
CONTENTS

New Supported Processors		 4

Nexus-Trace for Small Package Format Cores 5

Checking JTAG Signals			 6

Enhancements to Target OS-Awareness	 6

Code-Coverage – Simplified	 	 7

CoreSight Trace Memory Controller	 10

Trace Analyses for Cortex-M3/M4	 12

Simulink® Integration			 14

UEFI BIOS Debugging with TRACE32	 16

www.lauterbach.com

DEBUGGER, REAL-TIME TRACE, LOGIC ANALYZER

NEWS 2012

Embedded designs are becoming ever more com-
plex and time to market is getting shorter. To meet
these challenges many project managers now rely on
debug and trace tools that can accompany developers
through all phases of the project.

TRACE32, the debug and trace tool family from Lauter-
bach provides a consistent concept and environment
which can be further extended with user customizable
scripts. This helps to shorten the familiarization pro-
cess and makes time for the actual development work.
Developers with practical knowledge gained from
more than 10 years experience with TRACE32 are
quite common. So, what makes TRACE32 different?

•	 Hardware- and software-based tools
•	 Early support for new processors
•	 Large portfolio of supported processors
•	 Extensive test and analysis functions
•	 Seamless integration into the embedded tool chain

Hardware and Software Tools

The core business of Lauterbach is the design and
manufacture of hardware-based debug and trace tools.
In addition Lauterbach has also offered logic analyzers

for over 20 years. The key feature of TRACE32 logic
analyzers is seamless integration within the hardware-
based debug and trace tools. For a typical application
using the logic analyzer integrated in PowerTrace II
read the article “Checking JTAG Signals” on page 6.

Fast, efficient computers mean that more simulation
and validation is being undertaken on PC and worksta-
tions. In the embedded world the pre-silicon software
development on virtual targets has become the norm.
For this phase of the project Lauterbach can provide
pure software solutions.

A Debugger for all Phases of the Project

http://www.lauterbach.com

NEWS 2012 www.lauterbach.com2

Virtual Targets

Today virtual targets are increasingly being used to
start software development long before the first hard-
ware prototypes become available. As soon as a
virtual target is available, debugging of the driver, the
operating system, and the application can begin.

For debugging and tracing, most virtual targets have
their own API. If this is not the case, the standardized
MCD-API (http://www.lauterbach.com/mcd_api.html)
can be used. Many new projects today use multicore
chips. Consequently, Lauterbach has expanded its mul-
ticore debugging support for virtual targets since 2011.

Pre-Silicon Validation

For semiconductor manufacturers, it is important to
validate the design of their processors or SoCs before
actual production. Individual sections are intensely
tested, for example: the JTAG interface, the entire core,
or the interaction between core and peripherals.

For this testing, you traditionally used an emulator for
the silicon (e.g. Palladium) or FPGA prototypes, con-
nected to the hardware-based TRACE32 debug tools.
This would run much slower than the real processors.

Today, you can perform first validations of Verilog or
SystemC models directly on a PC or a workstation.
With pure software validation you cannot use debug
hardware. Therefore, Lauterbach added a Verilog
Back-End to its software in 2011. This simulates a
JTAG interface at the signal level (see figure 1).

The integration of TRACE32 tools into the pre-silicon
validation forms an important part of the early support
for the latest processors and SoCs:

•	 Tested tools are ready before the first silicon leaves
the factory.

•	 Expert knowledge of the new processor/SoC is
available and can be accessed by the customer.

•	 Start-up scripts for the TRACE32 debugger are
available.

60+ Supported Processor Architectures

Lauterbach has tools available for all the common
processors or SoCs on the embedded market. In fact
Lauterbach is the only provider of tools for many cores.
Standard controllers, DSPs, FPGA softcores, configu-
rable cores - everything can be combined into a multi-
core chip and debugged with a TRACE32 tool.

In 2011, Lauterbach also added support for numerous
new processors and multicore chips. For an overview,
see the table on page 4.

Test and Analysis Functions

Each phase of a project requires its own test and
analysis functions. To provide this, the TRACE32
PowerView GUI includes an extensive selection of
commands and menus. Boundary scan commands
(see figure 2), core detection commands and com-
mands for manipulating the JTAG pins are some
examples of low-level commands.

Fig. 1:	 For each user entry in TRACE32 Front-End, Verilog Back-End produces JTAG signals for validation of the model.

Verilog model

TRACE32
Actuator

(shared library)
.DLL /.SO

TRACE32 Front-End for ARM

TRACE32
Verilog Back-End
for Cortex-A/-R

.V

JTAG TAP
.V

Cortex-A
.V

.V

Trigger

Verilog Simulator for Cortex-A

Run-time
counter

JTAG

Reset

TRACE32
Actuator

.V

Verilog
Procedural
InterfaceNamed

pipe

3

During the quality and test phase the high-level com-
mands provide support for the developer and these
typically deal with analysis of trace data. Examples
are: measuring function runtime, energy profiling, or
details of code-coverage.

Since the beginning of 2011, Lauterbach has enabled
most major processor architectures to stream the trace
information to the host computer in real-time. This
allows significantly more diagnostic data to be col-
lected and quality assurance becomes much easier.
For more information, see the article “Code-Coverage
– Simplified” on page 7.

Integration into Embedded Tool Chain

The TRACE32 software is an open design so that it
works smoothly with all of the common basic compo-
nents of an embedded design. This includes:

•	 Host operating systems
•	 Programming languages and compilers
•	 Target operating systems
•	 Virtual machines, such as Android VM Dalvik

The open TRACE32 API allows seamless interaction
with numerous third-party tools. Examples include
special IDEs such as Eclipse, graphical programming
tools and external profiling tools. Several new develop-
ments in this area were added in 2011.

Prism, the parallelization tool from the Scottish com-
pany CriticalBlue, supports developers when migrat-
ing single-core code to run on multicore chips. The tool
enables you to try different parallelization strategies
without making changes to the function code. When
the optimal strategy is determined, the paralleliza-
tion can be performed step by step, also supported
by Prism.

Since July 2011, Lauterbach has included the option of
exporting trace information in Prism format, enabling
the CriticalBlue tools to work with the trace recorded
by the actual operation of the code.

The article “Simulation and Reality Come Closer
Together” on page 14 thoroughly describes another
innovation – the integration between MATLAB Simu-
link® and TRACE32.

Extended Lifetime

When migrating to a new technology Lauterbach has a
philosophy of ensuring there is a long transition phase.
They will not force a customer to accept a technology
change while in the middle of a key project.

For example: Starting in May 2012, Lauterbach will
introduce a QT version of its graphical user interface
TRACE32 PowerView (see figure 3). With QT, an up-
to-date GUI will be available for Linux, Mac OS X, and
other host operating systems.

Lauterbach will continue to support the Motif version
of TRACE32 PowerView so that customers can deter-
mine their own best transition time.

Within these pages of our NEWS 2012, you will find
further information which might be useful for your cur-
rent or future projects. Hopefully you will find a feature
that contributes to your project’s success. We will be
demonstrating several of them live at the upcoming
ESC Silicon Valley, March 26-29th, in San Jose, and at
many other shows in the US throughout the year.

Scan chain configuration

Fig. 2:	 Boundary-Scan commands are available for commissioning
the hardware.

QT-based PowerView

Fig. 3:	 The new QT-based GUI for Linux, Mac OS X and other operating
systems.

NEWS 2012 www.lauterbach.com4

New Supported Processors

New Derivatives

Altera Cortex-A / -R
• FPGA with Cortex-A9 MPCore
 as Hardcore
MIPS32
• MP32

AppliedMicro PPC44x
• 86290 / 491 / 791 Q2/2012

ARM Cortex-A / -R
• Cortex-A7/Cortex-A7 MPCore
• Cortex-A15
• Cortex-A15 MPCore
• Cortex-R5/Cortex-R5 MPCore
• Cortex-R7/Cortex-R7 MPCore

Beyond
Semiconductor

Beyond
• BA22

Broadcom MIPS32
• BCM35230
• BCM63168, BCM63268 
• BCM7231, BCM7358

Cavium MIPS64
• CN61XX / CN62XX / CN66XX
• CN67XX / CN68XX

Ceva CEVA-X
• CEVA-XC

CSR ARM11
• QUATRO 4500

Cypress ARM9
• EZ-USB FX3

Energy Micro Cortex-M
• Giant Gecko

Freescale MCS12X
• MC9S12VR, MC9S12XS
• MM912F634
Cortex-A / -R
• i.MX 6 Series
MPC55xx/56xx
• MPC5604E, MPC5675K,
• MPC5676R
Power QUICC III
• P1010, P1020
• P2040, P2041
• P3041, P4040, P4080
• PSC9131
QorIQ 64-Bit
• P5010, P5020

Fujitsu Cortex-A / -R
• MB9DF126, MB9EF126

IBM PPC44x
• 476FP Q2/2012

Ikanos MIPS32
• Fusiv Vx185

Infineon TriCore
• TriCore Multi-Core
 Architecture

Intel® Atom™/x86
• Atom D2500, Atom N550
• Core i3/i5/i7 2nd Generation

Lantiq MIPS32
• XWAY xRX100
• XWAY xRX200

LSI PPC44x
• ACP344x Q2/2012

Marvell ARM9 Debug-Cabel
• 88E7251
ARM11 Debug-Cabel
• 88AP610-V6, MV78460-V6
Cortex-A / -R Debug-Cabel
• 88AP610-V7, MV78460-V7

Nuvoton Cortex-M
• NuMicro

NXP Cortex-M
• LPC12xx
Beyond
• JN5148

Qualcomm MIPS32
• AR7242
Cortex-A / -R
• Krait

Renesas V850
• V850E2/Fx4: 70F3548..66
 70F4000..70F4011
• V850E2/Fx4-L: 70F3570..89
• V850E2/Px4: 70F3503 / 05
 70F3507 / 08 / 09
78K0R / RL78
• 78K0R/Kx3-C/L
• RL78/G14, RL78/G1A
• RL78/F12, RL78/I1A
SH
• SH708x with
 AUD/Onchip-Trace
• SH7147

5

The Nexus cell, which is integrated into the control-
lers of the MPC560xB/C family from Freescale or the
SPC560B/C controllers of ST, can generate trace data
for the instructions executed by the core. If an operat-
ing system is used, information on task switching are
produced as well.

A microcontroller must have a trace interface, so
that an external trace tool, such as TRACE32, can
record this trace data. However, the members of the
MPC560xB/C family do not have this interface in their
standard packaging. To provide access to this valu-
able data about the program run during the develop-
ment phase, silicon-compatible microcontrollers in a
208-pin BGA development package are offered, which
have a Nexus interface with 4 MDO (Message Data
Out) pins.

Since mid-2011, Lauterbach has provided
MPC560xB/C adapters that can replace the original
controller on the target hardware with a 208-pin con-
troller with Nexus interface.

The MPC560xB/C adapter consists of a suitable
MPC560xB/C controller in 208-pin BGA development
package and Mictor plug with Nexus interface for con-
necting TRACE32 trace tools (shown in figure 4 in
blue). In addition, a socket adapter from the Tokyo
Eletech company is required.

Nexus-Trace Also for Small Package Format Cores

New Derivatives

Samsung ARM7
• S3F4
Cortex-A / -R
• S5PV310
Cortex-M
• S3FM, S3FN

ST-Ericsson Cortex-A / -R
• A9500, A9540, M7400
MMDSP
• A9500, A9540

STMicro-
electronics

MPC55xx/56xx
• SPC56A80, SPC56HK
Cortex-M
• STM32F2xx, STM32F4xx

Synopsys ARC
• ARC EM4, ARC EM6

Tensilica Xtensa
• BSP3, LX4, SSP16

Texas Instruments MSP430
• CC430Fxxx, MSP430FR5xxx
• MSP430x1xx..MSP430x6xx

Texas Instruments
(Cont.)

ARM9
• AM38xx
• OMAP4460 / 4470
• TMS320C6A81xx
• TMS320DM81xx
Cortex-A / -R
• AM335x, AM38xx
• OMAP4460 / 4470 / 543x
• RM48L950
• TMS320C6A81xx
• TMS320DM81xx
• TMS570LS3xxx
Cortex-M
• AM335x
• OMAP4460 / 4470 / 543x
• TMS470MFxxx
TMS320C28X
• TMS320C28346 / F28069
TMS320C6x00
• OMAP4460 / 4470 / 543x
• TMS320C6A81xx
• TMS320DM81xx
• TMS320TCI6616 / 18

Xilinx Cortex-A / -R
• Zynq7000

Tokyo Eletech adapter

Tokyo Eletech socket

Nexus connector
MPC560xB/C in 208-pin package

Fig. 4:	 The MPC560xB/C adapter allows a development package with
Nexus interface to be used instead of the original controller.

NEWS 2012 www.lauterbach.com6

The following version adaptations have been made:

•	 eCos 3.0	 •	 embOS 3.80	 •	 FreeRTOS v7
•	 Linux v3.0	 •	 MQX 3.6	 •	 RTEMS 4.10
•	 SMX v4

•	 The content of the QNX tracelogger can be dis-

played using TRACE32 QNX OS-Awareness. A
graphical representation of the task switch is also
possible using the TRACE32 command group
LOGGER.Chart.

•	 TRACE32 QNX OS-Awareness has been adapted
for the use of position-independent executables.

Checking JTAG Signals

Fig. 5:	 Measuring arrangement for recording the JTAG signals.

JTAG signals

Fig. 6:	 The recorded JTAG signals.

JTAG protocol

Fig. 7:	 The protocol representation of the JTAG signals.

New Supported Target-OS

µC/OS-II for Andes available

Elektrobit tresos (OSEK/ORTI) available

Erika (OSEK/ORTI) available

FreeRTOS für AVR32 available

Linux for Beyond planned

MQX for ARC available

OSEK/ORTI SMP planned

PikeOS available

PXROS-HR Run Mode Debugging available

RTEMS for Nios II available

Sciopta 2.x available

SYS/BIOS for ARM available

VxWorks SMP available

Lauterbach’s PowerTrace II is equipped with an inte-
grated logic analyzer and supplied with a standard
digital probe. This enables 17 digital channels to be
recorded with a sampling rate of up to 200 MHz. This

logic analyzer has a save depth of up to 1024K sam-
ples and an example of its use would be the test of
the JTAG signals during pre-silicon validation (see fig-
ures 6 and 7).

Enhancements to Target OS-Awareness

7

As of March 2011, TRACE32 trace information can
be streamed to a host hard-disk from the running
target. The large amount of program flow data
which can result from this method, leads to a sig-
nificant simplification of the code-coverage.

Trace-based Code-Coverage

Proof of statement coverage and condition coverage is
often required to meet system quality specifications in
industries such as medical and automotive.

• 	Statement coverage proves that each line of code
was executed during the system test.

• 	 Condition coverage proves that for each condi-
tional instruction both pass and fail branches were
executed at least once.

For many embedded systems highly optimized code
must be tested in real-time. The alternatives of code
instrumentation and non-real-time operation cannot
be used in these cases.

To be able to meet these requirements, the target pro-
cessor/SoC must fulfill the following prerequisites:

1.	The cores which are implemented must have a core
trace logic (see figure 8). This logic generates infor-
mation about the instructions executed by the core.
Depending on the operation of the trace logic, infor-
mation about the task switches and the read/write
operations can also appear.

2.	The processor/SoC must have a trace port with suf-
ficient bandwidth so that the trace information can
be recorded by an external tool without any informa-
tion loss.

The Classic Measurement Process

Until now, code-coverage analysis was performed with
TRACE32 using the following steps:

1.	Start program execution and automatically stop
when the trace memory is full.

2.	Transfer the trace memory content to the code-
coverage database.

3.	Continue program execution.

For each measurement step, the amount of data col-
lected was limited by the size of the memory available
within the trace tool. The results of the code-coverage-
analysis could be checked after the total measurement
was completed or, if needed, after each intermediate
step.

New: Streaming

If the trace data is transferred to a drive on the host
computer at the time of recording, the complete soft-
ware routine can be recorded in one measurement
step. The streamed data is stored within a file on the
hard-disk. To avoid completely filling the hard-disk with
trace data, TRACE32 stops streaming as soon as less
than 1 GByte of free memory remains.

To be able to stream, the following technical prerequi-
sites must be fulfilled:

•	 64-bit host computer and 64-bit TRACE32 execut-
able

•	 Interface between trace tool and host computer
must be as fast as possible.

•	 Optimal configuration of the trace source and the
trace tool

TRACE32 PowerView
64-bit host

SoC

Tr
ac

e
p

o
rt

JT
A

G

Trace
control
logic

Trace memory
as FIFO

File on
hard-disk

Core
trace
logic

Core

Fig. 8:	 For the code-coverage analysis, up to 1 TByte of trace data can be streamed to the host computer.

Code-Coverage – Simplified

NEWS 2012 www.lauterbach.com8

Fast Host Interface

The amount of trace data that is exported via the trace
port depends on the target system hardware. The
number of cores, the number of trace port pins, and
the trace clock speed are all important parameters.
The protocol used by the core trace logic plays also an
important role. For example, the ARM PTM protocol
is more compact than the ARM ETMv3 protocol (see
figure 9).

The embedded software is another major variable. A
software program that performs many jumps and
retrieves data/instructions mainly from the cache pro-
duces more trace data per second than a software
program that processes many sequential instructions
and must frequently wait for the availability of data/
instructions.

The amount of data varies but it is always large. Stream-
ing only works properly, if the transfer rate between the
tool and the host computer is fast enough to transfer
all of the data from the trace port to the host computer
without any data loss. The 1 GBit Ethernet interface is
the only recommended interface for the PowerTrace II.

The programming of the trace logic on the chip can
be used to directly influence the amount of trace data
being generated. The logic should be programmed so
that only trace information which is relevant to the code-
coverage analysis is being generated. To illustrate this
point, the following two examples are provided.

ETM/PTM: Optimal Configuration

ETM and PTM are different implementations of the
core trace logic on the ARM/Cortex architectures.

The ETM can be configured so that trace information
is produced only for the instructions executed by the
program. Information about the read/write operations
is not needed for code-coverage. By default the PTM
only generates information about the program flow.
Therefore the PTM does not need to be configured.

Both trace sources encode the virtual address instruc-
tions. If an embedded design uses an operating sys-
tem, such as Linux or Embedded Windows, virtual ad-
dresses cannot be mapped unambiguously to physical

TRACE32 trace tools are available in two designs,
which differ especially in relation to their features.

•	 256 or 512 MByte trace memory
•	 USB 2.x and 100 MBit Ethernet
•	 80 MBit/s as maximum transfer rate to host 	 	
	 computer
•	 Software compression of trace data (factor 3)
•	 Memory interface with 100 MHz

•	 1/2/4 GByte trace memory
•	 USB 2.x and 1 GBit Ethernet
•	 500 MBit/s as maximum transfer rate to 		 	
	 host computer
•	 Hardware compression of trace data for ETMv3	 	
	 and PTM (factor 6)
•	 Memory interface with 233 MHz

PowerTrace vs. PowerTrace II

PowerTrace

PowerTrace II

Average load

Maximum load

20 4 6 8 10 GBit/s

3.2 GBit/s max. transmission rate

Cortex-R4
@ 500MHz

ETMv3

Cortex-A9
@ 1GHz

PTM

4 x Cortex-A9
@ 1GHz

PTM

Fig. 9:	 A transmission rate of 3.2 GB/s is generally adequate for streaming program sequence information on the host.

9

Statement & condition coverage

Function coverage

Detailed coverage

addresses. The trace source must also be configured,
so that information is generated defining the virtual
address space in which an instruction was located.

For the ARM ETM/PTM, the amount of trace data can
be further reduced:

•	 The code-coverage analysis does not analyze or
need time information. We therefore recommend
configuring the TRACE32 trace tool so that the trace
data is transferred to the host without time stamps.
This reduces the amount of data by a third.

•	 PowerTrace II also provides FPGA-based hardware
compression of the trace data. This enables up to
3.2 GBit/s trace data to be transferred to the host
computer. Figure 9 shows that this transfer rate is
generally sufficient for streaming ETM/PTM data
without any data loss.

Nexus: Optimal Configuration

On processors of the MPC5xxx/SPC5xx families the
core trace logic is implemented to the Nexus standard.
To undertake code-coverage analysis, a Nexus class 2
trace cell is adequate as all you need is detail of the

program sequence on the individual core(s). If Branch
History Messaging is used this can make the trace
data very compact. Compared to standard trace data
a reduction by a factor of 10 is realistic. Only Power-
Trace II supports streaming from the Nexus trace port.

Streaming also works for all other processors/SoCs
that are supported by TRACE32 and have a trace
port.

Code-Coverage for SMP-Systems

TRACE32 also supports code-coverage analysis on
SMP (symmetric multiprocessing) systems. For code-
coverage it must be proven that an instruction was
executed, which core was responsible for running the
code is irrelevant. Figure 10 shows the results of code-
coverage for two Cortex-A9 MPCores.

For statement and condition coverage, if only the fail-
branch of a conditional statement was run the state-
ment is highlighted in yellow and marked with “not
exec”. The detailed coverage lists the specifics of how
often each statement or each branch of the statement
was run.

Fig. 10:	 Code-coverage analysis for an SMP system.

NEWS 2012 www.lauterbach.com10

The new CoreSight Trace Memory Controller pro-
vides SoC designers with more design options for
the trace infrastructure. TRACE32 already has sup-
port for the first designs which use the TMC.

Through CoreSight, the diagnosis data needed for
the analysis of SoC-internal processes is produced
by ‘trace macrocells’. There are three types of trace
macrocells:

•	 Core trace macrocells are assigned to a core and
generate trace information about the instructions
processed by that core. Information about process
switches and load/store operations is generated
depending on the design of the trace cell.

•	 Bus trace macrocells are firmly assigned to a bus
and generate trace information on data transfers
that occur on the bus.

•	 System trace macrocells generate trace informa-
tion for hardware trigger (system event tracing) or
provide diagnostic information produced by code
instrumentation of the application software.

The CoreSight Funnel combines all of the trace data
into a single data stream (see figure 11). This trace
data stream is then either stored in an on-chip mem-
ory buffer (ETB) or exported to an external tool using
a trace port (TPIU). The IP for CoreSight trace being
implemented today is sometimes pushed to the limit
when dealing with complex multicore SoCs that con-
tain many trace macrocells.

•	 ETB: The on-chip trace memory is often too small to
record enough trace data for any meaningful future
analysis. The typical size for the ETB is still between
4 and 16 KByte.

•	 TPIU: System states may occur where more trace
data is being generated than the trace port can output.
The CoreSight design is such that trace data from the
trace macrocells is only taken over if the trace data
can be exported by the TPIU. If the trace data gener-
ated remains in the trace macrocells for too long, the
FIFOs there can overflow and important data may
be lost.

The new CoreSight Trace Memory Controller should
provide a solution for both of the above scenarios.

TMC as Embedded Trace Buffer

To be able to store more trace data on-chip for later
analysis, the chip manufacturer can theoretically con-
nect up to 4 GByte of SRAM to the Trace Memory Con-
troller (see figure 12).

CoreSight Trace Memory Controller

ARM CoreSight

With CoreSight, ARM makes available an exten-
sive set of IP blocks, which enables SoC designers
to build a custom debug and trace infrastructure.

A single debug interface is enough to control and
coordinate all cores of the SoC, as well as access
all memory.

One trace interface is sufficient for providing diag-
nostic data about the processes occurring within the
SoCs without any impact on real-time performance.

Core
trace

System
trace

Bus
trace

TPIU ETB

F
unnel

Trace bus (ATB)

Fig. 11:	 CoreSight Funnel combines all trace data produced by trace
macrocells into a single data stream.

Trace Memory Controller
in ETB mode

SRAM

Trace bus (ATB)

Fig. 12:	 In ETB mode, the Trace Memory Controller can make up to 4 GByte
of on-chip trace memory available.

11

TMC as Embedded Trace FIFO

Inspections of the trace data streams being exported
by the TPIU have shown that the bandwidth of most
trace ports is large enough for normal operation. Over-
load, and therefore loss of trace data, only happens
when peaks occur.

The Trace Memory Controller can be integrated into
the trace infrastructure of the SoCs, so that the Trace
Memory Controller acts as an Embedded Trace FIFO
and cushions peaks in the load on the TPIU (see fig-
ure 13). This ETF is designed so that no trace data
loss can occur. The size of the ETF can be freely de-
fined from 512 Bytes to 4 GBytes.

Both integrations of the Trace Memory Controller in
the trace infrastructure depicted are simple examples.
Of course, you can build the TMC IP block into the
CoreSight system in much more complex and flexible
ways.

Modifications in TRACE32

As you would expect, Lauterbach has to modify the
TRACE32 software for the configuration and handling
of the Trace Memory Controller. This applies especially
when the Trace Memory Controller is integrated in the
SoC using new, previously unsupported ways. The
TRACE32 user only needs to configure the basic ad-
dress for the TMC. Then all the proven trace display
and analysis features can be used as usual.

TMC as Router to High-Speed Link

The idea of moving away from dedicated trace ports
has long been discussed within the embedded com-
munity. There are certainly several good arguments for
this move.

For the first time CoreSight traces can now connect
to a high-speed standard interface by using the Trace
Memory Controller. USB or Ethernet interfaces are
common favorites, especially as they are available in
many end products. Ideally, the external trace tool will
share the interface with the other connected devices.

Within the SoC, the TMC operates as Embedded Trace
Router and has the task of passing on the trace data
through the AXI bus for the export to the IP of the high-
speed interface (see figure 14).

This new method of trace export will need completely
new trace tools. Lauterbach is currently in close contact
with leading semiconductor manufacturers to develop
the appropriate tools for this switch in technology.

•	 Open for use with all cores which can be integrated
into CoreSight; Lauterbach offers debug solutions
for all ARM/Cortex cores and for numerous DSPs,
as well as for configurable cores.

•	 Support for asymmetric multiprocessing (AMP) and
symmetric multiprocessing (SMP)

•	 Debugging via JTAG interface and 2-pin Serial Wire
Debug

•	 Synchronized debugging of all cores

•	 Support for the CoreSight Cross Trigger Matrix

•	 Support for all types of trace macrocells
(ETM, PTM, HTM, ITM, STM, and more)

•	 Tools for parallel and serial trace ports

•	 Multicore tracing

TRACE32 CoreSight Features

Trace bus (ATB)

Trace Memory Controller
in FIFO mode

SRAM

TPIU

Fig. 13:	 In FIFO mode, the Trace Memory Controller can cushion load
peaks on the TPIU. By doing this, trace data loss can be avoided.

Trace Memory Controller
in Router mode

SRAM

AXI

High-speed link
(USB, Ethernet, ...)

Trace bus (ATB)

Fig. 14:	 In Router mode, the Trace Memory Controller forwards the trace
data for the export to a high-speed standard interface.

NEWS 2012 www.lauterbach.com12

Troubleshooting, performance tuning and code-
coverage - all of these can be performed quickly
and precisely on an embedded system if the ad-
equate trace analysis is provided. In 2011, Lauter-
bach explored new paths to enable optimized trace
analyses for the Cortex-M3/M4 processors.

Combining ETM and ITM

For Cortex-M3/M4 processors, trace information can
be generated from two different sources (see fig-
ure 17). The ETMv3 generates information about the
executed instructions. The ITM generates information
about the performed read/write accesses assisted by
the Data Watchpoint and Trace Unit (DWT).

The ITM trace packages for read/write accesses con-
tain the following information: data address, data value,
program counter.

Through analysis of the program counter, the data
accesses which are separately generated can be
seamlessly integrated into the program sequence (see

figure 15), which in turn leads to significantly simpler
error location. The cause of an error such as an incor-
rect data value being written into an address can be
easily found if the write accesses are embedded into
the overall program trace.

OS-Aware Tracing

If an operating system is running on the Cortex-M3/
M4, task switch information becomes essential for the
trace analysis.

Intelligent Trace Analyses for Cortex-M3/M4

Instruction flow with task switches (ETM&ITM)

Timing diagram for task switches (ITM) Timing diagram for task MIPS (ETM&ITM)

Call tree for task "sens1" (ETM&ITM)

Fig. 16:	 Through the combination of ETM and ITM trace data, extensive trace analysis can be provided for the eCos operating system.

Instruction flow with data accesses (ETM&ITM)

Fig. 15:	 By combining ETM and ITM trace data, read/write accesses can be
integrated seamlessly into the program sequence.

13

In order to receive information about task switches the
following method can be used: Trace information on
the write cycle in which the kernel writes the identifier
for the current task on the corresponding OS variable
can be generated using the ITM. As described above
the write access information can be integrated seam-
lessly into the program flow trace. This improves the
readability of the trace listing (see figure 16). The inte-
gration of the task switch into the program sequence
also forms the basis for the runtime analyses shown
in the figure 16.

Three Recording Modes

To record the trace information generated by the
Cortex-M3/M4 processors, Lauterbach supports three
modes:

•	 FIFO mode: Storing the information in the 128 MByte
memory of the TRACE32 CombiProbe.

•	 STREAM mode: Streaming the information to a
hard-disk on the host computer.

•	 Real-time Profiling: The trace information is
streamed to the host computer and analyzed during
runtime.

For the first two recording modes, the trace informa-
tion is collected and the trace analysis is undertaken
after recording is completed.

Each recording mode has its own features. FIFO is the
most commonly used mode. It is quick and usually all
that is needed for error location and the runtime analy-
ses.

The ETMv3 implemented on Cortex-M3/M4 proces-
sors has neither a trigger nor a trace filter. It is not
possible to select for recording only those program
segments that are needed for troubleshooting. This
can mean trace data might have to be collected for a
relatively long period in order to cover the area needed
for analysis. In this case the STREAM mode can be
the best option. The STREAM mode, however, places
high demands on the debug environment:

•	 The large amount of data that results from stream-
ing requires a 64-bit TRACE32 executable. This is
needed to allow the address range for the large
number of trace entries that will be collected.

•	 The transfer rate between CombiProbe and host
computer must be fast enough to stream all trace
data without a data loss. The 128 MByte memory of
the CombiProbe is used to cushion load peaks from
the trace port (TPIU).

Real-time Profiling is particularly suitable for perform-
ing statement and condition coverage. The coverage
analysis can be followed live on the screen and the
test results are visible immediately (see figure17). “ok”
marked lines are already covered.

Cortex-M3/M4 Core

Formatter

DWT
4 hardware watchpoints
on load/store operations

ITM
Instrumentation Trace

Macrocell

ETMv3
Instruction flow

only

TPIU
Trace Port Interface

Unit

Statement coverage on running system

Function coverage on running system

TRACE32
CombiProbe

Fig. 17:	 Real-time profiling enables code-coverage analysis to be followed
live on the screen

NEWS 2012 www.lauterbach.com14

It is now common to perform simulation and verifica-
tion of designs before committing to hardware. This is
why tools such as MATLAB® and Simulink® have made
inroads as development software into the control
engineering market. It can save a lot of time and effort
if the control loop can be tested for the effects of many
variables before finalizing the design.

So what is the next step, after the control algorithm has
been found through simulation? How is this solution in-
tegrated into the control hardware? For this, Simulink
enables you to generate code automatically. But can
you be sure that the program behaves the same way
on the control hardware as in the simulation?

Verification Approach

The Institute of Flight System Dynamics at Technische
Universität München came up with an interesting solu-
tion during development of a flight control system for a
Diamond DA42 (see figure 20).

After the control algorithms had been created and
functionally tested with Simulink, the corresponding
program code for the processor of the control hard-
ware was generated from the control blocks using the
Embedded Coder. Using a TRACE32 debugger, the
generated code was loaded into the control hardware
and functionally tested in-situ.

To determine the level of deviation between simulated
control behavior (red path) and real control behavior
(green path), but above all to confirm the numeric accu-
racy of the control hardware, a Processor-In-the-Loop
simulation (PIL) was chosen (see Figure 18). Essen-
tially, the PIL simulation is based on the specially de-
veloped Simulink blocks “PIL Send” and “PIL Receive”.
These were designed to implement communication
between Simulink and the TRACE32 Remote API.

In each run through, the flight control algorithm per-
forms a single calculation step of the discrete time
flight control on the target hardware. The Simulink
model provides the necessary input parameters. The
values calculated are returned to the Simulink model
and there supply the aircraft model. In a parallel calcu-
lation, the simulated flight control algorithm computes
the same values. The difference is then used to com-
pare the two results.

The testing in the stand resulted in an absolute de-
viation of 10-13 – a high level of consistency that was
elegantly and easily proven with this approach.

For more information about the project of the Institute of
Flight System Dynamics at the Technische Universität
München, go to www.lauterbach.com/intsimulink.html.

TRACE32 Integration for Simulink®

At the Embedded World show February 2012 in
Nuremberg/Germany, Lauterbach will be presenting
an even closer coupling between Simulink and Lauter-
bach’s TRACE32 debuggers.

Lauterbach has used the property of the Simulink code
generation that the code block always begins with a
comment line which contains the name and model
path for the block. These comment lines are available
after the generated code has been loaded into the

Simulation and Reality Draw Closer Together

Flight control algorithm

Target

Flight test
pattern

-
Deviation
protocol

Aircraft
model

Flight control
algorithm

PIL
Send

PIL
Rcv

TRACE32 Remote API

Simulink® model

Fig. 18:	 The real control behavior (green path) and the simulated control
behavior (red path) are compared.

15

TRACE32 PowerView Simulink®

Fig. 19:	 The block belonging to the selected source code line is marked in Simulink.

Fig. 20:	 Diamond DA42 (Source: www.diamond-air.at)

TRACE32 debugger. These lines allow a simple cor-
relation between the Simulink block and the lines in
the source code.

Navigation from Simulink® to TRACE32

A global TRACE32 menu and TRACE32 menus
for blocks and signals are integrated into Simulink
as ‘Simulink Customization Menus’. The TRACE32
debugger can be controlled from Simulink with the help
of these menus. The following functions are available:

•	 Show block code in TRACE32
•	 Open TRACE32 Variable Watch Window for signals
•	 Load Simulink build to the TRACE32 debugger
•	 Set and manage block/signal breakpoints
•	 Start and stop program on the control hardware

Navigation from TRACE32 to Simulink®

Selecting a section of source code in the TRACE32
debugger marks the corresponding block in Simulink
(see Figure 19).

Future

When Simulink Release 2012a is available, fur-
ther TRACE32 functions will be possible in Simulink.
Lauterbach will use the improved functionality of the
Simulink rtiostream API to integrate a PIL simulation,
data logging, and parameter tuning.

MATLAB® and Simulink® are registered trademarks of
The MathWorks, Inc.

www.lauterbach.com16

A new TRACE32 extension for the Atom™ De-
bugger provides a complete debug capability of
Insyde’s H2O UEFI BIOS.

UEFI is the successor to the traditional PC BIOS. It
functions as an interface between firmware and oper-
ating system managing the boot process. From power-
on to takeover by the operating system, UEFI runs
through various, clearly distinguished phases (see
figure 21).

As it is a JTAG-based tool, TRACE32 allows debug-
ging to start from the reset vector.

In each phase of the boot process, the PowerView
user interface provides special windows which show
UEFI specific information. Functions and prepared
scripts enable debugging of dynamically loaded
drivers starting from the first instruction. For more
information about the new UEFI extension, go to
www.lauterbach.com/uefi.html.

UEFI BIOS Debugging with TRACE32

Board
Init

Device,
Bus, or
Service
Driver

Chipset
Init

?

OS-Absent
App

Transient OS
Environment

Transient OS
Boot Loader

Boot Services
Runtime Services

Final OS
Environment

OS-Present
App

Security
Pre-EFI

Initialization
Environment

Driver
Execution

Environment

Boot
Device

Selection

Transient
System Load Runtime Afterlife

ve
ri

fy

security

Power on Platform initialization OS boot Shutdown

DXE
Dispatcher

CPU
Init

Pre
Verifier

Final OS
Boot Loader

Boot
Dispatcher

Fig. 21:	 System boot process with UEFI.

WORLDWIDE BRANCHES

 • USA
 • Germany

 • France
 • UK
 • Italy
 • China
 • Japan

Represented by experienced
partners in all other countries

KEEP US INFORMED

If your address has
changed or if you
no longer want to
be on our mailing
list, please send
us an e-mail to:

info_us@lauterbach.com

