
CONTENTS
Trace-based MCDC Coverage

Code Coverage Live

Tracing via PCI Express

Transition Wind River to TRACE32

RISC-V Debugger

2

5

6

7

8

 SOURCE CODE
COVERAGE

 WORKS WITHOUT
CODE INSTRUMENTATION

NEWS 2018
English Edition

2

Trace-based MCDC Coverage

In March 2018, Lauterbach will unveil its trace-based
MCDC coverage. TRACE32 now supports all impor-
tant code coverage metrics at the source code level.

During the development of safety-critical systems,
code coverage processes are used in order to demon-
strate that the software was tested thoroughly and
comprehensively. Software development standards
such as ISO 26262 and DO-178C have stipulated that
proof of code coverage is a mandatory part of the de-
velopment cycle.

Trace-based Coverage

As a market leader in real-time trace tools, Lauterbach
provides trace-based code coverage measurements
which do not require any instrumentation of the target
code. The information on the program execution is at
first tracked at object code level. This allows the fol-
lowing coverage metrics to be easily proven:

•	 Object statement coverage proves that each as-
sembler instruction has been executed at least once
during the test.

•	 Object branch coverage proves that each condi-
tional jump was taken at least once and that it was
also not taken at least once.

Code coverage measurements at object code lev-
el have always been part of the capabilities of all

Definitions According to DO-178C  [3]

MCDC Coverage

Trace Data Executable Project Folder

101 0 10
001 00101
0 11 101 0
00101 0001
0110 01

Source
Files *.eca

Statement Coverage: Every statement in the program
has been invoked at least once.

Decision Coverage: Every point of entry and exit in
the program has been invoked at least once and every
decision in the program has taken on all possible out-
comes at least once.

Modified Condition/Decision Coverage: Every point
of entry and exit in the program has been invoked at
least once, every condition in a decision in the program
has taken all possible outcomes at least once, every
decision in the program has taken all possible out-
comes at least once, and each condition in a decision
has been shown to independently affect that decision’s
outcome. A condition is shown to independently affect
a decision’s outcome by: (1) varying just that condition
while holding fixed all other possible conditions, or (2)
varying just that condition while holding fixed all other
possible conditions that could affect the outcome.

3

NEWS 2018

www.lauterbach.com

TRACE32 trace tools. With the addition of statement
and decision coverage in February 2017, Lauterbach
tools also provide proof of source code level cover-
age (see “Decision Coverage” figure on the top of this
page). Many customers now also want to use their
TRACE32 trace tools for performing the MCDC cover-
age measurements which are increasingly being man-
dated.

MCDC Code Coverage

Previously, it was the opinion of many that the proof of
object branch coverage was an adequate replacement
for the MCDC coverage measurement at the source
code level. However, in the aviation industry, the Com-
mercial Aviation Safety Team (CAST) has shown a clear
opposition to this view (refer to [1]).

Currently, most people rely on source code instrumen-
tation in order to be able to collect MCDC coverage
data. The Lauterbach engineers set themselves the
goal of providing MCDC coverage without having to
alter the target code in any way. They studied many
white papers and publications available on this subject.
Each champions its own approach; however, across
all of them, there are some fundamental similarities:

1.	 In order to ensure that MCDC coverage can be
proven based on trace data, the structure and the
position of a decision within the source code must
both be known.

2.	At the same time, each condition in the source code
must be represented at the object code level by a
conditional jump or by a conditional instruction and
not by an arithmetic representation of the condition.

3.	When the MCDC coverage analysis is performed,
the structure and the position of a decision within
the object code must be known.

For the implementation of an MCDC coverage mea-
surement without code instrumentation, according
to requirement #1, additional information about the
source code structure is required. This is currently not
part of the debug information generated by the com-
piler. In addition to this, it must be ensured that the
compiler generates the object code in such a way that
it fits requirement #2.

AdaCore

MCDC coverage can be proven easily with a trace
recording if the compiler and the software perform-
ing the MCDC coverage analysis are from the same

Decision Coverage

http://www.lauterbach.com

4

provider. The compiler can include the new required
information on the structure and the position of each
decision within the source code into the debug infor-
mation. The company AdaCore (refer to [2]) offers such
a solution. In addition to this, AdaCore also offers a
target emulation solution for generating trace data.

For customers who have to additionally prove an
MCDC coverage for the final implementation on the
target hardware, AdaCore offers an interface which al-
lows trace data recorded with TRACE32 to be import-
ed for the required analysis.

t32cast

As of March 2018, Lauterbach customers can also
prove an MCDC coverage in TRACE32 based on a real-
time trace recording. Lauterbach offers the t32cast
command line tool for this purpose, which analyzes
the C/C++ source code. As a result, the information
on the decision structure required for the execution of
the MCDC coverage measurements is generated for
each source code file. Consequently, the build process
must be adjusted in order to allow this information
to be generated (refer to “TRACE32 Extended Code
Analysis” figure on the top of the page). The t32cast
command line tool is compiler-independent and it can
be easily integrated into existing build environments.

As soon as the user starts the MCDC coverage mea-
surement in TRACE32, TRACE32 automatically loads
all required .eca files, generated by the t32cast tool.
Subsequently, TRACE32 is able to map the decisions
on source code level to the object code with the help
of the debug information.

However, during this process, the user must ensure
that the selected compiler represents each condition
in the source code by a conditional jump or by a con-
ditional instruction at the object code level, e.g. by dis-
abling optimizations.

Conclusion

The TRACE32 MCDC coverage can be used indepen-
dently from the compiler and the processor architec-
ture. For those who can’t abandon code optimization,
even when implementing safety-critical systems, there
is no way around reducing the optimization for the
trace-based MCDC coverage.

In the future, it would hold significant value, if com-
pilers could be configured so that, at the object code
level, decisions are translated into conditional jumps
or conditional instructions only, independently from
the optimization level selected, and that optimizations
selected are performed entirely for all remaining areas.

References

[1] CAST-17 Position Paper (2003, January).
Structural Coverage of Object Code
[2] Comar, C., Guitton, J., Hainque, O., & Quinot, T.
(2012, May). Formalization and comparison of MCDC
and object branch coverage criteria. In ERTS (Embedded
Real Time Software and Systems Conference).
[3] RTCA Inc. (2011, December) RTCA/DO-178C Software
Considerations in Airborne Systems and Equipment
Certification

TRACE32 Extended Code Analysis

Project Folder ExecutableBuild Process

Preprocessor
 t32castExtended

Code Analysis

101 0 10
001 00101
0 11 101 0
00101 0001
0110 01

*.eca

Source
Files

5

NEWS 2018

www.lauterbach.com

Code Coverage Live

Real-time Profiling (RTS) is the name given by Lauter-
bach to the trace mode in which trace data is streamed
to the host during recording and analyzed there imme-
diately. This allows the results of the code coverage
analysis to be followed live on the screen. At the end of
2017, the RTS mode, which could already be used for
Arm-ETMv3 since 2009, was rolled out on further trace
protocols. The “RTS - Supported Trace Protocols” ta-
ble shows an overview of all currently supported trace
protocols.

Basic Conditions

The following basic conditions apply to all supported
trace protocols:

1.	The program code is required for decoding trace
data. Given that it would be too slow to read the
code from the memory during program execution,
the code must be loaded into TRACE32 before
starting the live analysis. This means that a live anal-
ysis can be performed for static programs only.

2.	The live analysis of trace data works only in cases
where the average data rate at the trace port does
not exceed the maximum data transmission rate
to the host computer. Given that current TRACE32
trace tools are equipped with a USB3 interface, the
maximum data transmission rate to the host com-
puter is around 180 MByte/s. The transmission rate
has tripled compared to data rates that were avail-
able in 2009.

3.	The live analysis of trace data can currently be per-
formed for single core and for SMP multicore trace
streams. The implementation for AMP multicore
trace streams is currently still in the development
phase.

4.	The live code coverage measurement can be used
for the metrics Object Statement Coverage and Ob-
ject Branch Coverage as well as for Statement Cov-
erage and Decision Coverage.

Generally, trace data is no longer required after it
have been analyzed. However, TRACE32 offers the
option to save the trace data during the analysis
into a streaming file. This allows the trace data to be
verified one more time, in a detailed way, even af-
ter the code coverage measurement has been com-
pleted. Just like conventional TRACE32 code cover-
age measurement, RTS mode allows comprehensive
test reports to be created.

Real-Time Processing of Trace Data

O
ff

-c
h

ip
 T

ra
c

e
P

o
rt

Streaming
File

Streaming
Recording

Trace Tool

RTS – Supported Trace Protocols

•	 ETM v3	 on Arm / Cortex ®

•	 PTM	 on Arm / Cortex ®

•	 ETM v4	 on Arm / Cortex ®

•	 MCDS	 on Infineon TriCore ™

•	 Nexus	 on NXP MPC5xxx / STM SPC5xx
•	 Nexus	 on NXP PPC QorIQ ®

others on request

http://www.lauterbach.com

6

Tracing via PCI Express

When a chip is equipped with a PCIe interface, it is
possible to use it for recording and analyzing trace
data with an external trace tool. Some early adopting
Lauterbach customers already use this trace tech-
nique for Arm Cortex-A ® or NXP Power Architecture-
based QorIQ  ® processors.

Trace Tool as a PCIe Endpoint

First of all, let’s briefly outline how tracing via PCI Ex-
press works. The trace tool, TRACE32 PowerTrace
Serial, is designed to operate as a PCIe endpoint. As
such, the trace tool must be connected to the tar-
get and already running before the software (e.g. the
boot loader) starts enumerating and configuring the

endpoints. During this configuration, each endpoint
is allocated an address range in the system memory.
Thereafter, data for this endpoint can be simply written
directly to this location.

The trace infrastructure of the target system must then
be configured to write the trace data into the address
range which has just been allocated to the TRACE32
PowerTrace Serial endpoint. This is applicable to the
vast majority of processors. After this, tracing can
begin.

Summary

Tracing via PCIe is easy to do. For target systems with-
out a dedicated trace interface, this technique offers
an excellent method for recording large amounts of
trace data. The main differences between tracing via
an external interface such as PCIe and a dedicated
trace port can be summarized as:

•	The trace recording can be started only after the tar-
get software has configured the PCIe root complex.
This is a task assigned to the operating system.

•	 At the same time, tracing via PCIe is, strictly speak-
ing, no longer “non-intrusive”. It requires a portion
of the system memory. Furthermore, the trace com-
petes with other endpoints for the bandwidth of the
PCIe bus.

TRACE32 PowerTrace Serial as PCIe Endpoint

 	 AXI Interconnect

DMC

SDRAM

CORE 0

CORE 1

PCI Express
Root Complex

Arm Cortex-A based Target System

ETR

STM

ETM

ETM

Funnel

Trace
RAM

PCI Express
Endpoint

PowerTrace Serial

PCIe Link

Characteristics

Variable data rate
 Gen1 250 MByte / s per lane
 Gen2 500 MByte / s per lane
 Gen3 984 MByte / s per lane

Variable port width (1, 2, 4 or 8 lanes)

Full-size card adapter available,
mini-PCIe card adapter planned

4 GigaByte of trace memory,
trace decoding for all standard protocols

7

NEWS 2018

www.lauterbach.com

Seamless Transition from Wind River to TRACE32

Since 2014 Wind River has stopped offering JTAG
debuggers, and existing users are increasingly
switching to TRACE32 for maintenance and further
development of their products. In close coopera-
tion with Wind River, Lauterbach has enhanced its
TRACE32 software, and any basic adjustment to the
system is implemented seamlessly in order to en-
sure that users can keep working as per usual.

Support for All Processors

Most clients changing over to TRACE32 use proces-
sors of the Power Architecture TM family. Support for
this architecture has been part of the Lauterbach prod-
uct portfolio since 1997, and clients changing over to
TRACE32 can rely on proven debug solutions.

Script Converter

Before being able to start with debugging, the pro-
gram code is usually programmed into target flash.
TRACE32 uses a script for this. The setting of the pro-
cessor configuration register, in particular the SDRAM
configuration, is an important component of the script.
Wind River defined the required settings in a “Regis-
ter Configuration File”. Lauterbach provides a special
converter for translating this file into a TRACE32 script.
Over the years of professional debugger use, custom-
ers have often accumulated a large number of test

scripts for various purposes. Lauterbach provides a
script converter allowing the transfer of these complex
test scripts to TRACE32.

Wind River Workbench

Switching to a new debugger after using the same
tried and tested system for many years can be an anx-
ious moment for many engineers. For this reason, in
2015, Lauterbach enhanced its debuggers to act as
a TCF agent. It is now possible to use the Wind River
Workbench as a debug IDE with the TRACE32 debug-
ger acting as the debug backend.

Support for All Wind River Products

In most projects, Wind River software products are also
used, for example: Wind River VxWorks, Wind River
Linux, or Wind River Hypervisor. Comprehensive debug
solutions for these products were obviously provided
when using a Wind River debugger. Lauterbach is an
extremely experienced tool provider in this area as
well, and TRACE32 has supported the debugging of
Wind River VxWorks since 1996. Full Wind River Linux
support was added in 2000. Currently TRACE32 also
offers support for Wind River products which no longer
have Workbench JTAG debug capability. This includes
VxWorks 7, VxWorks 653 v4 as well as Wind River
Hypervisor v3.

http://www.lauterbach.com

TRACE32 Debugger for RISC-V

Lauterbach launched its new RISC-V debugger in
November 2017. The first chips currently supported
are the E31 Core Complex (32-bit) and the E51 (64-bit)
Core Complex by SiFive.

RISC-V is an Open Instruction Set Architecture
(ISA), based on the established RISC principles, and
is organized, specified and developed under the
direction of the RISC-V Foundation (https://riscv.org).
Initially established for academic research, RISC-V is
currently gaining traction in the embedded market, making
a professional hardware debugger indispensable.

The Lauterbach implementation for the RISC-V
debugger is based on the open source specification

“RISC-V External Debug Support” that is expected to
be adopted by the RISC-V Foundation in 2018. The
objective of the specification is a flexible halt mode
debugging. Each hardware thread of a RISC-V core
shall be debugged from the reset directly.

To be able to debug RISC-V processors with TRACE32,
they currently must be equipped with the JTAG DTM
(Debug Transport Module). The DTM is specified as an
independent and replaceable module, allowing chip
manufacturers to have the freedom to implement the
access to the Debug Module via a different communi-
cation interface. Thanks to its vast experience with the
different debug communication interfaces, Lauterbach
is a competent implementation partner.

Via the Debug Module, the TRACE32 debugger has
access to all standard debug functions of the pro-
cessor. These are part of the specification as Debug
Register and Abstract Commands. Furthermore, the
specification also allows the design of proprietary
debug functions. The TRACE32 RISC-V debugger al-
ready supports different standard ISA extensions as,
for example, compressed instructions or floating-point
instructions but it also supports customer-specific ISA
extensions.

JTAG Debugger

RISC-V PlatformTRACE32 PowerView

JTAG

Debug
Module

Debug
Transport
Module

Debugger

If your address has changed or you do not want to receive a newsletter
from us any more, please send a brief email to the following address:

mailing@lauterbach.com

