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Our success is due to building long term, solid rela-
tionships with our customers and partners. By keeping 
up-to-date with new technologies from our partners, 
and being proactive to the requirements of our cus-
tomers, we are able to provide the right development 
tools at the right time. Successful communication re-
quires active involvement, which will continue to be our 
philosophy in 2010.

Expert Seminars

To help expand our customers’ level of product use and 
understanding, we hosted our first, industry specific, 
TRACE32 expert forum, October 2009, at our new 
headquarters in Germany. The essential outline of 
this forum was to exchange information between the 
system users and our TRACE32 developers. Positive 
feedback has impelled us to plan more like events dur-
ing 2010.

Committed to Standards

In addition to the ongoing dialogue with our embed-
ded industry partners, our participation in standards 
committees represents a critical means of exchanging 
information and fostering contacts. Over the years, we 
have incorporated many of the results from these com-
mittees into our products. In this newsletter, we’d like 

to provide you with more details regarding our involve-
ment in this area. 

Panel Discussions

Trade show panel discussions provide further oppor-
tunities to discuss current and future market require-
ments with customers and partners. In November 
2009, for example, Stephan Lauterbach took part in 
a discussion at the IP/ESC in Grenoble, France. The 
discussion, initiated by ARM, focused on the future of 
debugging and trace technology.

We are looking forward to talking with you at the up-
coming ESC Silicon Valley in San Jose (booth# 1910).

Communication: The Key to Success
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With the new TRACE32 DVD from December 2009 
(Build 20817/Release), Lauterbach provides offi-
cial support for Windows 7.

The TRACE32 installer has been enhanced to simplify 
the installation of TRACE32 USB drivers on systems 
running Windows 7. This was necessary because  
Windows 7 only installs drivers automatically using the 
Windows Update Server or a pre-installed driver pack-
age.

If you do not have a new DVD available, you can 
download the new TRACE32 USB driver installer for  
Windows XP/Vista/7 (32-bit and 64-bit) under the fol-
lowing link:

http://www.lauterbach.com/faq/t32usb_setup.exe

The handling as well as the look and feel of TRACE32 
remains the same on systems running Windows 7. To 
provide even better support for the Windows security 
model and to make automatic installation easier, from 
December 2009, the executable TRACE32 files on the 
DVD are also signed. A signature has been used on 
the USB driver since 2007.

New TRACE32 Installer for Windows 7

Programming Serial Flash Devices

Embedded systems are increasingly being de-
signed with serial flash memory devices. Lauter-
bach recognized this trend early and since mid-
2009, TRACE32 debuggers have supported the 
programming of serial flash devices. We will be 
increasing this support significantly during 2010.

Low pin count, compact format, and reduced energy 
consumption make serial flash devices a cost-effective 
alternative to NOR/NAND flash devices. The concept 
behind serial flash design is simple: An interface con-
troller is connected upstream of the NOR/NAND flash 
device, enabling you to program and read out the com-
ponent over an SPI bus or MMC bus (see Figure 1).

TRACE32 support for serial flash devices includes pro-
gramming as well as reading and displaying contents. 
The flash contents are displayed in a conventional hex 
dump, which enables you to check the program data 
quickly (see Figure 2).

To find out if TRACE32 supports your serial flash, 
please check the following lists:

Supported NAND/SERIAL FLASH Controllers
http://www.lauterbach.com/ylistnand.html

Supported NOR/NAND/SERIAL FLASH Devices
http://www.lauterbach.com/ylist.html

Fig. 1:	 Serial flash with SPI interface

Fig. 2:	 A visual representation of serial flash content
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Since October 2009, Lauterbach has been of-
fering development tools for Intel® Atom™.  
Linux debugging is already fully supported, and  
Windows CE support is planned for early 2010.

Debuggers for Intel® Atom™ Microarchitecture

Intel® LA-3776 (Atom)
•  230                         
•  330                         
•  D410                       
•  D510

•  N270 
•  N280
•  N450
•  Z5XX

                              Other derivatives are planned.

Supported Derivatives

Differential Loading

A typical debug cycle consists of the following steps: 
debug the program – locate errors – correct errors – 
compile the program – reload the program. Your tool 
chain has to be able to perform each individual step 
quickly and without any delays.

Long waiting times will occur when downloading a 
large program to the target RAM via a slow JTAG in-
terface. Differential loading can provide a remedy for 
this problem. If the newly compiled program differs 
only slightly from the previously loaded program, the 
loading times can be cut significantly.

The basic concept behind differential loading is that the 
debugger holds a copy of the program that is already 
loaded. When loading the newly compiled version a 
differential file is created. The differential file contains 

all of the information, in compressed form, that is re-
quired to update the original file to the newly compiled 
version. The debugger then downloads only the differ-
ential file to the target system. Because the differential 
file is usually thirty to one hundred times smaller than 
the complete newly compiled program, the download 
is much faster. A load agent on the target system then 
decompresses the differential file and makes sure that 
the new compilation is stored in the target memory.

The measurements in Figure 3 were performed for 
a test file in which one percent of the program had 
changed.

1.	Atom architecture
CPU: Z530P from Intel
Processor frequency: 1.6 GHz
JTAG frequency: 20 MHz
Normal download: 204 KByte/s

2.	MIPS32 architecture
CPU: BCM7325 from Broadcom
Processor frequency: 167 MHz
JTAG frequency: 20 MHz
Normal download in Turbo Mode: 370 KByte/s

3.	MIPS64 architecture
CPU: OCTEON Plus CN58XX from Cavium
Processor frequency: 950 MHz
JTAG frequency: 50 MHz
Normal download in Turbo Mode: 1 MByte/s

Fig. 3:	 Differential loading makes it significantly faster to load a 4-MByte file.
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New Supported Processors

ARC LA-3750 (ARC)
•  ARC 601 / ARC 630

ARM LA-7843 (Cortex-A / R)
•  Cortex-A5 / Cortex-A5MPCore
•  Cortex-A9 / Cortex-A9MPCore
LA-7844 (Cortex-M)
•  Cortex-M0 / Cortex-M1

ATMEL LA-3779 (AVR32)
•  AVR32 (Q2 / 2010)
LA-7844 (Cortex-M)
•  AT91SAM3U

Broadcom LA-7760 (MIPS32)
•  BCM3380
•  BCM56xxx / 5836
•  BCM6362 / 6368 / 6550
•  BCM7401 / 7402 / 7403

CEVA LA-3711 (CEVA-X)
•  CEVA-X1641
•  CEVA-XC (Q2 / 2010)
LA-3774 (TeakLite-III)
•  TeakLite-III

Cavium LA-7761 (MIPS64)
•  Octeon CN54xx / CN56xx
•  Octeon CN63xx
LA-7765 (ARM11)
•  ECONA CNS3XXX

Cortus LA-3778 (APS)
•  APS-IP (Q2/2010)

Energy Micro LA-7844 (Cortex-M)
•  EFM32

Freescale LA-7736 (MCS12X)
•  MC9S12G
LA-7742 (ARM9)
•  i.MX23 / i.MX25
LA-7732 (ColdFire)
•  V1 ColdFire Core
LA-7753 (MPC55xx) / 
LA-7630 (NEXUS MPC55xx)
•  MPC5643L
LA-7764 (PowerQUICC III)
•  QorIQ P1013 / P1022 / P4080

Infineon LA-7756 (TriCore)
•  TC1167 / TC1197 / TC1337
•  TC1367 / TC1387 / TC1387ED
•  TC1782 / TC1782ED

Infineon
(Cont.)

LA-7759 (XC2000 / C166S V2)
•  XC2000ED
•  XC2200 / XC2300 / XC2700
•  XE166 / XGOLD110 

LSI LA-7834 (StarCore)
•  StarPro25xx / 26xx

Marvell LA-7742 (ARM9)
•  88AP128 / 162 / 166 / 168
•  MV76100 / 78100 / 78200
LA-7765 (ARM11)
•  88SV581X-V6
LA-7843 (Cortex-A / R)
•  88SV581X-V7
LA-7762 (XScale)
•  PXA93x / PXA950

MIPS LA-7760 (MIPS32)
•  MIPS32 1004K / 1004KF
•  MIPS32 1004K CPS
•  MIPS32 M14K / M14Kc

NEC LA-3777 (78K0R)
•  78K0R / Fx3, 78K0R / Kx3 
LA-7835 (V850)
•  V850E2 / Px4
•  70F3502 / 70F3504 / 70F3506

NXP LA-7844 (Cortex-M)
•  LPC13xx
LA-7742 (ARM9)
•  LPC29xx

ST 
Microelectronics

LA-7753 (MPC55xx) / 
LA-7630 (NEXUS MPC55xx)
•  SPC56EL60
LA-7844 (Cortex-M)
•  STM32F105 / STM32F107

Tensilica LA-3760 (Xtensa)
•  Xtensa 8

Texas 
Instruments

LA-7847 (TMS320C28X)
•  TMS320F28232 
•  TMS320F28234 / F28235
LA-7838 (TMS320C6400)
•  TMS320TC6424
•  TMS320TCI6482 / I6488
LA-7843 (Cortex-A / R) / 
LA-7838 (TMS320C6400)
•  AM3505 / AM3517 (Sitara)
•  OMAP4430 / OMAP4440
LA-7742 (ARM9) / 
LA-7841 (TMS320C6700)
•  OMAP-L137 / OMAP-L138

New Derivatives
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Debugging AMP and SMP Systems

Many multi-core processors can be used as either 
AMP or SMP systems. Depending on the mode of 
operation, different debug and trace concepts are 
applicable. In the following article, we describe how 
these concepts can be applied using TRACE32 to 
debug an ARM Cortex-A9 MPCore.

Debug Concepts

In discussion with our customers, we realize again and 
again that there are many varying interpretations of 
the two terms:

•	 AMP – asymmetrical multiprocessing
•	 SMP – symmetrical multiprocessing

Therefore we think it is worth taking the time to explain 
how these terms are used at Lauterbach and what 
effect they have on the configuration and usage of a 
TRACE32 debugger.

As the term “multiprocessing” implies, multiple cores 
are working together in an embedded system. What 
is crucial for debugging is how the system tasks are 
distributed to the individual cores.

Debug Concept for AMP Systems

In AMP systems, each core is assigned a specific task. 
How the tasks are distributed is determined in the de-
sign phase of the system. In addition to a standard 

controller (usually RISC architecture) specialized ac-
celerators (DSPs or customized cores) are frequently 
chosen.

When debugging AMP systems, an individual 
TRACE32 instance is started for each core (see Fig-
ure 4). There are two reasons for this:

1.	An AMP system can contain different core architec-
tures.

2.	Each core processes a separate part of the applica-
tion. This means that the majority of the symbol and 
debug information is assigned exclusively to the cor-
responding core.

However, because the cores do not work indepen-
dently, but perform the application task together and in 
parallel, it must be possible to start and stop all cores 
simultaneously. This is the only way to test the interac-
tion between the cores and to monitor and control the 
entire application. There are different ways to start and 
stop all cores simultaneously. Ideally, the multi-core 
processor will support this through internal synchro-
nization logic. If this logic is missing, TRACE32 takes 
over the synchronization process. A special algorithm 
calculates JTAG command sequences to control all 
cores as promptly as possible.

Fig. 4:	 When debugging AMP systems, an individual TRACE32 instance is 
started for each core.

Fig. 5:	 When debugging SMP systems, a single TRACE32 instance is 
started for all cores.
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Debug Concept for SMP Systems

In contrast to AMP systems, where the tasks assigned 
to each core are predefined, the assignment in SMP 
systems is flexible. In an SMP system, the system 
designer no longer assigns tasks to cores. An SMP 
operating system does this instead. All cores must be 
the same type to enable tasks to be assigned freely to 
each core as required. 

Task assignment is performed dynamically, meaning 
that the assignment depends on the current system 
status. A task unit that can be assigned by an oper-
ating system is called a “task” or “thread”. In simple 
terms, a task that needs to be processed is assigned 
to a core that is currently free.

For debugging SMP systems, only one TRACE32 in-
stance is opened and all cores are controlled from this 
one point (see Figure 5 on the previous page). Because 
the developer is primarily concerned with debugging a 
single task, the TRACE32 user interface displays the 
state of the entire SMP system from the perspective 
of this single task or from the perspective of the core 
where the task is running. Of course the visualization 
can be switched to other tasks or cores if required.

TRACE32 assumes a function that is similar to an SMP 
operating system. It organizes the debugging of all 
cores so that developers do not need to look into the 
details of the SMP system. For example, if a breakpoint 

is set, TRACE32 makes sure 
that the breakpoint is entered 
in all cores. This is necessary 
because at the time when the 
breakpoint is set, it’s not yet 
clear which core will execute 
the program section with the 
breakpoint. If a core stops at 
a breakpoint, all other cores 
are also stopped automati-
cally. The display in TRACE32 
switches to the task or core 

that hits the breakpoint. If the program is restarted, all 
cores start running together.

Debugging SMP systems with TRACE32 is easy. After 
a TRACE32 instance is started and configured for the 
SMP system, the developer essentially use it as if he 
were debugging only one core.

Trace Concepts

TRACE32 analyzes and displays trace information in 
different ways, depending on whether the trace data 
was generated by an AMP system or an SMP system. 
For AMP systems, trace analysis is largely performed 
on each core independently. The trace information for 
an SMP system, however, can be analyzed for a single 
task, a single core, or for the entire system, depending 
on the type of query.

Trace Concept for AMP Systems

Because debugging individual cores of an AMP sys-
tem is performed over separate TRACE32 instances, 
trace information is also displayed on these individual 
user interfaces. AMP systems can consist of different 
types of cores, so different trace protocols might be 
used. As the individual trace streams are displayed in 
the separate user interfaces, they can be individually 
decoded and analyzed.

To test the interaction of the 
cores and to quickly locate 
complex system errors, it is 
possible to display the individ-
ual trace views and also their 
relationship to each other over 
time. To do this, TRACE32 
PowerTrace provides a com-
mon time base. This allows the 
developer to select a point in 
time in the trace view on one 
user interface and see exactly 

Fig. 6:	 When tracing AMP systems, the trace information for each 
core is displayed on a separate user interface. Time syn-
chronization of the user interfaces is possible.
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which command was being executed by another core 
at approximately the same time (see Figure 6).

Trace Concept for SMP Systems

All information about the programs processed on an 
SMP system is stored in a shared trace memory for 
all cores (see Figure 7). One of the advantages of 
TRACE32 is that it provides different views of this in-
formation.

To locate errors in a task or for task-specific runtime 
measurements, trace information can be displayed 
specifically for an individual task.

If you want to know information such as “Which cores 
processed my task?” or “What is the run-time load of 
my cores?”, it can be useful to view the trace informa-
tion for all cores at the same time. Figure 8 shows an 
example of this view. The core number (0 or 1) indi-
cates the cores on which the individual program sec-
tions ran.

In order to examine the SMP system as a whole, it is 
not necessarily to know which core processed which 
task or program section. TRACE32 also provides dis-
play options for this type of view of the SMP system 
(see Figure 9).

During 2010, Lauterbach will continue to enhance 
the preparation and display of trace information from 
SMP systems. This will include new analysis functions 
based upon feedback from existing users and also 
new concepts currently in development.

Fig. 7:	 When tracing SMP systems, the information for all cores is stored in 
a shared trace memory.

Fig. 9:	 The trace analysis analyses the SMP system as a whole; which 
core processed which program section is unimportant.

Fig. 8:	 The trace analysis shows which cores processed the individual pro-
gram sections.

The Latest on RTOS Debugging

Updating for new RTOS versions
•	 LynxOS 5.0 for PowerPC
•	 MQX 3.x for ColdFire
•	 OSE 5.4 
•	 QNX 6.4 
•	 VxWorks 6.4
•	 µC/OS-III

Enhancements
•	 Partitions and MPU/MMU support for mC/OS-II
•	 Paged breakpoints for Symbian OS
•	 RTP support for VxWorks

FAMOS for ARM available

Linux for Atom available

SMP Linux for MIPS64 available

OKL4 for ARM available

OS21 for ARM available

SMP Symbian OS for ARM available

Windows CE for Atom Q1/2010

New Supported RTOS
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Standards Committees

Many customers would like to see a higher level of 
standardization for debug and trace technologies. 
In order to take an active role in the development 
of suitable standards, Lauterbach has been par-
ticipating in a number of international committees 
over many years. Our active participation makes 
it possible for us to include full support within 
TRACE32 for all new standards as soon as they 
are approved.

ORTI Standard

One of the first standards that Lauterbach actively 
helped to develop was the ORTI standard. This stan-
dard deals with a descriptive language that describes 
the structure and memory mapping of OSEK operating 
system objects for RTOS-aware debugging and stores 
it in a file. This standard was developed within the  
AUTOSAR consortium and has been applied since 
2003 by all providers of OSEK operating systems, in-
cluding ETAS Group and Vector.

Working with an ORTI file can be described as follows: 
The OSEK System Builder creates the ORTI file from 
the user configuration of an OSEK operating system. 

The ORTI file is then loaded in the TRACE32 debug-
ger in order to provide OSEK-aware debugging (see 
Figure 10).

TRACE32 can then offer the developer the following 
functions (presuming the OSEK System Builder has 
saved the required information in the ORTI file):

•	 Intuitive display of OSEK resources
	 (Figure 11 shows the alarm list as an example)
•	 Task-specific breakpoints
•	 A task stack analysis
•	 A task context view
•	 Analysis of task runtimes (see Figure 13)
•	 Analysis of service runtimes

NEXUS Standard

Back in 1998, at the NEXUS 5001 Forum, a first step 
was taken toward standardizing a debug interface 
and a trace interface for embedded processors. The 
NEXUS standard was then approved in 2003. This in-
cludes:

•	 A JTAG interface, usually IEEE1149.1
•	 Mechanisms that enable a debugger to read and write 

to memory, while the program execution is running
•	 A message-based trace protocol
	 (program flow as well as data trace)
•	 Debugging and tracing for multi-core processors
•	 A hardware layer
•	 Standard NEXUS connectors

Fig. 11:	 The alarm list of an OSEK operating system in TRACE32

Fig. 10:	 The OSEK System Builder creates an ORTI file that enables OSEK-
aware debugging after the file is loaded in TRACE32.

 

www.autosar.org

Working group 
OSEK/VDX Debug Interface Working Group

Standard 
OSEK Run Time Interface Version 2.2, Nov. 2005
http://portal.osek-vdx.org/files/pdf/specs/orti-a-22.pdf 
http://portal.osek-vdx.org/files/pdf/specs/orti-b-22.pdf

AUTomotive Open System ARchitecture 
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Lauterbach has supported the NEXUS standard 
for various processor architectures since 2001. The 
latest and most important one is the MPC55xx/ 
MPC56xx family from Freescale and ST Microelec-
tronics, which is widely used in the automotive industry. 
Figures 12 and 13 show how the NEXUS trace log is 
used to measure the runtimes of OSEK tasks.

Because the NEXUS standard gives a high degree of 
freedom in the implementation, Lauterbach complete-
ly redesigned its NEXUS hardware in 2008. The new 
FPGA-based hardware is designed to be so flexible, 
that it can be adapted to all NEXUS implementations. 
New features include support for an optimized sam-
pling point for trace signals as well as the new JTAG 
protocol IEEE 1149.7. More information about IEEE 
1149.7 can be found on page 10. 

The 2003 NEXUS standard is currently being revised. 
Although the new version of the standard has not yet 
been approved, some processors from the MPC56xx 
family already implement this new standard. The new 
protocol is supported by TRACE32 by means of a soft-
ware update available now.

Serial Trace for QorIQ

Lauterbach will present its new QorIQ High-Speed 
Serial Trace (see Figure 14) at the ESC Silicon 
Valley April 2010. The trace technology of QorIQ 
P4xxx is based on a NEXUS protocol, an AURORA-
based hardware layer, and a connector approved 
by a working group of the Power.org organization.

The first processor to be supported will be the QorIQ 
P4080 from Freescale. The P4080 SoC features eight 
Power Architecture e500mc cores that can run in SMP 
or AMP configurations. Configurations that combine 
SMP and AMP groups are also possible. Detailed in-
formation about “Debugging AMP and SMP Systems” 
can be found on page 5 of this newsletter.

Compared to parallel trace interfaces, serial trace in-
terfaces have the following advantages: pin reduction 
through serial transfer and high data throughput using 
differential signals to transfer the data.

The large volume of produced trace data naturally 
requires a correspondingly large trace memory buf-
fer size. This is provided by the Lauterbach product  
PowerTrace II, which has a memory of up to 4 GByte.

High-Speed Serial Trace for the QorIQ is designed for 
a maximum of four high-speed channels. The following 
transfer rates are supported:

•	 6.25 GBit/s max. per channel for up to 3 channels

•	 3.125 GBit/s max. per channel for up to 4 channels

Trace data is captured over a connector system sup-
plied by Samtec. Lauterbach supplies adapters for dif-
ferent variants of the connector.

Fig. 12:	 NEXUS messages for recording task switching

Fig. 13:	 Analysis of task runtimes for an OSEK operating system Fig. 14:	 TRACE32 High-Speed Serial Trace for QorIQ

 

www.nexus5001.org

Standard 
Standard for a Global Embedded Processor 
Debug Interface Version 2, December 2003 
http://www.nexus5001.org/st/ieee_isto_5001_2003.pdf

Nexus 5001™
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IEEE 1149.7

Also known as cJTAG (compact JTAG), IEEE 1149.7 
updates the familiar JTAG standard IEEE 1149.1 to 
meet the latest technical requirements. As the lead-
ing manufacturer of debuggers, Lauterbach has been 
heavily involved in the definition of this new 2-pin  
interface.

According to IEEE 1149.7, the entire communication 
between debugger and core can occur over the TCK 
and TMS pins. Compared to the standard debug com-
munication, the new features can be described as fol-
lows:

•	 IEEE 1149.7 has only a two-pin connector on the 
outside. On the chip, the 1149.7 controller converts 
the communication back to standard JTAG (see Fig-
ure 15).

•	 Simply stated, the IEEE 1149.7 is serialized com-
pared to the standard JTAG interface (see Fig-
ure 16).

Because the TMS signal is a unidirectional signal in 
standard JTAG, Lauterbach had to adapt its debug 
cables to support bidirectional TMS:

•	 All debug cables for ARM/Cortex architectures were 
converted at the beginning of 2008 (Debug Cable 
V4).

•	 An updated version of the debug cable for the  
MPC55xx/MPC56xx architecture has been avail-
able since September 2009 (OnCE Debug Cable 
with serial JTAG).

The new debug cables will of course continue to sup-
port the conventional standard.

TRACE32 was successfully tested with cJTAG in  
October 2009. However, it can only be released after 
the 1149.7 standard has been officially approved.

 

www.standards.ieee.org

Working group: 1149.7

Standard 
Official approval of the standard is planned for Q1/2010

IEEE Standards Association

 

 

www.power.org

Working group 
Common Debug Interface Technical Subcommittee

Standard 
Power.org™ Standard for Physical Connection 
for High-Speed Serial Trace, July 2008
http://www.power.org/resources/downloads/ 
Power_CDI_Physical_Connection_for_HSST_ 
APPROVED_v1.0.pdf

Power.org

Fig. 15:	 The IEEE 1149.7 protocol is converted back to the standard JTAG protocol on the chip.

Fig. 16:	 Simplified diagram of the 1149.7 protocol
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MCD API

The MCD API defines a C interface for debugging 
multi-core systems. It makes no difference whether 
the multi-core system consists of real hardware or a 
software simulation. Lauterbach currently sees two  
applications for the MCD API:

1.	MCD API as the standard interface for TRACE32, as 
the new TRACE32 MCD Remote API

2.	MCD API as the standard interface for virtual proto-
types

1. Updated TRACE32 Remote API

The Lauterbach Remote API allows an external appli-
cation to control TRACE32. It enables for example the 
automation of regression tests.

Over the years, our remote API has been subject to on-
going development driven by the many new requests 
from our customers. Currently, the increasing number 
of multi-core systems would have required many fur-
ther comprehensive modifications.

Instead of revising the current remote API, Lauter-
bach has decided to rebuild its remote API based on 
the MCD standard. It is highly probable that the MCD 
API does not cover all TRACE32 requirements, which 
means that functions specific to TRACE32 will be in-
cluded (see Figure 17).

The release of the first version of the new TRACE32 
MCD Remote API is scheduled for mid-2010. At this 
point in time, all development on the current Legacy 
Remote API has been “put on ice”. For our customers, 
this means that although we will continue to support 
the Legacy Remote API, we will not be implementing 
any new functionality.

2. Standard Interface for Virtual Prototypes

For the past five years, TRACE32 has been capable of 
debugging virtual prototypes. Manufacturers of virtual 
prototypes typically provide their own debugging APIs 
for this purpose. The MCD API provides a standard-
ized interface between debugger and virtual prototype 
(see Figure 18). This has the following advantages:

•	 Fast adaptation to new virtual prototypes

•	 Larger range of well-tested functions with higher 
performance

Fig. 17:	 TRACE32 can be controlled by an external application over its Remote API.

 

www.sprint-project.net

Working group: Debug and Analysis

Standard: Multi-Core Debug API v1.0, April 2009 
http://www.lauterbach.com/sprint_mcd_api_v1_0.zip

Open SoC Design Platform for  
Reuse and Integration of IPs

Fig. 18:	 Debugging a virtual prototype takes place over the MCD-API.
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BRANCHES AROUND THE WORLD

On-chip breakpoints are highly valuable debug re-
sources that, on most processors, are only avail-
able in very limited numbers. For a long time it 
has been possible to set up two additional read/
write breakpoints on an ARM core, provided the 
core included an Embedded Trace Macrocell (ETM). 
Using these breakpoints, there are extra options 
to define the break conditions with great accuracy. 
Unfortunately, not many developers are aware of 
this useful option.

For efficient debugging, it is often important to be able 
to halt the program when a given data value is written 
to a variable. It is a disadvantage that not all ARM or 
Cortex cores provide the required read/write break-
points. For example, the breakpoints in the Processor 
Debug Logic for the Cortex-A8 do not support this ca-
pability.

However, if the Cortex-A8 has an ETM logic, TRACE32 
can provide this functionality by using two of the  
address and data comparators provided in the ETM. 

These comparators are then no longer available for 
their original function of filtering trace information and 
generating triggers. However, this is normally not criti-
cal because this functionality remains largely unused 
during debugging.

By setting the option “ETM.ReadWriteBreak”, the re-
source management of TRACE32 is reconfigured so 
that two address/data comparators of the ETM can be 
used as standard read/write breakpoints.

These breakpoints provide superior functionality when 
compared to the standard breakpoints provided in the 
Processor Debug Logic of the Cortex-A8. As an exam-
ple, the read/write breakpoints of the Processor Debug 
Logic only offer bit masks for marking address areas, 
with the ETM breakpoints the address areas can be 
defined exactly. Because of this, TRACE32 gives prior-
ity to using ETM-based breakpoints. Table 2 compares 
the functionality of both breakpoint types.

Note that ETM breakpoints can also be used even if 
the debugger in use is only the TRACE32 JTAG de-
bugger. This is because the ETM comparators can be 
configured over the standard JTAG interface. 

Similarly, as described for the Cortex-A8, trace logic 
features can be used in other architectures to provide 
additional breakpoints with enhanced functionality 
(see table 1).

Tip – More Read and Write Breakpoints
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Processor Debug Logic of Cortex-A8

1 to 16 read/write breakpoints
Address area as bit mask
No data values

ETM-based Breakpoints of Cortex-A8

2 read/write breakpoints
Exact address area
Both breakpoints with exact data values

Table 2:	 The additional ETM-based  breakpoints offer enhanced functionality.

Table 1:	List of architectures for which additional breakpoints can be pro-
vided over the trace logic.

ARM7/9/10/11
Cortex-A5/-A8/-R4

2 extra read/write breakpoints 
with data values

Ceva-X/TeakLite 2 extra read/write breakpoints 
with data values

TMS320C6400 Up to 4 extra read/write 
breakpoints with data values

Additional Read/Write Breakpoints

  •  Germany
  •  France

  •  UK
  •  Italy
  •  USA
  •  China
  •  Japan

Represented by experienced 
partners in all other countries


