps stmt+cc | 100.000%
P : 900004 96--900004CF ComplexDowhile stmt+cc | 100.000%
P:900004D0--900004FF ComplexFor stmt+cc | 100.000%
P :90000500--90000527 ComplexIf stmt+cc | 100.000%
P:90000528--90000569 Complexiwhile stmt+cc | 100.000%
P : 9000056A--9000056F Identity stmt+cc | 100.000%
P :90000570--90000591 MultiLine incomplete 33.333% |—
P:90000592--900005A7 NestedExpr incomplete 50. 000% |—
P:900005A8--900005C9 NestedExprTrans stmt+cc | 100.000%
P :900005CA--90000615 unCover ageDemo incomplete T6.470% | ——
P:90000616--90000647 SwitchCase stmt+cc | 100.000% v
< >
Tags for Condition Coverage
. stmt+cc: All source code line blocks of the function/module are tagged with cc or stmt.
. incomplete: At least one source code line block of the function/module is tagged with incomplete.

©1989-2023 Lauterbach

Application Note for Trace-Based Code Coverage

69

Further details are displayed if you open the window in its full size:

£ B:COVerage ListFunc.s¥mbol \coverage =N ===
2 setup...| A Goto... | @List +add | Sload. | Psave.. @ mit
address tree coverage | condition [0% 50% 100 Tines cond bytes i
P:90000440--9000098D = \coverage Tncomp lete 93, 736% |w— 207. 193. 90. 59. 66 1406. 1384, [A
P:90000440--9000044D # BooleanAssignmentNotOp stmt+cc 100. 000% |s———— 2. 2. 3. 3. 3 14. 14
P:9000044E--900004 55 # BooleanAssignmentRelExpr incomplete 50. 000% |e———— 2. 1. 1. 0. 0 8. 8
P:90000456--30000463 BooleanAssignmentRelExprTrans stmt+cc 100. 000% ‘ 4. 4. 1. 1. 1 14. 14
P00000476- 90000188 | & BooleanErbrirbasere ™ Thmbie | Do = > * * 2 T
E;BUUUMBE"BUUUUHS Buu]eanExgrsameOpg stmt+cc lines _ cond bytes
P: 900004 96--900004CF ComplexDolhile stmt+cc 207. 193. 90. 59. 66, 1406. 1384
P:900004D0--300004FF ComplexFor stmt+cc 2 2 3 3 2 14 14
P:90000500--90000527 ComplexIf stmt+ec - = - - - - M
D 000036 0000%eE | = Somplexunile inagad f,f' j } O O lf' b
: - uTtiLine incomplete . 4. . 1. 1. . 14.
Rl Slriire HSA 5. 5. ry ry ry 18. 18.
P1900005 - 20000615 Rent e Thane incomp ete 5. 5. 3. 3. 3. 16. 16.
P:90000616--30000647 Switchcase ttsce 5. 5. 3. 3. 3. 16. 16. .|~
I 8. 8. 5. 5. 5. 58. 58
8. 8. 9. 9. 9. 48. 48. —
5. 5. 4. 4. 4. 40. 40
9. 9. 9. 9. 9. 66. 66
2. 2. 0. 0. 0. 6. 6
9. 3. 36. 12. 18. 34. 20
2. 1. 2. 0. 0. 22. 22
7. 7. 2. 2. 2. 34. 34
17. 13. 3. 0. 0. 76. 74
17. 17. 0. 0. 0. 50. 50
Line count
lines Number of source code line blocks within the
function/module
ok Number of source code line blocks tagged with
cc or stmt
Condition count
cond Number of conditions within the
function/module
true Number of conditions evaluated as true
false Number of conditions evaluated as false
Byte count
bytes Number of bytes within the function/module
ok Number of bytes tagged with cc or stmt

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 70

Example Script

// Demo script "~~/demo/t32cast/eca/measure_mcdc.cmm"

// Select code coverage metric condition
COVerage.Option SourceMetric CONDition

// Load .eca files so that TRACE32 knows which source code lines

// represent decisions
sYmbol.ECA.LOADALL /SkipErrors

// List code coverage results at source code line level
List.Hll ComplexDoWhile /COVerage

// List code coverage results at function level
COVerage.ListFunc.sYmbol \coverage

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 71

Modified Condition/Decision Coverage (MC/DC)

The following diagram defines the terms used in this chapter:

AN
(|Alland||(B|) lor
I

Conditions

Evaluation Strategy

Modified Condition/Decision Coverage: Every point of entry and exit in the program has been invoked at
least once and every decision in the program has taken all possible outcomes at least once. Each condition
in a decision is shown to independently affect the outcome of that decision.

Independence Pairs are used to proof that each condition in a decision is shown to independently affect the
outcome of that decision. An independence pair has two characteristics:

1. All conditions except the one to be tested are fixed.

2. The decision changes its outcome when the condition under test is changed.

The following figure shows the truth table for the decision (A and B) or C. The independence pairs for the
individual conditions are highlighted in color.

A B c

1 F F F F

2 LT | F | F | FJ]
W F | 1T | F | F
4 F F T T
51 T T F T |
6 [T F T T

7 F T T T

8 T T T T

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 72

To measure MC/DC accurately the following prerequisites must be fulfilled:

1.

It is necessary that the code is compiled in such a way that each condition in the source code is
represented by a distinct conditional branch/instruction at object code level. Conditional
instructions, however, require that the trace protocol includes information about conditional
instructions.

Please read “Appendix B: Coding Guidelines”, page 112 to ensure that you write decisions and
conditions at source code level in such a way that your build toolchain generates conditional
branches/instructions for them.

Ensure that the compiler generates conditional branches for switch-case statements. A
dedicated compiler option is commonly available to control this. Please refer to the
documentation of your build toolchain.

TRACE32 has to know which source code lines contain decisions and their conditions. And for
each condition used in a decision the mapping between the conditions and their conditional
branches/instructions is required.

These source code details are not part of the debug symbol information generated by the
compiler, but must be generated separately. TRACE32 provides the command line tool t32cast
for this purpose. For complete information about t32cast, see “Application Note for t32cast”
(app_t32cast.pdf).

The t32cast command line tool generates an Extended Code Analysis (ECA) data file for each
source code file. These files have to be loaded into TRACES32 before starting the code coverage
analysis.

The following screenshot illustrates all this:

6
6

iS4 [BriList.Mix Complexlf /COVerage] E@
M Step W Over | JADiverge| ¢ Return ¢ up b Go Il Break | ™ Mode & t. Find: coverage.c
id dec/cond true false coverage addr/1ine |code label mnemonic comment
[1. 1. 1. mc/dc 115 it (a & T(b > 100 [T T(c > 42)) && TIdentity(d) < 36] [~
6 1 - - ok : 90000500 [001104DF ComplexIf:jeq d4,#0x0,0x90000522
ok mow d15,#-0x64

190000504 |FFF9CO3B m

2e - - ok 190000508 |000D5F3F

:9000050C

P
P
P
P
8e - - ok P:9000050E |0 7 »
ok P:90000512 d4,d7
ok P:90000514 0x9000056A
ok P:90000518 |24C d15,#0x24
4 - L] ok P:9000051A i d2,d15,0x90000522
stmt 116 outcome = TRUE;
Ut P:9000051E (1282 movl6 d2,#0x1
0 P

190000520 |023C_ jl6 0x90000524

Each decision receives its own ID.
The conditions belonging to the decision are numbered consecutively.

Each condition is represented by a conditional branch/instruction.

The point for true is set in the true column if the condition has been independently tested for true. The same
applies to false.

Source code lines that contain decisions are tagged as follows:

mc/dc | incomplete

All other source code lines use the corresponding tags for statement coverage.

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 73

Evaluation

If you want to use the trace data stored in the code coverage system for MC/DC, select the SourceMetric
MCDC in the COVerage state configuration or use the command
COVerage.Option SourceMetric MCDC.

Cov | TC2%T Window ¥ BiCOVerage = =R
& Configuration... METHOD
& List Ranges @MCremental /SPY | RTS | ART
[g, List Functions
[g_, Lfst Mo.dules state Option
[g, List Variables OFF [StaticInfo &Trace
€3 Add Tracebuffer @®on PRTS
E*) Create Report... SourceMetric
Reset commands MCDC = commands
+ ADD £ Load
@ Init 52 save
RESet £ List
(B ListModule
(L8 ListFunc
(L3 ListLine
(L3 Listvar

The following commands show a tabular analysis:

COVerage.ListModule
COVerage.ListFunc

The following command shows the tagging on source code level.

I List.HIl /COVerage

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 74

This TRACE32 command displays the MC/DC coverage tagging for the function ComplexDoWhile:

List.HLL ComplexDoWhile /COVerage

=4 [BsList.HLL ComplexDoWhile /COVerage] =N =R
M Step W Over | A Diverge | « Return ¢ up » Go Il Break || ¥Mode & ||t Find: coverage.c
id dec/cond true false coverage addr/Tine |source i
stmt 57 [static unsigned CompTexDowhile(int const a, int const b, int const ¢, int const d) &
stmt 59| unsigned num_cycles = Ou;
do .
2 1. 1. 1. mc/dc 62 if (num_cycles > 1u) {
stmt 63 R reak;
stmt 65 . nun_cycles++;
3 1. 1. 1. me/de 67 while (((! Identity(a) »= -45) && Identity(b)) && Identity(c)) || d);
stmt 69 | return num_cycles;
stmt 70|}
v

Decisions are tagged as follows:

mc/dc Each condition in a decision is shown to independently affect the
outcome of that decision.

incomplete There is at least one condition in the decision for which has not yet
proven to independently affect the outcome of the decision.

TRACERS2 displays the result in mixed mode in such a way that it is clear which conditions are still missing
for MC/DC.

= [BrList /COVerage] (= e
M step W Over | A Diverge | « Return ¢ up » Go Il Break | M Mode & t. Find: cuverage c
id dec/cond true false coverage addr/Tine [code 1abe1 mnemonic i
4 1. 0. 1. 1incomplete 89 while ((I(a > —?0) &% '(Idenhty(h) = 39))—“ '(c <= -13) [[(Identity(d) < 39)) { ~
ok P:9000053C |FFFBAD3B mov d15,#-
4 ale * taken P:90000540 |00088F3F il d15, d8 0x90000550
never P:90000544 9402 movl6 d4,do
never P: 90000546 |0012006D call OXSOOOOSEA
never P:9000054A |27DA movl6 d15,#0x27
4 2 never P:9000054C |FFF42F5F jne di5s, d2 0x90000534
ok P:90000550 [FFFF3038 mov d15.#-0x0D
4 3l - not taken P:90000554 (7FFOAF3F jlt d15,d10,0x90000534
ok P:90000558 [B402 movl6 da,d11
ok P:9000055A |0008006D call ('XJ('(‘('('S‘.‘J-—\
ok P:9000055E |27DA movl6 d15,#0x2
4 4. # not taken P:90000560 [/FEAF23F jlt dz, dlS 0)(90000534
v

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 75

This TRACE32 command displays a tabular analysis of all functions of the "coverage" module. A module

usually corresponds to a source code file.

COVerage.ListFunc.sYmbol \coverage

? BusYmbolINFO \coverage EI@
| 2 Symbols | %% Dump = List Q, view | E&mmu
moduTe

\\coverage_tc2'\coverage

P:90000440--9000098BD

module info
anguage: ELF-C . .
TASKING VX-toolset for TriCore: C compiler

- ZCoverage. C

L B::COVerage.ListFunc.s¥mbol \coverage EI@
2 Setup...|| (¥ Goto... | (G List + Add | P load... | EPsave..| @ it
address tree coverage mcdc |0% 50% 100
P:90000440--900009BD | = ‘coverage Tncomplete 93.236%
P :90000440--9000044D BooleanAssignmentNotOp stmt+mc/dc | 100.000%
P :9000044E--90000455 BooleanAssignmentRelExpr incomplete 50. 000% |—
P:90000456--90000463 BooleanAssignmentRelExprTrans stmt+mc/dc | 100.000%
P :90000464--90000475 BooleanExprCoupledTerms stmt+mc/dc | 100.000%
P:90000476--90000485 BooleanExprMixedOps stmt+mc/dc | 100.000%
P :90000486--90000495 BooleanExprSameQps stmt+mc/dc | 100.000%
P:90000496--900004CF ComplexDowhile stmt+mc/dc | 100.000%
P:900004D0--900004FF ComplexFor stmt+mc/dc | 100.000%
P:90000500--90000527 ComplexIf stmt+mc/dc | 100.000%
P:90000528--90000569 ® Complexwhile stmt+mc/dc | 100.000%
P:9000056A--9000056F Identity stmt+mc/dc | 100.000%
P :90000570--90000591 ®EMultiLine incomplete 33.333% |—
P:90000592--900005A7 NestedExpr incomplete 50. 000% |—
P:900005A8--900005C9 NestedExprTrans stmt+mc/dc | 100.000%
P :900005CA--90000615 RunCover ageDemo incomplete T6.470% | ——
P:90000616--90000647 SwitchCase stmt+mc/dc | 100.000%
< >

Tags for Modified Condition/Decision Coverage (MC/DC)

MC/DC is achieved for a group of HLL source code statements as soon as the independence effect of all
of its associated conditional branches/instructions has been demonstrated.

. stmt+mc/dc: All source code lines of the function/module are tagged with mc/dc or stmt.

. incomplete: At least one source code line of the function/module is tagged with incomplete.

If a tag marks the coverage status of HLL source code statements, the following definitions apply:

. stmt+mc/dc: The range contains one or more HLL source code statements. The measured code
coverage of the HLL source code statement(s) is sufficient to achieve MC/DC.

J mc/dc: The HLL source code statement(s) contain a decision. The measured code coverage of
the HLL source code statement(s) is sufficient to achieve MC/DC.

. stmt: The HLL source code statement(s) do not contain a decision. The measured code

coverage of the HLL source code statement(s) is sufficient to achieve statement coverage.

. incomplete: The measured code coverage of the HLL source code statement(s) is not sufficient

to achieve MC/DC.

©1989-2023 Lauterbach

Application Note for Trace-Based Code Coverage

76

Further details are displayed if you open the window in its full size:

(£ B:COVerage ListFunc.sVmbol \coverage =N <
P setup...| A Gow... | @it +add || Bload.. | Psave. | @it
address tree coverage mede (0% 50% 100 lines dec cond bytes |
P:90000440--900009BD B \coverage Mcnmp'\ete 93, 2367 |m— 207, 193. 32. 20. 90. 59. 66. 1406. 1384. [A
P:90000440--9000044D BooleanAssignmentNotOp stwt+me/de 100. 000% ee—— 2. 2. 1. 1. 3. 3. 3. 14. 14.
P :9000044E--90000455 BooleanAssignmentRelExpr [incomplete 50. 000% | ee—— 2. 1. 1. 0. 1. 0. 0. 8. 8.
P :90000456--90000463 BooleanAssignmentRelExprTrans |stmt+mc/dc 100. 000% 4. 4. 1. 1. 1. 1. 1. 14. 14
P :90000464--90000475 BooleanExprCoupledTerms stmt+mc/dc 100. 000% 5. 5. 1. 1. 4. 4. 4. 18. 18
P:90000476--90000485 BooleanExpriixedops start+me/dc 100.000% 5. 5. 1. 1. 3. 3. 3. 16. 16.
P:90000486--90000495 EunWeanExprsa\weﬂps stmt+me/dc 100. 000% 5. 5. 1, 1. 3. 3. 3. 16. 16.
D o0000400- 200000KE | & comp]saponile Tiras | dec : “cond . - . bytes |
B 130000398 -90000368 | 3 comPlSEibi1e 207. 193. 32. 70. 90. 59. 6. 1406. 1384
e e I 2. 2. 1. 1. 3. 3. 3. 14. 14
P:90000592--900005A7 NestedExpr 2. 1. 1. 0. 1. 0. 0. 8. 8
D o00002CA 2000063 | & NescovexBoirans 4. 4. 1. 1. 1. 1. 1. 14. 14
P:90000616--90000647 SwitchCase 5 . 5 R l . J_ R 4 . 4 R 4 R 18 . J_6
= 5. 5. 1. 1. 3. 3. 3. 16. 16
5. 5. 1. 1. 3. 3. 3. 16. 16
8. 8. 2. 2. 5. 5. 5. 58. 58
8. 8. 3. 3. 9. 9. 9. 48. 48
5. 5. 1. 1. 4. 4. 4. 40. 40
9. 9. 3. 3. 9. 9. 9. 66. 66
2. 2. 0. 0. 0. 0. 0. 6. 6
9. 3. 6. 0. 36. 12. 18. 34. 20
2. 1. 1. 0. 2. 0. 0. 22. 22
7. 7. 2. 2. 2. 2. 2. 34. 34
17. 13. 3. 0. 3. 0. 0. 76. 74
17. 17. 0. 0. 0. 0. 0. 50. 50
Line count
lines Number of source code lines within the
function/module
ok Number of source code lines tagged with
mc/dc or stmt
Decision count
dec Number of decisions within the function/module
ok Number of decisions tagged with mc/dc
Condition count
cond Number of conditions within the
function/module
true Number of conditions that have been
independently tested for true
false Number of conditions that have been
independently tested for false

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 77

Byte count

bytes Number of bytes within the function/module
ok Number of bytes tagged with mc/dc or stmt
Example Script
// Demo script "~~/demo/t32cast/eca/measure_mcdc.cmm"

// Select code coverage metric MC/DC
COVerage.Option SourceMetric MCDC

// Load .eca files so that TRACE32 knows which source code lines

// represent decisions
sYmbol.ECA.LOADALL /SkipErrors

// List code coverage results at source code line level
List.Hll ComplexDoWhile /COVerage

// List code coverage results at function level
COVerage.ListFunc.sYmbol \coverage

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 78

Function Coverage

Itis recommended to perform function coverage on unoptimized code. This way the results can be displayed
clearly and concisely. In case of highly optimized code that inlines functions, a deep understanding of the
inlining is necessary to interpret the results.

Function coverage: Every function in the program has been invoked at least once.

TRACES32 interpretation: A function achieves function coverage when at least one corresponding object
code instruction has been executed.

Functions are tagged as follows:

. func | incomplete
Source code lines show the corresponding tags for statement coverage, if function coverage is performed.

Object code coverage tagging is applied to instructions.

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 79

Evaluation Strategy

If you want to use the trace data stored in the code coverage system for function coverage, select the
SourceMetric Function in the COVerage configuration window or use the command
COVerage.Option SourceMetric Function.

il TC29 1 Window & B:COVerage.state EI@
& Configuration... METHOD
&) List Ranges @ MNCremental | /SPY (RTS (ART
[g, List Functions
[g_, Lfst Mo.dules e Option
(69 List Varizbles OFF [staticinfo & Trace
(3 Add Tracebuffer ®on 2 RTS
E*) Create Report... SourceMetric
Reset commands Function ~ commands
+ ADD =2 Load
@ Init &3 save
RESet (38 List
(B ListModule
(L3 ListFunc
(L3 ListLine
(L3 Listvar

The following command shows a tabular analysis:

I COVerage.ListModule

The following command shows the tagging at function level.

I COVerage.ListFunc

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 80

This TRACE32 command displays the function coverage tagging for all functions of the "coverage" module.

A module usually corresponds to a source code file.

COVerage.ListFunc.sYmbol \coverage

2 BusYmbolINFO ‘\coverage

(o8)

0

| 2 Symbols | %% Dump

= List & mmu

Oy, View

oduTe
\\coverage_tcZ'coverage

P:90000440--9000098BD

module info

: ELF-C
: TASKING VX-to

- ZCoverage.cC

olset for TriCore: C compiler

L B::COVerage.ListFunc.s¥mbol \coverage EI@
2 Setup...|| (¥ Goto... | (G List + Add | P load... | EPsave..| @ it
address tree coverage | function [0% 50% 100
P:90000440--9000098D Bl \coverage func 100. 000% ~
P :90000440--9000044D BooleanAssignmentNotOp func | 100.000%
P :9000044E--90000455 BooleanAssignmentRelExpr func | 100.000%
P:90000456--90000463 BooleanAssignmentRelExprTrans func | 100.000%
P :90000464--90000475 BooleanExprCoupledTerms func | 100.000%
P:90000476--90000485 BooleanExprMixedOps func | 100.000%
P :90000486--90000495 BooleanExprSameQps func | 100.000%
P : 900004 96--900004CF ComplexDowhile func | 100.000%
P : 900004D0--900004FF ComplexFor func | 100.000%
P :90000500--90000527 ComplexIf func | 100.000%
P:90000528--90000569 Complexiwhile func | 100.000%
P:9000056A--9000056F Identity func 100.000%
P:90000570--90000591 MultiLine func 100.000%
P:90000592--900005A7 NestedExpr func | 100.000%
P : 900005A8--900005C9 NestedExprTrans func | 100.000%
P:900005CA--90000615 RunCoverageDemo func | 100.000%
P:90000616--90000647 SwitchCase func | 100.000% v
< >

The functions are tagged as follows:

func

At least one function's object code instructions has been executed.

incomplete

None of the function's object code instructions has been executed.

©1989-2023 Lauterbach

Application Note for Trace-Based Code Coverage |

81

This TRACE32 command displays a tabular analysis of all modules.

COVerage.ListModule

[B::COVerage.ListModule EI@
& Setup...|| A Goto... | (@BList +add | Bload... | E2save..| @ nit
address tree coverage | function [0% 50% 100
multiple .Cstart Ffunc | 100.000%
P:900000A4--90000241 \cinit incomplete 50, 000% |e—
P :900003AA--900003BD ‘trapass incomplete 0. 000%
P :900003BE--900003D1 “trapbus incomplete 0. 000%
P:900003D2--900003E5 “trapcont incomplete 0. 000%
P :900003E6--900003F9 “trapinst incomplete 0. 000%
P : 900003FA--90000408 Er apmmu incomplete 0. 000%
P :9000040C--9000041F “Erapnmi incomplete 0. 000%
P:90000420--90000433 ‘trapprot incomplete 0. 000%
P : 900004 34--900004 3F “trapsys incomplete 0. 000%
P:90000440--900009BD ‘\coverage func | 100.000%
P:900009BE--900009CRB \main incomplete 0.000%
none “Glaobal
< >

Tags for Function Coverage

Function coverage is achieved for a function as soon as soon as its function body has been partially

executed.
J func: All functions of the module have achieved function coverage.
. incomplete: At least one function of the module has not achieved function coverage.

If a tag marks the coverage status of a function, the following definitions apply:

J func: The measured code coverage of the function(s) is sufficient to achieve function coverage.
. incomplete: The measured code coverage of the function(s) is not sufficient to achieve function
coverage.

If a tag marks the coverage status of HLL source code statements, the following definitions apply:

J stmt: The measured code coverage of the HLL source code statement(s) is sufficient to achieve
statement coverage.

. incomplete: The measured code coverage of the HLL source code statement(s) is not sufficient
to achieve statement coverage.

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 82

Further details are displayed if you open the window in its full size:

@ B:COVerage.ListModule EI@
& setup... | [Goto... | [List + add | Pload.. P save.. @ it
address tree coverage | function [0% 50% 100 func bytes |
muTtipTe cstart func [100.000% 8. 8 460. 454, T
P:900000A4--90000241 heinit incomplete 50.000% 4. 2 414. 96
P:900003AA--900003BD “trapass incomplete 0.000% 1.) 20. 0
P:900003BE--900003D1 ‘trapbus incomplete 0.000% 1. 0 20. 0
P:900003D2--900003E5 trapcont incomplete 0.000% 1. 0 20. 0
P:900003E6--900003F9 “trapinst incomplete 0.000% 1. 0 20. 0
P:900003FA--90000408 Erapmmu incomplete 0.000% 1. 0 18. 0
P:9000040C--9000041F “trapnmi incomplete 0.000% 1. 0 20. 0
P:90000420--90000433 ‘trapprot incomplete 0.000% 1. 0 20. 0
P:90000434--900004 3F “trapsys incomplete 0.000% 1. 0. 12. 0.
P:90000440--9000098D ‘\coverage func | 100.000% | ee———— 31. 31. 1406. 1392.
P:900009BE--900009CB ymain incomplete 0.000% 1. 0. 14. 0. |w
Function count
func Number of functions
ok Number of functions tagged with func
Byte count
bytes Number of bytes
ok Number of bytes tagged with func
Example Script

// Demo script "~~/demo/t32cast/eca/measure_mcdc.cmm"

// Select code coverage metric function
COVerage.Option SourceMetric Function

// List code coverage results at function level
COVerage.ListFunc.sYmbol \coverage

// List code coverage results at module level
COVerage.ListModule.s¥Ymbol \coverage

Expert Usage

The following commands provide details on inlined functions:

sYmbol.List.InlineBlock List inlined code blocks

COVerage.ListInlineBlock List object code coverage for inlined blocks

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage

83

Call Coverage

It is recommended to perform call coverage on unoptimized code. This way the results can be displayed
clearly and concisely. In case of highly optimized code that inlines functions, a good understanding of the
inlining is necessary to interpret the results.

Call Coverage: Every function call has been executed at least once.

TRACE32 has to know which source code lines contain a function call. This information is not part of the
debug symbol information generated by the compiler, but must be generated separately. TRACE32 provides
the command line tool t32cast for this purpose. For complete information about t32cast, see “Application
Note for t32cast” (app_t32cast.pdf).

The t32cast command line tool generates an Extended Code Analysis (ECA) data file for each source code
file. These files have to be loaded into TRACES32 before starting the code coverage analysis.

TRACES32 interpretation: A function achieves call coverage when each unconditional branch that
represents a function call has been executed a least once.

Functions are tagged as follows:

J call | incomplete
Source code lines show the corresponding tags for statement coverage, if call coverage is performed.

Object code coverage tagging is applied to instructions.

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 84

Evaluation

If you want to use the trace data stored in the code coverage system for call coverage, select the

SourceMetric Call in COVerage state window or use the command COVerage.Option SourceMetric Call.

Cov | TC2%xT Window
/2 Configuration...
@ List Ranges

@ List Functions

@ List Modules

@ List Variables

@ Add Tracebuffer
E*) Create Report...

Reset

Before you start the code coverage analysis, you have to load the .eca files created by the command line

tool t32cast:

& B:COVerage.state
METHOD
® NCremental

state
OFF
®on

commands
+ ADD
@ Init
RESet

SPY RTS ART

Option
StaticInfo

SourceMetric

Call ~

(o] 2)

& Trace
P RTS

commands
=2 Load
§Sa\re
(L9 List
(B ListModule
(L3 ListFunc
(L3 ListLine
(L3 Listvar

I sYmbol.ECA.LOADALL /SkipErrors

The following command shows a tabular analysis:

I COVerage.ListModule

The following command shows the tagging at function level.

I COVerage.ListFunc

©1989-2023 Lauterbach

Application Note for Trace-Based Code Coverage

85

This TRACE32 command displays the call coverage tagging for all functions of the "coverage" module. A

module usually corresponds to a source code line.

COVerage.ListFunc.sYmbol \coverage

2 BusYmbolINFO ‘\coverage

(o8)

| 2 Symbols | %% Dump

= List C, View | 88 Mmu

moduTe

\\coverage_tcZ'coverage
P:90000440--900009BD
module info
anguage: ELF-C
TASKING VX-toolset for TriCore: C compiler
.\coverage. c
L B::COVerage.ListFunc.s¥mbol \coverage EI@
2 Setup...|| (¥ Goto... | (G List + Add | P load... | EPsave..| @ it
address tree coverage call |0% 50% 100
P:90000440--9000098D Bl \coverage call 100. 000% ~
P :90000440--9000044D BooleanAssignmentNotOp call | 100.000%
P :9000044E--90000455 BooleanAssignmentRelExpr call | 100.000%
P:90000456--90000463 BooleanAssignmentRelExprTrans call | 100.000%
P :90000464--90000475 BooleanExprCoupledTerms call | 100.000%
P:90000476--90000485 BooleanExprMixedOps call | 100.000%
P :90000486--90000495 BooleanExprSameQps call | 100.000%
P : 900004 96--900004CF ComplexDowhile call | 100.000%
P : 900004D0--900004FF ComplexFor call | 100.000%
P:90000500--90000527 ComplexIf call 100.000%
P:90000528--90000569 Complexiwhile call | 100.000%
P:9000056A--9000056F Identity call 100.000%
P:90000570--90000591 MultiLine call 100.000%
P:90000592--900005A7 NestedExpr call | 100.000%
P : 900005A8--900005C9 NestedExprTrans call | 100.000%
P :900005CA--90000615 RunCover ageDemo call | 100.000%
P:90000616--90000647 SwitchCase call 100.000% v
< >

The functions are tagged as follows:

call All unconditional branches that represent a function call have been
executed at least once.
If a function does not include an unconditional branch that represent a
function call, the function is tagged with call if at least one
corresponding object code instruction generated for the function has
been executed.

incomplete At least one unconditional branch that represent a function call has not
been executed.
No object code instruction generated for the function has been
executed for all call-less functions.

©1989-2023 Lauterbach

Application Note for Trace-Based Code Coverage

86

The full-width COVerage.ListFunc window provides details on the function calls:

. calls column: number of function calls within the function
J ok column: number of function calls that have already been executed
19 B::COV.ListFunc =N e =)
& setup... | A Goto... | @B List +add | Pload.. |E2save..| @ mit
address ‘tree coverage call [0% 50% 100 func calls |
P:90040440--9004098BD [= ‘.coverage TncompTete 51, 612% |m— 31. 16. 87. 35.] »
P:90040440--9004044D BooleanAssignmentNotOp call| 100.000% |s————— 1. 1. 0. 0.
P:9004044E--90040455 BooleanAssignmentRelExpr call| 100.000% |s————— 1. 1. 0. 0.
P:90040456--90040463 BooleanAssignmentRelExprTrans call| 100.000% |s————— 1. 1. 0. 0.
P:90040464--90040475 BooleanExprCoupledTerms call| 100.000% 1. 1. 0. 0.
P:90040476--90040485 BooleanExpriixedOps call| 100.000% |s————— 1. 1. 0. 0.
P:90040486--90040495 BooleanExprSameOps call| 100.000% |s—— 1. 1. 0. 0.
P:90040496--900404CF ComplexDowhile incomplete 0.000% 1. 0. 3. 0.
P:900404D0--900404FF ComplexFor incomplete 0.000% 1. 0. 1. 0.
P:90040500--90040527 ComplexIf incomplete 0.000% 1. 0. 1. 0.
P:90040528--90040569 Complexwhile incomplete 0.000% 1. 0. 2. 0.
P:9004056A--9004056F Identity incomplete 0.000% 1. 0. 0. 0.
P:90040570--90040591 MultiLine incomplete 0.000% 1. 0. 0. 0.
P:90040592--900405A7 NestedExpr call 100. 000% | e—— 1. 1. 0. 0.
P:900405A8--900405C9 NestedExprTrans call 100. 000% | me— 1. 1. 0. 0.
P RunCoverageDemo EL e —— 1.
P:90040616--90040647 SwitchCase incomp lete 0.000% 1. 0. 0. 0.
P:90040648--9004065D TernaryExpr call| 100.000% |s—————— 1. 1. 0. 0.] ¥
< >

If a function is tagged as incomplete you can inspect its details. Either by doing a left mouse double click on

the function‘s name or by using the following command:

List.Mix RunCoverageDemo /COVerage

(o8)

Ll

=% [BuList.Mix RunCoverageDemo /COVerage]
M Step ® Over || A Diverge ¢ Return ¢ up » Go Il Break | % Mode &= t- Find: coverage.c
coverage addr/1ine |code label mnemonic comment
vold RunCoverageDemo(void)
static unsigned tic = lu;
stmt 651 while (TRUE)
ok P:900405CA |243C 0x90040612
stmt 652 tic ! H
ok P:900405CC |00001F85 1d.w d15,0x10000000
ok P:900405D0 |OFEA eql6 d15,d15,#0x0
ok P:90040502 |0000LFAS st.w 0x10000000,d15
stmt 654 TestObcEqualsMcdc();
ok P:90040506 |01A4006D ca 0x9004091E
stmt 655 TestObcDiffersMcdc(tic);
ok P:900405DA |00001485 d.w d4,0x10000000
ok P:900405DE |0179006D call 0x900408D0
stmt 656 TestMaskingMcdc();
ok P:900405E2 |0119006D call 0x90040814
stmt 658 TestNoBranchCtxNotop();
ok P:900405E6 |014F006GD call 0x90040884
stmt 659 TestNoBranchCtxRelExpr();
ok P:900405EA |0162006D call 0x900408AE
stmt 660 TestTernaryExpr();
ok P:900405EE |01D5006D call 0x90040998
stmt 661 TestExprNesting();
ok P:900405F2 |00F8006D call 0x900407E2
stmt 662 TestMultiline();
ok P:900405F6]|01L20006D call 0x90040836
incomplete 663 TestSwitchCase(tic);
never P:900405FA |00001485 1d.w d4,0x10000000
never P:900405FE |01A5006D call 0x90040948
incomplete 665 TestComplexIf();
never P:90040602 |008F006D call 0x90040720
incomplete 666 TestComplexFor();
never P:90040606 |0062006D call 0x900406CA
incomplete 667 TestComplexwhile();
never P:9004060A |00B9006D call 0x9004077C
incomplete 668 TestComplexDowhile();
never P:9004060E |0033006D call 0x90040674

©1989-2023 Lauterbach

Application Note for Trace-Based Code Coverage

87

This TRACE32 command displays a tabular analysis of all modules.

COVerage.ListModule

(LB B:COV.ListModule = =R
& setup... | A Goto... | ([EBList +add | Bload... | E2save..| @ nit
address tree coverage call |0% 50% 100
multiple \Ccstart Tncomplete 98. 695%
P:900000A4--90000241 \cinit incomplete 18, 357% |
P :900003AA--900003BD ‘trapass incomplete 0. 000%
P :900003BE--900003D1 “trapbus incomplete 0. 000%
P:900003D2--900003E5 “trapcont incomplete 0. 000%
P :900003E6--900003F9 “trapinst incomplete 0. 000%
P : 900003FA--90000408 Er apmmu incomplete 0. 000%
P :9000040C--9000041F “Erapnmi incomplete 0. 000%
P:90000420--90000433 ‘trapprot incomplete 0. 000%
P : 900004 34--900004 3F “trapsys incomplete 0. 000%
P:90000440--900009BD ‘\coverage call 100. 000%
P:900009BE--900009CRB \main incomplete 57, 142% | ne—
none “Glaobal
< >

The following tags are used for the summary:

call: All functions of the module are tagged with call.

incomplete: At least one function of the module is tagged with incomplete.

Further details are displayed if you open the window in its full size:

none

“Glabal

18 B::COV.ListModule =N e =)
& setup... | A Goto... | @B List +add | Pload.. |E2save..| @ mit

address ‘tree coverage call [0% 50% 100 func calls bytes |
multiple \cstart Tncomplete 98.695% 460. 454
P:900000A4--90000241 “cinit incomplete 18.357% | 414, 96
P:900003AA--900003BD ‘trapass incomplete 0.000% 20. 0
P:900003BE--900003D1 “trapbus incomplete 000% 20. 0
P:900003D2--900003E5 ‘trapcont incomplete 0.000% 20. 0
P:900003E6--900003F9 “trapinst incomplete 0.000% 20. 0
P:900003FA--90000408 ‘\trapmmu incomplete 0.000% 18. 0
P:9000040C--9000041F “trapnmi incomplete 0.000% 20. 0
P:90000420--90000433 “‘trapprot incomplete 0.000% 20. 0
P:90000434--9000043F ‘trapsys incomplete 0.000% 12. 0
P :90000440--9000098D ‘\coverage call 100.000% 31 31. 87 8 14086 1394
P :900009BE--900009CB \main incomplete 57.142% 14, 8

Function count

func Number of functions
ok Number of functions tagged with call
Byte count

©1989-2023 Lauterbach

Application Note for Trace-Based Code Coverage

88

bytes

Number of bytes

ok

Number of bytes tagged with call

Details on Callers and Calles

For a detailed analysis it is helpful to get details about the calling and the called functions.

COVerage.ListCalleRs
COVerage.ListCalleEs
List.Mix /COVerage /Track

Display call coverage with caller details at source code line level
Display call coverage with callee details at source code line level

Display a source listing that displays source and object code. This

window is used here to inspect the object code details.

All callers of the function Identity are inspected in this example. The COVerage.ListCallRs window, displays
all source code lines from which the function Identity is called. If you select a source code line, you can
inspect the corresponding object code in the List.Mix window. This is enabled by the Track option.

(LB B:COVerage.ListCalleRs = =R
2 Setup...|| (¥ Goto... | (G List + Add | P load... | EPsave..| @ it
address tree coverage call |0% 50% i
P:9000057A--9000057F = Idemt‘ltyr call 100.000% ~
P:900004BA--900004BD "ag g ok 100. 000% |e—————————
P:900004C8--900004CB age_t erage 98 ok 100. 000% |s——
_§E=
P:90000502--90000505 XX g T ge o 100. 000% |e————————
P:90000524--90000527 ok 100. 000%
P:90000556--90000559 ok 100. 000% |e—————————
P:9000056A--9000056D ok 100. 000% |e—————————
P:90000634--90000637 ok 100. 000% |e—————————
P:90000580--900005A1 call 100. 000% |e—————————
P:900008D6--900008D9 ok 100. 000% |e—————————
P:900008E8--900008EB C ok 100. 000% |e—————————
P :900005A2--900005B7 a NestedExpr call | 100.000% | eo—————
P:90000818--9000081B Vhcoverage_tec2), 304--320 ok 100. 000%
P:90000824--90000827 coverage te2h 321--321 ok 100.000%
P:900005B8-- —
P:90000830--| = [BsListMix /COVerage /Track] [E=5 =R
Egggggggc__ M Step M Over || A Diverge | ¢ Return ¢ up b Go Il Break | % Mode &= t- Find:
coverage addr/1ine |code label mnemonic comment i
stmt 98 while (((T(Identity(a) >= -45) && Identity(b)) && Identitylc)) || d); =
ok P:900004B8 |8402 mov16 4,d8
ok P:900004BA |0060006D cal 0x9000057A
ok P:900004BE |OFFD303E mov d0,#-0x2D
ok P:900004C2 |000BO2Z7F jge dz d0, 0x900004D8
ok P:900004C6E |9402 mov16 ,d9
ok P:900004C8 |0059006D call UX‘JUUUUS. A
ok P:900004CC |2676 jzl6 d2,0x900004D8
ok P:900004CE |a402 mov1l6 d4,d10
P: 0055006D 0x9000057A
o P:900004D4 |FFEEOQZDF jne 2,#0x0,0x900004B0
ok P:900004D8 |ECEE nzl6 d15,0x900004B0
stmt 100 return num_cycles;
ok P:900004DA |B202 mov1l6 d2,d11
ok P:900004DC (013C jl6 0x900004DE
stmt 101 |} v

©1989-2023 Lauterbach

Application Note for Trace-Based Code Coverage |

89

All call made by the function TestObcEqualsMcdc are inspected in this example. The COVerage.ListCallEs
window, displays all source code lines which represent a function call. If you select a source code line, you

can inspect the calls in detail in the List.Mix window. This is enabled by the Track option.

(£ B:COVerage ListCalleEs = =R
2 Setup...|| (¥ Goto... | (G List + Add | P load... | EPsave..| @ it
address tree coverage call |0% i
P : 90000988--900009E1 E TestObcEquaTsMcdc call| 100.000% ”
P:9000098E--90000991 W\ C a 100. 000% |———
P:90000998--90000998 100. 000% |s———
|__P:900009A2——900009A5 | | 100. 000% |t
P :900009AC--900009AF 100. 000% |s——
P:90000982--900009BF 100. 000% |———
P:90000984--90000987 \393--402 100. 000% |———
P:900009B8A--900009BD 403--403 ok 100. 000% |———
P :900009C0--90000A0F call 100. 000% |———
P :900009C6--900009C9 206--207 ok 100. 000% |———
P :900009CC--900009CF 208--208 ok 100. 000% |——
P:900009D02--900009D5 ,209--209 ok 100.000% v
< >

B::List.Mix /COVerage /Track

(o8)

) 0x90000496
stmt 700 BooleanExprSameOps (0, 0, 1); 7

ok P:900009A6 |0482

ok P:900009A8 |0582 d5,#0x0
ok P:900009AA |0682 6,#0x0
ok P:900009AC FD75FF6D 0x90000496

stmt 702 (}
ok P:90000980 |3000

ok P:9000099C |0452
ok P:9000099E |0582
ok P:900009A0 |L652
; BooleanExprSame0)
stmt 701 BooleanExprSameOps (0,

M Step ® Over || A Diverge ¢ Return ¢ up » Go Il Break | % Mode &= t- Find: coverage.c
coverage addr/Tine [code labkel mnemonic comment i
* Set of test vectors for both MC/DC and OBC */ ”
stmt 698 Boo'leanExprSameOps 1, 0, 0); = 1. %
ok P:90000988 |1452 TestObcEqualsh cdce: d4, #0x1
ok P:9000098A |0582 d5,#0x0
ok P:9000098C |0682 dé, #0x0
ok P:9000098E |[FDE4FFED) 0x90000496
stmt 699 BooleanExprSameOps (0, 1, 0); 74
ok P:90000992 |0482 d4, #0x0
ok P:90000994 |1582 d5, #0x1
ok P:90000996 |0682 6,#0x0
ok P:90000998 |[FD7FFFGED

Example Script

// Demo script "~~/demo/t32cast/eca/measure_mcdc.cmm"

// Select code coverage metric call
COVerage.Option SourceMetric Call

// Load .eca files so that TRACE32 knows which source code lines

// represent function calls
sYmbol.ECA.LOADALL /SkipErrors

// List code coverage results at function level
COVerage.ListFunc.sYmbol \coverage

// List code coverage results at module level
COVerage.ListModule.s¥Ymbol \coverage

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage

90

Expert Usage

The following commands provide details on inlined functions:

sYmbol.List.InlineBlock List inlined code blocks

COVerage.ListinlineBlock List object code coverage for inlined blocks

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 91

Assemble Multiple Test Runs

There are two ways to assemble multiple test runs.

. Save and reload the data content of the code coverage system
. Save and reload the complete trace information
NOTE: Please make sure that you only assemble test runs that were carried out with

the identical executable(s).

Save and Restore Code Coverage Measurement

COVerage.SAVE <file> This command saves the following data in the specified <file>:
object code coverage tagging based on addresses
the MC/DC status of all conditions based on their addresses

The default extension is .acd (Analyzer Coverage Data).
To assemble the results from several test runs, you can use:

J Your TRACES32 debug and trace tool connected to your target hardware.

. Alternatively you can use a TRACE32 Instruction Set Simulator (see “TRACE32 Instruction Set
Simulator” in TRACE32 Installation Guide, page 56 (installation.pdf)).

Before you load an acd file into TRACE32 with the following command you need to make sure, that:

. the test executable has been loaded into memory
. the debug symbol information for the test executable has been loaded
J if needed for the selected code coverage metric, .eca files are loaded

COVerage.LOAD <file> /Replace Load coverage data from <file> into the TRACE32 code
coverage system. All existing coverage data is cleared.

COVerage.LOAD <file> /Add Add coverage data from <file> to the TRACE32 code
coverage system.

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 92

Example script

Save data content of the code coverage system:

COVerage.SAVE testrunl.acd

COVerage.SAVE testrun2.acd

Assemble coverage data from several test runs:

; Basic setups

Data.LOAD.E1f jpeg.elf ; Load code into memory and
; debug info into TRACE32

// sYmbol.ECA.LOADALL /SkipErrors ; Load .eca files if needed
COVerage.LOAD testrunl.acd /Replace

COVerage.LOAD testrun2.acd /Add

COVerage.Option SourceMetric Statement ; Specify code coverage metric

COVerage.ListFunc ; Display code coverage for
; all functions

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 93

Save and Restore Trace Recording

I Trace.SAVE <file> Save trace buffer contents to <file>.

Saving the trace buffer contents enables you to re-examine your tests in detail any time.

To assemble the results from several test runs, you can use:
J Your TRACES32 debug and trace tool connected to your target hardware.

. Alternatively you can use a TRACE32 Instruction Set Simulator (see “TRACE32 Instruction Set
Simulator” in TRACE32 Installation Guide, page 56 (installation.pdf)).

In either case you need to make sure, that the debug symbol information for the test executable has been
loaded into TRACE32 PowerView.

Trace.LOAD <file> Load trace information from <file>to TRACE32.

The default extension is .ad (Analyzer Data).

COVerage.ADD Add loaded trace information into the TRACES32 code
coverage system.

Example script

Save trace buffer contents of several tests to files.

Trace.SAVE testl.ad

Trace.SAVE test2.ad

Reload saved trace buffer contents and add them to the code coverage system.

; Basic setups

Data.LOAD.El1f jpeg.elf ; Load debug info into TRACE32

// sYmbol.ECA.LOADALL /SkipErrors ; Load .eca files if needed

Trace.LOAD testl.ad ; Load trace information from
; file

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 94

COVerage.ADD

Trace.LOAD test2.ad

COVerage.ADD

COVerage.Option SourceMetric Statement

COVerage.ListFunc

Trace.LOAD test2.ad
Trace.List

add the trace information
into code coverage system

load trace information from
next file

add the trace information
into code coverage system

specify code coverage metric

Display coverage for all
functions

load trace information from
file for detailed
re-examination

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 95

Comment your Results

Address-based bookmarks can be used to comment not covered code ranges, which are fine but not

testable in the current system configuration.

5] [BeList P:0:d2EC /COV] = EoR 5
[M Step][W Over][+ Mext][+ Return][¢ up][» Go][1l Break] ¥ Mode] Find: jpeg.c
coverage addr/1ine |code 1abel mnemonic |comment Loy
ol SP:00001308 [7C9E2378 mr r3c,r4 -
ok 160 struct jpeg_error_mgr *err = cinfo-serr;
ok SP:0000130C |83BF0000 Twz r29,0x0(r31)
taken 162 if (msg_level < 0) { B
ok SP:00001310 |2C1E0OOD cmpwi r30,0x0
taken SP:00001314 4080003(/ bge 0x1350
* It's a warning message. Since corrupt files may generate many
* warnings, the policy implemented here is to show only the first
ﬁ/warn'ing, unless trace_level »= 3.
never 168 1 err—>num_warnings — 0 err—>trace_level >= 3
never SP:00001318 |819D006C Program Address 12,0x6C(r29
never SP:0000131C |2C0C0000 + GoTil 12,0x0
never SP:00001320 |41820010 en

4 a Breakpoint...
e Breakpoints
i Display Memory

gE Toggle Bookmark
Af Set PC Here
% Edit Source

i View Info

k1330 i

iE] [BList P:0:d 2EC /COV] [=] =]
[Mistep |[% over || $next |[[Return|[@ up |[»Go |[M Break |[¥ Mode | Find: ipeg.c
coverage addr/1ine |code 1abel mriemonic |comment Ly
ol SP:00001308 [7C9E2378 mr r3o,r4 -
ok 160 struct jpeg_error_mgr *err = cinfo-serr;
ok SP:0000130C [83BF0000 Twz r29,0x0(r31)
taken 62 if (msg_level < 0) { D
ok SP:00001310 |2C1EQOOD cmpwi r30,0x0
taken SP:00001314 4080003C/ bge 0x1350
* It's a warning message. Since corrupt files may generate many
* warnings, the policy implemented here is to show only the first
ﬁ/warn'ing, unless trace_level »>= 3.
err—>num warnings — 0 |[[err
never SP:00001318 e R R N - =
never SP:0000131C ﬁ% Bu:BM.CHAMNGE "" SP:0:1318
never SP:00001320 5
— name o
error_notest2
— address / symbol
emit_message\9 v
— remark
Mot testable in current configuration -
 —— [set | [Dpeete | [cancel

©1989-2023 Lauterbach

Application Note for Trace-Based Code Coverage

96

List all bookmarks:

I BookMark.List

@ B:BookMark.List

=8 Eon

(3 Delete Al || 52 store... | 22 Load... |[glf Create..)
bookmark addr /record symbol/time source line remark N
"ATTocation” C:000011F0 [Jpeg_mem_availabTe J:\ANDY\mpc55xx-Jpegi.jpeg. C 63. Mot testabTe in current system configuration .
"Decompress" €:0000166C i]?_input_buffer\5+0x4 1:%ANDY\mpc55xx-]peg\]peg. 386. Mo decompress data available
"Output_array" C:00007788 |jcopy_sample_rows J:\AND\mpc55xx-]Jpegijutils. c 1119. Mo test pattern
"Flash" €:00001CC8 111a5i:_b‘iu_setup\13 J:\AND\mpc55xx-]peg\]peg. c 11160. Mo MAND flash in this configuration
N"Error_notest2" €:00001318 [emit_message'9 J:\ANDYmpc55xx-Jpeg\jpeg. c 1168. Mot testable in current configuration s
4 [| 3

The current bookmarks can be saved to a file and reloaded later on.

I STOre <file> BookMark

©1989-2023 Lauterbach

Application Note for Trace-Based Code Coverage | 97

TRACE32 Coverage Report Utility

After the code coverage measurement is completed, a code coverage report has to be generated in order to
document the results. TRACES32 includes a Coverage Report Utility for this purpose.

Choose Create Report... in the Cov menu to open the TRACE32 Coverage Report Utility.

Cov | TC2%xT Window
& Configuration...
@ List Ranges

@ List Functions

@ List Modules

@ List Variables

@ Add Tracebuffer
E) Create Report...

Reset

£ Coverage Report Utility 7.0.0+r16185 = =R

Hierarchic code coverage report split over multiple files

Options:

DECISION | Source Code Metric: What code coverage criteria should be used for HLL lines?
ASK ~ | Existing: What should happen, if the output-folder already exists?

3. | Compression Level
XML viewable via browser. Some browser need opt. '--allow-file-access-from-files'
SORDER | Order: In what order should source code lines be displayed?

SINGLE ~ . |DECISION * Format: What format should be used to display the code coverage?

[Data: Include data sections [Jaline: Show absolute line numbers
Parameters:
| C:T32_TriCore_29_June/demo/t32cast/eca/report_2020-07-06 | 1! | Output Folder

SYMBOL | Filter: What do the items in the whitelist represent?

e

Address range
or list of symbols

(%) Create Report

o)

Open report in browser when finished Help

Push the Create Report button to generate a standard report.

The implementation of the dialog can be found in the following PRACTICE script:
" ~~/demo/coverage/multi_file_report/create_report.cmm™ .

The comments in the script contain information against which browsers the script was tested and which

additional setting might be necessary. It is recommended to read this in advance.

PEDIT ~~/demo/coverage/multi_file_ report/create_report.cmm

©1989-2023 Lauterbach

Application Note for Trace-Based Code Coverage

98

If you start the script with parameters, the script is directly executed.

CD.DO ~~/demo/coverage/multi_file_report/create_report.cmm \
"manual" "SYMBOL" "\coverage" \
"METRIC=DECISION EXISTING=REPLACE COMPRESSION=2"

Note

For larger projects it is recommended to copy the object code into the TRACE32 Virtual Memory. This
makes the creation of the report faster. Here a short script example.

Data.Load.elf my_project /VM ; Load your code again, this time
; into the TRACE32 Virtual Memory.

Trace.ACCESS VM ; Advise TRACE32 to use the code
; loaded to the TRACE32 Virtual
; Memory for trace decoding

; Create your report

Trace.ACCESS auto ; Reset the TRACE.ACCESS to its
; default

If you use dynamic memory management (MMU) with SYStem.Option MMUSPACES ON, the following
command sequence is recommended:

TRANSlation.SHADOW ON ; Allow several address spaces
; in TRACE32 Virtual Memory

Data.LOAD.El1f my_project 0x2::0 /VM ; Load your code again, e.g. to
; space ID 0x2, this time into
; the TRACE32 virtual memory

Trace.ACCESS VM ; Advise TRACE32 to use the code
; loaded to the TRACE32 Virtual
; Memory for trace decoding

; Create your report

Trace.ACCESS auto ; Reset the TRACE.ACCESS to its
; default
TRANSlation.SHADOW OFF ; Reset TRANSlation.SHADOW to

; its default

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 99

Assembler-Only Functions and Code Coverage

Object Code Coverage

Code that is not part of a source code function is discarded for the object code coverage. If you want to
include this code you have to assign a function name to it:

sYmbol.INFO <symbol> Display details about a debug symbol.

sYmbol.RANGE(<symbol>) Returns the address range used by the
specified symbol.

sYmbol.NEW.Function <name> <addressrange> Create a function.

sYmbol .NEW.Function t32_ malloc sYmbol.RANGE(_ _malloc)

sYmbol .NEW.Function t32_ insert sYmbol.RANGE(__insert)

The manually created functions are assigned to the \\Usen\Global module.

£ B:COVerage ListModule (=N~
& setup... | A Goto... | EdList +Add | B load... | Esave.. @it
address tree coverage [objectcode [0% 50% 100 |branches bytes i
P:00012320--000125D7 ijeg thrans never 0.000% 0.000% 0. 0. 0. 17. 696. 0. &
P:000125D8--00012CDB \\jpeg\jdapistd partial 24, 498% |mm— 22.368% 7. 0. 3. 28. 1796. 440.
P:0001544C--00015C97 \\jpeg\chario never 0.000% 0.000% 0. 0. 0. 12. 588. 0.
none ‘\\Jpeg\Global
none = \\User\Global
P:000131CC--000131EF ®t32__insert ok | 100. 000% |se—— 0. 0. 0. 36. 36.
P:000132F8--000134DB ®t32__malloc partial 68, 595K |m— 79.166% 9. 0. 1. 2. 484. 332. %
< >

The object code lines of the assembler functions are marked with the same tags as the object code lines of
source code functions.

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 100

Source Code Metrics

Code that is not part of a source code function is discarded for coverage. If you want to include this code you
have to assign a function to it:

sYmbol.INFO <symbol> Display details about a debug symbol.
sYmbol.RANGE(<symbol>) Returns the address range used by the
specified symbol.
sYmbol.NEW.Function <name> <addressrange> Create a function.
sYmbol.NEW.Module <name> <addressrange> Create a module.

Functions created with the sYmbol.NEW.Function command are grouped under the module name
\\WUsen\Global. No address range is assigned to this module. Alternatively, several functions can be
aggregated under a newly created module. An address range has to be assigned to the new module
\Global\<name> when it is created and it then includes all functions that are located within its address
range.

sYmbol .INFO _ malloc
sYmbol.INFO __ insert

sYmbol .NEW.Module t32_module P:0x000131cc--0x00134db

sYmbol .NEW.Function t32_ malloc sYmbol.RANGE(__malloc)

sYmbol .NEW.Function t32_insert sYmbol.RANGE(__ insert)

€] B:COVerage ListModule
Zcetup... A Goto.. (@ List +add | Rload.. Bsave..| @ mnit
address tree coverage | statement 0% 50% 100 lines
P:000116D8--0001231F \\jpeg\jdmaster Tncomplete 52.941% |— 204,
P:00012320--00012507 “\jpeg\jdtrans incomplete 0.000% 44,
P:000125D8--00012CDB ‘\\Jpeg\jdapistd incomplete 26.415% |m— 106.
P:000131CC--000134DB = \\User\t32_module |incomplete 71.538% |m— 130.
P:000131CC--000131EF ®t32__insert stmt | 100, 000 |e— 9.
P:000132F8--000134DB t32_malloc incomplete 659, 421% |—————— 121.

Depending on the selected source code metric, the assembler functions or the modules are tagged as

follows:
Metric Tag Description
all source code incomplete At least one assembler line within the function
metrics is tagged with never, taken or not taken.
Statement stmt All assembler lines are tagged with ok.

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 101

Metric Tag Description

Decision stmt+dc All assembler lines are tagged with ok.
CONDition stmt+cc All assembler lines are tagged with ok.
MCDC stmt+mc/dc All assembler lines are tagged with ok.
Function func All assembler lines are tagged with ok.
Call call All assembler lines are tagged with ok.

©1989-2023 Lauterbach

Application Note for Trace-Based Code Coverage

102

Data Coverage

Trace Data Collection

Since off-chip trace ports usually do not have enough bandwidth to make all read/write accesses (and the
program flow) visible, they are rather unsuitable for data coverage. For test phases in which testing in the

target environment is not yet required, a TRACES32 Instruction Set Simulator can be used well for data

coverage.

Since TRACES2 Instruction Set Simulators provide full program and data flow trace based on a bus trace

protocol, no special setup is required.

i BuTrace.List EI@
B setup...|| 1 Goto... | FyFind... | el Chart | EProfile | I MIPS & Mare Y Less
record run |address cycle |data symbaol ti.back i
00000444 P:900408BA Tetch 0378 ycoverage'coverage'\TestMuTti1 Tine+0xZ8 0.100us
st16.w [a10]0x0C,d15 =
+00000445 D:70003FF4 wr-data 00000001 0.100us ™
+00000446 P:900408BC fetch 01DA ‘\coverage'coverage'\TestMultiline+0x2A 0.100us ¥
compound. e = TRUE; A~
mov1l6 d15,#0x1
+00000447 P:900408BE fetch 0478 M\ coverage'coverage\TestMultiline+0x2C 0.100us
st16.w [al0]0x10,d15
+00000448 D:70003FF8 wr-data 00000001 0.100us
+00000449 P:900408C0 fetch 01DA ‘\coverage'coverage'\TestMultiline+0x2E 0.100us
compound. f = TRUE; v
< >

If you want to use an onchip trace or an offchip trace port for data tracing, please refer to the following

documents for setup details:

. Arm: “Training Arm CoreSight ETM Tracing” (training_arm_etm.pdf), “Training Cortex-M

Tracing” (training_cortexm_etm.pdf)

. MPC5xxx/SPC5xxx, QorlQ and RH850: “Training Nexus Tracing” (training_nexus.pdf)

. TriCore: “Training AURIX Tracing” (training_aurix_trace.pdf)

J For other processor architectures, please refer to the corresponding “Processor Architecture

Manuals”.

Please note that data coverage only makes sense if the trace does not contain a high number of TARGET

FIFO OVERFLOWS.

It is recommended to use incremental coverage for data coverage (see “Incremental Code Coverage”,

page 15).

©1989-2023 Lauterbach

Application Note for Trace-Based Code Coverage

103

Evaluation

If you want to use the trace data stored in the coverage system for data coverage, select the SourceMetric
ObjectCode in the COVerage configuration window or use the command
COVerage.Option SourceMetric ObjectCode.

Cov | TC2%xT Window
/2 Configuration...
@ List Ranges

@ List Functions

@ List Modules

@ List Variables

@ Add Tracebuffer
E*) Create Report...

Reset

& B:COVerage.state
METHOD
® NCremental

state
OFF
®on

commands
+ ADD
@ Init
RESet

Option
StaticInfo

& Trace
2 RTS

SourceMetric
ObjectCode ~

commands

=2 Load

§Sa\re

(38 List
(B ListModule
(L3 ListFunc
(L3 ListLine
(L3 Listvar

The following commands show a tabular analysis:

COVerage.List

COVerage.ListVar

The following command shows the tagging per address.

I Data.View %Var <address>/COVerage

©1989-2023 Lauterbach

Application Note for Trace-Based Code Coverage

104

This TRACE32 command shows the coverage tagging on address range level:

COVerage.List

@ B:COVerage.List EI@
2 Setup...|| (3 Goto... (L8 Modules (9 Functions|| (L8 Lines + Add 2 Load... | B2 Save... @ Init
address coverage
P:00000000--4000401F |never ~
P:40004020--40004023 read and write ‘Ndiabchdiabchfunc2\fstatic
P:40004024--40004027 |never “Mdiabchdiabch funcdstatl
P:40004028--4000402B |read and write ‘Mdiabchdiabc funcdstat?2
P:4000402C--4000402F |never “Wdiabchdiabchfunc26'xl
P:40004030--40004033 jwrite only “Mdiabchdiabchvfloat v
< >

This TRACE32 command shows the coverage tagging at address level starting with the address of the

variable fstatic:

Data.View %Var fstatic /COVerage

Q [B::Data.View %aVar fstatic /COVerage]

coverage address | data [value
never SD:4000401F | 00

readwrite SD:40004020 | 98 fstatic = -1735838008

readwrite SD:40004021 | 89

readwrite SD:40004022 | 36

readwrite SD:40004023 | C8
never SD:40004024 | 48 statl = 1207966566 t
never SD:40004025 | 00 t1+0x1
never SD:40004026 | 1B t1+0x2
never SD:40004027 | 66 1+0x3

readwrite SD:40004028 | 48 stat? = 1207966297

readwrite SD:40004029 | 00 +0x1

readwrite SD:40004024 | 1A +0x2

readwrite SD:4000402B | 59 2+0%3
never SD:4000402C | 48 x1[0] = 72 X
never SD:4000402D(00 x1[1] = 0O x1+0x1
never SD:4000402E | 10 x1[2] = 16 x1+0x2
never SD:4000402F | 31 x1[3] = 49 *x1+0x3
write 5SD:40004030| 3F wfloat = 1.6 t
write 5D:40004031 | cC | at+0x1 v

< >

The data addresses are tagged as follow:

readwrite The data address was read at least once and written at least once.
read The data address has been read at least once.

write The data address has been written at least once.

never The data address was neither read nor written

©1989-2023 Lauterbach

Application Note for Trace-Based Code Coverage

105

This TRACE32 command displays the data coverage at variable level.

COVerage.ListVar

@ B:COVerage.ListVar EI@
& Setup...|| A Goto... | (@BList +add | Bload... | E2save..| @ nit
address tree coverage |read 0% 50% 100 |
D:400040D4--400040D7 funcptr write | 0.000% ~
D:400040E8--400040F7 vbfield p-rd p-wr | 75.000% | ee———
D:400040F8--40004108 ast p-wr read 100.000%
D:40004110--40004127 viripplearray p-write | 0.000%
D:40004128--40004134A flags readwrite |100. 000% v
< >

Each static variable occupies a fixed address range. This results in the following tagging for variables:

readwrite Read and write accesses were performed for all addresses within
the address range of the variable.

read Only read accesses were performed for all addresses within the
address range of the variable.

write Only write accesses were performed for all addresses within the
address range of the variable.

p-write Write accesses were performed only to a part of the address range
of the variable. No read accesses were performed.

p-read Read accesses were performed only to a part of the address range
of the variable. No write accesses were performed.

p-wr read Write accesses were performed only to a part of the address range
of the variable. Read accesses were performed for all addresses.

p-rd write Read accesses were performed only to a part of the address range
of the variable. Write accesses were performed for all addresses.

p-rd p-wr Both read and write accesses were performed only to a part of the
address range of the variable.

never Not a single address of the address range of the variable was read
or written.

The tags rdwr ok, write ok, read ok and partial indicate that TRACES32 cannot clearly recognize whether
the address range contains program code or data. Please check your TRACE32 configuration or contact

your local technical support.

A complete list of all data coverage tags can be found in “Appendix E: Data Coverage in Detail”, page

119.

©1989-2023 Lauterbach

Application Note for Trace-Based Code Coverage | 106

Document the Results

With the script " ~~/demo/coverage/single_file_report/create_report.cmm" you can create a coverage
report.

Data coverage is not yet integrated into the TRACE32 Coverage Report Utility (see “TRACE32 Coverage
Report Utility”, page 98). If you need this, please contact your local support.

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 107

Appendix A: Trace Decoding in Detail

Before the recorded trace data can be analyzed, it must be decoded first.

P : 900004CE trace

-0003813128
P:90000682 ptrac

-0003813126

77
77

mov1l6 d5, #0x0
77 CompTlexDowhile
<

Raw trace data

Comp1 exDolhi '\ e

£ BrTrace.List MCDS []
& seup...| L Goto... | #1Find...| Ml chart| ElProfile| B MIPS | 4 More| X Less
record /mcds |
-0003813132 [T PTU_TCX T12 0Ox8 A0x08 ~
-0003813131 p
-0003813130 |1 PTU_TCX TT3 OxE ~0x06 =
-0003813129 v
-0003813128 PTU_TCX TT3 Ox4 AOx02 A
~0003813127
-0003813126 |1 PTU_TCX TT1 0x22C 4 BTrace.List /Track (=N~
-0003813125
0003813124 & setup...| 13 Goto... | #4Find... | Adchart | EProfile | EMEFS % More X Less
-0003813123 |1 PTU_TCX TT2 OxE AOxOE record run address cycle |data symbo]l i
-0003813122 return num_cycTes; A
-0003813121 |1 PTU_TCX TT3 Ox0 AOxOE mov J.J d2,d11 =
-0003813120 jl 0x900004CE =
< -0003813130 | P 900004CE ptrace ‘\coverage_tc2\coverage\ComplexDowhile+0x38 7
— 70 J— ~
retl6

'\e—46 0, 0, 0

—46000
-46, 0, 0, O

Decoded trace data

Trace Decoding for Static Applications

The object and source code is required to decode trace raw data recorded of static programs.

Decoding in Stopped State for Static Applications

This decoding is used for incremental code coverage and incremental code coverage in stream mode.

TRACES32 state: program execution stopped, no recording of trace data.

TRACE32 can read the object code from the target memory. Links to the source code files are part of the

debug symbol information maintained by TRACE32.

Decoding in Running State for Static Applications

This decoding is used in SPY mode code coverage.

TRACES32 state: program execution is running, trace data is recorded, but trace streaming is stalled while

trace decoding is performed.

TRACE32 can read the object code from the target memory, if the core allows the debugger to read memory
while the program execution is running (see also Run-time Memory Access).

©1989-2023 Lauterbach

Application Note for Trace-Based Code Coverage |

108

However, TRACE32 can decode the trace data much faster if it does not have to access the target memory.
That is why it is highly recommended to copy the object code into the TRACE32 Virtual Memory. This is
achieved by the /PlusVM option when the program is loaded. The PlusVM option directs TRACES2 to load
the object code into the target memory plus into the TRACE32 virtual memory.

Data.LOAD.Elf ~~~~/tricore/coverage_tc2.elf /RelPATH /PlusVM

The Data.COPY command is another possibility. It allows to copy the content of the target memory directly
to the TRACE32 Virtual Memory.

I Data.Copy <address_range> VM:

NOTE: The object code required for trace decoding must be available in the TRACE32
Virtual Memory before the program execution and the trace recording is started.

RTS Decoding for Static Applications

This decoding is used in RTS mode code coverage.
TRACES32 state: program execution is running, trace data is recorded and streamed to the host computer.

If trace data is decoded at program runtime and processed while streaming, decoding has to be as fast as
possible. An important prerequisite is that the object code is located in the TRACE32 Virtual Memory. This
is achieved by the /PlusVM option when the program is loaded. The PlusVM option directs TRACE32 to
load the object code into the target memory plus into the TRACE32 virtual memory.

Data.LOAD.E1lf ~~~~/tricore/coverage_tc2.elf /RelPATH /PlusVM

The Data.COPY command is an another possibility. It allows to copy the content of the target memory
directly to the TRACE32 Virtual Memory.

I Data.Copy <address_range> VM:

NOTE: The object code required for trace decoding must be available in the TRACE32
Virtual Memory before the program execution and the trace recording is started.

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 109

Trace Decoding for Applications Using a Rich OS

Also in this case, the object code and source code are needed to decode the trace raw data. But paging
used by the operating system makes decoding more complex.

Since the onchip trace logic generates the program flow data based on virtual addresses, TRACE32 has to
know the valid memory space for each trace record in order to read the object code from the physical
memory for trace decoding. A task or context switch in the trace recording normally identifies the memory
space for the subsequent logical addresses.

Decoding in Stopped State (Rich OS)

This decoding is used for incremental code coverage and incremental code coverage in stream mode.

TRACER32 state: program execution stopped, no recording of trace data.

Trace decoding is performed in three steps:

1. TRACERS2 reads the current task list and all task page tables with the help of the TRACE32 OS
Awareness from the target, when the program execution is stopped.

2. Task/context switches from the trace recording are decoded with the help of the task list.

3. The object code for each task is then read with the help of its page table. Links to the source
code files are part of the debug symbol information, which TRACE32 maintains for each memory
space.

Reading the object code fails, when a task/context switch from the trace recording can not be
decoded with the help of the current task list, e.g. because the task was terminated.

Decoding in Running State (Rich OS)

This decoding is used in Spy mode code coverage.

TRACER3?2 state: program execution is running, trace data is recorded, but trace streaming is stalled while
trace decoding is performed.

TRACE32 has no access to the current task list and the task page tables while the program execution is
running. The TRACE32 Virtual Memory must contain the task list, all task page tables and the object code
to enable TRACES32 to decode the raw trace data.

This requires a complex setup. Please contact the Lauterbach support in this case.

RTS Decoding (Rich OS)

This decoding is used in RTS mode code coverage.

TRACES32 state: program execution is running, trace data is recorded and streamed to the host computer.

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 110

TRACE32 has no access to the current task list and the task page tables while the program execution is
running. The TRACE32 Virtual Memory must contain the task list, all task page tables and the object code
to enable TRACERS2 to decode the raw trace data.

This requires a complex setup. Please contact the Lauterbach support in this case.

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 111

Appendix B: Coding Guidelines

The following coding guidelines are recommended for full decision and condition coverage as well as for
MC/DC. If you follow these coding guidelines you avoid false negative results. False negative means that a
decision/conditions is tagged as incomplete although coverage has already been achieved.

Nevertheless, it is possible that the compiler itself generates such constructs at high optimization levels.

Avoid Simple Decisions in Assignment Context

It is likely that these conditions are not represented by a conditional branch/instruction at object code level.

In this example no conditional branch/instruction was generated for the condition a==b.

18 - — dincomplete
o

P:9000044E
P:90000452

374
P:90000454

373

21005408 Bool
013C

9000

= [BuList P:0x9000044E /COV] [l s
M Step W Over | A Diverge 4 Return ¢ up » Go Il Break | !%Mode & ||t Find: coverage.c
id dec/cond true false coverage addr/Tine |code label mnemonic comment |
~
/* Relational expression as decision

Expression showing a decision in non-branching context. Compilers ma
choose to model Boolean assignments with conditional or unconditiona
instructions instead of conditional branches that are not suitable for
the trace-based measurement of code coverage.

return a=0>b

q d2,d4,d5

j16 0x90000454

retlé v

It is recommended to write the source code in a way that ensures that the conditional branches/instructions
required for the trace-based code coverage are generated.

54 [BrList P:0x90000456 /COV] = EER(==]
M step M Over | A Diverge | 4 Return ¢ up » Go 1l Break || ¥ Mode |&=f||t- Find: coverage.c
id dec/cond true false coverage addr/Tine |code label mnemonic comment |
q ralen transformation for relational exp ~
a in
00 to
of expression.
17 1. i il dc 357 if (a ==b) {
17 1. - - ok P:90000456 |3004545F EBooleanA.:jne d4,d5,0x900004 5
stmt 358 return TRUE;
ok P:9000045A [12 movl6 d2, #0x1
ok P:9000045C . jle 0x90000462
stmt 360 return FALSE;
ok P:9000045E (02 movl6 d2,#0x0
ok P:90000460 (01 jl6 0x90000462
stmt 361 |}
ok P:90000462 |9000 retl6 v

A few examples:

; source code not suitable for

; trace-based code coverage

return a == b;

I

7

if

}

source code suitable for
trace-based code coverage

(a == b) {
return TRUE;

return FALSE;

©1989-2023 Lauterbach

Application Note for Trace-Based Code Coverage |

112

source code not suitable for
trace-based code coverage

I

I

identity(a != b);

source code not suitable for
trace-based code coverage

’

’

return (a >= b) ? a : b;

Avoid Nesting of Decisions

; source code suitable for
; trace-based code coverage

tmp = FALSE;

if (a != b) {
tmp = TRUE;

}

identity(tmp) ;

source code suitable for
trace-based code coverage

’

’

if (a >= b) {
return a;

}

return b;

It is very likely that not all conditions are represented by a conditional branch/instruction at object code level.

This is illustrated by the following example:

source code not suitable for
trace-based code coverage

’

’

return a > (b + (b && c));

source code suitable for
trace-based code coverage

’

’

if (b && c) {
tmp = 1;

if (a > (b + tmp)) {
return TRUE;

}
return FALSE;

©1989-2023 Lauterbach

Application Note for Trace-Based Code Coverage | 113

In this example no conditional branches/instructions were generated for the conditions.

[BuList P:0x0000592 /COV] =x
M Step B Over || JADiverge | ¢ Return ¢ up b Go Il Break % Mode @ +.| "3 Find: ‘ | coverage.c
id dec/cond true false coverage addr /1ine |code |1abel mnemonic |comment =
/* Decision with nested Boolean expression -~

Expression showing a nested Boolean expression. Compilers may choose to
model nested expressions with conditional or unconditional instructions
instead of conditional branches that are not suitable for the trace-
based measurement of code coverage.

13 — — — incomplete 2?1 return (a > (b + ((float) b <))),

6
ok :9000059A FOG].OF}? extr.u dlS,dlS,OxO,?Oxl
ok F542 addle d5,d15
ok :900005A0 21204508 1t d2,d5,d4
ok P:900005A4 (013C jle6 0x900005A6
stmt 72
ok P:900005A6 [9000 retl6 v

If the code is written in a way that suits for trace-based code coverage, all necessary conditional
branches/instructions were generated.

B::List P:0x900005A8 /COV

M Step W Over | JMAuDiverge ¢ Return ¢ up P Go Il Break | !%|Mode |&2f t.| % Find: ‘ | coverage.c
id dec/cond true false coverage addr/Tine |code |1abel mnemonic [comment =
.{. - -~
/* Equivalence transformation for decision with nested Boolean expression
* Equivalent expression after transformation. The nested Boolean
* expression is extracted and put into a branching context. Compilers
* typically choose to use conditional branches for modelling this type of
* structure.
stmt 249 'injt tmp = 0;
ok P:900005A8 0082 NestedEx.. :mov16 do, #0x0
11 1. 1. 1. dc 251 if ((float) b <) {
ok P:900005AA |[F141054B itof di5,d5
ok P:900005AE |[FOOLGF4E cmp. T d15,d15,d6
ok P:900005B2 |[FOG10F37 extr.u d15,d15,0x0,#0x1
11 1. - * ok P:900005B6 |026E jz16 d15,0x900005BA
stmt 252 tmp = 1;
ok P: 90000588 1082} movl6 d0,#0x1
12 1. 1. 1. dc 255 if (a = (b + tmp)) {
ok P:900005BA |0542 addl6 ds5,do
12 1. L] . ok P:900005BC |0004457F jge d5, d4,0x900005¢C4
stmt 256 return TRUE;
ok P:900005C0 (1282 mov16 d2,#0x1
ok P:900005C2 033(} j16 0x900005C8
stmt 258 return FALSE;
ok P:900005C4 |0282 movl6 d2,#0x0
ok P:900005C6 [013C j16 0x900005C8
stmt 259 [}
ok P:900005C8 |9000 retl6 v

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage |

114

Appendix C: Conditional Non-Branch Instructions

Conditional Instructions

Architecture

Instruction Set

Trace Decoder

TriCore — —
PowerPC Qorivva(e200) yes yes, if NEXUS.HTM ON.
QorlQ (5500, €6500)

ARC yes yes

RISC-V — —

Cortex-A9/-A15 yes no

©1989-2023 Lauterbach

Application Note for Trace-Based Code Coverage

115

Appendix D: Object Code Coverage Tags in Detail

Standard Tags

Standard tagging applies to all core architectures and all trace protocols. The only exception are Arm/Cortex
cores that use the protocols Arm-ETMv1 or Arm-ETMVv3, as well as Arm-ETMv4. However, for the Arm-
ETMv4 protocol, this only applies if no trace information about the execution of conditional non-branch
instructions is generated in order to save bandwidth (command ETM.COND OFF).

The following tags are used for object code coverage tagging:

Tag Tagging object Description
ok conditional branch The conditional branch has be at least once
taken and not taken.
conditional instruction The object code instruction has been executed
at least once with its condition code true and
once with its condition code false.
all other object code The object code instruction has been executed
instructions at least once.
taken conditional branch The conditional branch has be at least once
taken, but never not taken.
conditional instruction The object code instruction has been executed
at least once with its condition code true, but
never with its condition code false.
not taken conditional branch The conditional branch has be at least once not
taken, but never taken.
conditional instruction The object code instruction has been executed
at least once with its condition code false, but
never with its condition code true.
never all object code instructions The object code instruction has never been
executed.

©1989-2023 Lauterbach

Application Note for Trace-Based Code Coverage | 116

The following tags apply for analysis at the source code, function or module level:

Tag Tagging object Description
ok range of object code All object code instructions within the range are
instructions tagged with ok.
partial range of object code Not all object code instructions within the range
instructions are tagged with ok.
branches range of object code All object code instructions within the range
instructions were executed, but there is at least one
conditional branch/conditional instruction that
is only faken and one that is only not taken.
taken range of object code All object code instructions within the range
instructions were executed, but there is at least one
conditional branch/conditional instruction that
is only taken.
not taken range of object code All object code instructions within the range
instructions were executed, but there is at least one
conditional branch/conditional instruction that
is only not taken.
never range of object code Not a single object code instruction within the
instructions range has been executed.

Tags for Arm-ETMv1/v3/v4 for Arm/Cortex Architecture

The following tags are used for object code coverage tagging:

Tag

Tagging object

Description

ok

conditional branch

The conditional branch has be at least once
taken and not taken.

conditional instruction

The object code instruction has been executed
at least once with its condition code true and
once with its condition code false.

all other object code
instructions

The object code instruction has been executed
at least once.

©1989-2023 Lauterbach

Application Note for Trace-Based Code Coverage | 117

Tag

Tagging object

Description

only exec conditional branch The conditional branch has be at least once
taken, but never not taken.
conditional instruction The object code instruction has been executed
at least once with its condition code true, but
never with its condition code false.
not exec conditional branch The conditional branch has be at least once not
taken, but never taken.
conditional instruction The object code instruction has been executed
at least once with its condition code false, but
never with its condition code true.
never all object code instructions The object code instruction has never been

executed.

The following tags apply for analysis at the source code, function or module level:

Tag Tagging object Description
ok range of object code All object code instructions within the range are
instructions tagged with ok.
partial range of object code Not all object code instructions within the range
instructions are tagged with ok.
cond exec range of object code All object code instructions within the range
instructions were executed, but there is at least one
conditional branch/conditional instruction that
is only only exec and one that is only not exec.
only exec range of object code All object code instructions within the range
instructions were executed, but there is at least one
conditional branch/conditional instruction that
is only only exec.
not exec range of object code All object code instructions within the range
instructions were executed, but there is at least one
conditional branch/conditional instruction that
is only not exec.
never range of object code Not a single object code instruction within the

instructions

range has been executed.

©1989-2023 Lauterbach

Application Note for Trace-Based Code Coverage | 118

Appendix E: Data Coverage in Detail

The data addresses are tagged as follow:

readwrite The data address was read at least once and written at least once.
read The data address has been read at least once.

write The data address has been written at least once.

never The data address was neither read nor written

Each static variable occupies a fixed address range. This results in the following tagging for variables:

readwrite Read and write accesses were performed for all addresses within
the address range of the variable.

read Only read accesses were performed for all addresses within the
address range of the variable.

write Only write accesses were performed for all addresses within the
address range of the variable.

p-write Write accesses were performed only to a part of the address range
of the variable. No read accesses were performed.

p-read Read accesses were performed only to a part of the address range
of the variable. No write accesses were performed.

p-wr read Write accesses were performed only to a part of the address range
of the variable. Read accesses were performed for all addresses.

p-rd write Read accesses were performed only to a part of the address range
of the variable. Write accesses were performed for all addresses.

p-rd p-wr Both read and write accesses were performed only to a part of the
address range of the variable.

never Not a single address of the address range of the variable was read
or written.

rdwr ok The address range achieved full object code coverage, and at least
one read and one write access occurred to address range.

write ok The address range achieved full object code coverage, and at least
one write access occurred to address range.

©1989-2023 Lauterbach

Application Note for Trace-Based Code Coverage | 119

read ok The address range achieved full object code coverage, and at least
one read access occurred to address range.

partial The address range did not achieve full object code coverage. The
amount of read and write accesses that have taken place is not
further specified.

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 120

The coverage status of HLL source code statements that have associated data values is indicated by the
following tags if a data trace is available:

rdwr ok: The HLL source code statement(s) have been fully covered. All associated assembly
instructions have been fully covered and at least one read and write access to the data values
has been recorded.

write ok: The HLL source code statement(s) have been fully covered. All associated assembly
instructions have been fully covered and at least one write access to the data values has been
recorded.

read ok: The HLL source code statement(s) have been fully covered. All associated assembly
instructions have been fully covered and at least one read access to the data values has been
recorded.

partial: The HLL source code statement(s) have not been fully covered. At least one of the
associated assembly instructions has not been fully covered. The amount of read and write
accesses that have taken place is not further specified.

readwrite: The HLL source code statement(s) have never been executed. None of the associated
assembly instructions has been executed and all of the data values have been read and written
at least once.

write: The HLL source code statement(s) have never been executed. None of the associated
assembly instructions has been executed and all of the data values have been written at least
once and not read.

read: The HLL source code statement(s) have never been executed. None of the associated
assembly instructions has been executed and all of the data values have been read at least once
and not written.

p-rd write: The HLL source code statement(s) have never been executed. None of the
associated assembly instructions has been executed and all of the data values have been written
at least once. In addition at least one data value has been read.

p-wr read: The HLL source code statement(s) have never been executed. None of the
associated assembly instructions has been executed and all of the data values have been read at
least once. In addition at least one data value has been written.

p-rd p-wr: The HLL source code statement(s) have never been executed. None of the associated
assembly instructions has been executed and at least one of the data values has been read and
one written.

p-write: The HLL source code statement(s) have never been executed. None of the associated
assembly instructions has been executed and at least one of the data values has been written.

p-read: The HLL source code statement(s) have never been executed. None of the associated
assembly instructions has been executed and at least one of the data values has been read.

never: The HLL source code statement(s) have never been executed. None of the associated
assembly instructions has been executed and neither read nor write accesses to the data values
have been recorded.

©1989-2023 Lauterbach Application Note for Trace-Based Code Coverage | 121

	Application Note for Trace-Based Code Coverage
	History
	Introduction
	Intended Audience
	Prerequisites

	Trace-Based Code Coverage and Certification
	Trace Data Collection Overview
	TRACE32 Tool Configurations
	Choose the Appropriate Trace Data Collection Method
	Preconditions
	Reduce the Amount of Trace Data
	Ensure a Fault-Free Trace Recording
	Disable Timestamps for Trace Streaming

	SMP Multicore Systems

	Trace Data Collection Modes
	Incremental Code Coverage
	Data Collection
	Example Script
	Summary

	Incremental Code Coverage in STREAM Mode
	Data Collection
	Example Script
	Summary

	RTS Mode Code Coverage
	Data Collection
	Example Scripts
	Summary

	SPY Mode Code Coverage
	Operation States
	Data Collection
	Example Script
	Summary

	Code Coverage with Virtual Targets
	ART Mode Code Coverage
	Data Collection
	Example Script

	Supported Code Coverage Metrics
	Overview
	Object Code Coverage
	Evaluation
	Example Script

	Statement Coverage
	Evaluation
	Example Script

	Full Decision Coverage
	Evaluation Strategy
	Evaluation
	Example Script

	Object Code Based (ocb) Decision Coverage
	Evaluation Strategy
	Evaluation
	Example Script

	Condition Coverage
	Evaluation Strategy
	Evaluation
	Example Script

	Modified Condition/Decision Coverage (MC/DC)
	Evaluation Strategy
	Evaluation
	Example Script

	Function Coverage
	Evaluation Strategy
	Example Script
	Expert Usage

	Call Coverage
	Evaluation
	Details on Callers and Calles
	Example Script
	Expert Usage

	Assemble Multiple Test Runs
	Save and Restore Code Coverage Measurement
	Save and Restore Trace Recording

	Comment your Results
	TRACE32 Coverage Report Utility
	Assembler-Only Functions and Code Coverage
	Object Code Coverage
	Source Code Metrics

	Data Coverage
	Trace Data Collection
	Evaluation
	Document the Results

	Appendix A: Trace Decoding in Detail
	Trace Decoding for Static Applications
	Decoding in Stopped State for Static Applications
	Decoding in Running State for Static Applications
	RTS Decoding for Static Applications

	Trace Decoding for Applications Using a Rich OS
	Decoding in Stopped State (Rich OS)
	Decoding in Running State (Rich OS)
	RTS Decoding (Rich OS)

	Appendix B: Coding Guidelines
	Appendix C: Conditional Non-Branch Instructions
	Conditional Instructions

	Appendix D: Object Code Coverage Tags in Detail
	Standard Tags
	Tags for Arm-ETMv1/v3/v4 for Arm/Cortex Architecture

	Appendix E: Data Coverage in Detail

