LAUTERBACH A

Speeding Up Safety Certification with
Trace-based Code Coverage

Many embedded systems must be developed according to an internationally recognized safety standard.
Part of the data required to prove that a system meets these standards is a form of code coverage.

In this article, we show how code coverage measurements can be made using TRACE32® trace tools
with little or no code instrumentation required. This approach simplifies and accelerates integration and
system tests in particular and can complement traditional unit testing tools for faster and more efficient
safety certifications.

Introduction

Code coverage measurement is a requirement for
certification to evaluate the completeness of test
cases and to demonstrate that there is no un-
intended functionality. Test cases for the verification
of code coverage can be executed in different test
phases, the unit test, the integration test and the
system test.

instrumentation, which can be reduced dramatically
with trace-based code coverage measurements
using TRACES32® tools.

The combination of traditional test tools and their
code coverage measurement capabilities, which
can play to their strengths particularly in unit
testing, and TRACE32® with its advantages
in integration and system testing, together offer
optimum customer benefits.

When using traditional test tools, integration and
system tests often generate considerable time and
personnel expenditure due to the necessary code

A A =) [l

| &setup.. | b Goto.. | dfList +nadd | Blload. | S2Save. @nit

address ree coverage | decision 0% S0 10
PLFFFFOZES--FFEFOSOE | = \UNTTTest] stmt-ac 100 O00%
P:FFFFO2ES- -FFFFO387 [run_test stmtede | 100 000%
P:FFFFO3B8--FFFFO39F = main stmtadc 00, 000%
P:FFFFO3AD- 3 & \control_flow incomplete BB, 3092% e—
PFFFFO3A0--FFFFO4TE = funcl stmtedc GO0 —
P:FFFF(M7C==FFFF0553 = funcl stmtadc | 100. 000K e——
P: FFFFO5%4 - -FFFFOGIF = funcd stmtde L0 QOO —
P:FFFFO630--FFFFO7S3 & funci incomplete T2 000% e——
P:FFFFO754--FFFFOB7 3 = funcd incomplete 75, 000% —
P:FFFFO87 4~ -FFFFOBAR = do_somethingl stmtade 100, 00K e—
P:FFFFOBAC--FFFFOBE 3 & do_somethingl stmtadc | 100.000%
9 B-COVerage ListFunc == [
| Psetup.. M Goto. | EAList +add | Bload. S3Sae. | @init
address ree coverage decision 0% S0 10
PIFFFFOZEG--FFFFOA2F | (= \UnItLests stmt-ﬂc T 0 ———————
P:FFFFO2ZER--FFFFO417 = run_test stmt+dc 100, 000%
PIFFFFOM18--FFFFO42F i stmtsdc | 100, 000%

PFIFFFF0M30--FFFFOETE
P FFFFO30--FFFF0553
P:FFFF0554--FFFFOGT 3

= main
= veontrol_flow
= func3

= funcd

85, 714X e——
52, 000% ——
54, 166% n—

incomplete
incomplete
incomplete

P:FFFFOG74--FFFFOT97 = funcy stmt+de 1040, 000K ———
P:FFFF0798--FFFFOBBF @ funch stmtade | 100, 000% e———
P:FFEFO8CO--FFEFOYE 3 = func’? stmtade | 100.000% e ——
P:FFFFO9ES --FFFFOBOB = funch stmtade | 100, 0005 e—————
P:EFEFOBOC--FFEFORA 3 = do_somethingd atmtade | 100, D00 e———
P:FFFFOB44--FFFFOBTE = do_somethingl s tmtade 100, 000K | e———

Figure 1. Code Coverage Measurements with TRACE32®.

Challenges of Traditional
Code Coverage Approaches

Traditionally, Code Coverage needs instrumentati-
on of full source code or object code to capture
the program flow. In the case of source code
instrumentation, the instrumented code is compi-
led before running it on the target or in a simulator.
In the case of object code instrumentation, the
process is similar, but instrumentation is done
after compilation. In both cases the program flow is
acquired via a functional interface and analyzed in
the Code Coverage Tool after that. Figure 2 shows
the workflow.

While the described traditional approach works fine
in unit testing, it brings up a couple of typical issues
in integration and system tests: The first challenge is

the larger code size caused by the instrumentation,
which can lead to the executable no longer fitting
into the target’s memory. Furthermore, developers
suffer from larger RAM consumption and a longer
execution time due to the code overhead.

The biggest problem, however, is that this approach
no longer works for real-time applications in
integration testing and, at the latest, system testing,
because the code instrumentation no longer
provides real-time conditions.

To solve these problems, the code coverage
measurements are typically divided into several parts,
in each of which only a part of the code is instru-
mented. The results are then merged. This means that
several build and test runs are necessary, which in
practice can take days or even weeks depending on
the complexity of the application.

Full Source- e
S Data Acquisition 2 s
Source Code Code ﬁ\ Compilation $) q @ Analysis
Instrumentation (Functional Interface)
Figure 2. Workflow of traditional Code Coverage Measurements.
. i Targeted _ Data Acquisition '
Source Code Q . (Trace-Gap) ! ﬁ Compilation * (Trace Recording & Q Analysis
Instrumentation = Processing)

Figure 3. Workflow of TRACE32® Trace-based Code Coverage Measurements.

Advantages of TRACE32®
Code Coverage Approach in
Integration and System Testing

When using Lauterbach's TRACE32® tools for
realtime trace, the data required for code coverage
measurements is obtained directly from the re-
corded trace data and analyzed in the TRACE32®
PowerView software. Code instrumentation is either
not necessary at all, or only to a very limited extent
using so named targeted instrumentation.

Targeted instrumentation covers any trace gaps
and is only necessary in the code coverage metrics
MC/DC, decision coverage and condition coverage
in connection with conditional instructions, for
example. For other metrics such as statement
coverage, function coverage and call coverage, no
code instrumentation is necessary at all.

The uninstrumented or targeted instrumented code
is then compiled and executed on the target or in
the simulator. The program flow is recorded by the
TRACES32® tools via the trace interface and then
analyzed in the TRACE32® PowerView software or
in external code coverage tools (Figure 3).

The advantages in integration and system testing
are obvious: there is only a small increase in code

APPLICATION CODE

size, if any, and additional data memory (RAM) is
not required at all. The biggest advantage, however,
is that code coverage measurements can also
be carried out far more efficiently for real-time
applications: You need fewer build and test runs for
a complete code coverage measurement. This sa-
ves time and effort.

In practice, it is often the case that the code fully
instrumented by traditional test tools no longer
fits into the memory or no longer meets the time
specifications, or both. This problem is then solved
by alternately instrumenting only parts of the code,
in fact such large parts that the time specifications
(just now) are met and the code (just now) fits into
the memory. In many practical examples, one half
is instrumented alternately, which means, that two
build and test runs must be carried out and at the
end the two code coverage measurements have to
be merged (Figure 4, above) .

With the TRACES2® trace-based code covera-
ge measurement, one build and test run is usually
sufficient due to the minimally invasive instrumentati-
on, which leads to a saving of 50% of the total effort
in our example (Figure 4, below). When you consider
that these tests often take days or weeks to comple-
te, it is easy to see the relevance of the savings.

APPLICATION CODE

TRADITIONAL TOOLS
FULLY NON
é INSTRUMENTED | INSTRUMENTED

BUILD/TESTRUN #1

NON FULLY RESULTS
INSTRUMENTED | INSTRUMENTED OF BOTH

BUILD/TESTRUN #2

MERGE

APPLICATION CODE

TRACE32°
ﬁ ﬁ

BUILD/TESTRUN

Performing

Il code Coverage

Measurement

Figure 4. TRACE32® Trace-based Code Coverage Measurements vs. Use of Traditional Tools in System Tests (Example).

Merging Code Coverage

Measurements Conclusion
In the application example that runs on different Lauterbach’s TRACE32® debug and trace tools
MCUs and contains specific code parts for each enable trace-based, minimally invasive code
of them, you cannot run both test scenarios at the coverage measurements in integration and system
same time. Each test scenario will therefore only testing. TRACE32® tools provide code coverage
show a certain amount of code coverage because measurements that are closer to the production
the part for the other MCU will not be executed. code than with traditional tools. Embedded test

engineers therefore require fewer builds, fewer test
runs and can significantly reduce their overall effort
compared to using traditional methods only.

With our TRACE32® Merge Tool, several code
coverage reports can be merged to generate
an overall code coverage report (Figure 5). It

consolidates the results of multiple code coverage In conclusion, the combination of traditional test
test runs performed at different times, with different tools and their code coverage measurement capa-
builds or - like in our example - different target con- bilities for unit testing and TRACE32® for integration
figurations. and system testing, provide the best possible

customer experience for efficient and time saving
code coverage measurements.

Nandgaton: Appisalan Mushbc coniel few Funeien: luned TRACE32E Code-Coverage Report

Coverage metric: decsion
iR ; uritiests
TRACES2 sofware version. TRACES2 N 2024 01 000166108
Do 2024-01-24T1Z:08:19 +01.:00
Covirage: ERENEN o = 75 RRRRENON

COVerage.ListLine func3
tree startline | end Bne | coverage | decision D% 50% 100% | ines | ok
c rageimange_ ¥ Sowe | 102 | 1 w0 | ——————| 1 7]
Sowa ur nr do 100% | s | 2 2
(= age'merge. e | Sowo 1ne 18 do 100% | E=————————————— | 1 1]
(- agemengs fowe | 19 19 EL] Hook | ==oc—xu=o0| 3 | 8|
Cifepy ageimenge_t 1 | fowe | 120 120 et 1% | =————————| 1 | 1|
= urittest Sowo | 121 124 et 00| = | 2 [
[= fowa | 128 k.3 de 0% Eemme—— 1
c RragEmene e | flow.o 127 27 it 100% | Em—————————— | 3 3
[+ verage'menge - fowe | 128 128 i 00NN e | 1 [
[+ x | fowc | 128 132 e O 00— | 2 |2}
9 ¥ ¥ | Sowo [133 14 de o0k e 1 [
[Sowo | 135 125 ot 00— 2 [
age! Sowa | 136 16 -t 100 | 1 [
[ragetmengs_c y i _Sow e 137 140 e 0% | 1 1
e a0 X i _fowe [141 143 ot 100% | e 1 1
[ragetmerge_t X i Sowe | w4 | s || 400k | ee—— | 1 (1
| TOTAL | stmiede | 100% |—————————————— | 2% 26
List func3
Line | Coverage Code bne
w02 [wenit
103
04
W05 4 el UNITTESTY) || defredUNITTESTZ}
o8 #1 Function with beoak staloment in white Blodk.
war .
08 * Bresit staterrents willin 150 lermirabe e pncution of i keep body
W * Stalement coverage should be cormectty reporied when the koop body = anly
e * partally areculed,
m ’ ehould nly roen stements that
"2 * havvn bean axacuted. No coverage should be reporied for dead code that
"3 * o ol gremrate iy enpeutable obiet Gode
114 Y
s ind_t fune3find_t it 1 b)
e | wmt |4 & PROLOGUE %
[o warle {a < 41{ T #FUNC3 WHILE ™/
I de ia== 1t & FUNEY WHILE IF1
e |t TBem i dcar b r B EUNCY WHILE 1 SIMPLE -
120 aiml Eenan 8 FUNC3_WHILE F1_BREAK */
121 bl 7§ FUNCI_WHILE_F1_DEAD 7
122 1
123
124 simit b += dn_somathingd{n): ~ & FLWCI_WHILE_CALLY %
125
126 g | rme=ag 1 # FUNC3_WHILE_IF2 %/
FFE | Be=2+3° b B FUNCS WHILE IF2_SIMPLE *f
120 | emt | bena 8 FUNCY WHILE IF2 BREAK */ .
=] bl 78 FUNGY_WHILE_F2_DEAD 4 F‘gure 5.
1% H
it ! Merging code
::g Siml | bemdo_somethingiial 8 FUNCI WHILE CALLZ " coverage
L fde | fmemdf ¢ FUNGS WHLE F3 measurements and
135 simit. bem3+3%ath 8 FUNCY WHILE IF3 SIMPLE 7/ .
T | e e & FUNC3_WriE_IF3_BREAR generating an overall
[CEE] 7§ FUNCI_WHILE_IF3_DEAD 7/
130) code coverage report.
130
140 stmit avn # % FUNCI_WHILE_SINPLE %/
a1 ¥
142
143 stmi Feetum 37 b @ RETURN 1
a4 stmi. 1 F REPILOGUE

TRACESZ Dvovertool 14.0

This information is subject to change without notice. TRACE32®, pTrace®, LauterbachDevelopmentTools® are registered trademarks of
Lauterbach GmbH. All product and service names mentioned are the trademarks of their respective companies. ©Lauterbach GmbH |V 1.01

https://www.lauterbach.com/

