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TrustZone And CPU Modes In TRACE32
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TrustZone And CPU Modes In TRACE32

 CPU modes in Register window
 Register modes in CPSR bits 0..4

 “user mode”:
  usr

 “kernel modes”: 
 fiq, irq, svc, abt, und, sys

 “hypervisor mode”:
 hyp (only non-secure)

 “monitor mode”:
 mon (only secure)
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TrustZone And CPU Modes In TRACE32

 CPU modes in Register window
 TrustZone in SCR bit 0

 “non-secure” nsec:
  Modes: usr, fiq, irq, svc, 

abt, und, sys, hyp
 “secure” sec:

  Modes: usr, fiq, irq, svc, 
abt, und, sys, mon
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TrustZone And CPU Modes In TRACE32
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TrustZone And CPU Modes In TRACE32

 Memory addresses with “access class”
 Access class relates to memory access depending on CPU mode and zone
 PC shown with current access class in “List.auto” and status line
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TrustZone And CPU Modes In TRACE32

 Memory addresses with “access class”
 If not explicitly specified, windows follow current CPU mode
 Overriding is possible: see examples below
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TrustZone And CPU Modes In TRACE32

 Mapping of access classes for memory accesses
 D: Data, P: Program, R: aRm code, T: Thumb code
 S: kernel modes (“Supervisor”), U: User mode
 N: Non-secure, Z: secure+monitor (“Zone”), H: Hypervisor

 These access classes map MMU tables (see next slides)
 A: physical (“Absolute”) access (see next slides)
 E: run-time access (“Emulation”, aka dual-port, see next slides)
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TrustZone And CPU Modes In TRACE32

 Mapping of access classes for memory accesses
 Combinations: e.g. 

 ZUT:
 Secure zone, user mode, thumb code

 ANSD:
 Non-secure zone, supervisor mode, data, physical address

 EAHR:
 Dual-port access to physical hypervisor arm code – BUT:
 Note: “H” not visible at bus with “E”,
 Note: MMU/caching issues with “E”

 C: “CPU” access = current CPU mode access
 Several others, not mentioned here (e.g. coprocessor access)

 See debugger_arm.pdf, chapter “Access Classes”
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TrustZone And CPU Modes In TRACE32

 MMU mapping of zones and access classes
 Non-secure zone (N:)

 MMU.List NonSecPageTable
 MMU.List IntermedPageTable

 Hypervisor (H:)
 MMU.List HypPageTable

 Secure zone (Z:)
 MMU.List SecPageTable

 “Current” CPU mode
 MMU.List PageTable

 Note: MMU.List without parameters shows fixed, manual entries!
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TrustZone And CPU Modes In TRACE32

 “Physical” addresses / access class A:
 Physical is unambiguous? No it isn't!

 AZSD: is different from ANUP!
 S/U state visible on AMBA bus → distinction possible!
 Zone also distinguishable on physical bus: 

 AN: might not “see” physical secure memory
 AZ: might see different memory/peripheral than AN:
 While in non-secure mode, override with AZ:

 If CPU lets us do it (secure debug enabled)
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TrustZone And CPU Modes In TRACE32

 Run-Time access class E:

 E.g. SYStem.MemAccess DAP
 DAP-Access to ARM internal bus (APB/AHB/AXI)
 Caution: Cache invisible!

 With write-back cache, you'll see old/invalid data!
 MMU Translation with debugger may not be possible!

 E.g. SYStem.CpuAccess Enable
 Debugger stops CPU shortly to read data
 Caution: heavy run-time impact!
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TrustZone And CPU Modes In TRACE32

 Memory visibility with zones
 Depending on CPU hardware implementation,

secure zone may be inaccessible! 
(Secure debug disabled)

 Depending on CPU mode, 
some memory may be invisible in non-secure zone!
See slide about physical access (AN:/AZ: difference)



16 / 46

Rudi Dienstbeck  ▪  June 07, 2016

Agenda

 TrustZone And CPU Modes In TRACE32

Default Behavior Of The Debugger

 Special TrustZone Support

 Debugging Through The Zones

 Outlook To Multiple Guests



17 / 46

Rudi Dienstbeck  ▪  June 07, 2016

Default Behavior Of The Debugger

 Symbols are independent of the CPU mode and TrustZone
 List window always shows code 

matching to symbol address,
regardless of zone / access class

 Debugger accesses variables 
with the current CPU mode

 Symbols are only divided 
in P: and D: (see sYmbol.List)

 Access class override 
is possible!
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Default Behavior Of The Debugger

 Breakpoints are independent of the CPU mode and TrustZone
 Software breakpoints are written to the code with current CPU mode
 Onchip breakpoints react regardless of current CPU mode

 CAUTION:
 Each zone (non-secure, secure, hypervisor) has an own MMU translation!
 If the translation is different for each zone, symbols may not match!
 Software breakpoints may be set into wrong code!
 Onchip breakpoints may halt where not desired
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Special TrustZone Support

 Support of TrustZones with so called “Zone Spaces”

 SYStem.Option ZoneSpaces ON

 Symbols are mapped to a specific zone (N: / H: / Z:)

 E.g.: Data.LOAD.Elf symbols.elf H:0
 sYmbol.name 

shows symbols 
mapped to zones

 List window matches only source 
code loaded to appropriate zone

 Accessing symbols/variables 
automatically uses appropriate zone

 Accessing symbols or addresses uses 
appropriate MMU decoding
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Special TrustZone Support

 Breakpoints are “zone aware”
 Software breakpoints set on symbols are automatically 

set in correct code
 Software breakpoints on addresses follow the access class
 Onchip breakpoints react in specified zone/access class only
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Debugging Through The Zones

 Demo hardware
 TRACE32 PowerDebug PRO + 

PowerTrace PX +
Debug Cable Cortex-A/R + 
ETM Preprocessor

 Renesas Lager Board
 CPU: R-CarH2 (Quad Cortex-A15, 

Quad Cortex-A7)
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Debugging Through The Zones

 Demo application running on Cortex-A7
 small hand-written monitor for switching 

secure/non-secure
 MMU mapping: 

Z:0x40001200--0x400012ff AZ:0x84001200
 small hand-written hypervisor

 MMU mapping: H:0x40001100--0x40001fff AH:0x83081000
 Decryption (AES) demo in secure mode

 MMU mapping: Z:0x40001300--0x40002fff AZ:0x84001300
 FreeRTOS running in non-secure mode

 MMU mapping: 
N:0x40001000--0x40006fff I:0x20001000 AN:0x81001000

 FreeRTOS Awareness set to work on non-secure mode only
TASK.ACCESS N:
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Debugging Through The Zones

 Demo application running on Cortex-A7
 Overlapping virtual addresses in all three zones!

MMU tables are set up to map each zone to a different physical address
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Debugging Through The Zones

 Accessing symbols
 Different set of symbols for each zone

 E.g.: each zone has its own “main”
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Debugging Through The Zones

 Accessing symbols
 Variables automatically point to the correct zone

 Different code and different source for each zone
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Debugging Through The Zones

 Breakpoints can be set in any zone

 List.auto and Register windows follow current zone
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Debugging Through The Zones

 Stepping through the mode changes
 We start in non-secure zone

 Non-secure executes “smc #0”
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Debugging Through The Zones

 Stepping through the mode changes

 Single step into hypervisor (set TrOnchip.HENTRY ON)

 Debug hypervisor until switch to monitor
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Debugging Through The Zones

 Stepping through the mode changes
 Hypervisor executes “smc #0”

 Step into monitor mode (note: “nsec” not valid due to monitor mode)
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Debugging Through The Zones

 Stepping through the mode changes
 Monitor sets up secure mode and executes “rfe”

 Step into secure zone
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Debugging Through The Zones

 Stepping through the mode changes
 Debug secure zone until switch to monitor

 Secure executes “smc #0”
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Debugging Through The Zones

 Stepping through the mode changes
 Step into monitor mode

 Monitor sets up non-secure mode and executes “rfe”
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Debugging Through The Zones

 Stepping through the mode changes
 Monitor mode returns to hypervisor

 Hypervisor executes “eret”
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Debugging Through The Zones

 Stepping through the mode changes
 Step into non-secure mode

 Return from subroutine, and we're back where we started!
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Debugging Through The Zones

 Tracing the zones
 The ETM stream contains information about which zone is active

 TRACE32 detects the 
zone switches and 
adjusts the access 
classes to the addresses 
in the trace.
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Debugging Through The Zones

 Tracing the zones
 Symbol time chart over zone switches
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Debugging Through The Zones

 Tracing the zones
 Statistics of recorded functions of all zones

(interrupt) = hypervisor; (unknown) = secure zone (unknown to RTOS)
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Debugging Through The Zones

 Tracing the zones
 Task runtime measurements, if one zone contains an RTOS

 Here: FreeRTOS running in non-secure
 (unknown) = secure zone, not known to FreeRTOS
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Outlook To Multiple Guests
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Outlook To Multiple Guests

 Ongoing efforts to support multiple guests
 Work in progress
 Multiple guests in access class N: (non-secure zone)

 Introduction of a “machine id”
 Each guest gets its own machine id
 Will be an addition to the virtual address

 Symbol handling separate for each “machine”
 Just like the zones, but extended to several guests

 OS Awareness for each machine
 Loading several OS awareness at the same time
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Outlook To Multiple Guests

 Two-stage MMU support
 Debugger does its own MMU translation and table walk
 Access to hypervisor and guest simultaneously
 Access to every guest simultaneously
 Access to every process within every guest simultaneously
 Prerequisite: “Hypervisor Awareness” plus RTOS Awareness

 HV Awareness provides “VTTB” of guests
 RTOS awareness provides “TTB” of processes
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Summary

 TRACE32 separates the zones for you

 Debugging simultaneously in each zone, 
even with overlapping MMU

 Debugging the zone switches

 Tracing decodes the zones accordingly

TRACE32® ready for ARM® TrustZone®!
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Thank You! Rudi Dienstbeck

rudolf.dienstbeck@lauterbach.com
Phone: +49 8102 9876 175

Questions?
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