
MANUAL

Release 09.2024

Setup of the Debugger
for a CoreSight System

Setup of the Debugger for a CoreSight System

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 ICD In-Circuit Debugger .. 

 Processor Architecture Manuals .. 

 Arm/CORTEX/XSCALE .. 

 Arm Application Notes ... 

 Setup of the Debugger for a CoreSight System ... 1

 History ... 4

 Introduction .. 5

 Example of a CoreSight System ... 6

 Using this Application Note .. 8

 Your Chip is Available in the SYStem.CPU List 8

 Your Chip is NOT Available in the SYStem.CPU List 8

 Set up the Debugger Yourselves for Debugging 8

 Set up the Debugger Yourselves for Tracing 10

 Declare Multiple CoreSight Modules of the same Type 10

 Configuration Example 11

 Required Tool Hardware and Licenses 11

 How to use the CoreSight Modules 13

 Discover Available CoreSight Components .. 15

 Debug Access Port (DAP) ... 17

 Multiple Test Access Ports in the JTAG Chain 17

 Serial Wire Debug Port (SW-DP) 19

 Memory Access Ports 21

 Real-time Memory Access 24

 Core Debug Register Access 25

 JTAG Access Port (JTAG-AP) 26

 Cross Trigger Interface (CTI), Cross Trigger Matrix (CTM) 27

 Performance Monitor Unit (PMU), BenchMark Counter (BMC) 28

 Embedded Trace Macrocell (ETM), Program Trace Macrocell (PTM) 29

 AMBA AHB Trace Macrocell (HTM) .. 30
Setup of the Debugger for a CoreSight System | 2©1989-2024 Lauterbach

 Instrumentation Trace Macrocell (ITM), System Trace Macrocell (STM) 31

 Funnel (CSTF), AMBA Trace Bus (ATB) .. 32

 Data Watchpoint and Trace Unit (DWT), Flash Patch and Breakpoint Unit (FPB) .. 33

 Embedded Logic Analyzer (ELA) .. 34

 Embedded Trace Buffer (ETB, TMC used as ETB) .. 35

 Embedded Trace FIFO (TMC used as ETF) .. 36

 Embedded Trace Router (TMC used as ETR) .. 37

 Embedded Trace Streamer (TMC used as ETS) .. 38

 REPlicator (REP) .. 39

 TRACEPORT ... 40

 Trace Port Interface Unit (TPIU) .. 41

 Serial Wire Viewer (SWV), Serial Wire Output (SWO) .. 43

 High Speed Serial Trace Port (HSSTP) ... 45

 Peripheral Component Interconnect Express (PCIe) .. 47
Setup of the Debugger for a CoreSight System | 3©1989-2024 Lauterbach

Setup of the Debugger for a CoreSight System

Version 05-Oct-2024

History

10-Apr-2024 The chapter “Alternative Way to Access Memory” has been revised and renamed “Memory
Access Ports”.

18-Feb-2022 Revised manual; added support for SoC-600.

18-Feb-2022 Added new modules; Data Watchpoint and Trace Unit (DWT), Flash Patch and Breakpoint
Unit (FPB), REPlicator (REP), and TRACEPORT.

18-Feb-2022 Added new modules; Embedded Logic Analyzer (ELA), and Embedded Trace Streamer
(TMC used as ETS).

18-Feb-2022 Added module CoreSight Address Translation Unit (CATU) used by the component ETR.

18-Feb-2022 Added chapter for PCIe; Peripheral Component Interconnect Express (PCIe).
Setup of the Debugger for a CoreSight System | 4©1989-2024 Lauterbach

Introduction

The Arm CoreSight technology provides additional debug and trace functionality with the objective of
debugging an entire system-on-chip (SoC). CoreSight is a collection of hardware components which can be
chosen and implemented by the chip designer appropriate to his system-on-chip to extend the debug
features given by the cores.

This application note explains which settings the debugger will need to support the CoreSight components
implemented on your system-on-chip. It tells you if certain debugger hardware modules are required. In
addition, it describes the debugger commands to use the CoreSight features.

This application note gives you an idea what the CoreSight modules are good for and what you need to do to
get them working. A full description of the commands can be found in other Lauterbach documents. To get a
full picture of how the CoreSight modules can be used we recommend that you read the various CoreSight
documents which can be downloaded from the Arm website (www.arm.com).
Setup of the Debugger for a CoreSight System | 5©1989-2024 Lauterbach

Example of a CoreSight System

Figure: Debug Access Port (DAP) for SoC-400

Ad
va

nc
ed

 P
er

ip
he

ra
l B

us
 (A

PB
)

Ad
va

nc
ed

 H
ig

h/
pe

rf
or

m
an

ce
 B

us
 (A

H
B)

JTAG

JTAG

System Memory

Processor Debug
Register

Embedded Trace
Macrocell (ETM)

Register

Instrumentation
Trace Macrocell
(ITM) Register

Funnel
Register

JTAG Device
e.g. ARM9

Memory
Access

Port

(MEM-AP)

Memory
Access

Port

(MEM-AP)

JTAG
Access

Port

(JTAG-AP) JTAG Device
e.g. DSP

Trace Port
Interface Unit

(TPIU) Register

Embedded Trace
Buffer (ETB)

Register

Cross Trigger
Interface (CTI)

Register

ROM Table

AMBA AHB Trace
Macrocell (HTM)

Register

Debug Access Port

DAP

Debug Port JTAG or Serial Wire Debug Port (SW-DP)
Setup of the Debugger for a CoreSight System | 6©1989-2024 Lauterbach

Figure: Debug Access Port (DAP) for SoC-600

A
d

va
nc

ed
 P

er
ip

he
ra

l B
us

 (A
P

B
)

A
d

va
nc

ed
 P

er
ip

he
ra

l B
us

 (A
P

B
2)

Processor Debug
Register

Instrumentation
Trace Macrocell
(ITM) Register

Funnel
Register

Memory Access
Port

(MEM-AP)

Trace Port
Interface Unit

(TPIU) Register

Embedded Trace
Buffer (ETB)

Register

Cross Trigger
Interface (CTI)

Register

ROM Table

Embedded Trace
Macrocell (ETM)

Register

Debug Port JTAG, Serial Wire Debug Port (SW-DP)
USB, UDP/TCP-IP, GTL, PCIe...

D
P

 (-
64

/3
2b

it)

Memory System 1

A
d

va
nc

ed
 e

X
te

ns
ib

le
 In

te
rf

ac
e

(A
X

I)

Memory Access
Port

(MEM-AP)

Memory System 2

Processor Debug
Register

Program Trace
Macrocell (PTM)

Register

Instrumentation
Trace Macrocell
(ITM) Register

Memory Access
Port

(MEM-AP)

Trace Port
Interface Unit

(TPIU) Register

Embedded Trace
Router (ETR)

Register

Cross Trigger
Interface (CTI)

Register

ROM Table

AMBA Trace Bus
(ATB)

Register

Memory System 3

ROM Table

System Memory
Setup of the Debugger for a CoreSight System | 7©1989-2024 Lauterbach

Using this Application Note

Your Chip is Available in the SYStem.CPU List

After you have manually selected your chip in the SYStem.CPU window or with the SYStem.CPU
command in a PRACTICE script (*.cmm), the debugger is informed about the CoreSight system on this chip
and all settings are done automatically. In this case often a PRACTICE start-up script like

is sufficient to use all debug and trace features. Nevertheless the application note still will give you
information on how to use the CoreSight modules and if you require certain debugger hardware.

Your Chip is NOT Available in the SYStem.CPU List

If your device is not listed in the SYStem.CPU window, then you should update your software. The newest
release version can be downloaded from our website www.lauterbach.com/download_trace32.html. If
even the latest release version does not list your device, then you should ask the Lauterbach support
support.lauterbach.com if it is meanwhile supported and if you could get an intermediate software update.

If your chip is not yet supported, then we recommend that you ask Lauterbach support
support.lauterbach.com to add the device to the debugger software or at least to provide a suitable start-
up script containing the right debugger configuration.

There is a good chance that we can do this within a day especially if you provide the required information.
You will get an idea what we need to know when you continue reading. Alternatively, we can request the
information from the chip vendor.

Of course, we will respect confidential information. If you do not want Lauterbach to know how to connect to
the chip, you need to configure it on your own which is described in the following.

Set up the Debugger Yourselves for Debugging

If your chip is not available for selection in the SYStem.CPU window, then select the core type instead of the
chip. On Cortex cores, you need to specify the debug register base address. Armv8/v9 Cortex-A/R cores
additionally require the base for the CTI interface.

SYStem.CPU <my_chip_name>
SYStem.Up
Setup of the Debugger for a CoreSight System | 8©1989-2024 Lauterbach

www.lauterbach.com/download_trace32.html
https://support.lauterbach.com
https://support.lauterbach.com

Example:

In multicore SMP debug sessions you need to specify the base addresses for all cores.

Example:

If you do not know the base addresses, try to find them out by reading the CoreSight ROM table. See
chapter Discover Available CoreSight Components.

If the above example scripts are not sufficient to connect to your core, you probably need to set up DAP
because its default configuration does not match your system. See Debug Access Port (DAP).

You can view/edit the setup of the CoreSight modules with the SYStem.CONFIG.state /COmponents
command:

SYStem.CPU CortexA15
SYStem.CONFIG.COREDEBUG.Base <debug_base_address>
SYStem.CONFIG.CTI.Base <base_address> ; required for Armv8/v9 Cortex-A/R
SYStem.Up

SYStem.CPU CortexA15MPCore
SYStem.CONFIG.CoreNumber 2.
CORE.ASSIGN 1. 2.
SYStem.CONFIG.COREDEBUG.Base <debug_base_core0> <debug_base_core1>
SYStem.CONFIG.CTI.Base <cti_base_core0> <cti_base_core1>
SYStem.Up

NOTE: You need to configure only those CoreSight modules that relate to the cores you
want to debug and trace in this debug session.
Setup of the Debugger for a CoreSight System | 9©1989-2024 Lauterbach

Set up the Debugger Yourselves for Tracing

Although the description of the CoreSight modules in this application note mentions the required
configuration commands, we do not recommend to do it on your own. Better collect all required information
like chip name, chip documentation, a CoreSight block diagram would be very helpful, discovery results (see
chapter Discover Available CoreSight Components) and ask Lauterbach to do provide a suitable setup
for you.

Declare Multiple CoreSight Modules of the same Type

You can have several of the following components: STM, FUNNEL, ETB, ETF, ETR.

Example: FUNNEL1, FUNNEL2, FUNNEL3, ...

If you do not specify a number for the CoreSight module, it internally gets the number 1.

In an SMP (Symmetric MultiProcessing) debug session, you can enter a list of base addresses for the
components BMC, COREBEBUG, CTI, ETB, ETF, ETM, ETR to specify one component per core. The
number of cores within the cluster can be configured using the SYStem.CONFIG CoreNumber command.

Example assuming four cores:

The address parameter can be just an address (e.g. 0x80001000), or you can add the access class in front
of the address (e.g. AHB:0x80001000). Without an access class, the address gets the command specific
default access class which is “DAP:” in most cases.

For more details, see “Arm Debugger” (debugger_arm.pdf).

SYStem.CONFIG CoreNumber 4.
SYStem.CONFIG COREDEBUG.Base 0x80001000 0x80003000 0x80005000 0x80007000
SYStem.CONFIG ETM.Base 0x8000c000 0x8000d000 0x8000e000 0x8000f000
Setup of the Debugger for a CoreSight System | 10©1989-2024 Lauterbach

Configuration Example

Example: Dual CortexA9MPCore with ETM, STM and TPIU.

Required Tool Hardware and Licenses

Debugging:

For debugging you need a “PowerDebug” base module and a debug probe, e.g. “ICD20A Debug Cable” or
“HS Whisker” on “CombiProbe 2” including a debug license for the core family you want to debug, e.g.
“Debugger for Cortex-A/R (Armv7 32-bit)”. If you want to debug multiple cores at the same time you might
additionally need a “License for Multicore Debugging”. An additional hardware or license for debugging a
CoreSight based system is not required.

SYStem.CPU CortexA9MPCore
SYStem.CONFIG CoreNumber 2.
SYStem.CONFIG.COREDEBUG.Base 0x80010000 0x80012000
SYStem.CONFIG.BMC.Base 0x80011000 0x80013000
SYStem.CONFIG.ETM.Base 0x8001c000 0x8001d000
SYStem.CONFIG.STM1.Base EAHB:0x20008000
SYStem.CONFIG.STM1.Type ARM
SYStem.CONFIG.STM1.Mode STPv2
SYStem.CONFIG.FUNNEL1.Base 0x80004000
SYStem.CONFIG.FUNNEL2.Base 0x80005000
SYStem.CONFIG.TPIU.Base 0x80003000
SYStem.CONFIG.FUNNEL1.ATBSource ETM.0 0 ETM.1 1
SYStem.CONFIG.FUNNEL2.ATBSource FUNNEL1 0 STM1 7
SYStem.CONFIG.TPIU.ATBSource FUNNEL2

NOTE: Only Debug Cables of the year 2008 or newer support SWD as well as JTAG.

ETM

ETM

STM

Core

Core

FUNNEL

TPIUFUNNEL

0

1
0

7

Setup of the Debugger for a CoreSight System | 11©1989-2024 Lauterbach

On-chip tracing:

For on-chip tracing (or postprocessing of recorded off-chip trace data) you additionally need a “Trace
License for Arm” which can be stored in the debug probe (“ICD20A Debug Cable” or “CombiProbe 2”).

Off-chip tracing:

• System trace (ITM, STM):
Requires a “CombiProbe” instead of a “Debug Cable”. The CombiProbe additionally provides
signals to connect to the trace port of the chip and it has a trace memory included.

• Parallel program and data trace (ETM, PTM -> TPIU):
You need a base module with trace memory inside and the possibility to connect a parallel trace
probe like “Preprocessor for Arm-ETM/AUTOFOCUS II 600 Flex”. The preprocessor also
includes the license for on-chip trace and also supports system trace.

• Serial program and data trace (ETM, PTM -> HSSTP):
You need a base module with trace memory inside and the possibility to connect a serial trace
probe like “Preprocessor for Arm-ETM/HSSTP HF-Flex”. The preprocessor also includes the
license for on-chip trace and also supports system trace.

µTrace (MicroTrace):

The µTrace (MicroTrace), a low-cost tool for Cortex-M cores only, supports multicore debugging, on-chip and
off-chip tracing (ITM, ETM -> TPIU) but for Cortex-M cores only.
Setup of the Debugger for a CoreSight System | 12©1989-2024 Lauterbach

How to use the CoreSight Modules

In the list below, identify which CoreSight components you have on your system-on-chip and read the
appropriate chapter. There you will find:

• A short explanation of the CoreSight component

• The debugger setups you will need in your start-up script

• A list of commands related to the new features

A full description of the commands can be found in other Lauterbach documents. To get a full picture of how
the CoreSight modules can be used we recommend that you read the various CoreSight documents which
can be downloaded from the Arm website www.arm.com.

We support more CoreSight compliant modules than described here. This application note focuses only on
the Arm CoreSight modules.
Setup of the Debugger for a CoreSight System | 13©1989-2024 Lauterbach

CoreSight Components

• Debug Access Port (DAP)

• Cross Trigger Interface (CTI)
Cross Trigger Matrix (CTM)

• Performance Monitor Unit (PMU)
BenchMark Counter (BMC)

• Embedded Trace Macrocell (ETM)
Program Trace Macrocell (PTM)

• AMBA AHB Trace Macrocell (HTM)

• Instrumentation Trace Macrocell (ITM)
System Trace Macrocell (STM)

• Funnel (CSTF)
AMBA Trace Bus (ATB)

• Data Watchpoint and Trace Unit (DWT)
Flash Patch and Breakpoint Unit (FPB)

• Embedded Logic Analyzer (ELA)

• Embedded Trace Buffer (ETB, TMC used as ETB)

• Embedded Trace FIFO (TMC used as ETF)

• Embedded Trace Router (TMC used as ETR)

• Embedded Trace Streamer (TMC used as ETS)

• REPlicator (REP)

• TRACEPORT

• Trace Port Interfaces Unit (TPIU)

• Trace Port Interface Unit (TPIU)Serial Wire Viewer (SWV)
Serial Wire Output (SWO)

• High Speed Serial Trace Port (HSSTP)

• Peripheral Component Interconnect Express (PCIe)
Setup of the Debugger for a CoreSight System | 14©1989-2024 Lauterbach

Discover Available CoreSight Components

Description

A CoreSight system should have a ROM table, which you can read out to discover the CoreSight
components integrated on your device.

The following command allows you to read the CoreSight ROM table partly and to skip modules which
cannot be accessed at this time.

The discovery might fail if the DAP is not the only TAP controller in the JTAG chain. In this case you need to
set the DAPIRPRE, … parameter first. See Debug Access Port (DAP).

There might be other reasons which cause the discovery to fail. For example the ROM table might not be
implemented or there is a system level TAP controller which needs to be programed to make the DAP visible
on JTAG or you might need to change the reset options, e.g. SYStem.Option.EnReset OFF.

Example of a Discovery Protocol

You can mark proposed setup commands by clicking the buttons in the [x] column (see screenshot below).
With the right mouse button, you can execute them or store them into a PRACTICE start-up script (*.cmm).

SYStem.DETECT DAP
Setup of the Debugger for a CoreSight System | 15©1989-2024 Lauterbach

The following debugger settings can be derived from the ROM table information. Compare this with the
relevant chapters of this application note.

Please note that information not included in the ROM table is still missing. For example, information about
how the trace modules are connected on the chip. This piece of information is required to specify the
ATBSources. But in this simple example, an educated guess is enough:

SYStem.CPU CortexA8
SYStem.CONFIG.COREDEBUG.Base DAP:0x40008000

SYStem.CONFIG.MEMORYAP.Port 0
SYStem.CONFIG.DEBUGAP.Port 1

SYStem.CONFIG.ETM.Base DAP:0x40002000
SYStem.CONFIG.ETB.Base DAP:0x40001000
SYStem.CONFIG.TPIU.Base DAP:0x40003000

SYStem.CONFIG.ETB.ATBSource ETM
SYStem.CONFIG.TPIU.ATBSource ETM
Setup of the Debugger for a CoreSight System | 16©1989-2024 Lauterbach

Debug Access Port (DAP)

See Example of a CoreSight System.

Multiple Test Access Ports in the JTAG Chain

A CoreSight system and also all Cortex cores typically come with a DAP. It is the main interface between
debugger and on-chip debug and trace facilities. If the DAP is not the only Test Access Port (TAP) in the
JTAG scan chain, you need to set up the position in the JTAG scan chain.

This is an example of a setup mask specifying the position of the DAP in a JTAG scan chain.

In case of Cortex cores this is the only scan chain you need to configure. Parameters like IRPRE, ...,
ETMIRPRE, ... are not needed.

If you do not know the position of the DAP in the JTAG scan chain, try to detect it with the command:

SYStem.CONFIG DAPIRPRE <value>

SYStem.CONFIG DAPIRPOST <value>

SYStem.CONFIG DAPDRPRE <value>

SYStem.CONFIG DAPDRPOST <value>

SYStem.CONFIG.state /Jtag Display settings

SYStem.DETECT SHOWChain

NOTE: There are rarely implemented DAP (Debug Access Port) TAPs, having an 8-bit
wide instruction register (IR) instead of 4-bit. They can be identified with the above
detect command. Their IDCODE is 0x?ba03477 or 0x?ba07477. They require
you to set (or add) SYStem.CONFIG DAPIRPOST 4.
Setup of the Debugger for a CoreSight System | 17©1989-2024 Lauterbach

Example

Data register length is 1 bit for each TAP where the instruction register is set to BYPASS.

SYStem.CONFIG.DAPIRPRE 6. ; IR TAP4

SYStem.CONFIG.DAPIRPOST 12. ; IR TAP1 + TAP2 + TAP3

SYStem.CONFIG.DAPDRPRE 1. ; DR TAP4

SYStem.CONFIG.DAPDRPOST 3. ; DR TAP1 + TAP2 + TAP3

DAP

DAPIRPOST DAPIRPRE

4

1

TAP1

IR

DR

3

1

TAP2

IR

DR

5

1

TAP3

IR

DR

6

1

TAP4

IR

DR
TDI TDO

DAPDRPOST DAPDRPRE

IR: Instruction register length DR: Data register length DAP: Debug Access Port

TDI TAP1 TAP2 TAP3 DAP TAP4 TDO
Setup of the Debugger for a CoreSight System | 18©1989-2024 Lauterbach

Serial Wire Debug Port (SW-DP)

Description

A Debug Access Port (DAP) based system normally provides a standard JTAG interface between the
debugger and the DAP consisting of the signals TMS, TDI, TCK, TDO, nTRST. Alternatively, a Serial Wire
Debug Port (SW-DP) can be implemented which uses just two signals SWDIO and SWCLK. Some chips
provide both interfaces. The user can switch to the serial wire debug interface and use the remaining three
signals for different purposes, e.g. the TDO signal can be used as Serial Wire Output (SWO) for the Serial
Wire Viewer (SWV). This interface often can be found on Cortex-M3, Cortex-M4 and Cortex-M7 based
devices.

Debugger Setup

You need a certain Debug Cable which supports the SW-DP. You can use all versions of the CombiProbe
and the Debug Cable version V4 or newer. The pin position of SWDIO is the same as TMS and SWCLK the
same as TCK. For Cortex-M cores you can also use the µTrace (MicroTrace).

You need to inform the debugger that the two-pin communication shall be used:

This command must be used before the debugger establishes a connection (SYStem.Up).

Multi-drop Serial Wire Debug System:

Unlike JTAG, the serial wire interface does not allow to daisy-chain multiple DAPs. However, it can access
multiple DAPs by connecting them in parallel and addressing them by an ID. This is called multi-drop serial
wire. You need to know the ID. There is no way to read it out by a diagnosis function.

SYStem.CONFIG.DEBUGPORTTYPE SWD

Figure: CombiProbe

Figure: Debug Cable Version 4
(older versions look different, have a blue flat cable)
Setup of the Debugger for a CoreSight System | 19©1989-2024 Lauterbach

Usage

There are no additional features. The Serial Wire Debug Port is just an alternative interface between
debugger and DAP in order to save pin count or in order to use the Serial Wire Output (SWO).

SYStem.CONFIG.DEBUGPORTTYPE SWD
SYStem.CONFIG.SWDPTargetSel <id>
Setup of the Debugger for a CoreSight System | 20©1989-2024 Lauterbach

Memory Access Ports

Description

The Debug Access Port (DAP) can utilize memory accesses by using so-called Memory Access Ports
(MEM-AP). A MEM-AP acts as a bus master on an on-chip bus. There may be MEM-AP for the following
bus types:

• Advanced High-performance Bus (AHB)

• Advanced Peripheral Bus (APB)

• Advanced eXtensible Interface (AXI) bus

In the SoC-400, the MEM-AP is part of the DAP and can be addressed by a specific access port number.

In SoC-600, the MEM-AP is organized as a CoreSight module mapped to any bus. This allows cascaded
organization as shown in the following example.

System
Memory

Debug Port
JTAG or
cJTAG or

SWDD
eb

ug
g

er

Chip

Arm
Debug Access Port

(DAP)

0

1

A
H

B

A
P

B

0x2000

Memory
Access Port
(MEM-AP)

Memory
Access Port
(MEM-AP)

CoreSight
Module

Arm CoreSight SoC-400
Setup of the Debugger for a CoreSight System | 21©1989-2024 Lauterbach

Debugger Setup

To indicate that you want to use such a memory access port for the access, you can use access classes like
“AHB:”, “APB:”, “APB2:”, “AXI:” in front of the address. To facilitate this, you must first tell the debugger how
to reach the appropriate memory access port for a particular access class. For the examples above, this is

SoC-400:

SYStem.CONFIG.DEBUGAPn.Port <port> defines the access port used with the “DAP:” access class. This
is usually the same access port as for “APB:”. “DAP:” is the default access class when you use an address
without an access class. In this example it would be

SYStem.CONFIG.MEMORYAPn.Port <port> defines the access port used with the “E:” access class. “E:” is
used for real-time memory access. The access port is typically an AXI or AHB access port (system bus).
In this example it would be

SYStem.CONFIG.AHBAP1.Port 0. ; “AHB:”
SYStem.CONFIG.APBAP1.Port 1. ; “APB:”

SYStem.CONFIG.DEBUGAP1.Port 1. ; “DAP:”

SYStem.CONFIG.MEMORYAP1.Port 0. ; "E:"

Debug Link
JTAG or
cJTAG or

SWD

Chip

D
P

A
P

B
1

Memory
Access

Port
(MEM-AP)

0x3000

0xA000

Memory
Access

Port
(MEM-AP)

CoreSight
Module

A
P

B
2 0x8000

Arm CoreSight SoC-600

Memory
Access

Port
(MEM-AP)

0x1000 A
X

I

System Memory

D
eb

ug
g

er
Setup of the Debugger for a CoreSight System | 22©1989-2024 Lauterbach

SoC-600:

Usage

These access classes can be used for the debugger configuration of CoreSight modules. This is what it
would look like for the examples above:

SoC-400:

SoC-600:

However, the access classes can be used for any command with an address, e.g. you can access system
memory using

SYStem.CONFIG.AXIAP1.Base DP:0x1000 ; "AXI:"
SYStem.CONFIG.APBAP1.Base DP:0x3000 ; "APB:"
SYStem.CONFIG.APBAP2.Base APB1:0xA000 ; "APB2:"

SYStem.CONFIG.<module>.Base APB:0x2000

SYStem.CONFIG.<module>.Base APB2:0x8000

Data.dump AHB:0x0
Data.dump AXI:0x0
Setup of the Debugger for a CoreSight System | 23©1989-2024 Lauterbach

Real-time Memory Access

Description

When debugging Arm Cortex-A and Cortex-R cores, the debugger displays memory by inserting load or
store commands into the processor pipeline. This is not possible while the core is running. When running,
the memory windows are frozen and show the hashed bar on the top to indicate that they cannot be
updated.

To get access even when the core is running, you can use the AXI or AHB MEM-AP of the DAP assuming
the AXI or AHB system bus is connected to the DAP and the mapping is the same as from core view.

7

Debugger Setup

For SoC-400, you need to enable real-time memory access with the command:

While for SoC-600, you need to enable real-time memory access with the command:

Usage

You need to add an ’E’ before the access class like ’ESD:’, ’ESR:’, ’EST:’ to cause the debugger to access
memory even during run-time:

NOTE: You might see different things. The DAP will not see the caches and will not use
memory translations (MMU). This typically works fine for non-cached physical
addressed memory.

SYStem.MemAccess DAP

SYStem.MemAccess AHB/AXI/.. ; Depending on which memory access ports
 ; are available on the chip

Data.dump ED:0x874500a8

Var.View %E flags
Setup of the Debugger for a CoreSight System | 24©1989-2024 Lauterbach

Core Debug Register Access

Description

The Cortex cores use the Debug Access Port (DAP) to give the debugger access to the core debug register
and the CoreSight modules on the chip. They can typically be accessed via the MEM-AP APB, the
peripheral bus.

Debugger Setup

The core debug registers are within a 4 kByte memory block. It is typically mapped on the Advanced
Peripheral Bus (APB) which is connected to a Memory Access Port (MEM-AP). The debugger needs to
know the base address of this register block.

For <access_class>, see the Memory Access Ports chapter.

In case of the Cortex-M there is a fix base address 0xe000e000 which is set per default.

Usage

These settings only inform the debugger how to access the core debug register. This is a requirement to
provide the (normal) core debug functions. There are no additional features.

SYStem.CONFIG.COREDEBUG.Base <access_class>:<base_address>
Setup of the Debugger for a CoreSight System | 25©1989-2024 Lauterbach

JTAG Access Port (JTAG-AP)

Description

For cores which do not have the debug register memory mapped like ARM7, ARM9, ARM11 or any non-
Arm core with JTAG debug interface, the DAP offer the possibility to connect these cores to a JTAG Access
Port (JTAG-AP). The JTAG-AP can drive up to 8 JTAG interfaces. The debugger communicates with
registers to cause the DAP to generate JTAG sequences on a certain ’port’ of the JTAG access port. This
way you have multiple JTAG interfaces. One between the debugger and the DAP and for each connected
core another one between DAP and core. This reduces performance compared to a daisy-chained JTAG
connection, but the advantage in a multicore system is that even if a core is powered down or has no or
reduced clock the other cores can still be debugged.

Debugger Setup

For SoC-400, the debugger needs to know the JTAG-AP number where the JTAG-AP is connected to the
DAP.

The <port> is between 0 and 255. (Commonly 2 is used.)

For SoC-600, the debugger needs to know the base address of the register block of the JTAG-AP

The JTAGAP.CorePort specifies to which of the 8 possible ports of the JTAG-AP the core is connected.

The <port_number> is between 1 and 8.

Only one TAP controller shall be connected to one JTAG-AP (no daisy-chaining). In case of daisy-chained
TAP controllers you need to specify the TAP position with these commands:

Usage

These settings only inform the debugger how to access the core debug register. This is a requirement to
provide the (normal) core debug functions. There are no additional features.

SYStem.CONFIG JTAGAPn.Port <port>

SYStem.CONFIG JTAGAPn.Base <address>

SYStem.CONFIG.CONFIG.JTAGAPn.CorePort <port_number>

SYStem.CONFIG IRPRE <number>
SYStem.CONFIG DRPRE <number>
SYStem.CONFIG IRPOST <number>
SYStem.CONFIG DRPOST <number>
Setup of the Debugger for a CoreSight System | 26©1989-2024 Lauterbach

Cross Trigger Interface (CTI),
Cross Trigger Matrix (CTM)

Description

The Embedded Cross Trigger (ECT) is a mechanism for passing debug events between multiple cores or
modules. It can, for example, be used for halting cores synchronously or for triggering a trace recording. It
consists of a Cross Trigger Matrix (CTM), which broadcasts the event signals via channels and one or more
Cross Trigger Interfaces (CTI) which enable the processor or module to react on a event and/or to broadcast
events to the other processors or modules. The Cross Trigger Interfaces (CTI) need to be programmed to
get the functionality you want (see description below). There is no need to program the Cross Trigger Matrix
(CTM), because it is a static implementation for broadcasting the signals of the Cross Trigger Interfaces
(CTI).

The Cross Trigger Interface (CTI) has a 4 KByte memory mapped register block. By writing to these
registers, you can select which event shall be broadcasted and on which event you want to react.

It is up to the chip designer which event is routed to which CTI signal. There is just a recommendation from
Arm in the CoreSight documents.

Debugger Setup

The debugger needs to know the base address of the register block that the debugger can use the CTI for
synchronous start/stop of the cores in a multicore debug session.

For <access_class>, see the Memory Access Ports chapter.

To inform the debugger about the connection of the start/stop signals of the cores to the CTI you can use:

When you are debugging Cortex-A or Cortex-R cores and if the interconnection follows the
recommendations by Arm, then CortexV1 is the correct parameter for <type>.

Usage

The CTI is automatically used to synchronously start/stop the cores. Other functions need to be activated by
the user, e.g. by Data.Set commands in a PRACTICE script (*.cmm) or manually in the CTI peripheral file:

For a detailed description of the CTI register functionality, see the various CoreSight documents, which can
be downloaded from the Arm website at www.arm.com.

SYStem.CONFIG.CTI.Base <access_class>:<address>

SYStem.CONFIG.CTI.Config <type>

PER.view ~~/percti.per <access_class>:<cti_base_address>
Setup of the Debugger for a CoreSight System | 27©1989-2024 Lauterbach

Performance Monitor Unit (PMU),
BenchMark Counter (BMC)

Description

The Performance Monitor Unit (PMU) consists of a group of counters that can be configured to count certain
events in order to get statistics on the operation of the processor and memory system. Examples of events
are cache accesses/refills/write-backs, TLB refills, bus accesses, speculatively executed instructions.

TRACE32 uses the term BenchMark Counter (BMC) for this kind of feature in all core architectures. BMC is
not a CoreSight unit, it is used as a synonym for PMU.

Debugger Setup

The debugger needs to know the base address of the PMU:

For <access_class>, see the Memory Access Ports chapter.

Usage

The counters of Cortex-A/R cores can be read at run-time. The counters of ARM11 cores can only be read
while the target application is halted.

For information about architecture-independent BMC commands, see BMC in general_ref_b.pdf.

For information about architecture-specific BMC commands, see Arm Specific Benchmarking
Commands in debugger_arm.pdf.

There might be additional, device specific counters on your device, which we most likely support as well.

SYStem.CONFIG.BMC.Base <access_class>:<address>
Setup of the Debugger for a CoreSight System | 28©1989-2024 Lauterbach

Embedded Trace Macrocell (ETM),
Program Trace Macrocell (PTM)

Description

The ETM and the PTM output information about the core’s activity. ETM outputs program and optional data
trace, PTM outputs program trace only.

The data can be passed directly or combined with other trace sources via Funnel (CSTF) and AMBA Trace
Bus (ATB) off-chip to the Trace Port Interface Unit (TPIU). There it will be captured by a trace port analyzer
(ETM Preprocessor or CombiProbe or µTrace (MicroTrace)). Alternatively, it can be stored on-chip in the
Embedded Trace Buffer (ETB or TMC/ETF used as ETB) or stored e.g. in DRAM via Embedded Trace
Router (ETR) for later readout via JTAG or Serial Wire Debug Port (SW-DP).

Debugger Setup

If there is a non-CoreSight Arm ETM implemented on the chip then no additional settings are required. If
there is a CoreSight ETM, then the debugger needs to know the base address:

For <access_class>, see the Memory Access Ports chapter.

In addition, you need to specify to which module it is connected in the on-chip CoreSight trace system

Usage

For configuring the ETM (trace ID, timestamp, ...), you can use the ETM command group. The ETM.state
window displays the current settings.

For tracing and trace analysis, use the trace commands from the Trace, Analyzer, and Onchip command
groups. See e.g. “Arm ETM Trace” (trace_arm_etm.pdf) and “Training Arm CoreSight ETM Tracing”
(training_arm_etm.pdf).

SYStem.CONFIG.ETM.Base <access_class>:<address>

SYStem.CONFIG.<module>.ATBSource ETM

NOTE: TRACE32 uses the command group ETM for both ETM and PTM.
Setup of the Debugger for a CoreSight System | 29©1989-2024 Lauterbach

AMBA AHB Trace Macrocell (HTM)

Description

The HTM outputs information on accesses to an AHB bus on the chip. It gives visibility to bus information
which cannot be provided by the Embedded Trace Macrocell (ETM). You can get information about:

• The bus utilization

• Free bus capacities

• You can see if (cache, write buffer) and when a memory access happens

• You get the time correlation between the bus access, program flow, and data access

Combined with other trace sources, the data can be passed via Funnel and AMBA Trace Bus (ATB) off-chip
to the Trace Port Interface Unit (TPIU). There it will be captured by a trace port analyzer (ETM Preprocessor
or CombiProbe). Alternatively, it can be stored on-chip in the Embedded Trace Buffer (ETB or TMC/ETF
used as ETB) or stored e.g. in DRAM via Embedded Trace Router (ETR) for later readout via JTAG or Serial
Wire Debug Port (SW-DP).

Debugger Setup

The debugger needs to know the base address of the control register block:

For <access_class>, see the Memory Access Ports chapter.

In addition, you need to specify to which module it is connected in the on-chip CoreSight trace system:

Usage

For configuring the HTM (trace ID, trace priority, on/off ...) you can use the HTM command group. See
general_ref_h.pdf. The HTM.state window displays the current settings. To view the HTM trace, result enter
HTMAnalyzer.List or HTMOnchip.List.

SYStem.CONFIG.HTM.Base <access_class>:<address>

SYStem.CONFIG.<module>.ATBSource HTM
Setup of the Debugger for a CoreSight System | 30©1989-2024 Lauterbach

Instrumentation Trace Macrocell (ITM),
System Trace Macrocell (STM)

Description

The ITM and STM output system trace information. Software running on an Arm processor can write to
memory mapped registers. The ITM/STM generate trace packets containing the written values. ITM and
STM CANNOT be used for full program and/or data trace.

ITM modules are typically available on Cortex-M based devices. The Cortex-M provides additional hardware
facilities (DWT) which can automatically generate data for the ITM. This way, for example, variable values
can be watched, or the program counter can be periodically output.

The data can be output directly on a single output pin named Serial Wire Output (SWO), where it will be
captured by the CombiProbe or µTrace (MicroTrace). Alternatively it can be output - together with other trace
sources - via the AMBA Trace Bus (ATB) to the Trace Port Interface Unit (TPIU). There it will be captured by
a trace port analyzer (ETM Preprocessor or CombiProbe). Another possibility is to store the data on-chip in
the Embedded Trace Buffer (ETB or TMC/ETF used as ETB) or e.g. in DRAM via Embedded Trace Router
(ETR) for later readout via JTAG or Serial Wire Debug Port (SW-DP).

Debugger Setup

The debugger needs to know the base address of the control register block:

For <access_class>, see the Memory Access Ports chapter.

In addition, you need to specify to which module it is connected in the on-chip CoreSight trace system:

Usage

For configuring the ITM or STM (trace ID, trace priority, on/off ...) you can use the ITM or STM command
group. The ITM.view or STM.view windows display the current settings. To view the trace results enter:

• ITMAnalyzer.List or STMAnalyzer.List (recorded with preprocessor) or

• ITMOnchip.List or STMOnchip.List (recorded on-chip).

For ITM usage with Cortex-M we recommend that you read the “CombiProbe for Cortex-M User’s Guide”
(combiprobe_cortexm.pdf).
For STM usage, you should read “System Trace User’s Guide” (trace_stm.pdf).

SYStem.CONFIG.ITM.Base <access_class>:<address>
SYStem.CONFIG.STM.Base <access_class>:<address>

SYStem.CONFIG.<module>.ATBSource ITM
SYStem.CONFIG.<module>.ATBSource STM
Setup of the Debugger for a CoreSight System | 31©1989-2024 Lauterbach

Funnel (CSTF),
AMBA Trace Bus (ATB)

Description

The CoreSight Trace Funnel (CSTF) is used to combine multiple trace sources into a single bus, called the
AMBA Trace Bus (ATB). The trace data includes a source ID, so that the debug tool can identify the source
of the trace packet.

Debugger Setup

There is no setup needed for the AMBA Trace Bus (ATB) and Replicator, but the debugger needs the base
address of the Funnel control register block.

For <access_class>, see the Memory Access Ports chapter.

In addition, you need to specify to which trace sources you have connected the up to eight funnel input ports:

Usage

The settings are required for the debugger to route the activated trace sources to the trace sink you want to
use.

SYStem.CONFIG.FUNNEL.Base <access_class>:<address>

SYStem.CONFIG.FUNNEL.ATBSource <source1> <port_number_source1> <source2> ...
Setup of the Debugger for a CoreSight System | 32©1989-2024 Lauterbach

Data Watchpoint and Trace Unit (DWT),
Flash Patch and Breakpoint Unit (FPB)

Description

The Data Watchpoint and Trace Unit (DWT) is an optional debug unit that provides watchpoints, data tracing,
and system profiling for the processor. The Flash Patch and Breakpoint Unit (FPB) is used for on-chip
program breakpoints by the debugger. Both modules help debugging/tracing the Cortex-M cores.

Debugger Setup

The base addresses of these modules normally have a fixed value, which is the default setting when
debugging a Cortex-M:
 DWT: E:0xE0001000
 FPB: E:0xE0002000

Only if the addresses differ, you must configure them by:

For <access_class>, see the Memory Access Ports chapter.

Usage

These modules are essential for some basic debug and trace functions, e.g. for “Break.Set .. /Onchip”.

SYStem.CONFIG.DWT.Base <access_class>:<address>
SYStem.CONFIG.FPB.Base <access_class>:<address>
Setup of the Debugger for a CoreSight System | 33©1989-2024 Lauterbach

Embedded Logic Analyzer (ELA)

Description

The Embedded Logic Analyzer (ELA) is used to provide visibility to on-chip signals within a design.

In additon, you could use the Embedded Logic Analyzer (ELA) to see processor load/stores, speculative
fetches, cache activity or to visualize outstanding transactions in the interconnect.

Assuming there are ELA-500/ELA-600 components on the chip, you can use the ELA command group to
trigger on on-chip signal events, to record processor-internal signals, or to halt the processor on an event for
further investigations.

Debugger Setup

The base address needs to be provided for ELA:

For <access_class>, see the Memory Access Ports chapter.

Usage

For configuring the ELA (trace ID, trace priority, on/off ...) you can use the ELA command group. The
ELA.state window displays the current settings. To view the trace result enter:

• ELAAnalyzer.List (recorded with preprocessor) or

• ELAOnchip.List (recorded on-chip).

SYStem.CONFIG.ELA.Base <access_class>:<address>
Setup of the Debugger for a CoreSight System | 34©1989-2024 Lauterbach

Embedded Trace Buffer (ETB, TMC used as ETB)

Description

The ETB stores trace data at high rates to on-chip SRAM exclusively used by the ETB. The data can be
read out via JTAG or Serial Wire Debug Port (SW-DP) when the trace recording has ended.

Debugger Setup

In case of a non-CoreSight ETB, you need to set the JTAG chain position (ETBIRPRE, ETBIRPOST,
ETBDRPRE, ETBDRPOST) of the ETB TAP. In case of a CoreSight ETB, you need to set the base address
for the ETB:

For <access_class>, see the Memory Access Ports chapter.
<module> assigns the CoreSight module where this ETB gets its data from, e.g. “FUNNEL1”.

To activate ETB instead of the Trace Port Interface Unit (TPIU) you need to set:

Usage

For tracing and trace analysis, use the trace commands from the Onchip command group. See e.g. “Arm
ETM Trace” (trace_arm_etm.pdf) and “Training Arm CoreSight ETM Tracing” (training_arm_etm.pdf).

SYStem.CONFIG.ETB.Base <access_class>:<address>
SYStem.CONFIG.ETB.ATBSource <module>

Trace.METHOD Onchip
Setup of the Debugger for a CoreSight System | 35©1989-2024 Lauterbach

Embedded Trace FIFO (TMC used as ETF)

Description

The ETF is a FIFO for trace data on the chip to moderate the peak bandwidth the trace sinks need to handle.
The ETF can alternatively be used as ETB to store trace data on chip.

Debugger Setup

The base address needs to be provided for ETF:

For <access_class>, see the Memory Access Ports chapter.
<module> assigns the CoreSight module where this ETF gets its data from, e.g. “FUNNEL1”.

The ETF can be used as ETB as well. In this case you might need to tell the debugger that you want to use
this ETF to store on-chip trace data:

This is not needed if there is no other possibility to store trace data on chip.

Usage

When using it as a FIFO, then there is nothing else to configure. The debugger takes care of the trace path
routing and controlling the ETF.

When using it as ETB, use the trace commands from the Onchip command group. See e.g. “Arm ETM
Trace” (trace_arm_etm.pdf) and “Training Arm CoreSight ETM Tracing” (training_arm_etm.pdf).

SYStem.CONFIG.ETF.Base <access_class>:<address>
SYStem.CONFIG.ETF.ATBSource <module>

Onchip.TraceCONNECT ETF1
Setup of the Debugger for a CoreSight System | 36©1989-2024 Lauterbach

Embedded Trace Router (TMC used as ETR)

Description

The Embedded Trace Router (ETR) can send the trace data stream to a memory location on the AXI bus.
This way you can use the DRAM as a big on-chip trace memory.

Debugger Setup

The base address needs to be provided for ETR:

For <access_class>, see the Memory Access Ports chapter.
<module> assigns the CoreSight module where this ETR gets its data from, e.g. “FUNNEL1”.

In addition, you need to tell the debugger the memory location and size which shall be used by the ETR. We
recommend that you run the PRACTICE script file etr_utility.cmm, which can be found in the TRACE32
installation directory under ~~/demo/arm/etc/embedded_trace_router

If there is more than one possibility to store trace data on-chip you need to choose ETR as sink:

CoreSight Address Translation Unit (CATU)

The CoreSight Address Translation Unit (CATU) is used to translate addresses between the ETR and the
memory.

The base address needs to be provided for CATU:

For <access_class>, see the Memory Access Ports chapter.

Usage

When using it with the ETR, use the trace commands from the Onchip command group. See e.g. “Arm
ETM Trace” (trace_arm_etm.pdf) and “Training Arm CoreSight ETM Tracing” (training_arm_etm.pdf).

SYStem.CONFIG.ETR.Base <access_class>:<address>
SYStem.CONFIG.ETR.ATBSource <module>

Onchip.TraceCONNECT ETR

SYStem.CONFIG.ETR.CATUBase <access_class>:<address>
Setup of the Debugger for a CoreSight System | 37©1989-2024 Lauterbach

Embedded Trace Streamer (TMC used as ETS)

Description

The Embedded Trace Streamer (ETS) can send the trace data stream to a streaming device on the AXI bus.

Debugger Setup

The base address needs to be provided for ETS:

For <access_class>, see the Memory Access Ports chapter.
<module> assigns the CoreSight module where this ETS gets its data from, e.g. “FUNNEL1”.

Usage

The settings are required for the debugger to route the activated trace sources to the trace sink (a streaming
device, e.g. HSSTP) you want to use.

SYStem.CONFIG.ETS.Base <access_class>:<address>
SYStem.CONFIG.ETS.ATBSource <module>
Setup of the Debugger for a CoreSight System | 38©1989-2024 Lauterbach

REPlicator (REP)

Description

A Replicator is required if you need to simultaneously feed more than one trace sink like a Trace Port
Interface Unit (TPIU) and an Embedded Trace Buffer (ETB).

Debugger Setup

The base address needs to be provided for REP:

For <access_class>, see the Memory Access Ports chapter.
<module> assigns the CoreSight module where this Replicator gets its data from, e.g. “FUNNEL1”.

Newer replicators have registers / a base address.

Usage

The settings are required for the debugger to route the activated trace sources to the trace sink you want to
use.

SYStem.CONFIG.REPlicator.Base <access_class>:<address>
SYStem.CONFIG.REPlicator.ATBSource <module>
Setup of the Debugger for a CoreSight System | 39©1989-2024 Lauterbach

TRACEPORT

Description

The TRACEPORT component configures the communication between the target trace port and the
TRACE32 PowerTrace tool.

Debugger Setup

The debugger needs to know the type and the source of the trace port:

<type> declares the trace port type as AURORA or PCIE.
<source> assigns the CoreSight component that sourced the TRACEPORT:

• TPIU for HSSTP/AURORA

• ETS for HSSTP/AURORA

• ETR for PCIe

Usage

For configuring the TRACEPORT, you can use the TRACEPORT command group. The TRACEPORT.state
window displays the current settings.

SYStem.CONFIG.TRACEPORT.Type <type>
SYStem.CONFIG.TRACEPORT.TraceSource <source>
Setup of the Debugger for a CoreSight System | 40©1989-2024 Lauterbach

Trace Port Interface Unit (TPIU)

Description

The TPIU formats and transmits the probably multi-source trace data coming from the AMBA Trace Bus
(ATB) off-chip to the debug tool. The trace frequency is independent of the core clock and the data will be
output on a parallel port configurable from 2 to 32 bit.

Debugger Setup

An ETM Preprocessor is required. The following figure shows the ETM Preprocessor LA-7992 AutoFocus II.
Alternatively other types can be used.

For 4-bit wide trace port and trace clock < 200 MHz the CombiProbe can be used.

Figure: ETM Preprocessor AutoFocus II

Figure: CombiProbe
Setup of the Debugger for a CoreSight System | 41©1989-2024 Lauterbach

The debugger needs to know the base address of the TPIU control register block:

For <access_class>, see the Memory Access Ports chapter.
<module> assigns the CoreSight module where this ETR gets its data from, e.g. “FUNNEL1”.

To activate the external trace via TPIU instead the on-chip Embedded Trace Buffer (ETB) you need to set:

This is the default if an ETM Preprocessor is connected to the debugger.

The trace port pins are often multiplexed with alternate functions. You might need to set up the right muxing.
Further you might need to set up trace clock source and dividers for the TPIU, which is independent of the
core clock and should be set up as fast as the IO pins and the tool (although the tool is probably not the
bottleneck) can manage for trace bandwidth reasons.

The port size and port mode can be selected.

Usage

You can use the trace commands from the Trace or Analyzer command groups. See e.g. “Arm ETM
Trace” (trace_arm_etm.pdf) and “Training Arm CoreSight ETM Tracing” (training_arm_etm.pdf).

SYStem.CONFIG.TPIU.Base <access_class>:<address>
SYStem.CONFIG.TPIU.ATBSource <module>

Trace.Method Analyzer

TPIU.PortSize <size> e.g. 4, 8, 16, 32

TPIU.PortMode <mode> e.g. Bypass, Wrapped, Continuous
Setup of the Debugger for a CoreSight System | 42©1989-2024 Lauterbach

Serial Wire Viewer (SWV),
Serial Wire Output (SWO)

Description

The Serial Wire Viewer provides an output for the Instrumentation Trace Macrocell (ITM) through a single
pin, the Serial Wire Output (SWO).

Debugger Setup

A CombiProbe or µTrace (MicroTrace) is required.

In addition to the settings for the ITM, the debugger needs to be informed that it receives the ITM data
through the Serial Wire Output (SWO). The connector pin named TDO is used for that purpose. In order to
use this pin for the ITM it is required to use the Serial Wire Debug Port (SW-DP) instead of the standard
JTAG interface. As soon as SW-DP is activated

ITM data will be output on the SWO on the former TDO pin. At the moment only the UART protocol is
supported.

SWO is a TPIU-like CoreSight module with a subset of the TPIU functionality. If the chip additionally includes
a TPIU with a parallel trace port, then you need to select SWV/SWO by

SYStem.CONFIG SWDP ON

TPIU.PortSize SWV

Figure: CombiProbe

Figure: µTrace (MicroTrace)
Setup of the Debugger for a CoreSight System | 43©1989-2024 Lauterbach

Usage

For usage of the ITM data output via SWV/SWO see the chapter Instrumentation Trace Macrocell.
Setup of the Debugger for a CoreSight System | 44©1989-2024 Lauterbach

High Speed Serial Trace Port (HSSTP)

Description

The High-Speed Serial Trace Port uses the Aurora protocol and transmits the multi-source trace data
coming from the AMBA Trace Bus (ATB) off-chip to the debug tool. The trace frequency is independent of
the core clock.

Debugger Setup

A HSSTP Preprocessor is required. The following figure shows the Arm-ETM/HSSTP HF-Flex Preprocessor
LA-7988. It supports up to 4 lanes with up to 6.5 Gbit/s.

Another configuration can be adopted is to use the Arm-ETM PowerTrace Serial 4 GigaByte LA-3520. It
supports up to 8 lanes with up to 12.5 Gbit/s.

Figure: HSSTP Preprocessor

Figure: PowerTrace Serial 4 GigaByte
Setup of the Debugger for a CoreSight System | 45©1989-2024 Lauterbach

Accessories are required when using the Arm-ETM PowerTrace Serial. The following figure shows the
accessories LA-3521, up to 6 lanes, which include the converter IDC20A to MIPI-34 PowerTrace Serial LA-
2770, the Half-Size-Cable 34 and the Flex Extension for SAMTEC 40 pin ERM8-ERM8 500mm LA-1235.

Usage

You can use the trace commands from the Trace or Analyzer command groups. See e.g. “Arm ETM
Trace” (trace_arm_etm.pdf) and “Training Arm CoreSight ETM Tracing” (training_arm_etm.pdf).

Figure: LA-3521
Setup of the Debugger for a CoreSight System | 46©1989-2024 Lauterbach

Peripheral Component Interconnect Express (PCIe)

Description

The Peripheral Component Interconnect Express is a high speed serial computer expansion bus standard.
The PowerTrace Serial can behave as a PCIe endpoint (as memory) to collect trace data that will be written
to AXI by an ETR. The PCIe root complex needs to be configured on the target. For more details see
“PowerTrace Serial User’s Guide” (serialtrace_user.pdf)

Debugger Setup

A PowerTrace Serial is required. The following figure shows the Arm-ETM PowerTrace Serial 4 GigaByte LA-
3520. It supports up to 8 lanes with up to 12.5 Gbit/s.

Accessories are required when using the Arm-ETM PowerTrace Serial. The following figure shows the
accessories LA-3522, up to 8 lanes, which include the Flex Extension for SAMTEC 80 pin ERM8-ERM8
series LA-1239 and the Retainer for Samtec 80 LA-3509.

A licence for PCIe, LA-3550X, is also required.

Figure: PowerTrace Serial 4 GigaByte

Figure: LA-3522
Setup of the Debugger for a CoreSight System | 47©1989-2024 Lauterbach

Converters to PCIe

Figure: PTSERIAL-MiniPCIe x1 Slot Card-Converter
LA-3526

Figure: PTSERIAL-PCIe x1 Slot Card-Converter
LA-3527

Figure: PTSERIAL-PCIe x4 Slot Card-Converter
LA-3524

Figure: PTSERIAL-PCIe x8 Slot Card-Converter
LA-3525
Setup of the Debugger for a CoreSight System | 48©1989-2024 Lauterbach

Usage

You can use the trace commands from the Trace or Analyzer command groups. See e.g. “Arm ETM
Trace” (trace_arm_etm.pdf) and “Training Arm CoreSight ETM Tracing” (training_arm_etm.pdf).

Figure: OCuLink Trace Adapter for PowerTrace
Serial LA-3590, OCuLink Cable 500mm LA-1990

Figure: PCIe Gen 4 Preprocessor for PowerTrace
Serial LA-3529
Setup of the Debugger for a CoreSight System | 49©1989-2024 Lauterbach

	Setup of the Debugger for a CoreSight System
	History
	Introduction
	Example of a CoreSight System
	Using this Application Note
	Your Chip is Available in the SYStem.CPU List
	Your Chip is NOT Available in the SYStem.CPU List
	Set up the Debugger Yourselves for Debugging
	Set up the Debugger Yourselves for Tracing
	Declare Multiple CoreSight Modules of the same Type
	Configuration Example
	Required Tool Hardware and Licenses
	How to use the CoreSight Modules

	Discover Available CoreSight Components
	Debug Access Port (DAP)
	Multiple Test Access Ports in the JTAG Chain
	Serial Wire Debug Port (SW-DP)
	Memory Access Ports
	Real-time Memory Access
	Core Debug Register Access
	JTAG Access Port (JTAG-AP)

	Cross Trigger Interface (CTI), Cross Trigger Matrix (CTM)
	Performance Monitor Unit (PMU), BenchMark Counter (BMC)
	Embedded Trace Macrocell (ETM), Program Trace Macrocell (PTM)
	AMBA AHB Trace Macrocell (HTM)
	Instrumentation Trace Macrocell (ITM), System Trace Macrocell (STM)
	Funnel (CSTF), AMBA Trace Bus (ATB)
	Data Watchpoint and Trace Unit (DWT), Flash Patch and Breakpoint Unit (FPB)
	Embedded Logic Analyzer (ELA)
	Embedded Trace Buffer (ETB, TMC used as ETB)
	Embedded Trace FIFO (TMC used as ETF)
	Embedded Trace Router (TMC used as ETR)
	Embedded Trace Streamer (TMC used as ETS)
	REPlicator (REP)
	TRACEPORT
	Trace Port Interface Unit (TPIU)
	Serial Wire Viewer (SWV), Serial Wire Output (SWO)
	High Speed Serial Trace Port (HSSTP)
	Peripheral Component Interconnect Express (PCIe)

