
CONTENTS

New Supported Processors		 4

Tracing for Virtual Targets in Fast Models	 5

API for VM Debugging Awareness	 6

Extensions and New RTOS Versions	 8

Serial Trace Port Usage Growing		 9

Higher Transmission Rate for RTS	 10

Energy Profiling with the CombiProbe	 11

SMP Profiling				 12

www.lauterbach.com

DEBUGGER, REAL-TIME TRACE, LOGIC ANALYZER

NEWS 2011

Lauterbach has been developing tools for the embed-
ded industry for over 30 years advocating this slogan.
For most new debug technologies Lauterbach is the
world leader and trend setter.

This has allowed us to gain the recognition of all the big
semiconductor manufacturers. For many years, those
involved in developing and implementing new tech-
nologies have favored collaboration with Lauterbach.
This collaboration has inspired many ground breaking
ideas to be transformed into advanced products.

In addition, Lauterbach is very customer focused. The
desires and suggestions of our TRACE32 users pro-
vide a valuable contribution to our product develop-
ment. In many cases, suggestions are put into practice
immediately and are then included in the next released
version of our debugger.

From this vantage point what trends does Lauterbach
currently see? What technologies are soon to emerge
in the market?

Android Debugging

Android debugging is certainly an important topic. Ap-
plications for mobile phones are increasingly being
written architecture-independent for virtual machines

(VM). Google’s Android and its Dalvik VM are quite
prevalent. Complex errors that will only appear with
the interplay of application, virtual machine, operat-
ing system and the underlying hardware have to be
debugged. To do this it is necessary to have transpar-
ency through all of the software layers, from the Java
application down to the Linux hardware drivers.

At the request of some mobile phone manufacturers,
Lauterbach started developing an API for VM Debug-
ging Awareness in the middle of 2010. Android is used
here as a reference platform. The aim is to provide an
open interface that allows providers of open-source
and closed-source VMs to adapt their products for de-
bugging with TRACE32. For information on VM Debug-

Always a Few Steps Ahead

NEWS 2011 www.lauterbach.com2

ging Awareness and the current state of development,
see the article “API for VM Debugging Awareness” on
page 6.

Energy Profiling

Energy measurement for embedded systems has
come more into focus with the increasing emphasis
on global warming and “green” electronics systems.
Every technical journal now contains many articles
on battery-driven equipment and low-power microcon-
trollers. Prizes for innovation are increasingly being
awarded for new technologies in this field.

However, in the mobile phone market standby and
operating times have always been an important topic.
For years, extensive energy reduction measures have
been implemented in this area. But these measures
only make sense if the software that controls an em-
bedded system consistently uses all the energy-saving
features of the hardware.

Since the beginning of 2006, Lauterbach tools have
supported measuring arrangements that allow the
simple comparison and analysis of the interplay be-
tween software and power consumption in an embed-
ded system. This technology has also been available
for the TRACE32 CombiProbe since mid 2010. For
more information on “Energy Profiling with the Combi-
Probe”, see page 11.

Multicore Debugging

Although multicore chips have been used in embed-
ded systems for ten years and Lauterbach has had
debuggers for them since 2001, this is still a highly dy-
namic topic. The current calls for greater visibility into
the internal system operation are ensuring the integra-
tion of new trace cells within the debug infrastructure
of the chips.

Originally, trace information was only generated for the
individual cores, whereas today there are many other
trace sources:

a) Trace sources that make transfers on chip-internal
buses visible:

•	 ARM CoreSight with the AMBA AHB Trace Macro-
cell (HTM)

•	 MCDS with the System Peripheral Bus (SPB) and
the Local Memory Bus (LMB) for the TriCore from
Infineon

•	 RAM Trace Port for chips from Texas Instruments
•	 DMA and FlexRay trace for NEXUS Power Architec-

ture

b) Trace sources that generate trace information for
chip-internal IP (Intellectual Property), such as special
interrupt traces.

c) Trace sources that permit the output of software-
generated trace information, such as:

•	 Instrumentation Trace Macrocell (ITM) for ARM
CoreSight

•	 System Trace Macrocell (STM) for ARM CoreSight

The continuous development of the TRACE32 debug-
ger ensures it is aware of these new trace sources and
can provide easy configuration and a comprehensive
analysis of the information provided.

Serial Trace Ports

Due to the extra trace data provided by this visibility
into the internal chip processes, complex multicore
chips and high-performance processors require more
and more bandwidth and thus even faster trace ports.

In response chip manufacturers have developed serial
trace ports as an important innovation in the last few
years. Hard-disk manufacturers, who have been using
serial interfaces for high-speed data exchange with
the PC for years, used this technology for the first time
in 2008 to export trace information via ARM’s High
Speed Serial Trace Port (HSSTP). At the same time,
Lauterbach launched trace tools for this technology.

In the meantime, there are other processor families
with serial trace interfaces. For current developments
in this area, see the article “Serial Trace Port Usage
Growing” on page 9.

Bigger Trace Memory

Fast trace interfaces with their high data rates inevita-
bly require more trace memory. Without this, it is im-
possible to capture a sufficiently large program section
for troubleshooting and the analysis of the time behav-
iour for an embedded system.

3

However, providing more and more trace memory only
makes sense if the necessary infrastructure for fast
processing of the trace information is available. This
applies particularly to demanding trace analysis func-
tions such as Trace-based Debugging (see Fig. 1). The
increasing capacity of SDRAM chips, fast PCs, and GB
Ethernet interfaces enabled Lauterbach to launch the
trace tool PowerTrace II with 4 GB memory in 2007.

In mid-2008, Lauterbach started developing a new
method of trace recording and analysis, Real-time
Streaming. This development was driven by custom-
ers’ demands for long-term code coverage analysis,
for comprehensive system runtime analyses and for a
much longer trace recording time to locate infrequent
errors.

The new feature of Real-time Streaming is that the
trace data is transferred to the host while it is being
recorded. The trace information is then analyzed on
the host as soon as it is received. Optionally, the trace
information can also be saved to the hard-disk while it
is being analyzed.

Real-time Streaming works only if all processing steps
for the trace data run at optimal speed. This applies to
transfer and analysis, as well as the systematic search
for trace information in a file saved to the hard-disk.

Conventional tracing also profits from many of the new
speed optimizations. For example, there are plans to
implement the trace-data compression (developed for

Real-time Streaming) also for conventional tracing. For
details on the trace-data compression, see page 10.

Outlook

In addition to the current trends, there are a large num-
ber of new developments in debug technology. When
you browse through our 2011 newsletter, you will prob-
ably discover one or two of these that might help with
your project. We will be demonstrating several of them
live at the upcoming ESC Silicon Valley, May 2-5, in
San Jose, and also at many other shows in the US
throughout the year.

Visit us: Booth # 1922

Trace-Based Debugging

Trace-based Debugging (also known as CTS =
Context Tracking System) allows re-debuggging
of a traced program section. TRACE32 makes
this possible as it can reconstruct the state
of the target system for each individual trace
record in its PowerView GUI. This reconstruction
includes the register and memory contents, vari-
able states, source and task listing, stack-frame,
and much more.

After choosing a starting point for Trace-based
Debugging, all of the debug commands can
be used. These commands are executed by
TRACE32 based upon the reconstruction from
the trace recording. Many users of Trace-based
Debugging appreciate the fact that they can also
step backwards or return to the function start.

Trace-based Debugging also provides a series of
other useful functions:

 •	Trace display in high-level language with all
local variables

 •	Runtime analyses and function call tree
 •	Reconstruction of the trace gaps that can occur

if more trace data is being generated than can
be exported via the trace port

www.lauterbach.com/cts.html

Fig. 1:	 Even demanding 4-GB trace memory analysis for Trace-based
Debugging can be performed quickly.

NEWS 2011 www.lauterbach.com4

New Supported Processors

Actel LA-7844 (Cortex-M)
• A2F060, A2F200, A2F500

AppliedMicro LA-7723 (PPC400)
• APM80186, APM821x1
• APM86290
LA-7752 (PPC44x)
• PPC460SX

ARM LA-7843 (Cortex-A/R)
• Cortex-A15
• Cortex-A15 MPCore
LA-7844 (Cortex-M)
• Cortex-M4
• SC000, SC300

Atmel LA-7844 (Cortex-M)
• AT91SAM3S, AT91SAM3N
LA-3779 (AVR32)
• AT32UC3A / B / C / D / L

Broadcom LA-7760 (MIPS32)
• BCM3549 / 35230 / 4748
• BCM5354 / 5358  / 5331X 
• BCM6816 / 6328 / 6369
• BCM7407 / 7413 / 7420

Cavium LA-7761 (MIPS64)
• CN63XX

Ceva LA-3711 (CEVA-X)
• CEVA-X1643, CEVA-XC

Cortus LA-3778 (APS)
• APS3 / B / BS / S

Cypress LA-7844 (Cortex-M)
• PSoC5

Faraday LA-7742 (ARM9)
• FA726TE

Freescale LA-7736 (MCS12X)
• MCS9S12GC / GN / Q
LA-7732 (ColdFire)
• MCF5301x, MCF5441x
LA-7845 (StarCore)
• MSC8156
LA-7742 (ARM9)
• i.MX28
LA-7843 (Cortex-A/R)
• i.MX53
LA-7844 (Cortex-M)
• Kinetis

Freescale
(Cont.)

LA-7753 (MPC55xx/56xx)
• MPC5602D / P
• MPC564XA / B / C / S
• MPC567XF / R

LA-7729 (PowerQUICC II)
• MPC830X
LA-7764 (PowerQUICC III)
• P10xx, P20xx, P40xx
• P3041 (2H/2011)
• P5010, P5020 (2H/2011)

Fujitsu LA-7844 (Cortex-M)
• FM3

Infineon LA-7756 (TriCore)
• TC1182, TC1184
• TC1782, TC1782ED
• TC1784, TC1784ED
• TC1791, TC1791ED
• TC1793, TC1793ED
• TC1798, TC1798ED

LA-7759 (XC2000/C166S V2)
• XC22xxH / I / L / U
• XC23xxC / D / E / S
• XC27x2 / x3 / x7 / x8
• XE16xFH / FU / FL

Intel® LA-3776 (Atom™/x86)
• E6xx, Z6xx, N470
• Core i3 / i5 / i7, Core2 Duo

Lantiq LA-7760 (MIPS32)
• XWAY xRX200

LSI LA-7765 (ARM11)
• StarPro2612, StarPro2716
LA-7845 (StarCore)
• StarPro2612, StarPro2716

Marvell LA-7742 (ARM9)
• 88F6282, 88F6283, 88F6321
• 88F6322, 88F6323
LA-7765 (ARM11)
• 88AP510-V6

LA-7843 (Cortex-A/R)
• 88AP510-V7

MIPS LA-7760 (MIPS32)
• MIPS M14K, MIPS M14KC

Netlogic LA-7761 (MIPS64)
• XLR, XLS

NXP LA-7844 (Cortex-M)
• LPC11xx
• EM773

New derivatives

5

Fig. 2:	 TRACE32 supports the debugging and tracing of virtual targets.

Lauterbach has supported tracing for ARM Fast
Models since November 2010.

To avoid having to wait for the first hardware prototypes
before starting software development, software mod-

els of the hardware are often used. With Fast Models,
ARM offers its customers a software package for pro-
gramming models for ARM-based designs.

Since 2008, Lauterbach has supported the debugging
of Fast Models over the CADI interface. It has now in-
troduced support for the Model Trace Interface, which
was introduced for Fast Models with Version 5.1. To pre-
pare the trace information appropriately and buffer it in

the virtual target, debug-
ger manufacturers can
load a separate trace
plug-in. Fig. 2 shows an
overview of the interplay
of TRACE32 and Fast
Models.

For detailed information
on debugging virtual tar-
gets, see:

www.lauterbach.com/
frontend.html

Tracing for Virtual Targets in Fast Models

Ralink LA-7760 (MIPS32)
• RT3052, RT3662

Renesas LA-3777 (78K0R / RL78)
• 78K0R / Hx3 / Lx3 / Ix3
• 78F804x, 78F805x
• RL78 / G12, RL78 / G13

LA-3786 (RX)
• RX610 / 6108 / 621 / 62N / 630

STMicro-
electronics

LA-7753 (MPC55xx/56xx)
• SPC560D/P, SPC56APxx
• SPC564Axx, SPC56ELxx

LA-7844 (Cortex-M)
• STM32F100, STM32L15x

ST-Ericsson LA-7843 (Cortex-A/R)
• DB5500, DB8500

Tensilica LA-3760 (Xtensa)
• LX3

Texas Instruments LA-3713 (MSP430)
• MSP430xG461x
• MSP430x20x1 / x2 / x3
LA-7742 (ARM9)
• AM1707 / 1808 / 1810
LA-7843 (Cortex-A/R)
• OMAP36xx
LA-7838 (TMS320C6x00)
• OMAP36xx

Toshiba LA-7742 (ARM9)
• TMPA900, TMPA910
LA-7844 (Cortex-M)
• TMPM330, TMPM370

Trident LA-7760 (MIPS32)
• HiDTV PRO-QX

Wintegra LA-7760 (MIPS32)
• WinPath3, WinPath3-SL

Zoran LA-7760 (MIPS32)
• COACH 12

New derivatives

www.lauterbach.com/frontend.html

NEWS 2011 www.lauterbach.com6

Since 2006, Lauterbach has supported the debug-
ging of Java applications for the Java Virtual Ma-
chines J2ME CLDC, J2ME CDC and Kaffe. Since
virtual machines are increasing in popularity, the
number of providers is growing. Nowadays not all
of these virtual machines are open-source. To en-
able VM providers and their customers to adapt
debugging flexibly for their VM, Lauterbach has
been working on a solution since mid-2010.

The Android Dalvik Virtual Machine implemented for
ARM cores is used as a reference for the development
of a VM API for stop-mode debugging.

Two Debug Worlds

For developers, Android is an open-source software
stack consisting of the following components (see
Fig. 3):

•	 A Linux kernel with its hardware drivers.
•	 Android Runtime with Dalvik Virtual Machine and

a series of libraries: classic Java core libraries,
Android-specific libraries, and libraries written in
C / C++.

•	 Applications programmed in Java and their support-
ing Application Framework.

Software for Android is written in various languages:

•	 The Linux kernel, some libraries, and the Dalvik
Virtual Machine are coded in C, C++, or Assembler.

•	 VM applications and their supporting Application
Framework are programmed in Java.

Each block of code is tested in its own separate debug
world.

Debugging C / C++ and Assembler Code

The Android part coded in C / C++ and Assembler can
be debugged on the target hardware over the JTAG
interface in stop-mode. In stop-mode debugging, the
TRACE32 debugger communicates directly with the
processor of the Android hardware platform (see
Fig. 4).

A characteristic of stop-mode debugging is that when
the processor is stopped for debugging, the whole
Android system stops.

Stop-mode debugging has some big advantages:

•	 It needs only a functioning JTAG communication be-
tween the debugger and the processor.

•	 It needs no debug server on the target and is there-
fore very suitable for testing release software.

•	 It permits testing under real-time conditions and
therefore enables efficient troubleshooting for prob-
lems that only occur in such conditions.

API for VM Debugging Awareness

Fig. 3:	 The open-source Android software stack.

Fig. 4:	 In stop-mode debugging, the debugger communicates directly with
the processor on the Android hardware platform.

7

At present, stop-mode debugging does not support
the debugging of VM applications such as on the
Dalvik VM. Therefore transparent debugging through
all of the software layers is not yet possible.

Debugging Java Code

Java code for Android is usually tested with the
Android Development Tools (ADT) integrated into
Eclipse. The adb server – adb stands for Android De-
bug Bridge – on the host communicates over USB or
Ethernet with the adb daemon on the target (Fig. 5).

Prerequisites for debugging with ADT are VM appli-
cations specially compiled for debugging and Android
debug support (adb daemon) running on the hardware
platform.

Debugging Java code with ADT is comfortable. How-
ever, there are a few cases in which ADT cannot help
you. These are:

•	 Errors that first occur with the release code.
•	 Errors that first occur when the Java application

interacts with a service offered in C / C++ or a Linux
hardware driver.

•	 Debugging following a communication breakdown
between adb server and adb daemon.

VM Aware Stop-Mode Debugging

To enable thorough testing of an Android system from
the Java application down to the Linux hardware driver
under real-time conditions, Lauterbach is currently

adding VM debugging awareness to its stop-mode
debugging.

The JTAG debugger communicates directly with the
processor on the Android hardware platform. The
debugger can therefore access all system information
after the processor stops. The “fine art” for the debug-
ger is now to find the correct information and make it
easy to understand for the user, abstracted from bits
and bytes.

One abstraction level has given TRACE32 users the
option of debugging operating system software even
over several virtual address spaces. Another abstrac-
tion level, up to now independent of operating-system
debugging, is Java debugging.

To debug applications running on VMs in systems
like Android, where the VMs themselves are instanti-
ated within the operating-system processes, operating-
system debugging and Java debugging now have to be
combined. To implement this new complexity, Lauter-
bach is developing a new, open, and easy-to-expand
solution.

The Open Solution

In the future, stop-mode debugging from Lauterbach
will support the following abstraction levels:

•	 High-level language debugging
•	 Target OS debugging awareness
•	 VM debugging awareness

High-level language debugging is a fixed compo-
nent of the TRACE32 software and is configured for
a program with the loading of the symbol and debug
information.

Dalvik is the name of the virtual machine used in
Android. The Dalvik Virtual Machine is a software
model of a processor that executes byte code
derived from Java. Virtual machines permit the
writing of processor-independent software. If you
switch to a new hardware platform, you only have
to port the virtual machine.

Software compiled for a VM runs automatically
on any platform to which this VM is ported.

Dalvik Virtual Machine

Fig. 5:	 The Android Development Tools (ADT) integrated in Eclipse for
debugging Java code.

NEWS 2011 www.lauterbach.com8

Target-OS debugging awareness must always be
configured by the TRACE32 user. There are example
configurations available for all common operating sys-
tems. The RTOS API provides an option to be custom-
ized for proprietary operating systems.

VM debugging awareness is a fixed component of the
TRACE32 software for J2ME CLDC, J2ME CDC and
Kaffe. All other virtual machines have to be adapted
individually with the VM API. A ready-to-use configu-
ration is available for the very popular Android Dalvik
VM.

The open solution, both for the operating system and
for the virtual machine, enables providers of closed-
source VMs to write a TRACE32 VM awareness for
their product and offer it to their customers.

The Reference Implementation

To be able to debug thoroughly on an ARM-based
Android target from the Java applications right down
to the Linux hardware drivers, TRACE32 requires the
following extensions (see Fig. 6):

•	 A Linux OS-awareness as provided by Lauterbach
since 1998.

•	 A Dalvik VM-awareness, which can be downloaded
from the Lauterbach homepage. This just has to be
configured for the platform used.

www.lauterbach.com/vmandroid.html

It is now possible to identify and list all Java applica-
tions now being run (EXTension.VMList in Fig. 6) and
to analyze and view the VM stack for a selected Java
application (EXTension.VMView in Fig. 6).

The next step planned is to display the source code
currently being run by the VM. The aim of the develop-
ment is of course stop-mode debugging for VM appli-
cations with all the functions of a modern debugger.

DSP / BIOS for ARM Q2/2011

OSEK / ORTI SMP Q2/2011

T-Kernel for ARM available

Windows Embedded Compact 7
for ARM

available

mC / OS-III for ARM available

New Supported RTOS

Extensions and New RTOS Versions

•	 TRACE32 scripts were adapted for Timesys embed-
ded Linux.

•	 OSEK / ORTI now ensures that NEXUS ownership
trace messages are generated for task changes.
This enables TRACE32 to make task-aware run-
time measurements for the MPC55xx / MPC56xx,
even if NEXUS generates no data trace messages.

The following version adaptations have been made or
are planned:

•	 OSEck 4.0
•	 QNX 6.5.0
•	 Symbian^3 for ARM
•	 Symbian^4 planned for Q1/2011
•	 Windows CE6 for Atom™

Fig. 6:	 For the reference implementation, Linux OS-awareness and Dalvik
VM-awareness have to be loaded in TRACE32.

9

Faster, higher, stronger! Not only is this the motto of
many sports – it has even been raised to a core princi-
ple in microelectronics. Ever faster clock speeds and a
greater parallelization of processing steps have given
us an astonishingly constant increase in processing
speed for decades. It is no wonder that designers have
also followed this motto for the transmission of trace
information.

The trace interface, over which the processors deliver
the detailed information on the operation of their inner
processes, has struggled to keep up with the growing
flood of information. For many developers of embed-
ded systems it would be unthinkable to undertake a
development without this important information, so all
sorts of efforts have been made to increase the data
throughput of the trace interface. For many years the
increase in clock frequency and a greater bus-width
at the trace port were an effective way of increasing
data volumes.

However, these measures have their price. Not only
does a wider trace port take up highly coveted package
pins but poor signal quality at higher clock frequencies
requires compensation on all signals from the trace
bus. Thanks to the sophisticated algorithms of its Auto-
Focus technology, Lauterbach is able to ensure error-
free recording of high-frequency trace signals.

As processor architectures continue to gain in speed
and complexity through parallelization, the trace in-
terfaces are starting to use a high-speed data trans-
fer method that has been in use in other areas for a
long time. A high-speed serial transmission is used
in SATA, Fibre Channel, PCI Express, and USB3.0
(SuperSpeed USB). The extremely high data rates
more than compensate for the disadvantage of only a
few differential data lines.

The integration of high-speed serial interfaces on the
chip is expensive and can initially cause problems. As
just one example, the I/O pads have to be operated at
a much higher speed. But with the increasing experi-
ence in the implementation of serial interfaces in the
gigahertz range the knowledge gained can be used
to solve many of the problems arising with the serial
trace ports.

In 2008, ARM implemented this technology with its
High Speed Serial Trace Port – HSSTP for short. This

was quickly followed by AMCC with the Titan, Free-
scale with the QorIQ processors P4040 and P4080, as
well as Marvell with the SETM3.

Lauterbach had designed a hardware interface for the
serial trace in 2008. A universal preprocessor was
developed on the basis of the Aurora protocol. Only
the firmware and software have to be changed to
record any of the alternative protocols. This means
that our system is already prepared for further variants
of serial trace protocols.

Serial Trace Port Usage Growing

Fig. 7:	 Following firmware and software adaptations, a universal hardware
supports the most varied protocols of serial trace interfaces.

AMCC APM83290

Program flow

2009

ARM-HSSTP ETMv3, PTM,
CoreSight ETMv3,
CoreSight PTM

Program flow,
Data flow and Context-ID

2008

Freescale NEXUS QorIQ
P4040 and P4080

Branch Trace and Owner-
ship Trace Messages,
Data Write Messages

2010

Marvell-SETM3 CoreSight ETMv3

Program flow,
Data flow and Context-ID

2009

Supported Serial Trace Ports

NEWS 2011 www.lauterbach.com10

“Real-time Streaming” means transferring trace
data to the host whilst it is being recorded and ana-
lyzing it there immediately. This requires the trans-
mission of large volumes of data from the trace
tool to the host, especially for CPU-intensive appli-
cations and multicore systems. To make TRACE32
fit for these application scenarios, the trace data
is compressed by the trace tool, PowerTrace II, be-
fore being transferred to the host. This feature has
been supported by the TRACE32 software since
December 2010.

Real-time Streaming is currently implemented for the
ARM trace protocols ETMv3 and PTM.

Hardware Compression

The maximum transmission rate to the host is still the
bottle-neck for Real-time Streaming. Even with a peer-
to-peer GB Ethernet interface between the trace tool
and the host, the maximum is currently only about
500 MBit/s net. This maximum transmission rate has
to be sufficient to transfer all data at the trace port
without loss to the host.

To be able to estimate the actual data volume to be
transmitted, it is important to know the conditions of
Real-time Streaming:

1.	The main applications for Real-time Streaming are
code coverage and run-time measurements. For
both functions, it is sufficient if only the program

trace information is exported. To get a very accurate
run-time measurement, cycle-accurate tracing can
be enabled.

2.	For a realistic estimate of the necessary data rate,
you just have to consider the average load at the
trace port. Peak loads at the trace port are intercept-
ed by PowerTrace II, which can be considered as a
large FIFO (up to 4 GB). Fig. 8 shows an overview
of the average / maximum load at the trace port for
Cortex cores. The application running on the Cortex
core ultimately determines the actual load.

By implementing FPGA-based hardware compression
in PowerTrace II, the transmission rate to the host was
raised to 3.2 GBit/s.

Pure Long-Time Trace

If trace data is analyzed and also saved to the hard-
disk during Real-time Streaming, Lauterbach consid-
ers this a Long-time Trace.

To provide long-time tracing for other trace protocols
such as Nexus, Lauterbach is now offering pure stream-
ing onto the hard-disk without simultaneous analysis.
This means that trace recording of up to 1 tera-frames
is possible for a 64-bit host operating system.

For detailed information on Real-time Streaming and
Long-time Trace, go to the Lauterbach homepage at:
www.lauterbach.com/tracesinks.html

Higher Transmission Rate for Real-Time Streaming

Fig. 8:	 A transmission rate of 3.2 GBit/s is usually enough to transfer program trace information to the host while it is being recorded.

11

The TRACE32 CombiProbe can now also be used
for measuring the energy used by applications.

The following analyses are possible:

•	 The current/voltage profile at up to three measure-
ment points can be displayed directly linked to the
code running on the processor.

•	 The energy consumption of the entire system can
be analysed for the individual functions.

Which part of a program uses the most energy? What
influence does a program modification have on the
energy requirements of an embedded system? These
are the questions that can now be dealt with by the
CombiProbe.

To determine the energy consumption for every point
of the program, the following measurement data has
to be collected:

•	 The program flow being exported via the trace port
of the processor.

•	 The current and voltage profile measured at suitable
measurement points on the target hardware.

The current and voltage development for up to three
power domains can now be identified by connecting a
TRACE32 Analog Probe to the CombiProbe.

Since all measurement data is time-stamped by the
global timer of the CombiProbe, you can quickly and
easily see the direct connection between executed
program code and the power consumption as well as
the voltage profile of the system.

Fig. 9 shows that a program section running from
external memory instead of cache not only needs
much more processing time but also uses more power
at the external memory.

Fig. 10 shows the energy consumption as a statistical
analysis.

Energy Profiling with the CombiProbe

CombiProbe

The CombiProbe is a debug cable that also con-
tains a 128 MB trace memory. The CombiProbe
was specially developed for processors with a
4-bit trace port. Program flow recording is cur-
rently supported for the following trace proto-
cols:

 •	 ARM-ETMv3 in continuous mode (ARM)
 •	 IFLOW Trace for PIC32 (Microchip)
 •	 MCDS Trace for X-GOLD102 and X-GOLD110
(Infineon)

www.lauterbach.com/cobstm.html

Fig. 9:	 A program section not running from the cache needs more time and
uses more current.

Fig. 10:	 The minimum, maximum, and average energy consumption of
individual functions.

WORLDWIDE BRANCHES

 • USA
 • Germany

 • France
 • UK
 • Italy
 • China
 • Japan

Represented by experienced
partners in all other countries

www.lauterbach.com12

Sample-based profiling was completely reworked in
2010. Important innovations include a new operating
concept for measuring, a self-calibrating sampling rate
and an extension for SMP systems.

SMP Profiling for Functions

From October 2010, profiling data for SMP systems
can now be collected. To create function level profiling,
TRACE32 cyclically reads the program counters of the
individual cores and saves them in a database. The
profiling can then be shown for the individual cores
and also as a total for all cores.

Since many chips provide the capability of reading the
program counter whilst the processor is executing, this
measurement can be made in real-time for the follow-
ing architectures:

•	 ARM / Cortex: ARM11 MPCore, Cortex-A5
MPCore, Cortex-A9 MPCore, Cortex-A15 MPCore

•	 MIPS32: MIPS34K, MIPS1004K
•	 MIPS64: Broadcom BCM7420

If the chip’s debug logic does not permit non-intrusive
reading of this information, the individual cores will
have to be briefly stopped periodically to obtain this
information.

SMP Profiling for Tasks

To create a task profile, the task ID for the individual
cores has to be read cyclically from the memory. Many
chips allow the physical memory to be read at program
run-time. If the on-chip debug logic supports this fea-
ture, the measurement can be made in real-time:

•	 ARM / Cortex: ARM11 MPCore, Cortex-A5
MPCore, Cortex-A9 MPCore, Cortex-A15 MPCore

•	 Power Architecture: MPC8641D, MPC8572, QorIQ

Otherwise, the individual cores have to be briefly
stopped to read the data required.

SMP Profiling

KEEP US INFORMED

If your address has changed or if you no longer
want to be on our mailing list, please send us an
e-mail to info_us@lauterbach.com.

Fig. 11:	 Sample-based profiling shows the ratio of individual code sections
compared to the overall run-time as a percentage. The result can
be displayed both for the individual cores of the SMP system (here
for core 1) as well as for the total of all cores.

Sample-Based Profiling

For Sample-based Profiling, the program counter
or the variable containing the ID of the current
task is periodically read. On the basis of this infor-
mation, the ratio of a function or task compared to
the overall run-time is shown as a percentage.

Symmetrical Multiprocessing (SMP)

A multicore chip consisting of identical cores can
be configured as an SMP system. An SMP op-
erating system distributes the pending processes
(tasks) dynamically to individual cores at program
run-time (but not before). For debugging SMP
systems, a single TRACE32 instance is opened
from which all cores are monitored.

