
Rudi Dienstbeck ▪ June 07, 2016

ARM® TrustZone® and
Hypervisor Debugging

2 / 46

Rudi Dienstbeck ▪ June 07, 2016

Agenda

 TrustZone And CPU Modes In TRACE32

 Default Behavior Of The Debugger

 Special TrustZone Support

 Debugging Through The Zones

 Outlook To Multiple Guests

3 / 46

Rudi Dienstbeck ▪ June 07, 2016

Agenda

TrustZone And CPU Modes In TRACE32

 Default Behavior Of The Debugger

 Special TrustZone Support

 Debugging Through The Zones

 Outlook To Multiple Guests

4 / 46

Rudi Dienstbeck ▪ June 07, 2016

TrustZone And CPU Modes In TRACE32

5 / 46

Rudi Dienstbeck ▪ June 07, 2016

TrustZone And CPU Modes In TRACE32

 CPU modes in Register window
 Register modes in CPSR bits 0..4

 “user mode”:
 usr

 “kernel modes”:
 fiq, irq, svc, abt, und, sys

 “hypervisor mode”:
 hyp (only non-secure)

 “monitor mode”:
 mon (only secure)

6 / 46

Rudi Dienstbeck ▪ June 07, 2016

TrustZone And CPU Modes In TRACE32

 CPU modes in Register window
 TrustZone in SCR bit 0

 “non-secure” nsec:
 Modes: usr, fiq, irq, svc,

abt, und, sys, hyp
 “secure” sec:

 Modes: usr, fiq, irq, svc,
abt, und, sys, mon

7 / 46

Rudi Dienstbeck ▪ June 07, 2016

TrustZone And CPU Modes In TRACE32

8 / 46

Rudi Dienstbeck ▪ June 07, 2016

TrustZone And CPU Modes In TRACE32

 Memory addresses with “access class”
 Access class relates to memory access depending on CPU mode and zone
 PC shown with current access class in “List.auto” and status line

9 / 46

Rudi Dienstbeck ▪ June 07, 2016

TrustZone And CPU Modes In TRACE32

 Memory addresses with “access class”
 If not explicitly specified, windows follow current CPU mode
 Overriding is possible: see examples below

10 / 46

Rudi Dienstbeck ▪ June 07, 2016

TrustZone And CPU Modes In TRACE32

 Mapping of access classes for memory accesses
 D: Data, P: Program, R: aRm code, T: Thumb code
 S: kernel modes (“Supervisor”), U: User mode
 N: Non-secure, Z: secure+monitor (“Zone”), H: Hypervisor

 These access classes map MMU tables (see next slides)
 A: physical (“Absolute”) access (see next slides)
 E: run-time access (“Emulation”, aka dual-port, see next slides)

11 / 46

Rudi Dienstbeck ▪ June 07, 2016

TrustZone And CPU Modes In TRACE32

 Mapping of access classes for memory accesses
 Combinations: e.g.

 ZUT:
 Secure zone, user mode, thumb code

 ANSD:
 Non-secure zone, supervisor mode, data, physical address

 EAHR:
 Dual-port access to physical hypervisor arm code – BUT:
 Note: “H” not visible at bus with “E”,
 Note: MMU/caching issues with “E”

 C: “CPU” access = current CPU mode access
 Several others, not mentioned here (e.g. coprocessor access)

 See debugger_arm.pdf, chapter “Access Classes”

12 / 46

Rudi Dienstbeck ▪ June 07, 2016

TrustZone And CPU Modes In TRACE32

 MMU mapping of zones and access classes
 Non-secure zone (N:)

 MMU.List NonSecPageTable
 MMU.List IntermedPageTable

 Hypervisor (H:)
 MMU.List HypPageTable

 Secure zone (Z:)
 MMU.List SecPageTable

 “Current” CPU mode
 MMU.List PageTable

 Note: MMU.List without parameters shows fixed, manual entries!

13 / 46

Rudi Dienstbeck ▪ June 07, 2016

TrustZone And CPU Modes In TRACE32

 “Physical” addresses / access class A:
 Physical is unambiguous? No it isn't!

 AZSD: is different from ANUP!
 S/U state visible on AMBA bus → distinction possible!
 Zone also distinguishable on physical bus:

 AN: might not “see” physical secure memory
 AZ: might see different memory/peripheral than AN:
 While in non-secure mode, override with AZ:

 If CPU lets us do it (secure debug enabled)

14 / 46

Rudi Dienstbeck ▪ June 07, 2016

TrustZone And CPU Modes In TRACE32

 Run-Time access class E:

 E.g. SYStem.MemAccess DAP
 DAP-Access to ARM internal bus (APB/AHB/AXI)
 Caution: Cache invisible!

 With write-back cache, you'll see old/invalid data!
 MMU Translation with debugger may not be possible!

 E.g. SYStem.CpuAccess Enable
 Debugger stops CPU shortly to read data
 Caution: heavy run-time impact!

15 / 46

Rudi Dienstbeck ▪ June 07, 2016

TrustZone And CPU Modes In TRACE32

 Memory visibility with zones
 Depending on CPU hardware implementation,

secure zone may be inaccessible!
(Secure debug disabled)

 Depending on CPU mode,
some memory may be invisible in non-secure zone!
See slide about physical access (AN:/AZ: difference)

16 / 46

Rudi Dienstbeck ▪ June 07, 2016

Agenda

 TrustZone And CPU Modes In TRACE32

Default Behavior Of The Debugger

 Special TrustZone Support

 Debugging Through The Zones

 Outlook To Multiple Guests

17 / 46

Rudi Dienstbeck ▪ June 07, 2016

Default Behavior Of The Debugger

 Symbols are independent of the CPU mode and TrustZone
 List window always shows code

matching to symbol address,
regardless of zone / access class

 Debugger accesses variables
with the current CPU mode

 Symbols are only divided
in P: and D: (see sYmbol.List)

 Access class override
is possible!

18 / 46

Rudi Dienstbeck ▪ June 07, 2016

Default Behavior Of The Debugger

 Breakpoints are independent of the CPU mode and TrustZone
 Software breakpoints are written to the code with current CPU mode
 Onchip breakpoints react regardless of current CPU mode

 CAUTION:
 Each zone (non-secure, secure, hypervisor) has an own MMU translation!
 If the translation is different for each zone, symbols may not match!
 Software breakpoints may be set into wrong code!
 Onchip breakpoints may halt where not desired

19 / 46

Rudi Dienstbeck ▪ June 07, 2016

Agenda

 TrustZone And CPU Modes In TRACE32

 Default Behavior Of The Debugger

Special TrustZone Support

 Debugging Through The Zones

 Outlook To Multiple Guests

20 / 46

Rudi Dienstbeck ▪ June 07, 2016

Special TrustZone Support

 Support of TrustZones with so called “Zone Spaces”

 SYStem.Option ZoneSpaces ON

 Symbols are mapped to a specific zone (N: / H: / Z:)

 E.g.: Data.LOAD.Elf symbols.elf H:0
 sYmbol.name

shows symbols
mapped to zones

 List window matches only source
code loaded to appropriate zone

 Accessing symbols/variables
automatically uses appropriate zone

 Accessing symbols or addresses uses
appropriate MMU decoding

21 / 46

Rudi Dienstbeck ▪ June 07, 2016

Special TrustZone Support

 Breakpoints are “zone aware”
 Software breakpoints set on symbols are automatically

set in correct code
 Software breakpoints on addresses follow the access class
 Onchip breakpoints react in specified zone/access class only

22 / 46

Rudi Dienstbeck ▪ June 07, 2016

Agenda

 TrustZone And CPU Modes In TRACE32

 Default Behavior Of The Debugger

 Special TrustZone Support

Debugging Through The Zones

 Outlook To Multiple Guests

23 / 46

Rudi Dienstbeck ▪ June 07, 2016

Debugging Through The Zones

 Demo hardware
 TRACE32 PowerDebug PRO +

PowerTrace PX +
Debug Cable Cortex-A/R +
ETM Preprocessor

 Renesas Lager Board
 CPU: R-CarH2 (Quad Cortex-A15,

Quad Cortex-A7)

24 / 46

Rudi Dienstbeck ▪ June 07, 2016

Debugging Through The Zones

 Demo application running on Cortex-A7
 small hand-written monitor for switching

secure/non-secure
 MMU mapping:

Z:0x40001200--0x400012ff AZ:0x84001200
 small hand-written hypervisor

 MMU mapping: H:0x40001100--0x40001fff AH:0x83081000
 Decryption (AES) demo in secure mode

 MMU mapping: Z:0x40001300--0x40002fff AZ:0x84001300
 FreeRTOS running in non-secure mode

 MMU mapping:
N:0x40001000--0x40006fff I:0x20001000 AN:0x81001000

 FreeRTOS Awareness set to work on non-secure mode only
TASK.ACCESS N:

25 / 46

Rudi Dienstbeck ▪ June 07, 2016

Debugging Through The Zones

 Demo application running on Cortex-A7
 Overlapping virtual addresses in all three zones!

MMU tables are set up to map each zone to a different physical address

26 / 46

Rudi Dienstbeck ▪ June 07, 2016

Debugging Through The Zones

 Accessing symbols
 Different set of symbols for each zone

 E.g.: each zone has its own “main”

27 / 46

Rudi Dienstbeck ▪ June 07, 2016

Debugging Through The Zones

 Accessing symbols
 Variables automatically point to the correct zone

 Different code and different source for each zone

28 / 46

Rudi Dienstbeck ▪ June 07, 2016

Debugging Through The Zones

 Breakpoints can be set in any zone

 List.auto and Register windows follow current zone

29 / 46

Rudi Dienstbeck ▪ June 07, 2016

Debugging Through The Zones

 Stepping through the mode changes
 We start in non-secure zone

 Non-secure executes “smc #0”

30 / 46

Rudi Dienstbeck ▪ June 07, 2016

Debugging Through The Zones

 Stepping through the mode changes

 Single step into hypervisor (set TrOnchip.HENTRY ON)

 Debug hypervisor until switch to monitor

31 / 46

Rudi Dienstbeck ▪ June 07, 2016

Debugging Through The Zones

 Stepping through the mode changes
 Hypervisor executes “smc #0”

 Step into monitor mode (note: “nsec” not valid due to monitor mode)

32 / 46

Rudi Dienstbeck ▪ June 07, 2016

Debugging Through The Zones

 Stepping through the mode changes
 Monitor sets up secure mode and executes “rfe”

 Step into secure zone

33 / 46

Rudi Dienstbeck ▪ June 07, 2016

Debugging Through The Zones

 Stepping through the mode changes
 Debug secure zone until switch to monitor

 Secure executes “smc #0”

34 / 46

Rudi Dienstbeck ▪ June 07, 2016

Debugging Through The Zones

 Stepping through the mode changes
 Step into monitor mode

 Monitor sets up non-secure mode and executes “rfe”

35 / 46

Rudi Dienstbeck ▪ June 07, 2016

Debugging Through The Zones

 Stepping through the mode changes
 Monitor mode returns to hypervisor

 Hypervisor executes “eret”

36 / 46

Rudi Dienstbeck ▪ June 07, 2016

Debugging Through The Zones

 Stepping through the mode changes
 Step into non-secure mode

 Return from subroutine, and we're back where we started!

37 / 46

Rudi Dienstbeck ▪ June 07, 2016

Debugging Through The Zones

 Tracing the zones
 The ETM stream contains information about which zone is active

 TRACE32 detects the
zone switches and
adjusts the access
classes to the addresses
in the trace.

38 / 46

Rudi Dienstbeck ▪ June 07, 2016

Debugging Through The Zones

 Tracing the zones
 Symbol time chart over zone switches

39 / 46

Rudi Dienstbeck ▪ June 07, 2016

Debugging Through The Zones

 Tracing the zones
 Statistics of recorded functions of all zones

(interrupt) = hypervisor; (unknown) = secure zone (unknown to RTOS)

40 / 46

Rudi Dienstbeck ▪ June 07, 2016

Debugging Through The Zones

 Tracing the zones
 Task runtime measurements, if one zone contains an RTOS

 Here: FreeRTOS running in non-secure
 (unknown) = secure zone, not known to FreeRTOS

41 / 46

Rudi Dienstbeck ▪ June 07, 2016

Agenda

 TrustZone And CPU Modes In TRACE32

 Default Behavior Of The Debugger

 Special TrustZone Support

 Debugging Through The Zones

Outlook To Multiple Guests

42 / 46

Rudi Dienstbeck ▪ June 07, 2016

Outlook To Multiple Guests

43 / 46

Rudi Dienstbeck ▪ June 07, 2016

Outlook To Multiple Guests

 Ongoing efforts to support multiple guests
 Work in progress
 Multiple guests in access class N: (non-secure zone)

 Introduction of a “machine id”
 Each guest gets its own machine id
 Will be an addition to the virtual address

 Symbol handling separate for each “machine”
 Just like the zones, but extended to several guests

 OS Awareness for each machine
 Loading several OS awareness at the same time

44 / 46

Rudi Dienstbeck ▪ June 07, 2016

Outlook To Multiple Guests

 Two-stage MMU support
 Debugger does its own MMU translation and table walk
 Access to hypervisor and guest simultaneously
 Access to every guest simultaneously
 Access to every process within every guest simultaneously
 Prerequisite: “Hypervisor Awareness” plus RTOS Awareness

 HV Awareness provides “VTTB” of guests
 RTOS awareness provides “TTB” of processes

45 / 46

Rudi Dienstbeck ▪ June 07, 2016

Summary

 TRACE32 separates the zones for you

 Debugging simultaneously in each zone,
even with overlapping MMU

 Debugging the zone switches

 Tracing decodes the zones accordingly

TRACE32® ready for ARM® TrustZone®!

46 / 46

Rudi Dienstbeck ▪ June 07, 2016

Thank You! Rudi Dienstbeck

rudolf.dienstbeck@lauterbach.com
Phone: +49 8102 9876 175

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

