
MANUAL

Release 09.2023

Application Note for Trace-Based
Code Coverage

Application Note for Trace-Based Code Coverage

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents ..

 Trace Application Notes ...

 Trace Analysis ..

 Application Note for Trace-Based Code Coverage .. 1

 History ... 5

 Introduction .. 6

 Intended Audience 6

 Prerequisites 7

 Trace-Based Code Coverage and Certification ... 8

 Trace Data Collection Overview .. 9

 TRACE32 Tool Configurations 9

 Choose the Appropriate Trace Data Collection Method 10

 Preconditions 12

 Reduce the Amount of Trace Data 12

 Ensure a Fault-Free Trace Recording 13

 Disable Timestamps for Trace Streaming 14

 SMP Multicore Systems 14

 Trace Data Collection Modes .. 15

 Incremental Code Coverage 15

 Data Collection 15

 Example Script 17

 Summary 17

 Incremental Code Coverage in STREAM Mode 18

 Data Collection 18

 Example Script 21

 Summary 21

 RTS Mode Code Coverage 22

 Data Collection 22

 Example Scripts 25

 Summary 26

 SPY Mode Code Coverage 27

 Operation States 27

 Data Collection 29
Application Note for Trace-Based Code Coverage | 2©1989-2023 Lauterbach

 Example Script 31

 Summary 32

 Code Coverage with Virtual Targets 33

 ART Mode Code Coverage 35

 Data Collection 36

 Example Script 37

 Supported Code Coverage Metrics .. 38

 Overview 38

 Object Code Coverage 40

 Evaluation 41

 Example Script 46

 Statement Coverage 47

 Evaluation 47

 Example Script 50

 Full Decision Coverage 51

 Evaluation Strategy 51

 Evaluation 52

 Example Script 57

 Object Code Based (ocb) Decision Coverage 58

 Evaluation Strategy 58

 Evaluation 60

 Example Script 64

 Condition Coverage 65

 Evaluation Strategy 65

 Evaluation 67

 Example Script 71

 Modified Condition/Decision Coverage (MC/DC) 72

 Evaluation Strategy 72

 Evaluation 74

 Example Script 78

 Function Coverage 79

 Evaluation Strategy 80

 Example Script 83

 Expert Usage 83

 Call Coverage 84

 Evaluation 85

 Details on Callers and Calles 89

 Example Script 90

 Expert Usage 91

 Assemble Multiple Test Runs ... 92

 Save and Restore Code Coverage Measurement 92

 Save and Restore Trace Recording 94
Application Note for Trace-Based Code Coverage | 3©1989-2023 Lauterbach

 Comment your Results .. 96

 TRACE32 Coverage Report Utility .. 98

 Assembler-Only Functions and Code Coverage ... 100

 Object Code Coverage 100

 Source Code Metrics 101

 Data Coverage .. 103

 Trace Data Collection 103

 Evaluation 104

 Document the Results 107

 Appendix A: Trace Decoding in Detail ... 108

 Trace Decoding for Static Applications 108

 Decoding in Stopped State for Static Applications 108

 Decoding in Running State for Static Applications 108

 RTS Decoding for Static Applications 109

 Trace Decoding for Applications Using a Rich OS 110

 Decoding in Stopped State (Rich OS) 110

 Decoding in Running State (Rich OS) 110

 RTS Decoding (Rich OS) 110

 Appendix B: Coding Guidelines ... 112

 Appendix C: Conditional Non-Branch Instructions .. 115

 Conditional Instructions 115

 Appendix D: Object Code Coverage Tags in Detail .. 116

 Standard Tags 116

 Tags for Arm-ETMv1/v3/v4 for Arm/Cortex Architecture 117

 Appendix E: Data Coverage in Detail ... 119
Application Note for Trace-Based Code Coverage | 4©1989-2023 Lauterbach

Application Note for Trace-Based Code Coverage

Version 09-Oct-2023

History

29-Jun-21 In “TRACE32 Coverage Report Utility” a note has been added to inform the customer that for
report generation in larger projects it is advisable to make the trace decoding via the
TRACE32 Virtual Memory.

29-Jun-21 As of build 166565, TRACE32 supports full decision coverage in RTS mode. The summary
table in chapter “Choose the Appropriate Trace Data Collection Method” and “RTS Mode
Code Coverage” were updated.

29-Jun-21 Standards IEC 61508 (industrial) and IEC 62304 (medical) added to chapters “Trace-based
Code Coverage and Certification”.

24-Mar-21 Chapter “Details on Callers and Calles” added.

15-Mar-21 Chapter “Data Coverage” added.

09-Mar-21 “Appendix C: Object CodeCoverage in Detail”, and “Appendix D: Read/Write Coverage”
added.

02-Mar-21 Chapter “TRACE32 Tool Configurations” added.

26-Feb-21 Chapter “Assembler Functions and Code Coverage” added.

18-Feb-21 Chapters “Trace-based Code Coverage and Certification”, and “SMP Multicore Systems”
added.

19-Aug-20 New application note.
Application Note for Trace-Based Code Coverage | 5©1989-2023 Lauterbach

Introduction

Many embedded systems have to be developed according to some kind of internationally recognized safety
standard. Part of the data required to prove that a system meets these standards is some form of code
coverage. Safety standard will recommend or mandate various levels of code coverage that must be
provided to meet certain tiers within that standard.

Many popular embedded devices include the option for chip level trace. These technologies vary by device
and manufacturer but the data they produce is very similar: a non-intrusive trace of the flow of execution of a
program running on that device. Analyzing this data for code coverage is the subject of this document.

Some devices only provide on-chip trace buffers for storing collected trace data; these are often very small
and therefore unsuitable for code coverage. It is up to the user to determine whether an on-chip trace buffer
can hold enough data for the required coverage reports.

Intended Audience

Developers who want to:

• Collect code coverage data

• Perform code coverage on collected trace data

• Generate reports based upon this data

Although this is a generic manual, the screenshots were always made with a TriCoreTM AURIXTM TC297T, if
nothing else is mentioned. Deviations from screen displays are likely in your target environment.

The manual is written in such a way that it is sufficient to only read the relevant chapters. If you read the
manual completely, this may lead to redundancies.
Application Note for Trace-Based Code Coverage | 6©1989-2023 Lauterbach

Prerequisites

It is assumed that the reader understands programming of embedded systems and is familiar with the
safety/quality specification which has been chosen.

It is also assumed that TRACE32 has been correctly configured for the target and the symbols of the
application under test have been loaded. The trace port has to be configured to provide trace data and
TRACE32 must be configured to collect this data and have appropriate licenses to do so.

Opening the Trace Configuration window from the Trace menu shows the currently enabled
Trace.METHOD. The TRACE32 software will grey-out any trace methods that are not available or not
supported by the current TRACE32 configuration.

Trace-based code coverage can be performed for the following TRACE32 trace methods: Analyzer,
CAnalyzer, Onchip, ART. All other methods are not suitable for code coverage.
Application Note for Trace-Based Code Coverage | 7©1989-2023 Lauterbach

Trace-Based Code Coverage and Certification

Code coverage measurement is a requirement for certification to evaluate the completeness of test cases
and to demonstrate that there is no unintended functionality. TRACE32 supports all metrics from the
following standards:

• DO-178C (avionics): statement coverage, decision coverage, MC/DC.

• IEC 61508 (industrial): statement coverage, branch coverage (decision coverage in TRACE32),
condition coverage, MC/DC as well as function coverage.

• IEC 62304 (medical): Select suitable subset according to software development plan.

• ISO 26262 (automotive): statement coverage, branch coverage (decision coverage in
TRACE32), MC/DC as well as function coverage and call coverage.

For those whose application requires tool qualification, Lauterbach offers a Tool Qualification Support Kit
(TQSK in short). It provides everything needed to qualify a TRACE32 tool for use in safety-critical project.
Application Note for Trace-Based Code Coverage | 8©1989-2023 Lauterbach

Trace Data Collection Overview

TRACE32 Tool Configurations

The following TRACE32 tools are suitable for code coverage:

• TRACE32 Debugger and Off-Chip Trace

• TRACE32 Debugger and On-Chip Trace

• TRACE32 Instruction Set Simulator

The TRACE32 Instruction Set Simulator simulates the instruction set, but does not model timing
characteristics and peripherals. However, the simulator provides a bus trace so that code
coverage is easy to perform.

• TRACE32 Debugger for virtual targets with trace support

TRACE32 Debuggers for virtual targets should, because of their limitations, only be used for
code coverage if needed. For details refer to “Code Coverage with Virtual Targets”, page 33.

A TRACE32 debug and trace tool is of course the best choice, as it allows testing in the target environment
and thus integrates hardware and software. But for test phases that do not have these requirements, a
TRACE32 Instruction Set Simulator can be a good choice. It has a number of advantages: it allows early
testing when the target hardware is not yet available, scales well and delivers results quickly.
Application Note for Trace-Based Code Coverage | 9©1989-2023 Lauterbach

Choose the Appropriate Trace Data Collection Method

The following overview is intended to help new users to make a decision for the appropriate trace data
collection method. It is deliberately simplified and complex details are avoided.

If you are using a TRACE32 Advanced Register Trace (Trace.METHOD ART), please refer to “ART Mode
Code Coverage”, page 35.
Application Note for Trace-Based Code Coverage | 10©1989-2023 Lauterbach

�
�
�

�
�
�

�
�
	

��

��
�
�

�
��

�
��

�
��

�
��

�
��

�
��

�
�
	
��
�

��
�
�
	

�
�
�
�

�
�
��
�

��
�
�
�

�
�
��
�
�

��

��
�
�
�
��
�

��
�
��
�
�

�
�

��

��
�
�
�
��
��

�
��
�
��
��
�
�
�
��

�
��
	
�

�
�
��

�

�
�
�
�

��
	
�
��
�
�

�
�
�

�
�
�
�

�
�
�
��
�
�
�
�

�
�
�
�

	
�
�
�
��
�
�

�
�
�
�
�
�
�

�
�
�
�
�
��
�

��
�
�

��
�
�
�

�
�
�

�
�
�

�
�

��
�

�
��
	
�

�
�
�
�
��

�
�
�
�

��
�

�
�
�
�
�
�

�
�

�
�
��

�
�
�
�

	
�
�

�
�

��
	
�
��
�
�

�

�

�
�
�
��

�
�
�
�

��
�
�

�
��
	
�

�
�
��

�

�
�
�
�

��
	
�
��
�
�

�
�
�

�
�
�
�

�
�
�
��
�
�
�
�

�
�
�
�

	
�
�
�
��
�
�

�
�
�
�
�
�
�

��
�
�
�
��
�

�
�
�
�

��
�
�
�

�
�
	
�

�
��
	
�

�
�
��

�

�
��
�
�
�
�
�

�
�

�
�
�

�
�
�
�

	
�
�
�
�
��
�

�
�

��
	
�
��
�
�

�
�
�
�

�

�
�
��
�
�

�
�
�
�
�
�

�
�

�
�
��

	
�
�

�
�

�
�
	
�
��
�
�

�

�
�
	
�

�
�
�
�

��
�
�

�
��
	
�

�
�
��

�

�
�
	
�
��
�
�

�
�
�

�
�
�
��
�
�
�

�
�

�

�
�
�
��

�
�
�
�
�

�
�
�
�

	
�
�
�
��
�
�

�
�
�
�
��
�

�
��

�
�
�
�
��

�
�
�
��
�

�
��
	
�

�
�
��

�

�
�
	
�
��
�
�

�
�
�

�
�
�
	
��
�

�
�
�
��
�
�
�
�

�
�
�
�

	
�
�
�
��
�
�

�
�
�
�
��
�

�
��

�
�
�
�
�
��
��

�
�
�
��
�

�
!

�
��
�
�
�

�
�

�
��
�
�

�
�
�
�

!
"

#
�
�
��
�
	
�
�
�

�
�
�

�
�
�
��
��
�

$
�
	
�
�

�
��
	
�

%
�
��
�
�

��
��
�
��

&
�
'
�
��
��
	�

(
�
��
	�

�
�

�
�
�
�
&
��
�
�

�
�
�

�
�
��
�
)
*+

&
�
'
�
��
��
	�

(
�
��
	
�

�
�
�

�
�
�
�
&
��
�
�

�
�
�

�
�
��
�
)
*+

&
�
'
�
��
��
	�

(
�
��
	
�

�
�
�

�
�
�
�
&
��
�
�

�
�
�

�
�
��
�
)
*+

�
!

�
��
�
�
�

�
��

�
�

�
��
��

�
�	

�
+

�
!
�

&
�
+
�

�
+

�
,

�
�
�

�
��
-�
�
��
�
)

+
�
.
�

�
�
�

#�
�
�
�
�
�

�
�
	
�
��

/
�
)
�
�

�
�
�

+
&
�
0
)
)
)
-�
�
+

�
&
�
0
)
)

/
�
)
�
�

�
�
�

&
&
�

1
�
�#
1

�
�
�
�
�
��
�
	
�

�
�
"
�
��

�
�

�
�
��
�

	

$
�
2�
	
�

	
�
�
�

	
�
�
�
��
�
�

�
��
��
�
�
�
�

	
�
�
�
��
�
�

.
�
	
�
�
�

	
�
�
�
��
�
�

3
�
�
	
�
�
�

	
�
�
�
��
�
�

/
�
�

�
�
�
�
�
��

�
�
�

�
�
�
*�
�
�
�
'
�
��

�
��
	
�

�
�
��
�

/
�
�

�
�
��
�
��

�
�
�

�
�
�
*�
�
�
�
'
�
��

�
��
	�

�
�
��
��

$
�
��

�
�
�
��
	
��
�
��

�
�
�
�
�
��

�

�

�
	
�

$
�

�

�
�
�
�
�

Application Note for Trace-Based Code Coverage | 11©1989-2023 Lauterbach

Preconditions

Reduce the Amount of Trace Data

It is recommended to reduce the amount of trace data to the required minimum to make best use of the
available trace memory. If trace information is exported off-chip via a dedicated trace port this reduction
can also help to avoid an overload of the trace port.

It is recommended to configure the onchip trace logic:

• to generate only trace information for the program flow.

• to generate additionally trace information for the task switches if a rich OS such as Linux is used.

• to not generate chip timestamps if supported by the trace protocol.

Details of how to do this can be found in the manuals:

• Arm: “Training Arm CoreSight ETM Tracing” (training_arm_etm.pdf), “Training Cortex-M
Tracing” (training_cortexm_etm.pdf)

• MPC5xxx/SPC5xxx, QorIQ and RH850: “Training Nexus Tracing” (training_nexus.pdf)

• TriCore: “Training AURIX Tracing” (training_aurix_trace.pdf)

• For other processor architectures, please refer to the corresponding “Processor Architecture
Manuals”.

For target systems using a rich OS such as Linux a method of determining task switches must also be
included in the trace data. More information can be found here:

- “Training Linux Debugging” (training_rtos_linux.pdf).

- For other operating systems, please refer to the corresponding “OS Awareness Manuals”
(rtos_<os>.pdf).
Application Note for Trace-Based Code Coverage | 12©1989-2023 Lauterbach

Ensure a Fault-Free Trace Recording

Before you start with code coverage, it is recommended to check if the trace recording is working properly.
Here is a simple script:

The code coverage analysis can tolerate individual FLOWERRORs. However, it is recommended to ensure
that the number of FLOWERRORs is as small as possible.

The code coverage analysis can tolerate gaps in the trace caused by TARGET FIFO OVERFLOWs but this
will result in gaps in the coverage data.

Go
Break
SILENT.Trace.Find FLOWERROR /ALL
IF FOUND.COUNT()!=0.
(
 PRIVATE &msg
 &msg="FLOWERRORS were found in the analyzed trace recording."
 &msg="&msg It is recommended to check"
 &msg="&msg if the trace recording works properly."
 ECHO FOUND.COUNT() "&msg"
)
ELSE
(
 ECHO "The analyzed trace recording does not contain FLOWERRORS."
)
ENDDO
Application Note for Trace-Based Code Coverage | 13©1989-2023 Lauterbach

Disable Timestamps for Trace Streaming

All general rules applying to trace streaming are described under Trace.Mode STREAM.

Since the timestamps that TRACE32 assigns for the trace records have no significance for code coverage,
they do not have to be streamed to the host computer. This considerably reduces the data rate. Please use
the command Trace.PortFilter MAX for this purpose.

The current PortFilter setting is displayed in the TRACE32 state line when you enter the command
Trace.PortFilter followed by a space.

SMP Multicore Systems

If code coverage is performed on an SMP system, it is typically sufficient to prove that the object or source
code line was executed by one of the cores. For this reason the core number of the trace records is ignored,
when the trace information is transferred to the code coverage system.

T
ra
c
e
p
o
rt

Raw trace data

TRACE32

trace tool

Trace buffer

TRACE32

debug module

Data stream to host

Raw trace data TRACE32 tool timestamps
Application Note for Trace-Based Code Coverage | 14©1989-2023 Lauterbach

Trace Data Collection Modes

Incremental Code Coverage

Incremental coverage is supported by all processor architectures which provide information about program
flow that is saved to trace buffer and all TRACE32 configurations. It also supports all code coverage metrics
supported by TRACE32. It is a reliable fallback methods that can be used in the vast majority of
situations.

Data Collection

1. Set the trace to Leash Mode either via the Trace configuration window or via the command
Trace.Mode Leash. This ensures that the target will halt when the trace buffer becomes nearly
full, preventing loss of data. Stack or Fifo mode can also be used if Leash Mode is not supported.

2. Enable the AutoInit checkbox or use the command Trace.AutoInit ON to ensure that the trace
buffer is always cleared before the trace recording is started.
Application Note for Trace-Based Code Coverage | 15©1989-2023 Lauterbach

3. Start program execution and wait until it stops.

4. After program execution has stopped, the trace data can be added to the coverage system with the
COVerage.ADD command or by using the +ADD button in the COVerage Configuration window, or
by selecting ‘Add Tracebuffer’ from the Cov menu (shown in the image below).

5. The code coverage measurement can be displayed by using the ListFunc button in the
COVerage Configuration window.

Details on the code coverage analysis itself are provided in the chapter “Supported Code Coverage
Metrics”, page 38.

6. If more trace data is required, repeat step 3 and 4 until the desired level of coverage is obtained.
Application Note for Trace-Based Code Coverage | 16©1989-2023 Lauterbach

Example Script

The entire process can be automated by creating a PRACTICE script. It is assumed that the preconditions
listed in “Preconditions”, page 12 are satisfied before running the script. In the example script default
settings are commented out.

Summary

A characteristic feature of incremental code coverage is that the individual steps are executed one by one.
Trace information is recorded while the program is running. After the program has been stopped, the
command COVerage.ADD ensures that:

• the raw trace data is uploaded to the host computer

• the raw trace data is decoded to reconstruct the complete program flow

• the program flow is finally added to the code coverage system

This workflow is summarized in the diagram below.

Details about the code coverage analysis itself are provided in the chapter “Supported Code Coverage
Metrics”, page 38.

…
// Trace.METHOD as automatically selected by TRACE32
Trace.Mode Leash
// Trace.AutoArm ON
Trace.AutoInit ON
COVerage.RESet
// COVerage.METHOD INCremental
RePeaT 10.
(
 Go.direct
 WAIT !STATE.RUN()
 COVerage.ADD
)
COVerage.ListFunc

running

Recording Recording

runningstopped

AddUploading Decoding

Command: COVerage.ADD

stopped

AddUploading Decoding

Command: COVerage.ADD

Coverage
Application Note for Trace-Based Code Coverage | 17©1989-2023 Lauterbach

Incremental Code Coverage in STREAM Mode

If a TRACE32 trace hardware tool such as PowerTrace is used it is possible to stream the trace data to a file
on the host file system. Information about the general conditions for trace streaming can be found in the
command description of the Trace.Mode STREAM command.

If the trace data is streamed to the host computer, longer recording times can be achieved. Incremental code
coverage in STREAM mode supports all code coverage metrics supported by TRACE32.

In case of large amounts of trace data, processing may take a long time. TRACE32 provides two alternative
methods to avoid this situation.

The first method is RTS, which is supported for all major architectures. RTS means that trace data is
processed while being recorded and the code coverage results are displayed dynamically. Please see “RTS
Mode Code Coverage”, page 22 for additional information.

If RTS is not supported for your core architectures, then SPY Mode Code Coverage can be an alternative.
Please see “SPY Mode Code Coverage”, page 27 for more details.

Data Collection

1. Set the trace to STREAM Mode either via the Trace Configuration window or via the
Trace.Mode STREAM command.

2. Enable the AutoInit checkbox or use the command Trace.AutoInit ON to ensure that the trace
buffer is always cleared before the trace recording is started.
Application Note for Trace-Based Code Coverage | 18©1989-2023 Lauterbach

3. TRACE32 by default opens a streaming file in the directory for temporary files
(OS.PresentTemporaryDirectory()).

The streaming file can be optionally set using the command Trace.STREAMFILE. It is
recommended to use the fastest drive available on the host, ideally not the boot drive.

4. The maximum size allowed for a streaming file can be optionally set with the help of the
Trace.STREAMFileLimit command.

Please be aware, that the trace recording is stopped, when the size limit for the streaming file is
reached.

5. Since code coverage does not need any timestamp information, please use the command
Trace.PortFilter MAX to instruct TRACE32 to stream only the raw trace data. Further
background information can be found in the chapter “Disable Timestamps for Trace Streaming”,
page 14.

6. Start the program execution.

7. The program execution on the target must be stopped in order to perform the code coverage
analysis.

- The user may manually stop the program execution.

- A breakpoint may be used to stop the program execution.

- With the help of a script, the program execution may be stopped after a specific period of time.

Trace.STREAMFILE "d:\temp\mystream.t32"

; limit the size of the streaming file to 5 GBytes
Trace.STREAMFileLimit 5000000000.
Application Note for Trace-Based Code Coverage | 19©1989-2023 Lauterbach

8. After the program execution has stopped, the trace data can be added to the coverage system with
the COVerage.ADD command or by using the +ADD button in the COVerage Configuration
window, or by selecting ‘Add Tracebuffer’ from the Coverage menu (shown in the image below).

9. Intermediate results can be displayed by using the ListFunc button in the COVerage
Configuration window.

Details on the code coverage analysis itself are provided in the chapter “Supported Code Coverage
Metrics”, page 38.

10. Steps 6 and 8 can be repeated until the desired level of coverage is obtained.

If the data is recorded at a test site and there is no time for evaluation, it is possible to save the collected raw
trace data and process it at a later point in time. Please refer to the commands Trace.STREAMSAVE and
Trace.STREAMLOAD.
Application Note for Trace-Based Code Coverage | 20©1989-2023 Lauterbach

Example Script

In this example script default settings are commented out. It is assumed that the preconditions listed in
“Preconditions”, page 12 are satisfied before running the script.

Summary

The advantage of incremental code coverage with streaming is that larger amounts of trace data can be
recorded in a single test run. However, before the recorded trace data can be processed, the program
execution must be stopped. The command COVerage.ADD ensures that:

• the raw trace data is decoded to reconstruct the complete program flow

• the program flow is added to the code coverage system

This workflow is summarized in the diagram below.

Details about the code coverage analysis itself are provided in the chapter “Supported Code Coverage
Metrics”, page 38.

…
// Trace.METHOD Analyzer or Trace.METHOD CAnalyzer
// Trace.AutoArm ON
Trace.AutoInit ON

Trace.Mode STREAM
Trace.STREAMFile "D:\streamfile.t32"
Trace.STREAMFileLimit 5000000000.

Trace.PortFilter MAX

COVerage.RESet
// COVerage.METHOD INCremental

Go
WAIT 10.s
Break
COVerage.ADD
COVerage.ListFunc

running stopped

Recording

Streaming

Decoding Add

Command: COVerage.ADD

Coverage
Application Note for Trace-Based Code Coverage | 21©1989-2023 Lauterbach

RTS Mode Code Coverage

TRACE32 can process the trace data during recording. This operation mode of the trace is called RTS.

RTS is currently supported for the following processor architecture/trace protocols:

• Arm ETMv3, PTM and Arm ETMv4

• Nexus for MPC5xxx and QorIQ

• TriCore MCDS

If RTS is not supported for your core architectures, then SPY mode code coverage could be an alternative.
Please refer to “SPY Mode Code Coverage”, page 27.

RTS requires a TRACE32 trace hardware tool such as PowerTrace and streaming of the trace data to a file
on the host file system has to work without issues. Information on the general conditions for trace streaming
can be found in the command description of the Trace.Mode STREAM command.

RTS mode code coverage supports only the following code coverage metrics: statement coverage, function
coverage, object code coverage and decision coverage.

Data Collection

1. RTS mode code coverage requires RTS decoding.

Setup the RTS decoding by copying the object code to the TRACE32 Virtual Memory. For
background information refer to “RTS Decoding for Static Applications”, page 109 or “RTS
Decoding (Rich OS)”, page 110.

2. Switch the RTS system to ON in the RTS.state window or with the help of the RTS.ON command.

Data.LOAD.Elf ~~~~/tricore/coverage_tc2.elf /RelPATH /PlusVM
Application Note for Trace-Based Code Coverage | 22©1989-2023 Lauterbach

3. Open a COVerage.ListFunc window by using the ListFunc button in the COVerage
Configuration window or by using the command COVerage.ListFunc. Please be aware that trace
data recorded in RTS mode are only processed by TRACE32 as long as one window in TRACE32
displays code coverage information.

4. Start the program and observe the measured code coverage.

Details on the code coverage analysis itself are provided in the chapter “Supported Code Coverage
Metrics”, page 38.

5. Stop the program exucution when your tests are completed.

RTS discards the trace data after it is processed by default. If you want to keep the trace data for additional
verification tasks perform these configuration steps before setting up RTS mode code coverage as
described above.
Application Note for Trace-Based Code Coverage | 23©1989-2023 Lauterbach

1. Set the trace to STREAM mode either via the Trace Configuration window or the
Trace.Mode STREAM command.

2. Enable the AutoInit checkbox or use the command Trace.AutoInit ON to ensure that the trace
buffer is always cleared before the trace recording is started.

3. TRACE32 by default opens a streaming file in the directory for temporary files
(OS.PresentTemporaryDirectory()).

The streaming file can be optionally set by using the command Trace.STREAMFILE. It is
recommended to use the fastest drive available on the host, ideally not the boot drive.

4. The maximum size allowed for a streaming file can be optionally set with the help of the
command Trace.STREAMFileLimit.

Please be aware, that the trace recording is stopped, when the size limit for the streaming file is
reached.

5. Since code coverage does not need any timestamp information, please use the command
Trace.PortFilter MAX to instruct TRACE32 to stream only the raw trace data. Further
background information can be found in the chapter “Disable Timestamps for Trace Streaming”,
page 14.

Trace.STREAMFILE "d:\temp\mystream.t32"

; limit the size of the streaming file to 5 GBytes
Trace.STREAMFileLimit 5000000000.
Application Note for Trace-Based Code Coverage | 24©1989-2023 Lauterbach

Example Scripts

This example script discards the trace data after it is processed; default settings are commented out. It is
assumed that the preconditions listed in “Preconditions”, page 12 are satisfied before running the script.

This example script saves the trace data to a streaming file; default settings are commented out.

…
// Trace.METHOD Analyzer or Trace.METHOD CAnalyzer

; Load application code to target and TRACE32 Virtual Memory
Data.LOAD.Elf application.elf /PlusVM

; Set breakpoint to end of test run
Break.Set vTestComplete

COVerage.RESet
RTS.ON
COVerage.ListFunc

Go
WAIT !STATE.RUN()
…

…
// Trace.METHOD Analyzer or Trace.METHOD CAnalyzer
// Trace.AutoArm ON
Trace.AutoInit ON

Trace.Mode STREAM
Trace.STREAMFile "D:\streamfile.t32"
Trace.STREAMFileLimit 5000000000.

Trace.PortFilter MAX

; Load application code to target and TRACE32 Virtual Memory
Data.LOAD.Elf application.elf /PlusVM

; Set breakpoint to end of test run
Break.Set vTestComplete

COVerage.RESet
RTS.ON
COVerage.ListFunc

Go
WAIT !STATE.RUN()
Trace.List
…

Application Note for Trace-Based Code Coverage | 25©1989-2023 Lauterbach

Summary

The big advantage of RTS mode code coverage is that all necessary steps run in parallel. Large amounts of
trace data can be processed quickly. Code coverage measurement becomes available immediately.

The following steps are performed concurrently with trace data collection:

• The raw trace data are streamed to the host computer, optionally it can be saved to the
streaming file6

• The raw trace data are decoded to reconstruct the program flow

• The program flow is added to the code coverage system

• The code coverage results are updated

Details about the code coverage analysis itself are provided in the chapter “Supported Code Coverage
Metrics”, page 38.

Decoding

Recording

Streaming

RTS Decoding

Add

running stopped

Coverage
Application Note for Trace-Based Code Coverage | 26©1989-2023 Lauterbach

SPY Mode Code Coverage

TRACE32 supports processing of trace data while being recorded for all architectures:

• TRACE32 trace hardware tool such as PowerTrace is required

• Streaming of the trace data to a file on the host file system is working without issues

Information about the general conditions for trace streaming can be found in the description of
the command Trace.Mode STREAM.

SPY mode code coverage achieves lower processing speeds than RTS mode code coverage, but supports
all code coverage metrics supported by TRACE32.

Operation States

For SPY mode code coverage, trace streaming is periodically suspended in order to decode the raw trace
data and to process it for code coverage. Please be aware that TRACE32 does not suspend trace streaming
if the trace memory of the TRACE32 trace tool, that operates as a large FIFO, is filled more the 50%.

Decoding

running

Recording

Streaming Streaming Streaming

Decoding Add

Legend:

stopped

1s

Coverage

1s
Application Note for Trace-Based Code Coverage | 27©1989-2023 Lauterbach

TRACE32 indicates the current trace state by changing between Arm and SPY.

• Arm: Trace data is being recorded and streamed to the streaming file on the host computer.

• SPY: Trace data is being recorded and the content of the streaming file is processed for code
coverage.

The Trace field of the TRACE32 state line
changes between Arm and SPY
Application Note for Trace-Based Code Coverage | 28©1989-2023 Lauterbach

Data Collection

1. In order to decode the raw trace data quickly, it is recommended to mirror the application to the
TRACE32 Virtual Memory:

For details refer to “Decoding in Running State for Static Applications”, page 108 or “Decoding
in Running State (Rich OS)”, page 110.

2. Set the trace mode to STREAM either via the Trace configuration window or via the
Trace.Mode STREAM command.

3. Enable the AutoInit checkbox or use the command Trace. ON to ensure that the trace buffer is
always cleared before the trace recording is started.

Data.LOAD.Elf application_1.elf /PlusVM
Application Note for Trace-Based Code Coverage | 29©1989-2023 Lauterbach

4. TRACE32 by default opens a streaming file in the directory for temporary files
(OS.PresentTemporaryDirectory()).

The streaming file can be optionally set using the command Trace.STREAMFILE. It is
recommended to use the fastest drive available on the host, ideally not the boot drive.

5. The maximum size allowed for a streaming file can be optionally set with the help of the
command Trace.STREAMFileLimit.

Please be aware, that the trace recording is stopped, when the size limit for the streaming file is
reached.

6. Since code coverage does not need any timestamp information, please use the command
Trace.PortFilter MAX to instruct TRACE32 to stream only the raw trace data. Further
background information can be found in the chapter “Disable Timestamps for Trace Streaming”,
page 14.

7. Set the coverage method to SPY by using the command COVerage.METHOD SPY or by
selecting SPY in the COVerage configuration window.

8. Enable SPY mode code coverage by the command COVerage.ON or by selecting the ON radio
button in the state field.

9. Open a COVerage.ListFunc window by using the ListFunc button in the COVerage configuration
window or by using the command COVerage.ListFunc. Please be aware that trace data recorded in
SPY mode code coverage is only periodically processed by TRACE32, if at least one window in
TRACE32 displays code coverage information.

Trace.STREAMFILE "d:\temp\mystream.t32"

; limit the size of the streaming file to 5 GBytes
Trace.STREAMFileLimit 5000000000.
Application Note for Trace-Based Code Coverage | 30©1989-2023 Lauterbach

10. Start the program and observe directly the results of the code coverage.

Details on the code coverage analysis itself are provided in the chapter “Supported Code Coverage
Metrics”, page 38.

11. Stop the program execution when your tests have completed.

Example Script

In the script the default settings are commented out. It is assumed that the preconditions listed in
“Preconditions”, page 12 are satisfied before running the script.

…
// Trace.METHOD Analyzer or Trace.METHOD CAnalyzer
// Trace.AutoArm ON
Trace.AutoInit ON

Trace.Mode STREAM
Trace.STREAMFile "D:\streamfile.t32"
Trace.STREAMFileLimit 5000000000.

Trace.PortFilter MAX

; Load application code to target and TRACE32 Virtual Memory
Data.LOAD.Elf application.elf /PlusVM

; Set breakpoint to end of test run
Break.Set vTestComplete

COVerage.RESet
COVerage.METHOD SPY
COVerage.ON
COVerage.ListFunc

Go
WAIT !STATE.RUN()
Trace.List
…

Application Note for Trace-Based Code Coverage | 31©1989-2023 Lauterbach

Summary

SPY Mode Code Coverage can process trace data concurrently while recording. However, it does not
achieve the same processing speeds as RTS mode code coverage.

The following steps are involved:

• Trace information is recorded continuously.

• The raw trace data is streamed to a file on the host computer, but the streaming is periodically
suspended:

- to decode the raw trace data to reconstruct the program flow

- to add the program flow to the code coverage system

- to update code coverage results

Details about the code coverage analysis itself are provided in the chapter “Supported Code Coverage
Metrics”, page 38.

Decoding

running

Recording

Streaming Streaming Streaming

Decoding Add

Legend:

stopped

1s

Coverage

1s
Application Note for Trace-Based Code Coverage | 32©1989-2023 Lauterbach

Code Coverage with Virtual Targets

Tracing the program execution on a virtual target slows down its performance. To minimize this impact,
Lauterbach works closely together with manufacturers such as Synopsys. The basic idea is that some parts
of the code coverage processing are offloaded to the virtual target. This information is uploaded to the
TRACE32 code coverage system with the command COVerage.ADD after the program execution has been
stopped. The MCD interface comes with built-in support for this.

 To use this feature the following conditions must be met:

• PBI=MCD must be specified in the TRACE32 configuration file, usually ~~/config.t32.

• The Virtual Target must support program address tagging.

COVerage.Mode FastCOVerage ON must be set. If the Virtual Target does not support program
address tagging, TRACE32 will display the error message “function not implemented”.

The program addressed tagged in the virtual target can be used for:

• Object code coverage (see “Object Code Coverage”, page 40)

• Statement coverage (see “Statement Coverage”, page 47)

• Decision coverage (ocb) (see “Object Code Based (ocb) Decision Coverage”, page 58)

• Function coverage (see “Function Coverage”, page 79)
Application Note for Trace-Based Code Coverage | 33©1989-2023 Lauterbach

https://www.lauterbach.com/mcd_api.html

An example script might look like this:

Details about the code coverage analysis itself are provided in the chapter “Supported Code Coverage
Metrics”, page 38.

COVerage.RESet
COVerage.METHOD INCremental
COVerage.Mode FastCOVerage ON

Go

; Use a breakpoint or time-out to control length of runtime

Break

COVerage.Add

COVerage.ListFunc
Application Note for Trace-Based Code Coverage | 34©1989-2023 Lauterbach

ART Mode Code Coverage

ART is an acronym for Advanced Register Trace. The ART trace operates by single stepping on assembler
level. After each step, the contents of the CPU registers are uploaded to TRACE32 and stored in a similar
fashion as a program flow trace.

This pseudo-trace data can be used for code coverage. This is not supported for all processor architectures.
The Coverage.METHOD ART can only be selected if supported. Please be aware that ART has a
significant impact on the real-time performance of the target. Each step takes 5 to 10 ms.

Trace data recorded with ART can be used for:

• Object code coverage (see “Object Code Coverage”, page 40)

• Statement coverage (see “Statement Coverage”, page 47)

• Decision coverage (ocb) (see “Object Code Based (ocb) Decision Coverage”, page 58)

• Function coverage (see “Function Coverage”, page 79)

Where possible, it is recommended to use the TRACE32 Instruction Set Simulator with Trace.METHOD
Analyzer instead of ART. This has a better performance and supports all code coverage metrics.

The TRACE32 Instruction Set Simulator simulates the instruction set, but does not model timing
characteristics and peripherals. However, the simulator provides a bus trace so that code coverage is easy
to perform. For details on how to start the TRACE32 Instruction Set Simulator refer to “TRACE32
Instruction Set Simulator” in TRACE32 Installation Guide, page 56 (installation.pdf).
Application Note for Trace-Based Code Coverage | 35©1989-2023 Lauterbach

Data Collection

Before you start do not forget to switch debugging to mixed or assembler mode by using the Mode.Asm or
Mode.Mix commands.

1. Select Trace.METHOD ART in the Trace configuration window.

2. Set the size of the ART buffer, using either the command ART.SIZE <n> or by entering the value
in the SIZE field of the Trace configuration window.

3. Set COVerage.METHOD ART in the COVerage configuration window.

4. Enable ART code coverage with COVerage.ON.
Application Note for Trace-Based Code Coverage | 36©1989-2023 Lauterbach

5. Open a COVerage.ListFunc window, single step the target and observe the result.

Details about the code coverage analysis itself are provided in the chapter “Supported Code Coverage
Metrics”, page 38.

Example Script

A simple example is shown below.

Mode.Mixed

Trace.RESet
Trace.METHOD ART
Trace.SIZE 65535. ; Set the size of the ART buffer

COVerage.RESet
COVerage.METHOD ART
COVerage.ON

Step 65534. ; Single step on assembler level to capture data
COVerage.ListFunc ; Open a Window to see results
Application Note for Trace-Based Code Coverage | 37©1989-2023 Lauterbach

Supported Code Coverage Metrics

Overview

TRACE32 supports all important code coverage metrics. The table below gives an overview of the following
subjects:

• A definition for every TRACE32 source metric

• Requirements for the object code

It is recommended to perform the code coverage on non-optimized code. This way the results can be
displayed clearly and concisely. Otherwise the interpretation of the result becomes more demanding.

For decision and condition coverage, as well as for MC/DC, conditions must be implemented at
object code level by conditional branches or conditional instructions. Conditional instructions are
only sufficient if the trace protocol in use generates details for them.

• Source code details that TRACE32 needs for the measurement

The required source code details are not part of the debug symbol information generated by the
compiler, but must be generated separately. TRACE32 provides the command line tool t32cast
for this purpose. For complete information about t32cast, see “Application Note for t32cast”
(app_t32cast.pdf).

Please note that “RTS Mode Code Coverage”, page 22 is currently not possible for all metrics
that require additional source code details.

TRACE32 SourceMetric Requirements for the
object code

Source code details
needed by TRACE32

ObjectCode
Object code coverage ensures that each
object code instruction was executed at
least once and all conditional instruc-
tions (e.g. conditional branches) have
evaluated to both true and false.

Final code —

Statement
Statement coverage ensures that every
statement in the program has been
invoked at least once. Statement in this
context means block of source code lines.

Final code —

Decision (full)
Every point of entry and exit in the pro-
gram has been invoked at least once and
every decision in the program has taken all
possible outcomes at least once.

Each condition in the
source code has to be
represented by a
conditional
branch/instruction at
object code level

TRACE32 has to know
which source code lines
contain a decision and
how the individual
decisions are structured
Application Note for Trace-Based Code Coverage | 38©1989-2023 Lauterbach

Decision (ocb)
Every point of entry and exit in the pro-
gram has been invoked at least once and
every decision in the program has taken
on all possible outcomes at least once.

Requires appropriate
optimization level to
prevent false-positive or
false-negative results

—

Condition
All conditions in the program have evalu-
ated both true and false.

Each condition in the
source code has to be
represented by a
conditional
branch/instruction at
object code level

TRACE32 has to know
which source code lines
contain a decision and
how the individual
decisions are structured

MCDC
Every point of entry and exit in the pro-
gram has been invoked at least once and
every decision in the program has taken all
possible outcomes at least once. And
each condition in a decision is shown to
independently affect the outcome of that
decision.

Each condition in the
source code has to be
represented by a
conditional
branch/instruction at
object code level

TRACE32 has to know
which source code lines
contain a decision and
how the individual
decisions are structured

Function
Every function in the program has been
invoked at least once.

Final code

Inlined functions make
the interpretation of the
results more demanding

—

Call
Every function call has been executed at
least once.

Final code

Inlined functions make
the interpretation of the
results more demanding

TRACE32 must know
which source code lines
contain function calls

TRACE32 SourceMetric Requirements for the
object code

Source code details
needed by TRACE32
Application Note for Trace-Based Code Coverage | 39©1989-2023 Lauterbach

Object Code Coverage

Object code coverage can be performed directly on the final code.

Object code coverage: Object code coverage ensures that each object code instruction was executed at
least once and all conditional instructions (e.g. conditional branches) have evaluated to both true and false.

There are two tagging schemes:

• ok | only exec | not exec | never

For Arm/Cortex cores that use the protocols Arm-ETMv1 or Arm-ETMv3, as well as Arm-ETMv4 with
ETM.COND ON.

• ok | taken | not taken | never

Otherwise.

For details refer to “Appendix D: Object Code Coverage Tags in Detail”, page 116.
Application Note for Trace-Based Code Coverage | 40©1989-2023 Lauterbach

Evaluation

If you want to use the trace data stored in the code coverage system for object code coverage, select the
SourceMetric ObjectCode in the COVerage configuration window or use the command
COVerage.Option SourceMetric ObjectCode.

The following commands show a tabular analysis:

The following command shows the tagging on source and object code level.

COVerage.ListModule

COVerage.ListFunc

COVerage.ListLine

List.Mix /COVerage
Application Note for Trace-Based Code Coverage | 41©1989-2023 Lauterbach

This TRACE32 command displays the object code tagging for the function MultiLine:

List.Mix MultiLine /COVerage
Application Note for Trace-Based Code Coverage | 42©1989-2023 Lauterbach

The screenshot on the previous page was taken with the Infineon TriCoreTM debugger. Its instruction set
contains no conditional instructions beyond conditional branches. Thus the object code is tagged as follows:

ok The object code instruction is fully covered.

If the object code is a conditional branch it is tagged with ok if the
conditional branch has be at least once taken and not taken.

All other object code instructions are tagged with ok if they have
been executed at least once.

never The object code instruction has never been executed.

taken If the object code is a conditional branch it is tagged with taken if the
conditional branch has be at least once taken, but never not taken.

not taken If the object code is a conditional branch it is tagged with not taken if
the conditional branch has be at least once not taken, but never
taken.
Application Note for Trace-Based Code Coverage | 43©1989-2023 Lauterbach

This TRACE32 command displays a tabular analysis of all functions of the module "coverage". A module
usually corresponds to a source code file.

COVerage.ListFunc.sYmbol \coverage
Application Note for Trace-Based Code Coverage | 44©1989-2023 Lauterbach

Further details are displayed if you open the window in its full size:

Conditional branches

branches Percentage calculated according to the
following formula:

ok Number of conditional branches that are both
taken and not taken

taken Number of conditional branches that are only
taken

not taken Number of conditional branches that are only
not taken

never Number of conditional branches that are
neither taken nor not taken

Byte count

bytes Number of bytes

ok Number of bytes that are already tagged as ok

2 ok taken nottaken+ +
2 ok taken nottaken never+ + +

Application Note for Trace-Based Code Coverage | 45©1989-2023 Lauterbach

Example Script

// Demo script "~~/demo/t32cast/eca/measure_mcdc.cmm"

// Select code coverage metric object code
COVerage.Option SourceMetric ObjectCode

// List code coverage results at source and object code level
List.Mix MultiLine /COVerage

// List code coverage results at function level
COVerage.ListFunc.sYmbol \coverage
Application Note for Trace-Based Code Coverage | 46©1989-2023 Lauterbach

Statement Coverage

Statement coverage can be performed directly on the final code.

Statement coverage: Statement coverage ensures that every statement in the program has been invoked
at least once. Statement in this context means block of source code lines.

TRACE32 interpretation: A source code line achieves statement coverage when at least one
corresponding object code instruction has been executed.

The following tagging is performed:

• stmt | incomplete

Evaluation

If you want to use the trace data stored in the code coverage system for statement coverage, select the
SourceMetric Statement in the COVerage configuration window or use the command
COVerage.Option SourceMetric Statement.

The following commands show a tabular analysis:

The following command shows the tagging on source code level.

COVerage.ListModule

COVerage.ListFunc

List.Hll /COVerage
Application Note for Trace-Based Code Coverage | 47©1989-2023 Lauterbach

This TRACE32 command displays the statement coverage tagging for the function MultiLine:

The source code lines are tagged as follows:

Object code instructions show the corresponding tags for object code coverage, if statement coverage is
selected.

List.Hll MultiLine /COVerage

stmt At least one corresponding object code instruction generated for the
block of source code lines has been executed.

incomplete None of the object code instructions generated for the block of
source code lines has been executed.
Application Note for Trace-Based Code Coverage | 48©1989-2023 Lauterbach

This TRACE32 command displays a tabular analysis of all functions of the module "coverage". A module
usually corresponds to a source code file.

Tags for Statement Coverage

Statement coverage is achieved for a group of HLL source code statements as soon as one of its
associated assembly instructions has been partially executed.

• stmt: All source code line blocks of the function/module are tagged with stmt.

• incomplete: At least one source code line block of the function/module is tagged with incomplete.

If a tag marks the coverage status of HLL source code statements, the following definitions apply:

• stmt: The measured code coverage of the HLL source code statement(s) is sufficient to achieve
statement coverage.

• incomplete: The measured code coverage of the HLL source code statement(s) is not sufficient
to achieve statement coverage.

COVerage.ListFunc.sYmbol \coverage
Application Note for Trace-Based Code Coverage | 49©1989-2023 Lauterbach

Further details are displayed if you open the window in its full size:

Example Script

Line count

line Number of source code line blocks

ok Number of source code line blocks tagged with
stmt

Byte count

bytes Number of bytes

ok Number of bytes tagged with stmt

// Demo script "~~/demo/t32cast/eca/measure_mcdc.cmm"

// Select code coverage metric statement
COVerage.Option SourceMetric Statement

// List code coverage results at source code line level
List.Hll MultiLine /COVerage

// List code coverage results at function level
COVerage.ListFunc.sYmbol \coverage
Application Note for Trace-Based Code Coverage | 50©1989-2023 Lauterbach

Full Decision Coverage

The following diagram defines the terms used in this chapter:

TRACE32 distinguishes between two forms of decision coverage:

• full decision coverage and

• object code coverage based decision coverage - ocb in short (for details refer to “Object Code
Based (ocb) Decision Coverage”, page 58)

Evaluation Strategy

Decision coverage: Every point of entry and exit in the program has been invoked at least once and every
decision in the program has taken all possible outcomes at least once.

To measure decision coverage accurately the following prerequisites must be fulfilled:

1. It is necessary that the code is compiled so that each condition in the source code is represented
by a distinct conditional branch/instruction at object code level. Conditional instructions, however,
require that the trace protocol includes information about conditional instructions.

Please read “Appendix B: Coding Guidelines”, page 112 to ensure that you write decisions and
conditions at source code level in such a way that your build toolchain generates conditional
branches/instructions for them.

Ensure that the compiler generates conditional branches for switch-case statements. A
dedicated compiler option is commonly available to control this. Please refer to the
documentation of your build toolchain.

2. TRACE32 has to know which source code lines contain decisions and their conditions. Moreover,
for each condition used in a decision its structure and the mapping between conditions and
conditional branches/instructions must be known.

These details are not part of the debug symbol information generated by the compiler, but must
be generated separately. TRACE32 provides the command line tool t32cast for this purpose. For
complete information about t32cast, see “Application Note for t32cast” (app_t32cast.pdf).

The t32cast command line tool generates an Extended Code Analysis (ECA) data file for each
source code file. These files have to be loaded into TRACE32 before starting the code coverage
analysis.

If these prerequisites are met, full decision coverage can be performed with the optimal number of test
cases.

(A and B) or CDecision

Conditions

Operators
Application Note for Trace-Based Code Coverage | 51©1989-2023 Lauterbach

TRACE32 Interpretation: A decision achieves decision coverage when all decision paths achieve
statement coverage. The following screenshot illustrates this:

Each decision receives its own ID.

Source code lines that represent decisions are tagged as follows:

• dc | incomplete

All other source code lines use the corresponding tags for statement coverage.

Evaluation

If you want to use the trace data stored in the code coverage system for full decision coverage, select the
SourceMetric Decision in the COVerage configuration window or use the command
COVerage.Option SourceMetric Decision.

Before you start the code coverage analysis, you have to load the .eca files created by the command line
tool t32cast:

sYmbol.ECA.LOADALL /SkipErrors
Application Note for Trace-Based Code Coverage | 52©1989-2023 Lauterbach

The following commands show a tabular analysis:

The following command shows the tagging on source code level.

COVerage.ListModule

COVerage.ListFunc

List.Hll /COVerage
Application Note for Trace-Based Code Coverage | 53©1989-2023 Lauterbach

This TRACE32 command displays the decision coverage tagging for the function ComplexDoWhile:

Decisions are tagged as follows:

Not executed decision paths are tagged with incomplete at source code level. Already taken decision paths
are tagged with stmt.

List.HLL ComplexDoWhile /COVerage

dc Decisions have taken all possible outcomes at least once.

incomplete There is at least one possible outcome missing for the decisions.
Application Note for Trace-Based Code Coverage | 54©1989-2023 Lauterbach

This TRACE32 command displays a tabular analysis of all functions of the module "coverage". A module
usually corresponds to a source code file.

Tags for Decision Coverage

Decision coverage is achieved for a group of HLL source code statements as soon as all of its associated
assembly instructions have been fully covered.

• stmt+dc: All source code line blocks of the function/module are tagged with dc or stmt.

• incomplete: At least one source code line block of the function/module is tagged as incomplete.

If a tag marks the coverage status of HLL source code statements, the following definitions apply:

• stmt+dc: The measured code coverage of the HLL source code statement(s) is sufficient to
achieve decision coverage.

• incomplete: The measured code coverage of the HLL source code statement(s) is not sufficient
to achieve decision coverage.

COVerage.ListFunc.sYmbol \coverage
Application Note for Trace-Based Code Coverage | 55©1989-2023 Lauterbach

Further details are displayed when you open the window in its full size:

Line count

lines Number of source code line blocks within the
function/module

ok Number of source code line blocks tagged with
dc or stmt

Decision count

dec Number of decisions within the function/module

true Number of decisions evaluated as true

false Number of decisions evaluated as false

Byte count

bytes Number of bytes within the function/module

ok Number of bytes tagged with dc or stmt
Application Note for Trace-Based Code Coverage | 56©1989-2023 Lauterbach

Example Script

// Demo script "~~/demo/t32cast/eca/measure_mcdc.cmm"

// Select code coverage metric decision
COVerage.Option SourceMetric Decision

// Load .eca files so that TRACE32 knows which source code lines
// represent decisions
sYmbol.ECA.LOADALL /SkipErrors

// List code coverage results at source code line level
List.Hll ComplexDoWhile /COVerage

// List code coverage results at function level
COVerage.ListFunc.sYmbol \coverage
Application Note for Trace-Based Code Coverage | 57©1989-2023 Lauterbach

Object Code Based (ocb) Decision Coverage

The following diagram defines the terms used in this chapter:

TRACE32 distinguishes between two forms of decision coverage:

• full decision coverage (for details refer to “Full Decision Coverage”, page 51) and

• object code coverage based decision coverage - ocb in short

Evaluation Strategy

Decision coverage: Every point of entry and exit in the program has been invoked at least once and every
decision in the program has taken on all possible outcomes at least once.

TRACE32 Interpretation: ocb decision coverage is achieved if full object code coverage is achieved.

This eliminates the prerequisites necessary for full decision coverage. However, the following should be
considered:

Unoptimized code can lead to false negative results. False negative means that decisions are tagged as
incomplete although decision coverage has already been achieved. That means ocb decision coverage may
need more test cases than full decision coverage

Optimized code can lead to false positive results if a condition is no longer represented by a conditional
branch/instruction or the trace protocol provides no information about the state of conditional instructions.
False positive means that decision coverage is indicated too early.

(A and B) or CDecision

Conditions

Operators
Application Note for Trace-Based Code Coverage | 58©1989-2023 Lauterbach

Since the source code is not analyzed for ocb decision coverage, TRACE32 does not know where decisions
are located. Therefor source code lines are tagged as follows:

• dc+stmt | incomplete
Application Note for Trace-Based Code Coverage | 59©1989-2023 Lauterbach

Evaluation

If you want to use the trace data stored in the code coverage system for ocb decision coverage, select the
SourceMetric Decision in COVerage state window or use the command
COVerage.Option SourceMetric Decision.

The following commands show a tabular analysis:

The following command shows the tagging on source code level.

COVerage.ListModule

COVerage.ListFunc

List.Hll /COVerage
Application Note for Trace-Based Code Coverage | 60©1989-2023 Lauterbach

This TRACE32 command displays the ocb decision coverage tagging for the function ComplexDoWhile:

Source code lines are tagged as follows:

Object code instructions get object code tagging, if ocb decision coverage is performed.

List.HLL ComplexDoWhile /COVerage

dc+stmt The source code line achieved full object code coverage and thereby
either decision or statement coverage.

incomplete The source code line did not achieve full object code coverage and
thereby no decision or statement coverage.
Application Note for Trace-Based Code Coverage | 61©1989-2023 Lauterbach

This TRACE32 command displays a tabular analysis of all functions of the "coverage" module. A module
usually corresponds to a source code file.

Tags for Object Code Based (ocb) Decision Coverage

• stmt+dc: All source code lines of the function/module are tagged with stmt+dc.

• incomplete: At least one source code line of the function/module is tagged with incomplete.

COVerage.ListFunc.sYmbol \coverage
Application Note for Trace-Based Code Coverage | 62©1989-2023 Lauterbach

Further details are displayed when you open the window in its full size:

Line count

lines Number of source code lines within the
function/module

ok Number of source code lines tagged with
stmt+dc

Byte count

bytes Number of bytes within the function/module

ok Number of bytes tagged with stmt+dc
Application Note for Trace-Based Code Coverage | 63©1989-2023 Lauterbach

Example Script

// Demo script "~~/demo/t32cast/eca/measure_mcdc.cmm"

// Select code coverage metric decision
COVerage.Option SourceMetric Decision

// List code coverage results at source code line level
List.Hll ComplexDoWhile /COVerage

// List code coverage results at function level
COVerage.ListFunc.sYmbol \coverage
Application Note for Trace-Based Code Coverage | 64©1989-2023 Lauterbach

Condition Coverage

The following diagram defines the terms used in this chapter:

Evaluation Strategy

Condition coverage: All conditions in the program have evaluated both true and false.

To measure condition coverage accurately the following prerequisites must be fulfilled:

1. It is necessary that the code is compiled in such a way that each condition in the source code is
represented by a distinct conditional branch/instruction at object code level. Conditional
instructions, however, require that the trace protocol includes information about conditional
instructions.

Please read “Appendix B: Coding Guidelines”, page 112 to ensure that you write decisions and
conditions at source code level in such a way that your build toolchain generates conditional
branches/instructions for them.

Ensure that the compiler generates conditional branches for switch-case statements. A
dedicated compiler option is commonly available to control this. Please refer to the
documentation of your build toolchain.

2. TRACE32 has to know which source code lines contain a condition.

These source code details are not part of the debug symbol information generated by the
compiler, but must be generated separately. TRACE32 provides the command line tool t32cast
for this purpose. For complete information about t32cast, see “Application Note for t32cast”
(app_t32cast.pdf).

The t32cast command line tool generates an Extended Code Analysis (ECA) data file for each
source code file. These files have to be loaded into TRACE32 before starting the code coverage
analysis.

TRACE32 Interpretation: A condition achieved condition coverage when the execution of its conditional
branches/instructions results in both a true and false outcome.

(A and B) or CDecision

Conditions

Operators
Application Note for Trace-Based Code Coverage | 65©1989-2023 Lauterbach

The following screenshot illustrates this:

Each decision receives its own ID. The atomic conditions of which the decision is composed are numbered
consecutively. Each atomic condition is represented by a conditional branch/instruction.

Source code lines that contain conditions are tagged as follows:

• cc | incomplete

All other source code lines use the corresponding tags for statement coverage.

(a && ! (b>-100 || ! (c>42) && Identity(d)<36)if

Cond. 6.1

Decision 6

Cond. 6.2 Cond. 6.3 Cond. 6.4
Application Note for Trace-Based Code Coverage | 66©1989-2023 Lauterbach

Evaluation

If you want to use the trace data stored in the code coverage system for condition coverage, select the
SourceMetric CONDition in the COVerage configuration window or use the command
COVerage.Option SourceMetric CONDition.

The following commands show a tabular analysis:

The following command shows the tagging on source code level.

COVerage.ListModule

COVerage.ListFunc

List.Hll /COVerage
Application Note for Trace-Based Code Coverage | 67©1989-2023 Lauterbach

This TRACE32 command displays the condition coverage tagging for the function ComplexDoWhile:

Decisions are tagged as follows:

TRACE32 displays the result in mixed mode in such a way that it is clear which atomic conditions are still
missing for a full condition coverage.

Object code instructions show the corresponding tags for object code coverage, if condition coverage is
selected.

List.HLL ComplexDoWhile /COVerage

cc The conditions have evaluated both, true and false.

incomplete The conditions have not evaluated both, true and false.
Application Note for Trace-Based Code Coverage | 68©1989-2023 Lauterbach

This TRACE32 command displays a tabular analysis of all functions of the module "coverage". A module
usually corresponds to a source code file.

Tags for Condition Coverage

• stmt+cc: All source code line blocks of the function/module are tagged with cc or stmt.

• incomplete: At least one source code line block of the function/module is tagged with incomplete.

COVerage.ListFunc.sYmbol \coverage
Application Note for Trace-Based Code Coverage | 69©1989-2023 Lauterbach

Further details are displayed if you open the window in its full size:

Line count

lines Number of source code line blocks within the
function/module

ok Number of source code line blocks tagged with
cc or stmt

Condition count

cond Number of conditions within the
function/module

true Number of conditions evaluated as true

false Number of conditions evaluated as false

Byte count

bytes Number of bytes within the function/module

ok Number of bytes tagged with cc or stmt
Application Note for Trace-Based Code Coverage | 70©1989-2023 Lauterbach

Example Script

// Demo script "~~/demo/t32cast/eca/measure_mcdc.cmm"

// Select code coverage metric condition
COVerage.Option SourceMetric CONDition

// Load .eca files so that TRACE32 knows which source code lines
// represent decisions
sYmbol.ECA.LOADALL /SkipErrors

// List code coverage results at source code line level
List.Hll ComplexDoWhile /COVerage

// List code coverage results at function level
COVerage.ListFunc.sYmbol \coverage
Application Note for Trace-Based Code Coverage | 71©1989-2023 Lauterbach

Modified Condition/Decision Coverage (MC/DC)

The following diagram defines the terms used in this chapter:

Evaluation Strategy

Modified Condition/Decision Coverage: Every point of entry and exit in the program has been invoked at
least once and every decision in the program has taken all possible outcomes at least once. Each condition
in a decision is shown to independently affect the outcome of that decision.

Independence Pairs are used to proof that each condition in a decision is shown to independently affect the
outcome of that decision. An independence pair has two characteristics:

1. All conditions except the one to be tested are fixed.

2. The decision changes its outcome when the condition under test is changed.

The following figure shows the truth table for the decision (A and B) or C. The independence pairs for the
individual conditions are highlighted in color.

(A and B) or CDecision

Conditions

Operators

� � �� �

� � � � �

� � � � �

� � � � �

� � � � �

	 � � � �

 � � � �

� � � � �

� � � � �
Application Note for Trace-Based Code Coverage | 72©1989-2023 Lauterbach

To measure MC/DC accurately the following prerequisites must be fulfilled:

1. It is necessary that the code is compiled in such a way that each condition in the source code is
represented by a distinct conditional branch/instruction at object code level. Conditional
instructions, however, require that the trace protocol includes information about conditional
instructions.

Please read “Appendix B: Coding Guidelines”, page 112 to ensure that you write decisions and
conditions at source code level in such a way that your build toolchain generates conditional
branches/instructions for them.

Ensure that the compiler generates conditional branches for switch-case statements. A
dedicated compiler option is commonly available to control this. Please refer to the
documentation of your build toolchain.

2. TRACE32 has to know which source code lines contain decisions and their conditions. And for
each condition used in a decision the mapping between the conditions and their conditional
branches/instructions is required.

These source code details are not part of the debug symbol information generated by the
compiler, but must be generated separately. TRACE32 provides the command line tool t32cast
for this purpose. For complete information about t32cast, see “Application Note for t32cast”
(app_t32cast.pdf).

The t32cast command line tool generates an Extended Code Analysis (ECA) data file for each
source code file. These files have to be loaded into TRACE32 before starting the code coverage
analysis.

The following screenshot illustrates all this:

• Each decision receives its own ID.

• The conditions belonging to the decision are numbered consecutively.

• Each condition is represented by a conditional branch/instruction.

The point for true is set in the true column if the condition has been independently tested for true. The same
applies to false.

Source code lines that contain decisions are tagged as follows:

• mc/dc | incomplete

All other source code lines use the corresponding tags for statement coverage.
Application Note for Trace-Based Code Coverage | 73©1989-2023 Lauterbach

Evaluation

If you want to use the trace data stored in the code coverage system for MC/DC, select the SourceMetric
MCDC in the COVerage state configuration or use the command
COVerage.Option SourceMetric MCDC.

The following commands show a tabular analysis:

The following command shows the tagging on source code level.

COVerage.ListModule

COVerage.ListFunc

List.Hll /COVerage
Application Note for Trace-Based Code Coverage | 74©1989-2023 Lauterbach

This TRACE32 command displays the MC/DC coverage tagging for the function ComplexDoWhile:

Decisions are tagged as follows:

TRACE32 displays the result in mixed mode in such a way that it is clear which conditions are still missing
for MC/DC.

List.HLL ComplexDoWhile /COVerage

mc/dc Each condition in a decision is shown to independently affect the
outcome of that decision.

incomplete There is at least one condition in the decision for which has not yet
proven to independently affect the outcome of the decision.
Application Note for Trace-Based Code Coverage | 75©1989-2023 Lauterbach

This TRACE32 command displays a tabular analysis of all functions of the "coverage" module. A module
usually corresponds to a source code file.

Tags for Modified Condition/Decision Coverage (MC/DC)

MC/DC is achieved for a group of HLL source code statements as soon as the independence effect of all
of its associated conditional branches/instructions has been demonstrated.

• stmt+mc/dc: All source code lines of the function/module are tagged with mc/dc or stmt.

• incomplete: At least one source code line of the function/module is tagged with incomplete.

If a tag marks the coverage status of HLL source code statements, the following definitions apply:

• stmt+mc/dc: The range contains one or more HLL source code statements. The measured code
coverage of the HLL source code statement(s) is sufficient to achieve MC/DC.

• mc/dc: The HLL source code statement(s) contain a decision. The measured code coverage of
the HLL source code statement(s) is sufficient to achieve MC/DC.

• stmt: The HLL source code statement(s) do not contain a decision. The measured code
coverage of the HLL source code statement(s) is sufficient to achieve statement coverage.

• incomplete: The measured code coverage of the HLL source code statement(s) is not sufficient
to achieve MC/DC.

COVerage.ListFunc.sYmbol \coverage
Application Note for Trace-Based Code Coverage | 76©1989-2023 Lauterbach

Further details are displayed if you open the window in its full size:

Line count

lines Number of source code lines within the
function/module

ok Number of source code lines tagged with
mc/dc or stmt

Decision count

dec Number of decisions within the function/module

ok Number of decisions tagged with mc/dc

Condition count

cond Number of conditions within the
function/module

true Number of conditions that have been
independently tested for true

false Number of conditions that have been
independently tested for false
Application Note for Trace-Based Code Coverage | 77©1989-2023 Lauterbach

Example Script

Byte count

bytes Number of bytes within the function/module

ok Number of bytes tagged with mc/dc or stmt

// Demo script "~~/demo/t32cast/eca/measure_mcdc.cmm"

// Select code coverage metric MC/DC
COVerage.Option SourceMetric MCDC

// Load .eca files so that TRACE32 knows which source code lines
// represent decisions
sYmbol.ECA.LOADALL /SkipErrors

// List code coverage results at source code line level
List.Hll ComplexDoWhile /COVerage

// List code coverage results at function level
COVerage.ListFunc.sYmbol \coverage
Application Note for Trace-Based Code Coverage | 78©1989-2023 Lauterbach

Function Coverage

It is recommended to perform function coverage on unoptimized code. This way the results can be displayed
clearly and concisely. In case of highly optimized code that inlines functions, a deep understanding of the
inlining is necessary to interpret the results.

Function coverage: Every function in the program has been invoked at least once.

TRACE32 interpretation: A function achieves function coverage when at least one corresponding object
code instruction has been executed.

Functions are tagged as follows:

• func | incomplete

Source code lines show the corresponding tags for statement coverage, if function coverage is performed.

Object code coverage tagging is applied to instructions.
Application Note for Trace-Based Code Coverage | 79©1989-2023 Lauterbach

Evaluation Strategy

If you want to use the trace data stored in the code coverage system for function coverage, select the
SourceMetric Function in the COVerage configuration window or use the command
COVerage.Option SourceMetric Function.

The following command shows a tabular analysis:

The following command shows the tagging at function level.

COVerage.ListModule

COVerage.ListFunc
Application Note for Trace-Based Code Coverage | 80©1989-2023 Lauterbach

This TRACE32 command displays the function coverage tagging for all functions of the "coverage" module.
A module usually corresponds to a source code file.

The functions are tagged as follows:

COVerage.ListFunc.sYmbol \coverage

func At least one function's object code instructions has been executed.

incomplete None of the function's object code instructions has been executed.
Application Note for Trace-Based Code Coverage | 81©1989-2023 Lauterbach

This TRACE32 command displays a tabular analysis of all modules.

Tags for Function Coverage

Function coverage is achieved for a function as soon as soon as its function body has been partially
executed.

• func: All functions of the module have achieved function coverage.

• incomplete: At least one function of the module has not achieved function coverage.

If a tag marks the coverage status of a function, the following definitions apply:

• func: The measured code coverage of the function(s) is sufficient to achieve function coverage.

• incomplete: The measured code coverage of the function(s) is not sufficient to achieve function
coverage.

If a tag marks the coverage status of HLL source code statements, the following definitions apply:

• stmt: The measured code coverage of the HLL source code statement(s) is sufficient to achieve
statement coverage.

• incomplete: The measured code coverage of the HLL source code statement(s) is not sufficient
to achieve statement coverage.

COVerage.ListModule
Application Note for Trace-Based Code Coverage | 82©1989-2023 Lauterbach

Further details are displayed if you open the window in its full size:

Example Script

Expert Usage

The following commands provide details on inlined functions:
G

Function count

func Number of functions

ok Number of functions tagged with func

Byte count

bytes Number of bytes

ok Number of bytes tagged with func

// Demo script "~~/demo/t32cast/eca/measure_mcdc.cmm"

// Select code coverage metric function
COVerage.Option SourceMetric Function

// List code coverage results at function level
COVerage.ListFunc.sYmbol \coverage

// List code coverage results at module level
COVerage.ListModule.sYmbol \coverage

sYmbol.List.InlineBlock List inlined code blocks

COVerage.ListInlineBlock List object code coverage for inlined blocks
Application Note for Trace-Based Code Coverage | 83©1989-2023 Lauterbach

Call Coverage

It is recommended to perform call coverage on unoptimized code. This way the results can be displayed
clearly and concisely. In case of highly optimized code that inlines functions, a good understanding of the
inlining is necessary to interpret the results.

Call Coverage: Every function call has been executed at least once.

TRACE32 has to know which source code lines contain a function call. This information is not part of the
debug symbol information generated by the compiler, but must be generated separately. TRACE32 provides
the command line tool t32cast for this purpose. For complete information about t32cast, see “Application
Note for t32cast” (app_t32cast.pdf).

The t32cast command line tool generates an Extended Code Analysis (ECA) data file for each source code
file. These files have to be loaded into TRACE32 before starting the code coverage analysis.

TRACE32 interpretation: A function achieves call coverage when each unconditional branch that
represents a function call has been executed a least once.

Functions are tagged as follows:

• cal| | incomplete

Source code lines show the corresponding tags for statement coverage, if call coverage is performed.

Object code coverage tagging is applied to instructions.
Application Note for Trace-Based Code Coverage | 84©1989-2023 Lauterbach

Evaluation

If you want to use the trace data stored in the code coverage system for call coverage, select the
SourceMetric Call in COVerage state window or use the command COVerage.Option SourceMetric Call.

Before you start the code coverage analysis, you have to load the .eca files created by the command line
tool t32cast:

The following command shows a tabular analysis:

The following command shows the tagging at function level.

sYmbol.ECA.LOADALL /SkipErrors

COVerage.ListModule

COVerage.ListFunc
Application Note for Trace-Based Code Coverage | 85©1989-2023 Lauterbach

This TRACE32 command displays the call coverage tagging for all functions of the "coverage" module. A
module usually corresponds to a source code line.

The functions are tagged as follows:

COVerage.ListFunc.sYmbol \coverage

call All unconditional branches that represent a function call have been
executed at least once.

If a function does not include an unconditional branch that represent a
function call, the function is tagged with call if at least one
corresponding object code instruction generated for the function has
been executed.

incomplete At least one unconditional branch that represent a function call has not
been executed.

No object code instruction generated for the function has been
executed for all call-less functions.
Application Note for Trace-Based Code Coverage | 86©1989-2023 Lauterbach

The full-width COVerage.ListFunc window provides details on the function calls:

• calls column: number of function calls within the function

• ok column: number of function calls that have already been executed

If a function is tagged as incomplete you can inspect its details. Either by doing a left mouse double click on
the function‘s name or by using the following command:

List.Mix RunCoverageDemo /COVerage
Application Note for Trace-Based Code Coverage | 87©1989-2023 Lauterbach

This TRACE32 command displays a tabular analysis of all modules.

The following tags are used for the summary:

• call: All functions of the module are tagged with call.

• incomplete: At least one function of the module is tagged with incomplete.

Further details are displayed if you open the window in its full size:

COVerage.ListModule

Function count

func Number of functions

ok Number of functions tagged with call

Byte count
Application Note for Trace-Based Code Coverage | 88©1989-2023 Lauterbach

Details on Callers and Calles

For a detailed analysis it is helpful to get details about the calling and the called functions.

All callers of the function Identity are inspected in this example. The COVerage.ListCallRs window, displays
all source code lines from which the function Identity is called. If you select a source code line, you can
inspect the corresponding object code in the List.Mix window. This is enabled by the Track option.

bytes Number of bytes

ok Number of bytes tagged with call

COVerage.ListCalleRs Display call coverage with caller details at source code line level

COVerage.ListCalleEs Display call coverage with callee details at source code line level

List.Mix /COVerage /Track Display a source listing that displays source and object code. This
window is used here to inspect the object code details.
Application Note for Trace-Based Code Coverage | 89©1989-2023 Lauterbach

All call made by the function TestObcEqualsMcdc are inspected in this example. The COVerage.ListCallEs
window, displays all source code lines which represent a function call. If you select a source code line, you
can inspect the calls in detail in the List.Mix window. This is enabled by the Track option.

Example Script

// Demo script "~~/demo/t32cast/eca/measure_mcdc.cmm"

// Select code coverage metric call
COVerage.Option SourceMetric Call

// Load .eca files so that TRACE32 knows which source code lines
// represent function calls
sYmbol.ECA.LOADALL /SkipErrors

// List code coverage results at function level
COVerage.ListFunc.sYmbol \coverage

// List code coverage results at module level
COVerage.ListModule.sYmbol \coverage
Application Note for Trace-Based Code Coverage | 90©1989-2023 Lauterbach

Expert Usage

The following commands provide details on inlined functions:

sYmbol.List.InlineBlock List inlined code blocks

COVerage.ListInlineBlock List object code coverage for inlined blocks
Application Note for Trace-Based Code Coverage | 91©1989-2023 Lauterbach

Assemble Multiple Test Runs

There are two ways to assemble multiple test runs.

• Save and reload the data content of the code coverage system

• Save and reload the complete trace information

Save and Restore Code Coverage Measurement

To assemble the results from several test runs, you can use:

• Your TRACE32 debug and trace tool connected to your target hardware.

• Alternatively you can use a TRACE32 Instruction Set Simulator (see “TRACE32 Instruction Set
Simulator” in TRACE32 Installation Guide, page 56 (installation.pdf)).

Before you load an acd file into TRACE32 with the following command you need to make sure, that:

• the test executable has been loaded into memory

• the debug symbol information for the test executable has been loaded

• if needed for the selected code coverage metric, .eca files are loaded

NOTE: Please make sure that you only assemble test runs that were carried out with
the identical executable(s).

COVerage.SAVE <file> This command saves the following data in the specified <file>:
object code coverage tagging based on addresses
the MC/DC status of all conditions based on their addresses

The default extension is .acd (Analyzer Coverage Data).

COVerage.LOAD <file> /Replace Load coverage data from <file> into the TRACE32 code
coverage system. All existing coverage data is cleared.

COVerage.LOAD <file> /Add Add coverage data from <file> to the TRACE32 code
coverage system.
Application Note for Trace-Based Code Coverage | 92©1989-2023 Lauterbach

Example script

Save data content of the code coverage system:

Assemble coverage data from several test runs:

COVerage.SAVE testrun1.acd

...

COVerage.SAVE testrun2.acd

...

... ; Basic setups

Data.LOAD.Elf jpeg.elf ; Load code into memory and
; debug info into TRACE32

// sYmbol.ECA.LOADALL /SkipErrors ; Load .eca files if needed

COVerage.LOAD testrun1.acd /Replace

COVerage.LOAD testrun2.acd /Add

...

COVerage.Option SourceMetric Statement ; Specify code coverage metric

...

COVerage.ListFunc ; Display code coverage for
; all functions
Application Note for Trace-Based Code Coverage | 93©1989-2023 Lauterbach

Save and Restore Trace Recording

Saving the trace buffer contents enables you to re-examine your tests in detail any time.

To assemble the results from several test runs, you can use:

• Your TRACE32 debug and trace tool connected to your target hardware.

• Alternatively you can use a TRACE32 Instruction Set Simulator (see “TRACE32 Instruction Set
Simulator” in TRACE32 Installation Guide, page 56 (installation.pdf)).

In either case you need to make sure, that the debug symbol information for the test executable has been
loaded into TRACE32 PowerView.

Example script

Save trace buffer contents of several tests to files.

Reload saved trace buffer contents and add them to the code coverage system.

Trace.SAVE <file> Save trace buffer contents to <file>.

Trace.LOAD <file> Load trace information from <file> to TRACE32.

The default extension is .ad (Analyzer Data).

COVerage.ADD Add loaded trace information into the TRACE32 code
coverage system.

Trace.SAVE test1.ad

...

Trace.SAVE test2.ad

...

... ; Basic setups

Data.LOAD.Elf jpeg.elf ; Load debug info into TRACE32

// sYmbol.ECA.LOADALL /SkipErrors ; Load .eca files if needed

Trace.LOAD test1.ad ; Load trace information from
; file
Application Note for Trace-Based Code Coverage | 94©1989-2023 Lauterbach

COVerage.ADD ; add the trace information
; into code coverage system

Trace.LOAD test2.ad ; load trace information from
; next file

COVerage.ADD ; add the trace information
; into code coverage system

...

COVerage.Option SourceMetric Statement ; specify code coverage metric

COVerage.ListFunc ; Display coverage for all
; functions

...

Trace.LOAD test2.ad
Trace.List

; load trace information from
; file for detailed
; re-examination
Application Note for Trace-Based Code Coverage | 95©1989-2023 Lauterbach

Comment your Results

Address-based bookmarks can be used to comment not covered code ranges, which are fine but not
testable in the current system configuration.
Application Note for Trace-Based Code Coverage | 96©1989-2023 Lauterbach

List all bookmarks:

The current bookmarks can be saved to a file and reloaded later on.

BookMark.List

STOre <file> BookMark
Application Note for Trace-Based Code Coverage | 97©1989-2023 Lauterbach

TRACE32 Coverage Report Utility

After the code coverage measurement is completed, a code coverage report has to be generated in order to
document the results. TRACE32 includes a Coverage Report Utility for this purpose.

Choose Create Report... in the Cov menu to open the TRACE32 Coverage Report Utility.

Push the Create Report button to generate a standard report.

The implementation of the dialog can be found in the following PRACTICE script:
"~~/demo/coverage/multi_file_report/create_report.cmm".

The comments in the script contain information against which browsers the script was tested and which
additional setting might be necessary. It is recommended to read this in advance.

PEDIT ~~/demo/coverage/multi_file_report/create_report.cmm
Application Note for Trace-Based Code Coverage | 98©1989-2023 Lauterbach

If you start the script with parameters, the script is directly executed.

Note

For larger projects it is recommended to copy the object code into the TRACE32 Virtual Memory. This
makes the creation of the report faster. Here a short script example.

If you use dynamic memory management (MMU) with SYStem.Option MMUSPACES ON, the following
command sequence is recommended:

CD.DO ~~/demo/coverage/multi_file_report/create_report.cmm \
"manual" "SYMBOL" "\coverage" \
"METRIC=DECISION EXISTING=REPLACE COMPRESSION=2"

Data.Load.elf my_project /VM ; Load your code again, this time
; into the TRACE32 Virtual Memory.

Trace.ACCESS VM ; Advise TRACE32 to use the code
; loaded to the TRACE32 Virtual
; Memory for trace decoding

… ; Create your report

Trace.ACCESS auto ; Reset the TRACE.ACCESS to its
; default

TRANSlation.SHADOW ON ; Allow several address spaces
; in TRACE32 Virtual Memory

Data.LOAD.Elf my_project 0x2::0 /VM ; Load your code again, e.g. to
; space ID 0x2, this time into
; the TRACE32 virtual memory

Trace.ACCESS VM ; Advise TRACE32 to use the code
; loaded to the TRACE32 Virtual
; Memory for trace decoding

… ; Create your report

Trace.ACCESS auto ; Reset the TRACE.ACCESS to its
; default

TRANSlation.SHADOW OFF ; Reset TRANSlation.SHADOW to
; its default
Application Note for Trace-Based Code Coverage | 99©1989-2023 Lauterbach

Assembler-Only Functions and Code Coverage

Object Code Coverage

Code that is not part of a source code function is discarded for the object code coverage. If you want to
include this code you have to assign a function name to it:

The manually created functions are assigned to the \\User\Global module.

The object code lines of the assembler functions are marked with the same tags as the object code lines of
source code functions.

sYmbol.INFO <symbol> Display details about a debug symbol.

sYmbol.RANGE(<symbol>) Returns the address range used by the
specified symbol.

sYmbol.NEW.Function <name> <addressrange> Create a function.

sYmbol.NEW.Function t32__malloc sYmbol.RANGE(__malloc)

sYmbol.NEW.Function t32__insert sYmbol.RANGE(__insert)
Application Note for Trace-Based Code Coverage | 100©1989-2023 Lauterbach

Source Code Metrics

Code that is not part of a source code function is discarded for coverage. If you want to include this code you
have to assign a function to it:

Functions created with the sYmbol.NEW.Function command are grouped under the module name
\\User\Global. No address range is assigned to this module. Alternatively, several functions can be
aggregated under a newly created module. An address range has to be assigned to the new module
\\Global\<name> when it is created and it then includes all functions that are located within its address
range.

Depending on the selected source code metric, the assembler functions or the modules are tagged as
follows:

sYmbol.INFO <symbol> Display details about a debug symbol.

sYmbol.RANGE(<symbol>) Returns the address range used by the
specified symbol.

sYmbol.NEW.Function <name> <addressrange> Create a function.

sYmbol.NEW.Module <name> <addressrange> Create a module.

sYmbol.INFO __malloc

sYmbol.INFO __insert

sYmbol.NEW.Module t32_module P:0x000131cc--0x00134db

sYmbol.NEW.Function t32__malloc sYmbol.RANGE(__malloc)

sYmbol.NEW.Function t32__insert sYmbol.RANGE(__insert)

Metric Tag Description

all source code
metrics

incomplete At least one assembler line within the function
is tagged with never, taken or not taken.

Statement stmt All assembler lines are tagged with ok.
Application Note for Trace-Based Code Coverage | 101©1989-2023 Lauterbach

Decision stmt+dc All assembler lines are tagged with ok.

CONDition stmt+cc All assembler lines are tagged with ok.

MCDC stmt+mc/dc All assembler lines are tagged with ok.

Function func All assembler lines are tagged with ok.

Call call All assembler lines are tagged with ok.

Metric Tag Description
Application Note for Trace-Based Code Coverage | 102©1989-2023 Lauterbach

Data Coverage

Trace Data Collection

Since off-chip trace ports usually do not have enough bandwidth to make all read/write accesses (and the
program flow) visible, they are rather unsuitable for data coverage. For test phases in which testing in the
target environment is not yet required, a TRACE32 Instruction Set Simulator can be used well for data
coverage.

Since TRACE32 Instruction Set Simulators provide full program and data flow trace based on a bus trace
protocol, no special setup is required.

If you want to use an onchip trace or an offchip trace port for data tracing, please refer to the following
documents for setup details:

• Arm: “Training Arm CoreSight ETM Tracing” (training_arm_etm.pdf), “Training Cortex-M
Tracing” (training_cortexm_etm.pdf)

• MPC5xxx/SPC5xxx, QorIQ and RH850: “Training Nexus Tracing” (training_nexus.pdf)

• TriCore: “Training AURIX Tracing” (training_aurix_trace.pdf)

• For other processor architectures, please refer to the corresponding “Processor Architecture
Manuals”.

Please note that data coverage only makes sense if the trace does not contain a high number of TARGET
FIFO OVERFLOWS.

It is recommended to use incremental coverage for data coverage (see “Incremental Code Coverage”,
page 15).
Application Note for Trace-Based Code Coverage | 103©1989-2023 Lauterbach

Evaluation

If you want to use the trace data stored in the coverage system for data coverage, select the SourceMetric
ObjectCode in the COVerage configuration window or use the command
COVerage.Option SourceMetric ObjectCode.

The following commands show a tabular analysis:

The following command shows the tagging per address.

COVerage.List

COVerage.ListVar

Data.View %Var <address> /COVerage
Application Note for Trace-Based Code Coverage | 104©1989-2023 Lauterbach

This TRACE32 command shows the coverage tagging on address range level:

This TRACE32 command shows the coverage tagging at address level starting with the address of the
variable fstatic:

The data addresses are tagged as follow:

COVerage.List

Data.View %Var fstatic /COVerage

readwrite The data address was read at least once and written at least once.

read The data address has been read at least once.

write The data address has been written at least once.

never The data address was neither read nor written
Application Note for Trace-Based Code Coverage | 105©1989-2023 Lauterbach

This TRACE32 command displays the data coverage at variable level.

Each static variable occupies a fixed address range. This results in the following tagging for variables:

The tags rdwr ok, write ok, read ok and partial indicate that TRACE32 cannot clearly recognize whether
the address range contains program code or data. Please check your TRACE32 configuration or contact
your local technical support.

A complete list of all data coverage tags can be found in “Appendix E: Data Coverage in Detail”, page
119.

COVerage.ListVar

readwrite Read and write accesses were performed for all addresses within
the address range of the variable.

read Only read accesses were performed for all addresses within the
address range of the variable.

write Only write accesses were performed for all addresses within the
address range of the variable.

p-write Write accesses were performed only to a part of the address range
of the variable. No read accesses were performed.

p-read Read accesses were performed only to a part of the address range
of the variable. No write accesses were performed.

p-wr read Write accesses were performed only to a part of the address range
of the variable. Read accesses were performed for all addresses.

p-rd write Read accesses were performed only to a part of the address range
of the variable. Write accesses were performed for all addresses.

p-rd p-wr Both read and write accesses were performed only to a part of the
address range of the variable.

never Not a single address of the address range of the variable was read
or written.
Application Note for Trace-Based Code Coverage | 106©1989-2023 Lauterbach

Document the Results

With the script "~~/demo/coverage/single_file_report/create_report.cmm" you can create a coverage
report.

Data coverage is not yet integrated into the TRACE32 Coverage Report Utility (see “TRACE32 Coverage
Report Utility”, page 98). If you need this, please contact your local support.
Application Note for Trace-Based Code Coverage | 107©1989-2023 Lauterbach

Appendix A: Trace Decoding in Detail

Before the recorded trace data can be analyzed, it must be decoded first.

Trace Decoding for Static Applications

The object and source code is required to decode trace raw data recorded of static programs.

Decoding in Stopped State for Static Applications

This decoding is used for incremental code coverage and incremental code coverage in stream mode.

TRACE32 state: program execution stopped, no recording of trace data.

TRACE32 can read the object code from the target memory. Links to the source code files are part of the
debug symbol information maintained by TRACE32.

Decoding in Running State for Static Applications

This decoding is used in SPY mode code coverage.

TRACE32 state: program execution is running, trace data is recorded, but trace streaming is stalled while
trace decoding is performed.

TRACE32 can read the object code from the target memory, if the core allows the debugger to read memory
while the program execution is running (see also Run-time Memory Access).

Raw trace data

Decoded trace data
Application Note for Trace-Based Code Coverage | 108©1989-2023 Lauterbach

However, TRACE32 can decode the trace data much faster if it does not have to access the target memory.
That is why it is highly recommended to copy the object code into the TRACE32 Virtual Memory. This is
achieved by the /PlusVM option when the program is loaded. The PlusVM option directs TRACE32 to load
the object code into the target memory plus into the TRACE32 virtual memory.

The Data.COPY command is another possibility. It allows to copy the content of the target memory directly
to the TRACE32 Virtual Memory.

RTS Decoding for Static Applications

This decoding is used in RTS mode code coverage.

TRACE32 state: program execution is running, trace data is recorded and streamed to the host computer.

If trace data is decoded at program runtime and processed while streaming, decoding has to be as fast as
possible. An important prerequisite is that the object code is located in the TRACE32 Virtual Memory. This
is achieved by the /PlusVM option when the program is loaded. The PlusVM option directs TRACE32 to
load the object code into the target memory plus into the TRACE32 virtual memory.

The Data.COPY command is an another possibility. It allows to copy the content of the target memory
directly to the TRACE32 Virtual Memory.

Data.LOAD.Elf ~~~~/tricore/coverage_tc2.elf /RelPATH /PlusVM

Data.Copy <address_range> VM:

NOTE: The object code required for trace decoding must be available in the TRACE32
Virtual Memory before the program execution and the trace recording is started.

Data.LOAD.Elf ~~~~/tricore/coverage_tc2.elf /RelPATH /PlusVM

Data.Copy <address_range> VM:

NOTE: The object code required for trace decoding must be available in the TRACE32
Virtual Memory before the program execution and the trace recording is started.
Application Note for Trace-Based Code Coverage | 109©1989-2023 Lauterbach

Trace Decoding for Applications Using a Rich OS

Also in this case, the object code and source code are needed to decode the trace raw data. But paging
used by the operating system makes decoding more complex.

Since the onchip trace logic generates the program flow data based on virtual addresses, TRACE32 has to
know the valid memory space for each trace record in order to read the object code from the physical
memory for trace decoding. A task or context switch in the trace recording normally identifies the memory
space for the subsequent logical addresses.

Decoding in Stopped State (Rich OS)

This decoding is used for incremental code coverage and incremental code coverage in stream mode.

TRACE32 state: program execution stopped, no recording of trace data.

Trace decoding is performed in three steps:

1. TRACE32 reads the current task list and all task page tables with the help of the TRACE32 OS
Awareness from the target, when the program execution is stopped.

2. Task/context switches from the trace recording are decoded with the help of the task list.

3. The object code for each task is then read with the help of its page table. Links to the source
code files are part of the debug symbol information, which TRACE32 maintains for each memory
space.

Reading the object code fails, when a task/context switch from the trace recording can not be
decoded with the help of the current task list, e.g. because the task was terminated.

Decoding in Running State (Rich OS)

This decoding is used in Spy mode code coverage.

TRACE32 state: program execution is running, trace data is recorded, but trace streaming is stalled while
trace decoding is performed.

TRACE32 has no access to the current task list and the task page tables while the program execution is
running. The TRACE32 Virtual Memory must contain the task list, all task page tables and the object code
to enable TRACE32 to decode the raw trace data.

This requires a complex setup. Please contact the Lauterbach support in this case.

RTS Decoding (Rich OS)

This decoding is used in RTS mode code coverage.

TRACE32 state: program execution is running, trace data is recorded and streamed to the host computer.
Application Note for Trace-Based Code Coverage | 110©1989-2023 Lauterbach

TRACE32 has no access to the current task list and the task page tables while the program execution is
running. The TRACE32 Virtual Memory must contain the task list, all task page tables and the object code
to enable TRACE32 to decode the raw trace data.

This requires a complex setup. Please contact the Lauterbach support in this case.
Application Note for Trace-Based Code Coverage | 111©1989-2023 Lauterbach

Appendix B: Coding Guidelines

The following coding guidelines are recommended for full decision and condition coverage as well as for
MC/DC. If you follow these coding guidelines you avoid false negative results. False negative means that a
decision/conditions is tagged as incomplete although coverage has already been achieved.

Nevertheless, it is possible that the compiler itself generates such constructs at high optimization levels.

Avoid Simple Decisions in Assignment Context

It is likely that these conditions are not represented by a conditional branch/instruction at object code level.

In this example no conditional branch/instruction was generated for the condition a==b.

It is recommended to write the source code in a way that ensures that the conditional branches/instructions
required for the trace-based code coverage are generated.

A few examples:

; source code not suitable for
; trace-based code coverage

return a == b;

; source code suitable for
; trace-based code coverage

if (a == b) {
return TRUE;

}
return FALSE;
Application Note for Trace-Based Code Coverage | 112©1989-2023 Lauterbach

Avoid Nesting of Decisions

It is very likely that not all conditions are represented by a conditional branch/instruction at object code level.

This is illustrated by the following example:

; source code not suitable for
; trace-based code coverage

identity(a != b);

; source code suitable for
; trace-based code coverage

tmp = FALSE;
if (a != b) {

tmp = TRUE;
}
identity(tmp);

; source code not suitable for
; trace-based code coverage

return (a >= b) ? a : b;

; source code suitable for
; trace-based code coverage

if (a >= b) {
return a;

}
return b;

; source code not suitable for
; trace-based code coverage

return a > (b + (b && c));

; source code suitable for
; trace-based code coverage

if (b && c) {
tmp = 1;

}

if (a > (b + tmp)) {
return TRUE;

}
return FALSE;
Application Note for Trace-Based Code Coverage | 113©1989-2023 Lauterbach

In this example no conditional branches/instructions were generated for the conditions.

If the code is written in a way that suits for trace-based code coverage, all necessary conditional
branches/instructions were generated.
Application Note for Trace-Based Code Coverage | 114©1989-2023 Lauterbach

Appendix C: Conditional Non-Branch Instructions

Conditional Instructions

Architecture Instruction Set Trace Decoder

TriCore — —

PowerPC Qorivva(e200)
QorIQ (e5500, e6500)

yes yes, if NEXUS.HTM ON.

ARC yes yes

RISC-V — —

Cortex-A9/-A15 yes no
Application Note for Trace-Based Code Coverage | 115©1989-2023 Lauterbach

Appendix D: Object Code Coverage Tags in Detail

Standard Tags

Standard tagging applies to all core architectures and all trace protocols. The only exception are Arm/Cortex
cores that use the protocols Arm-ETMv1 or Arm-ETMv3, as well as Arm-ETMv4. However, for the Arm-
ETMv4 protocol, this only applies if no trace information about the execution of conditional non-branch
instructions is generated in order to save bandwidth (command ETM.COND OFF).

The following tags are used for object code coverage tagging:

Tag Tagging object Description

ok conditional branch The conditional branch has be at least once
taken and not taken.

conditional instruction The object code instruction has been executed
at least once with its condition code true and
once with its condition code false.

all other object code
instructions

The object code instruction has been executed
at least once.

taken conditional branch The conditional branch has be at least once
taken, but never not taken.

conditional instruction The object code instruction has been executed
at least once with its condition code true, but
never with its condition code false.

not taken conditional branch The conditional branch has be at least once not
taken, but never taken.

conditional instruction The object code instruction has been executed
at least once with its condition code false, but
never with its condition code true.

never all object code instructions The object code instruction has never been
executed.
Application Note for Trace-Based Code Coverage | 116©1989-2023 Lauterbach

The following tags apply for analysis at the source code, function or module level:

Tags for Arm-ETMv1/v3/v4 for Arm/Cortex Architecture

The following tags are used for object code coverage tagging:

Tag Tagging object Description

ok range of object code
instructions

All object code instructions within the range are
tagged with ok.

partial range of object code
instructions

Not all object code instructions within the range
are tagged with ok.

branches range of object code
instructions

All object code instructions within the range
were executed, but there is at least one
conditional branch/conditional instruction that
is only taken and one that is only not taken.

taken range of object code
instructions

All object code instructions within the range
were executed, but there is at least one
conditional branch/conditional instruction that
is only taken.

not taken range of object code
instructions

All object code instructions within the range
were executed, but there is at least one
conditional branch/conditional instruction that
is only not taken.

never range of object code
instructions

Not a single object code instruction within the
range has been executed.

Tag Tagging object Description

ok conditional branch The conditional branch has be at least once
taken and not taken.

conditional instruction The object code instruction has been executed
at least once with its condition code true and
once with its condition code false.

all other object code
instructions

The object code instruction has been executed
at least once.
Application Note for Trace-Based Code Coverage | 117©1989-2023 Lauterbach

The following tags apply for analysis at the source code, function or module level:

only exec conditional branch The conditional branch has be at least once
taken, but never not taken.

conditional instruction The object code instruction has been executed
at least once with its condition code true, but
never with its condition code false.

not exec conditional branch The conditional branch has be at least once not
taken, but never taken.

conditional instruction The object code instruction has been executed
at least once with its condition code false, but
never with its condition code true.

never all object code instructions The object code instruction has never been
executed.

Tag Tagging object Description

ok range of object code
instructions

All object code instructions within the range are
tagged with ok.

partial range of object code
instructions

Not all object code instructions within the range
are tagged with ok.

cond exec range of object code
instructions

All object code instructions within the range
were executed, but there is at least one
conditional branch/conditional instruction that
is only only exec and one that is only not exec.

only exec range of object code
instructions

All object code instructions within the range
were executed, but there is at least one
conditional branch/conditional instruction that
is only only exec.

not exec range of object code
instructions

All object code instructions within the range
were executed, but there is at least one
conditional branch/conditional instruction that
is only not exec.

never range of object code
instructions

Not a single object code instruction within the
range has been executed.

Tag Tagging object Description
Application Note for Trace-Based Code Coverage | 118©1989-2023 Lauterbach

Appendix E: Data Coverage in Detail

The data addresses are tagged as follow:

Each static variable occupies a fixed address range. This results in the following tagging for variables:

readwrite The data address was read at least once and written at least once.

read The data address has been read at least once.

write The data address has been written at least once.

never The data address was neither read nor written

readwrite Read and write accesses were performed for all addresses within
the address range of the variable.

read Only read accesses were performed for all addresses within the
address range of the variable.

write Only write accesses were performed for all addresses within the
address range of the variable.

p-write Write accesses were performed only to a part of the address range
of the variable. No read accesses were performed.

p-read Read accesses were performed only to a part of the address range
of the variable. No write accesses were performed.

p-wr read Write accesses were performed only to a part of the address range
of the variable. Read accesses were performed for all addresses.

p-rd write Read accesses were performed only to a part of the address range
of the variable. Write accesses were performed for all addresses.

p-rd p-wr Both read and write accesses were performed only to a part of the
address range of the variable.

never Not a single address of the address range of the variable was read
or written.

rdwr ok The address range achieved full object code coverage, and at least
one read and one write access occurred to address range.

write ok The address range achieved full object code coverage, and at least
one write access occurred to address range.
Application Note for Trace-Based Code Coverage | 119©1989-2023 Lauterbach

read ok The address range achieved full object code coverage, and at least
one read access occurred to address range.

partial The address range did not achieve full object code coverage. The
amount of read and write accesses that have taken place is not
further specified.
Application Note for Trace-Based Code Coverage | 120©1989-2023 Lauterbach

The coverage status of HLL source code statements that have associated data values is indicated by the
following tags if a data trace is available:

• rdwr ok: The HLL source code statement(s) have been fully covered. All associated assembly
instructions have been fully covered and at least one read and write access to the data values
has been recorded.

• write ok: The HLL source code statement(s) have been fully covered. All associated assembly
instructions have been fully covered and at least one write access to the data values has been
recorded.

• read ok: The HLL source code statement(s) have been fully covered. All associated assembly
instructions have been fully covered and at least one read access to the data values has been
recorded.

• partial: The HLL source code statement(s) have not been fully covered. At least one of the
associated assembly instructions has not been fully covered. The amount of read and write
accesses that have taken place is not further specified.

• readwrite: The HLL source code statement(s) have never been executed. None of the associated
assembly instructions has been executed and all of the data values have been read and written
at least once.

• write: The HLL source code statement(s) have never been executed. None of the associated
assembly instructions has been executed and all of the data values have been written at least
once and not read.

• read: The HLL source code statement(s) have never been executed. None of the associated
assembly instructions has been executed and all of the data values have been read at least once
and not written.

• p-rd write: The HLL source code statement(s) have never been executed. None of the
associated assembly instructions has been executed and all of the data values have been written
at least once. In addition at least one data value has been read.

• p-wr read: The HLL source code statement(s) have never been executed. None of the
associated assembly instructions has been executed and all of the data values have been read at
least once. In addition at least one data value has been written.

• p-rd p-wr: The HLL source code statement(s) have never been executed. None of the associated
assembly instructions has been executed and at least one of the data values has been read and
one written.

• p-write: The HLL source code statement(s) have never been executed. None of the associated
assembly instructions has been executed and at least one of the data values has been written.

• p-read: The HLL source code statement(s) have never been executed. None of the associated
assembly instructions has been executed and at least one of the data values has been read.

• never: The HLL source code statement(s) have never been executed. None of the associated
assembly instructions has been executed and neither read nor write accesses to the data values
have been recorded.
Application Note for Trace-Based Code Coverage | 121©1989-2023 Lauterbach

	Application Note for Trace-Based Code Coverage
	History
	Introduction
	Intended Audience
	Prerequisites

	Trace-Based Code Coverage and Certification
	Trace Data Collection Overview
	TRACE32 Tool Configurations
	Choose the Appropriate Trace Data Collection Method
	Preconditions
	Reduce the Amount of Trace Data
	Ensure a Fault-Free Trace Recording
	Disable Timestamps for Trace Streaming

	SMP Multicore Systems

	Trace Data Collection Modes
	Incremental Code Coverage
	Data Collection
	Example Script
	Summary

	Incremental Code Coverage in STREAM Mode
	Data Collection
	Example Script
	Summary

	RTS Mode Code Coverage
	Data Collection
	Example Scripts
	Summary

	SPY Mode Code Coverage
	Operation States
	Data Collection
	Example Script
	Summary

	Code Coverage with Virtual Targets
	ART Mode Code Coverage
	Data Collection
	Example Script

	Supported Code Coverage Metrics
	Overview
	Object Code Coverage
	Evaluation
	Example Script

	Statement Coverage
	Evaluation
	Example Script

	Full Decision Coverage
	Evaluation Strategy
	Evaluation
	Example Script

	Object Code Based (ocb) Decision Coverage
	Evaluation Strategy
	Evaluation
	Example Script

	Condition Coverage
	Evaluation Strategy
	Evaluation
	Example Script

	Modified Condition/Decision Coverage (MC/DC)
	Evaluation Strategy
	Evaluation
	Example Script

	Function Coverage
	Evaluation Strategy
	Example Script
	Expert Usage

	Call Coverage
	Evaluation
	Details on Callers and Calles
	Example Script
	Expert Usage

	Assemble Multiple Test Runs
	Save and Restore Code Coverage Measurement
	Save and Restore Trace Recording

	Comment your Results
	TRACE32 Coverage Report Utility
	Assembler-Only Functions and Code Coverage
	Object Code Coverage
	Source Code Metrics

	Data Coverage
	Trace Data Collection
	Evaluation
	Document the Results

	Appendix A: Trace Decoding in Detail
	Trace Decoding for Static Applications
	Decoding in Stopped State for Static Applications
	Decoding in Running State for Static Applications
	RTS Decoding for Static Applications

	Trace Decoding for Applications Using a Rich OS
	Decoding in Stopped State (Rich OS)
	Decoding in Running State (Rich OS)
	RTS Decoding (Rich OS)

	Appendix B: Coding Guidelines
	Appendix C: Conditional Non-Branch Instructions
	Conditional Instructions

	Appendix D: Object Code Coverage Tags in Detail
	Standard Tags
	Tags for Arm-ETMv1/v3/v4 for Arm/Cortex Architecture

	Appendix E: Data Coverage in Detail

