
Nexus

GDB

AndroidAndroid

Linux

Infineon MCDSInfineon MCDSInfineon MCDSInfineon MCDSInfineon MCDS

AARMRMR ® CoreSighCoreSighCoreSight™

Unit TestingUnit Testing

Timing ToolsTiming Tools

Windows 10Windows 10Windows 10
AUTOSARAUTOSAR

Requirements AnalysisRequirements AnalysisRequirements Analysis

PIL Simulation

Reverse Debugging

Target Communication
Framework

Intel ® Trace Hub

NEWS 2016

CONTENTS
PIL Simulation with TRACE32

New TRACE32 Base Modules

TRACE32 PowerTrace Serial

Support for Intel ® Trace Hub

TRACE32 as a TCF-Agent
Wind River Workbench
Eclipse

TRACE32 as an UndoDB Front End

2

4

5

6

7

8

2

TargetMathWorks Simulink ®

TRACE32
Remote API

JTAGTRACE32
Remote API

JTAG

PIL block

JTAG-based PIL testing

PIL Simulation with TRACE32
In March 2016, Lauterbach will provide its Simulink
plug-in for PIL (Processor-in-the-Loop) simulation.
With this new plug-in, the modeling environment
can communicate directly with the target through a
TRACE32 debugger.

Over the course of the last few years, model-based
methods have become more and more important in
software development. The advantage of model-based
methods is the continuous verifi cation of the software
design. The Processor-in-the-Loop simulation has be-
come an important step in the design verifi cation.

PIL Simulation

PIL simulations are performed to ensure the devel-
oped algorithms provide the correct functionality in
the target environment. This verifi cation step can be
executed on one of the following target systems:

• Final target hardware / evaluation board
• Virtual target / core simulator
• TRACE32 Instruction Set Simulator

To execute the PIL simulation, the algorithm to be test-
ed is replaced by a PIL block in the modeling environ-
ment.

TRACE32 PIL

The TRACE32 PIL plug-in (see the screenshot on this
page) is used to confi gure the PIL simulation. The
most important confi guration steps of this plug-in will
be presented briefl y in the following.

Checkbox: Map Simulink and C Interface

The interface between Simulink and the target applica-

tion needs to be confi gured before generating the PIL
block. For confi guration purposes, the Mapping GUI
dialog (see the screenshot on page 3) automatically
generates a suggestion for mapping the callbacks of
the S-function (user-defi ned block) to the correspond-
ing C functions. This suggestion can be checked and
corrected in the dialog. The same map must also be
created between the model parameters and the C vari-
ables.

Checkbox: Generate PIL Wrapper

Based on the maps of the callbacks and the model
parameters, the following interfaces are created auto-
matically in this confi guration step:

 TRACE32 PIL TRACE32 PIL TRACE32 PIL

www.lauterbach.com 3

NEWS 2016

Mapping Simulink callbacks C functions

Mapping Simulink parameters C variablesMapping Simulink parameters C variables

• Implementation of the callbacks on the target sys-
tem

• Interface of the model to the TRACE32 Remote API

After that, the executable code can be created.

Checkboxes:
Generate PIL Block and Switch to PIL Variant

After the function interface between the model and the
TRACE32 Remote API is created, the PIL block can
be created and displayed in the simulation model. The
confi guration of the PIL simulation is complete as soon
as TRACE32 starts.

Advantages

1. All methods of code generation can be used

Through the ability to dynamically confi gure the inter-
face for the callbacks, the Lauterbach solution can be
used with all code generators as well as with code
created manually.

2. Direct adaptation to new target systems

TRACE32 supports a very wide range of processor
architectures and compilers. Start-up scripts for the
target systems can be created directly by the develop-
er. You don‘t have to wait for a software update from
any tool provider. As soon as the debugger is able to
communicate with the target, the basis for the PIL sim-
ulation is ready.

3. Immediate debugging

If the results of a simulation deviate from what was
expected, then it is possible to debug the C functions
directly.

4. License policy

Developers who are already using a hardware-based
TRACE32 debugger or a virtual target with a TRACE32
Floating License, need only a TRACE32 PIL Simulation
License. Customers who want to use a TRACE32
Instruction Set Simulator for the simulation additionally
need the new TRACE32 Simulator License.

Mapping Simulink and C Interface

4

All TRACE32 PowerDebug modules are now equipped
with a USB 3 interface. The module PowerDebug PRO
also offers a Gigabit Ethernet interface as well as a
PodBus Express interface which is used for connect-

ing the trace modules TRACE32 PowerTrace PX (new)
or TRACE32 PowerTrace II. The previous generation of
base modules can still be used for new chips/proces-
sors without any restrictions.

Conversion to New Base Modules Completed in 2015

PowerDebug USB 3

D
e
b

u
g

C
a
b

le

P
ro

b
e

PowerTrace PX

P
a
ra

lle
l

N
e
xu

s

PowerDebug PRO

Power
Trace
PX

PowerDebug PRO

D
e
b
u
g

C
a
b
le

PowerDebug USB 3
Previous generation PowerDebug USB 2

PowerDebug PRO
Previous generation PowerDebug Ethernet or PowerDebug II

PowerDebug PRO + PowerTrace PX
Previous generation PowerTrace Ethernet

PowerDebug PRO + PowerTrace II
Previous generation PowerDebug II + PowerTrace II

PowerDebug USB 3

C
o
m

b
i

P
ro

b
e

PowerDebug PRO

C
o
m

b
i

P
ro

b
e

P
ro

b
e

PowerTrace II

PowerDebug PRO

D
e
b
u
g

C
a
b
le

P
a
ra

lle
l

S
e
ri

a
l

S
e
ri

a
l

Power
Debug

USB
3

Power
Debug
PRO

Power
Trace

II

www.lauterbach.com 5

NEWS 2016

The new TRACE32 base module PowerTrace Serial
will be available for delivery starting in Q2/2016.

Lauterbach has supported serial trace interfaces since
2008 with a serial trace probe for various processor
architectures. The probe has the following features:

• Up to 4 RX channels
• 6.25 Gbit/s per channel for up to 3 channels
• 3.125 Gbit/s per channel for up to 4 channels
• For trace protocols that use Aurora

The bandwidths of current serial trace interfaces on the
processors are not always high enough to enable the
developer to fully visualize the internal operations in
complex multicore systems. This is why some proces-
sor manufacturers are starting to develop interfaces
with higher data rates and more channels. In addition,
PCI Express is being mentioned more and more often
as a trace export interface.

PowerTrace Serial Features

The TRACE32 PowerTrace Serial base module is de-
signed to meet the latest requirements.

• Up to 8 channels
• Up to 12.5 Gbit/s per channel
• Xilinx Aurora as well as other protocols

especially PCI Express
• 4 gigabyte trace memory

Since these features could only be implemented by
using a very large and high-performance FPGA, the
new PowerTrace Serial has been designed as an
all-in-one solution. This means the serial trace probe
previously available separately is now integrated into
the PowerTrace Serial. Lauterbach offers various

accessory sets to connect the PowerTrace Serial to
the target. The accessory sets will normally consist of
an appropriate fl ex cable and the necessary adapters.

The PowerTrace Serial is licensed for decoding the
core trace information of one processor architecture
upon delivery. Trace decoding functionality for other
architectures can simply be licensed later on at any
time.

PowerTrace Serial Connectors

The PowerTrace Serial is equipped with the following
interfaces:

Serial trace port 0 (Samtec ERF8, 40-pin)

• For trace protocols that use Aurora
• 6 RX channels
• Reference clock 0.325 - 6.25 GHz

Target Debug Port (34-Pin MIPI Connector)

If debug signals are also routed to the 40-pin Samtec
connector (JTAG/SWD/cJTAG), then a TRACE32 debug
cable can also be connected here.

Serial trace port 1 (Samtec ERM-ERF, 80-pin)

• For all protocols
• 8 RX / TX channels
• Reference clock 0.325 - 6.25 GHz or

10 - 500 MHz

By providing both trace ports, the PowerTrace Serial
can be used in current designs as well as in future
projects.

PowerTrace Serial

TRACE32 Accessory Set

6

Support for Intel ® Trace Hub

In May 2016, TRACE32 will support the Intel ® Trace
Hub and its associated framework.

Intel ® Trace Hub

Intel ® Trace Hub (Intel ® TH) is the name of the trace
infrastructure Intel provides in its new hardware plat-
forms. This trace infrastructure makes it possible:

1. To provide a common timestamp to Intel ® Proces-
sor Trace data from individual cores and System
Trace information from a variety of sources.

2. To merge all data into a single trace stream by using
the MIPI STPv2.1 protocol.

3. To convey this stream to the selected trace destina-
tion.

To enable debug and trace tools such as TRACE32 to
support this trace infrastructure easily, Intel also pro-
vides a software framework.

Intel ® Trace Hub Confi guration API

The aim of the Intel ® Trace Hub Confi guration API is
to simplify the confi guration of the trace infrastructure
through the debug tool. TRACE32 does not have to

know the platform-specifi c programming sequence,
but can send a confi guration request to the Intel ® TH
Confi guration API instead. The API then provides the
appropriate programming sequence, and TRACE32
writes this sequence to the control registers via the
JTAG interface.

Intel ® Trace Hub Library

The aim of the Intel ® TH Library is to convert the System
Trace packets into human readable trace messages.
Since the Intel ® TH has packed all trace information in
the MIPI STPv2.1 protocol, it must fi rst be unpacked
and then distributed for decoding (see picture above):

• Intel ® Processor Trace packets remain in TRACE32,
where they are directly decoded for display and eval-
uation.

• The System Trace packets are forwarded to the
Intel ® TH Library. The returned decoded and human
readable trace messages can then be displayed
and evaluated within TRACE32 with a dedicated
command group.

The simple availability of a time-correlated view of all
trace information in TRACE32 allows a quick overview
of the platform-wide activities.

Unpack and dispatch

Intel ® Trace
Hub Library

Translate System Trace
to human readable

Intel ®
Trace Hub

Core Trace listing

System Trace listing

www.lauterbach.com 7

NEWS 2016

Protocol: TCF
Link: TCP/IP

JTAG

Target

TRACE32 as a TCF-Agent

Since October 2015, TRACE32 also operates as a
TCF agent. This makes it possible to use the Wind
River Workbench or the Eclipse debugger as an IDE
and a TRACE32 debugger as a debugging back end.

TCF

The Target Communication Framework (TCF) was
developed by the Eclipse Foundation as a protocol
framework with the goal of defi ning a uniform debug-
ging communication protocol between an IDE and a
target system.

The TCF communication model is based on the idea
of services. A service is a group of related commands,
events, and the corresponding semantics. The Memory
Service, for example, defi nes a group of commands
and events for reading and writing to memory.

TCF defi nes a series of standard services. At the same
time, the framework is open for the defi nition of propri-
etary services.

TRACE32 TCF

After the TRACE32 software is started as a TCF agent,
it provides its services to the Wind River Workbench or
the Eclipse debugger via TCP/IP.

Requested services are operated by TRACE32 with
the help of the debugger connected to the target. It
does not matter if this is a hardware-based debugger
connected via JTAG to the target system or a pure
software debugger communicating with a virtual tar-
get. At the present time, TRACE32 offers all traditional
services relevant to debugging. Depending on the
feedback and requests from customers, development

of special TRACE32 services for extended functions is
planned for the future. Lauterbach offers a TRACE32
TCF plug-in for customers who want to confi gure and
start TRACE32 from the Wind River Workbench or the
Eclipse debugger.

Wind River Workbench

Until this year, Lauterbach has not offered an integrated
debugging solution for developers who prefer to work
with the Wind River Workbench. This limitation has
now been resolved.

Eclipse Debugger

The previous GDB-based connection was restricted to
the processor architectures and compilers supported
by GDB. Using its TCF services, TRACE32 can now
provide an open communication interface for debug-
ging with Eclipse for all processor architectures and
compilers supported by TRACE32.

VxWorks 5/6/7

VxWorks 653 2.x

VxWorks 653 3.x

Wind River Linux

Wind River Hypervisor 2.x

VxWorks Microkernel Profile

TRACE32 Support for Wind River

JTAG-based TCF Toolchain

If your address has changed or you do not want to receive a newsletter
from us any more, please send a brief email to the following address:

mailing@lauterbach.com

TRACE32 as a Front End for UndoDB
TRACE32 can be used as a front end for the UndoDB
reversible debugger since the middle of 2015. The
ARM/Cortex as well as Intel® x86/x64 architectures
are supported.

With the UndoDB target server, Linux developers have
a tool available that allows them to debug an applica-
tion process as well as to record details of its execu-
tion.

In addition to controlling the debugging process,
the TRACE32 front end also takes over the task of
displaying the recorded data of the UndoDB target
server in the TRACE32 GUI. Like a trace recording,
the developer has the ability to debug the application

going through the code both forward and backward
(“reverse debugging”). Using this function, errors in the
application process can be located quickly and easily.

To provide a visual emphasis that debugging of the
recorded data has been activated, the time of recording
displayed in the TRACE32 status line is referenced in
reverse. In addition, the debug buttons in the source
listing are displayed in yellow. The TRACE32 GUI
switches automatically to the following display mode:

• In the source listing, the instruction pointer is reset to
its value at the time of recording displayed.

• The contents of memory and variables at the time of
recording are displayed.

Recording point displayed

Variable reconstruction

Forward & backward debugging

Target

UndoDB server

Protocol: GDB
Link: TCP/IP

