
HYPERVISOR
 DEBUGGING

 Arm® Cortex®-A/-R
 Intel® Processors
 Power Architecture®

HYPERVISOR

GUEST OS 4

VIRTUAL MACHINE

GUEST OS 3

VIRTUAL MACHINE

GUEST OS 2

VIRTUAL MACHINE

Supported Hypervisors

w
w

w
.la

ut
er

ba
ch

.c
om

/h
yl

is
t.h

tm
l

OpenSynergy	 COQOS 	 Arm Cortex-A/Cortex-R (Armv8)

Siemens	 Jailhouse	 Arm Cortex-A (Armv7/v8)

KVM Project	 KVM	 Intel Processors + Arm Cortex-A (Armv8/v9)

L4Re.org	 L4Re/FIASCO.OC	 Arm Cortex-A/Cortex-R (Armv8)

Lynx Software Technologies Inc.	 LynxSecure	 Arm Cortex-A (Armv8)

Sysgo AG	 PikeOS	 Arm Cortex-A (Armv8)

QNX Software Systems	 QNX	 Arm Cortex-A (Armv8) + Intel Processors

Wind River Systems	 Wind River Helix	 Arm Cortex-A (Armv8) + Intel Processors + Power Architecture

Xen Project	 Xen Project	 Arm Cortex-A (Armv7/v8) + Intel Processors

and others...

Lauterbach provides ready-to-use script templates to
simplify the set-up process. After the communication
between the TRACE32® debugger and the cores of the
target system is established the following steps are
required to configure hypervisor-aware debugging:

1. Load the debug symbols.
2. Set up page table awareness (MMU).
3. Load the TRACE32 hypervisor-awareness.

The specific hypervisor-awareness is created by Lauter-
bach and provided to customers. A list of all currently
supported hypervisors is displayed in the table below.
The guest operating systems are configured using a
similar procedure. Lauterbach provides TRACE32®

OS-awarenesses for all commonly used operating
systems. Menu extensions for the hypervisor and
all guest OSes make the debug process simple and
intuitive.

SCRIPT TEMPLATES FOR SIMPLIFIED SET-UPScript Templates for Simplified Set-up

GUEST OS 1

 Load debug symbols

 Set up page table 	
	 awareness (MMU)

 Load OS awareness

VIRTUAL MACHINE

HOST MACHINE

Load debug
	 symbols

Set up page 	
	 table awareness 	
	 (MMU)

Load Hypervisor 	
	 awareness

HYPERVISOR

HYPERVISOR

https://www.lauterbach.com/supported-platforms/toolchain/hypervisors

The most important objective of the TRACE32®
hypervisor-awareness is to enable a seamless
debugging of the overall system. This means that when
the system has stopped at a breakpoint, you can check
the current state of every single application process, all
VMs, the current state of the hypervisor and of the real
hardware platform. In addition, you can set a program
breakpoint at any location in the code. This is possible for
both active and inactive virtual machines and their guests.
(A virtual machine is considered active when a core has
been allocated to it for execution.)

Functions and variables can be addressed by name as
normal since the debug symbols are associated with a
particular virtual machine/OS.

If the debugger stops at a breakpoint:

	 The TRACE32® PowerView GUI visualizes the
application process that triggered the breakpoint.

	 The CORE.List window shows what is running on 	
the other cores.

	 The TASK.List.TREE window provides an overview
of all processes executing on the overall system.

In addition to all of these features which are shown in the
screenshot above, the debugger can switch to the stored
register set for any process in the entire system. Using
these values, TRACE32® can determine the call stack and
display the function call hierarchy for each process in any
of the guest OSes.

Seamless Debugging Through all Software Layers

Some test cases require a deeper insight into the system
details. Therefore, TRACE32® offers expert commands
that enable the visualization of every system aspect. Here
some examples:

	 TRACE32® can be configured to stop the program 	
	 execution on a guest entry or a hypervisor entry 	
	 (e.g. Arm® Cortex®-A (Armv8) NSEL1/NSEL2 ON).

	 TRACE32® can visualize the full address translation 	
	 path, from guest virtual memory to guest physical 	
	 memory to host machine physical memory
	 (MMU.List.TaskPageTable /Fulltranslation command).

	 TRACE32® can visualize all registers of every vCPU, 	
 	 even if the vCPU is currently not assigned to a CPU core.

The TRACE32® expert commands provide maximum
flexibility and are fully scriptable. Complex automated tests
can utilize the TRACE32® Remote API, which is currently
available in C and in Python.

Expert Views

This information is subject to change without notice. TRACE32®, µTrace®, LauterbachDevelopmentTools® are registered trademarks of
Lauterbach GmbH. All product and service names mentioned are the trademarks of their respective companies. ©Lauterbach GmbH | V 2.00

Explore TRACE32® OS- and Hypervisor Awareness:
lauterbach.com/os-awareness

SEE ALSO ON OUR �-CHANNEL

youtube.com/lauterbachgmbh

"Hypervisor Debugging with a
TRACE32® JTAG Debugger"

https://www.lauterbach.com
https://www.lauterbach.com/os-awareness
https://www.lauterbach.com/os-awareness
https://www.youtube.com/lauterbachgmbh

