
ARM’s
big.LITTLE

Systems

2013

big.LITTLE
SystemsSystemsSystems

NEWS 2013

DEBUGGER, REAL-TIME TRACE, LOGIC ANALYZER

TRACE32 Multicore Strategy 2

Code Coverage: Documenting Results 4

New Supported Processors/Chips 6

UEFI Debugging for ARM 7

 New Supported Target-OS 7

 µTrace for CortexTM-M Family 8

NEWS 2013 CONTENTS

For many years now, Lauterbach has had strategic partner-
ships with most of the major companies in the cell phone
industry. In 2001 cell phone manufacturers fi rst revealed
their plans to implement multicore ASICs into their
next generation products. This presented Lauter-
bach designers with two main challenges. First,
the TRACE32 PowerView software had to be re-
developed to enable confl ict-free debugging of
two or more daisy-chained cores. Secondly,
the cell phone manufacturers made it quite
clear that they expected Lauterbach de-
buggers to support all of the cores inside
an ASIC. Until this point DSPs had not
been a focus within the Lauterbach
portfolio so a lot of catch-up work
had to be undertaken.

At embedded world 2003 in
Nuremberg, Lauterbach in-
troduced its multicore de-
bugging solution for two
commercially available
chips: the OMAP1510
(TMS320C55x,
ARM9) from Texas
Instruments and
the S-GOLD
(ARM9, OAK
DSP) from
Infi neon.

Since then, Lauter-
bach has supported

many customers in
their multicore projects,

continually adapting the
TRACE32 hardware and

the PowerView software to
meet the increasingly com-

plex debug and trace capabil-
ities being designed into multi-

core chips.

So what challenges does Lauter-
bach see in 2013?

Many SMP system designers want
cores with more processing power

but less energy consumption. The big.
LITTLE system from ARM now makes it pos-

sible to couple an energy-effi cient LITTLE core
(Cortex-A7) and a high-performance big core

(Cortex-A15) together. The basic idea is sim-
ple. By default, software normally runs on the

LITTLE core but as soon as more processing power
is required, the operating system transfers software

processing to the big core. As LITTLE and big cores
provide different debug and trace technologies, and in

response to the demand for dynamic recognition of which
core is active, Lauterbach plans to develop solutions in line
with customer requirements during 2013.

Multicore
Debugging
Multicore
Debugging

NEWS 2013

2

Lauterbach has supported debugging and tracing of multi-
core chips for more than 10 years.

Flexibility

A long-standing aim for Lauterbach has been to make
its TRACE32 hardware and software as fl exible as pos-

sible. Every core combination, every multicore topology,
every multicore operation mode, and even the most com-
plex debug and trace infrastructures are all supported by
TRACE32. This fl exibility also means that TRACE32 sup-
ports debugging and tracing of both AMP systems and
SMP systems. For an overview of the most important dif-
ferences in debugging these two systems, see the tables
on pages 2 and 3.

SMP System — Symmetric MultiProcessing

Target System Layout An SMP system consists of two or more cores. These are usually identical, or at
least instruction-set compatible.

Task Assignment/
Operating System

A single SMP operating system assigns tasks to the cores
(dynamically or statically).

Number of TRACE32 Instances
Only one TRACE32 instance is started for debugging an SMP system.

This instance controls all cores and displays all information.

Synchronized Core Start/Stop All cores are started and stopped synchronously.

On-Chip Breakpoints On-chip breakpoints are programmed in parallel in the debug registers of all cores.

Trace Filters and Triggers
Trace fi lters and triggers are programmed in parallel in the trace registers of all
cores.

Trace Display Trace information can be displayed either for all cores at once or individually for
each core.

Profi ling Runtime can be measured for each core individually or for the whole system.

TRACE32 Multicore Strategy

SMP multicore confi gurations

SMP system

www.lauterbach.com3

70+ Supported Processor Architectures

Another important principle within Lauterbach is to sup-
port a wide variety of processor architectures including:
standard cores, DSPs, FPGAs with embedded soft-cores,
and confi gurable cores. Each new core is integrated
into TRACE32 in a way that ensures that the core can
be debugged as a single-core subsystem within an AMP

system. For any architecture, SMP debugging and trac-
ing is added to the debugger as soon as the fi rst SMP-
capable chip is launched by the chip manufacturer. For
SMP-capable chips it is particularly important to adapt the
TRACE32 OS-awareness. This adaptation must take into
account whether the SMP operating system assigns pro-
cesses to the cores dynamically during runtime, or wheth-
er some or all of the processes are assigned statically.

AMP System — Asymmetric MultiProcessing

Target System Layout An AMP system consists of several subsystems: individual cores and/or SMP
systems.

Task Assignment/
Operating System

Tasks are assigned to the subsystems during the design phase.

An operating system only controls one subsystem.

Number of TRACE32 Instances

Two or more TRACE32 instances are started for debugging an AMP system.

Each TRACE32 instance controls a complete subsystem and displays its
information.

Synchronized Core Start/Stop All subsystems can be started and stopped synchronously (confi gurable).

On-Chip Breakpoints On-chip breakpoints are programmed independently for each subsystem.

Trace Filters and Triggers Trace fi lters and triggers are programmed independently for each subsystem.

Trace Display A TRACE32 instance displays trace information for all the cores controlled by that
instance.

Profi ling

A TRACE32 instance can measure the runtime for all the cores controlled by that
instance.

A global timestamp allows to directly display the timing connection between the
subsystems.

AMP multicore confi gurations

NEWS 2013

4

Code Coverage: Documenting Results

As of November 2012, TRACE32 PowerView pro-
vides new features to document the results of code

coverage analysis. Features that have newly been
added are a comment function and an XML export.

Record

JT
A

G

Trace
control
logic

Core
trace
logic

Core 0

Tr
ac

e
p

o
rt

Trace memory
as FIFO

File on
hard-disk

TRACE32
Debug & Trace Tool

TRACE32 PowerView

64-bit host

Chip

Review

Trace-Based Code Coverage

Proof of statement coverage and decision coverage is
often required for quality assurance of products in mar-
kets such as medical and avionics. For many embedded
systems, the specifi cation requires that highly-optimized
code is tested in real-time. Code instrumentation and run-
time falsifi cation are forbidden. Lauterbach’s trace-based
code coverage system provides customers with proof of
statement coverage and decision coverage. However, the
processor or multicore chip used must fulfi ll the following
requirements:

The target cores must have an on-chip trace logic that
generates information about the execution of instructions
on the cores. At the same time, the processor or multicore
chip must have a trace port with suffi cient bandwidth so
that the complete trace information can be recorded by an
external tool.

For average data transfer rates up to 60 MB/s, the trace
data can be streamed to the host computer during record-
ing. This means that several TBytes of trace information
can be recorded during each test run.

As the trace information is available at assembler level,
the following proofs can be provided:

• Object Statement Coverage
It proofs that each line of assembly code was executed
at least once during the system test.

• Object Branch Coverage
It proves that each conditional branch was both taken
and not taken at least once.

www.lauterbach.com5

For the lines of high-level language code, statement
coverage and decision coverage can easily be de-
rived from this analysis.

Comment Function

Generally, developers write test cases to prove that
an embedded system complies fully with all require-
ments. These are then the basis for the system test.

To collect data for code coverage analysis, the trace tool
records all information about the instructions executed
during the system test (Record). The recorded trace in-
formation is managed by TRACE32 PowerView in a code
coverage database. This provides numerous ways in
which the user can analyze and display the code cover-
age results (Review).

After testing is completed, the tester has to decide:

• Is a section of code that was not executed supposed to
fulfi ll a requirement? If so, a suitable test case must be
created for the next system test run.

• If a section of code that was not executed is supposed
to fulfi ll a requirement that is not testable in the cur-
rent system confi guration, the new TRACE32 comment
function can be used to explain the reason it’s included
(Comment).

• Is there any "dead" code? This must be removed from
the software.

XML Export

After system test completes, you need to document the
results of the code coverage analysis. Exporting the
results in XML format is now supported in TRACE32
PowerView. These fi les can be exported:

1. The assembly code and high-level language
code, as well as code-coverage tagging
(my_coverage.xml).

2. High-level results of the code coverage analysis e.g.
module or function coverage.

3. Comments that explain why individual code sections
are permissible, even though they were not executed
during the test (bookmark.xml).

Lauterbach provides a transformation fi le for an in-
tuitive display of the results in a Web browser
(t32transform.xsl). If necessary, the results can also be
saved as a PDF fi le.

Export

Open

Export

OpenOpen

Trace-based Code Coverage

TRACE32
Coverage Data

Coverage
(my_coverage.xml)

BookMarks
(bookmark.xml)

Format
(t32transform.xsl)

Export to browser

Save
as...

Export

Comment

NEWS 2013

6

 Processors/Chips

Altera Cortex-A/-R
• Cyclone V SoC

Analog Devices Cortex-M
• ADuCM36x

AppliedMicro PPC40x
• PPC405EX, PPC405EXr
PPC44x
• SMP for APM PacketPro

ARM Cortex-A5x (ARMv8)
• Cortex-A53
• Cortex-A57

Atmel Cortex-M
• ATSAM4

Axis MIPS32
• ARTPEC-4

Broadcom MIPS32
• BCM47186
• BCM6318, BCM6828
• BCM7346, BCM7356
• BCM7418, BCM7425

BroadLight MIPS32
• BL25580

CEVA CEVA-X
• CEVA-XC323
TeakLite-III
• CEVA-TeakLite-4

Energy Micro Cortex-M
• EFM32LGxxx, EFM32WGxxx
• EFM32ZGxxx

Freescale ColdFire+/V1
• MCF51AC/AG/CN/EM
• MCF51JE/JM/MM/QE
• MCF51JF/JU/QM/QU
Cortex-A/-R
• Vybrid F Series
Cortex-M
• Kinetis L
• Vybrid Series
MPC85XX/QorIQ e500
• P1010, P1012, P1014
• P1017, P1021, P1023
QorIQ 32-Bit
• P2040, P2041
QorIQ 64-Bit
• B4220, B4420, B4860
• P5021, P5040, T10XX
• T2080, T2081, T4160, T4240

Freescale
(Cont.)

PX-Series
• PXD1005, PXD1010, PXD2020
• PXN2020, PXN2120, PXR40xx
• PXS2005, PXS2010, PXS30xx
Qorivva MPC5xxx
• MPC5743K, MPC5744K
• MPC5744P, MPC5746M,
• MPC5748G, MPC5777M
S12Z
• S12ZVH, S12ZVM
StarCore
• B4220, B4420, B4860

Hilscher ARM9
• NETX 51

Infi neon Cortex-M
• XMC4000 Family
• TC2D5T/D7 T, TC2D5TE/D7TE
• TC275T/277T, TC275TE/277TE
TriCore
• TC2D5T/D7T, TC2D5TE/D7TE
• TC275T/277T, TC275TE/277TE

Intel® Atom™/x86
• Atom Z2460/CE2600/N2800
• Core i3/i5/i7 3rd Generation

Marvell ARM11
• MV78130v6, MV78160v6
• MV78230v6, MV78260v6
Cortex-A/-R
• MV78130v7, MV78160v7
• MV78230v7, MV78260v7

Mobileye MIPS32
• EyeQ3

NEC MIPS32
• EMMA3 Series

NVIDIA Cortex-A/-R
• TEGRA 3

NXP Beyond
• JN5168
Cortex-M
• LPC43xxx, LPC800

Renesas Cortex-A/-R
• R-Car H1
MIPS32
• RT3352
RH850
• RH850/E1x, RH850/F1x
RL78
• RL78D1A/F1x/G1x/I1A/Lxx
RX
• RX630, RX631, RX63N
SH
• SH7267

www.lauterbach.com7

UEFI Debugging for ARM

• FreeRTOS for Beyond and ColdFire
• Linux for Beyond and x86 64-bit
• OSEK/ORTI SMP
• QNX for x86
• Quadros for CEVA-X
• RTX-ARM v4
• SMX for ColdFire
• SYS/BIOS for TMS320C6x00
• VxWorks for x86
• µC/OS-II for TMS320C28X
• µC/OS-III for SH

 Processors/Chips

Renesas
(Cont.)

V850
• V850E2/Fx4-L
• V850E2/Mx4 Multicore

Samsung Cortex-A/-R
• Exynos 4212, Exynos 4412
• Exynos 5250
• S5PV210

Sigma Designs MIPS32
• SMP8634, SMP8654

ST-Ericsson Cortex-A /-R
• DB8540
MMDSP
• DB8540

STMicro-
electronics

Cortex-A/-R
• SPEAr1310, SPEAr1340
Cortex-M
• STM32 F3, STM32 F4

STMicro-
electronics
(Cont.)

SPC5xx
• SPC56AP60, SPC56AP64
• SPC560P54, SPC560P60
• SPC574K70, SPC574K72
• SPC574L74, SPC57EM80
• SPC57HM90

Synopsys ARC
• ARC-EM 1.1

Texas Instruments Cortex-A/-R
• RM4 Series
Cortex-M
• F28M35 Concerto
• LM4F Series
MSP430
• MSP430FR5xx
TMS320C28X
• C28346
• F28022, F28027, F28M35
TMS320C55X
• C5535
TMS320C6x00
• C6655, C6657, C6713

In 2012, Lauterbach increased support for debugging UEFI
BIOS. The following UEFI BIOS variants are now support-
ed:

• InsydeH2O for Atom and x86

• Intel BLDK for Atom and x86

• TianoCore for ARM/Cortex

To enable UEFI debugging, a TRACE32 extension is re-
quired. For detailed information on UEFI debugging, see:
www.lauterbach.com/uefi .html

Enhancements to Target-OS
 Target-OS

DEOS for PowerPC available

Linux for ARMv8 (64-bit) planned

OKL4 5.0 for ARM available

Windows Standard
(XP, Vista, Win7, Win8) for x86 32/64-bit planned

µT-kernel for ARM available

NEWS 2013

8

If you have changed your address or if you do not want
to receive any mail from us, please send an e-mail to:

 mailing@lauterbach.com

Starting June 2013, a low-cost debugger for the
Cortex-M family will be available from Lauterbach. Due to
the high market penetration of Cortex-M processors an
all-in-one solution has been developed, that will provide
the following features:

µTrace Characteristics

• Support for more than 1000 different Cortex-M
 processors
• USB 3 interface to the host computer
• Standard JTAG, Serial Wire Debug, and cJTAG
• 256 MByte trace memory
• 34-pin half-size connector for target hardware and
 adapters for a wide variety of other connectors
• Voltage range 0.3V to 3.3V, 5V tolerance

Debug Features

• C/C++ debugging
• Simple and complex breakpoints
• Read and write memory during program runs

• Flash programming
• OS-aware debugging
• Multicore debugging of two or more Cortex-M cores

Trace Features

• 4-bit ETMv3 in Continuous mode
• ITM over TPIU and Serial Wire Output
• Multicore tracing
• Streaming trace information to the host computer

for long-term tracing, streaming rate up to 100 MByte/s
• Analysis of task and function runtimes
• Code coverage analysis
• Trace evaluation even during recording
• Energy measurement using TRACE32 Analog Probe

As with all Lauterbach products, µTrace is controlled by the
TRACE32 PowerView GUI.

µTrace for CortexTM-M Family

LET US KNOW

I.P.

hall 4, booth 210

Multicore debugging of two or more Cortex-M cores

Simple and complex breakpointsSimple and complex breakpoints
Read and write memory during program runsRead and write memory during program runs

