
MANUAL

Release 02.2024

Training Power Probe

Training Power Probe

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Training .. 

 Training Power Probe ... 

 Training Power Probe .. 1

 Basics ... 3

 The PowerProbe Configuration Window 3

 The PowerProbe Connector 4

 Standard Sampling Mode 5

 Arm/Disarm the PowerProbe 6

 Signal Names 7

 Link the PowerProbe to the Application Debugging 10

 Fifo/Stack Mode 10

 Measurement Statistics 11

 Postprocessing 12

 Simple Trigger ... 14

 Asynchronous Trigger .. 22

 Trigger Outputs ... 25

 Protocol Analysis .. 26

 Track Option .. 28

 Complex Trigger Introduction .. 30

 Synchronous Recording ... 34

 Pulse Generator ... 37

 Pattern Generator .. 38
Training Power Probe | 2©1989-2024 Lauterbach

Training Power Probe

Version 04-Mar-2024

Basics

The PowerProbe is an accessory device for the TRACE32 debugger. It is optimally suited to record
peripheral signals of up to 50 MHz.

The PowerProbe Configuration Window

To use the PowerProbe the first step is to open up the PowerProbe configuration window.

Probe.state Display PowerProbe configuration window
Training Power Probe | 3©1989-2024 Lauterbach

The PowerProbe Connector

Now you have to physically connect some signals to the PowerProbe. The PowerProbe has 3 pin columns,
each with 32 pins. The regular signal inputs are on the left and right column. The middle column contains
special input and output pins.

What is especially important, is to connect the ground pins on the middle column to a ground plane or pin
on your target!

X.32

PowerProbe Input Connector

X.63

X.00

X.31

Pin X.00-X.31Pin X.32-X.63

Special Pins
Training Power Probe | 4©1989-2024 Lauterbach

Standard Sampling Mode

The standard mode for the PowerProbe is Transient Mode.

With the settings in the Mode box, you can change the sampling frequency of the PowerProbe. The default
is 100 MHz (100 MSamples/s). In this default mode all input pins are freely usable. When you select
200 MHz, only input pins x.0-x.31 can be used. In 400 MHz mode only input pins x.0-x.15 are available. In
50 MHz mode, the PowerProbe lowers its sampling rate to 50 MSamples/s.

Probe.Mode 400MHz ; set the sampling frequency

Probe.Rate Transient ; select transient recording

X.0.. Xn

Sampling in defined
sampling frequency

Transient detection

Trace RAM
Training Power Probe | 5©1989-2024 Lauterbach

Arm/Disarm the PowerProbe

When your pins are physically connected to the PowerProbe, you can start a recording by clicking on the
Arm button in the PowerProbe configuration window. To stop the recording you can click the Off button. You
can view your recording by clicking on the Timing button.

Probe.Arm Arm the PowerProbe

Probe.OFF Disarm the PowerProbe

Probe.Timing Display trace contents as timing diagram
Training Power Probe | 6©1989-2024 Lauterbach

Signal Names

Now you can see your signals, but remembering the meanings of the signals is not very convenient. So first
of all we will give the signals better names. This is done with the NAME.list window, which is reachable from
the PowerProbe configuration window with the NAME button:

NAME.list List channel names and attributes

NAME.Set Assign name and attributes to a channel

NAME.Word w.<name> <channel> <channel> … Group channels to a word
Training Power Probe | 7©1989-2024 Lauterbach

The configuration of the naming of the pins can be stored in a script. The TRACE32 software can create
such a script for you: You just have to click on the Store button the NAME.list window.

In this example we have a bus on which there are 4 data pins grouped to a word, one active high ChipSelect
pin and an active high Read/Write pin.

STOre <file> NAME Create script for NAME settings.

ClipSTOre NAME Create TRACE32 commands for the NAME settings and copy them
to the clipboard.
Training Power Probe | 8©1989-2024 Lauterbach

Another way to view your signal is the Probe.List window. This window is useful, if you are more interested
in raw bus data than in timing wave forms:

One question which often comes up is how much data you can trace with the PowerProbe. The answer is
not simple: When a signal is recorded in transient mode (the default), then only changes of the signal are
recorded. So in the above recording one full bus cycle needs five records in the PowerProbe memory, when
the timing is optimal. In the Probe.List window this transient recording becomes most obvious, because one
line in the Probe.List window corresponds to exactly one record in the PowerProbe. Because the
PowerProbe can store up to 256K records, you can record 52000 bus cycles in this example. It isn’t really
possible to tell how long the time period of a recording will be, because this is completely dependent on the
frequency of your recorded signals.

Probe.List Display the PowerProbe trace contents textually.
Training Power Probe | 9©1989-2024 Lauterbach

Link the PowerProbe to the Application Debugging

When you are debugging an application, you usually want to start the PowerProbe recording, when your
application is started and stop it, when your application stops. This is the default behavior of the
PowerProbe, when the AutoArm option is enabled.

Fifo/Stack Mode

If you select Stack mode, the PowerProbe will stop the recording as soon as the trace memory is full. While
this mode seems to be natural it actually is only useful when you want to see what happens at the start of a
recording. In Fifo mode you will see the traced signals up to the point of time, where the PowerProbe was
stopped. A more detailed explanation follows in the next chapter.

Probe.AutoArm ON Link PowerProbe recording to the execution of the application
program.

Probe.Mode <mode> Specify the sampling mode for the PowerProbe trace.
Training Power Probe | 10©1989-2024 Lauterbach

Measurement Statistics

Another useful basic feature is the capability to measure a signal. To do that you select the part of the signal
you want to measure and use the context menu, which pops up if you right click on the selected part:

Trace.STATistic.Measure Statistic information about a single channel
Training Power Probe | 11©1989-2024 Lauterbach

Postprocessing

If you don´t find time to analyse the information sampled by the PowerProbe, you can save the trace
information and analyse it later.

There are two ways to postprocess the trace contents of the PowerProbe.

1. Postprocessing with a TRACE32 Instruction Set Simulator.

2. Regarding the saved contents a reference and compare it with other recordings.

Postprocessing with a TRACE32 Instruction Set Simulator

Probe.SAVE <file> Save PowerProbe configuration and trace contents to a file.

; load trace contents and PowerProbe configuration
Trace.LOAD test1.ad /Config
; all Trace.<sub_cmd> apply to the loaded trace contents now

; display the trace contents as timing diagram
Trace.Timing

LOAD in red indicates that the displayed trace contents
was loaded with the Trace.LOAD command
Training Power Probe | 12©1989-2024 Lauterbach

Reference trace contents

; load trace contents
Probe.FILE test1.ad /Config

; display the trace contents as timing diagram
Probe.Timing /FILE

; compare trace contents with file
Probe.ComPare , x.MOSI /FILE
Probe.ComPare , ALL /FILE

FILE in red indicates that the displayed trace contents was loaded with the
Probe.FILE command
Training Power Probe | 13©1989-2024 Lauterbach

Simple Trigger

A standard scenario is that you don’t want to look at a complete recording, but you want to see a specific
event and the things which happened before and after this event. So it’s necessary to define such an event in
the PowerProbe:

The checkbox TSYNC in the lower left corner selects the so-called Simple Trigger as trigger source.

The window pane on the upper right defines the event on which the PowerProbe will trigger. So in the above
example a trigger will be detected, when x.CS is high and X.D0-D3 are low.

Probe.TSELect TSYNC ON Select simple trigger as trigger source for the PowerProbe

X.0.. Xn

Simple Trigger

Trigger the PowerProbe
(Probe.TSELect TSYNC ON)

Show trigger on pin TOUT7/8
(Probe.TOUT E/F)

Show trigger on PODBUS
(Probe.TOUT BUSA)
Training Power Probe | 14©1989-2024 Lauterbach

The settings in this window pane can be changed with the buttons left to it. With these buttons you can select
if you want to trigger on a high or low level, or on a falling or rising edge of a signal.

When you want to trigger on a certain event, you should use the PowerProbe in Fifo mode. This means that
the PowerProbe will record data until it is stopped by an external event. Such an event is either a trigger as
described above, or a manual stop of the PowerProbe (as for example when the application stops).

To understand the rest of the settings of the Simple Trigger it is necessary to understand how the Fifo mode
works. You can visualize the data which is traced by the PowerProbe as a sliding window on a time line:

Now you can visualize a recording in the following way:

So at first the trace memory starts to fill up and after the trace memory is full, the window starts to slide.

Probe.TSYNC.SELect <channel> Low | High | Falling | Rising

Time

Now

FuturePast

Records in
the PowerProbe

Memory

PowerProbe has recorded 256K Frames
Training Power Probe | 15©1989-2024 Lauterbach

When a trigger event happens, the PowerProbe can break immediately. In this case the data in the
PowerProbe will look like this:

In this case you can see what happened before the trigger, but you can’t see what happened after the
trigger. To make this possible, you tell the PowerProbe to delay the break of the recording after a trigger has
been detected. This TriggerDelay (TDelay) can be set in the advanced part of the Probe window:

Probe.TDelay <percentage> Specify trigger delay

Time

Trigger

LaterEarlier

Records in
the PowerProbe

Memory
Training Power Probe | 16©1989-2024 Lauterbach

As soon as the trigger is detected, the PowerProbe will switch into the TRIGGER state. While the
PowerProbe is in the TRIGGER state, the TriggerDelay starts to count down, until it reaches zero. When the
TriggerDelay reaches zero, the PowerProbe enters the Break state and the recording is stopped:

You can specify the TriggerDelay in two different units: Either you specify the TriggerDelay as an absolute
time constant, or you specify the TriggerDelay as a percentage of the number of trace records the trace
memory can hold. As mentioned before, the PowerProbe usually records in transient mode. So when you
specify the TriggerDelay as a percentage, you can’t tell how many nanoseconds the PowerProbe will
continue to record data, because you don’t know how many records are recorded per second:

If you specify the TriggerDelay as an absolute time constant, you can’t tell how many records the
PowerProbe will record before the recording is breaked. If you use a very long TriggerDelay, the point of time
on which the PowerProbe triggered can slide out of the record window; in this case all records which you can
see in the PowerProbe trace memory will refer to a point of time after the trigger happened:

Time
TDelay = 50%

LaterEarlier

Trigger

Time
TDelay = 30 s

LaterEarlier

Trigger
Training Power Probe | 17©1989-2024 Lauterbach

If an event happens repeatedly, it is possible that the trigger activates immediately after the trace starts
recording:

If you want to avoid this scenario, you can tell the PowerProbe how long the recording has to be active,
before the trigger detection is activated. This setting is called TriggerPreDelay (TPreDelay) and can be
changed in the trigger window:

Probe.TPreDelay <percentage> Specify how much of the trace buffer should be filled before
the trigger becomes active

Time

LaterEarlier

Trigger
Training Power Probe | 18©1989-2024 Lauterbach

The input signals, which are recorded by the PowerProbe, will have some skew. That means that even
signals, which should change on exactly the same moment won’t change exactly in the same moment. So if
for example a data bus changes its value, it’s possible that the PowerProbe “sees” this change. In this case
you get a record in which the recorded data is from an in-between state. If you want to trigger on such a
signal source, you don’t want this unstable states to interfere with your trigger detection. The solution is the
TWidth setting in the trigger window: It defines how long a trigger state has to be stable, before a trigger is
detected:

Probe.TWidth <time> Define how long a trigger state has to be stable, before the trigger is
detected.
Training Power Probe | 19©1989-2024 Lauterbach

In the first case the trigger condition was ignored, because w.Data was zero for only 90 ns.
In the second case the trigger was activated after w.Data stayed zero for 120 ns:

The remaining two unexplained settings are TCount and the BusA check box in the TOut box.
With TCount (TriggerCount) you can define how often the trigger condition has to occur, before the trigger is
activated.

Probe.TCount <number> Specify trigger counter
Training Power Probe | 20©1989-2024 Lauterbach

When the BusA check box is enabled, the PowerProbe will send out a trigger on the PodBus, as soon as the
trigger is activated. This PodBusTrigger can be used for example to break the application program:

Probe.TOut BUSA ON ; output trigger to POBDBUS trigger
; bus

TrBus.Set Break ON ; connect the PODBUS trigger bus to
; the program execution
Training Power Probe | 21©1989-2024 Lauterbach

Asynchronous Trigger

Additional to the Simple Trigger, there is also a so-called Asynchronous Trigger. It can be configured by
clicking on the ASYNC button in the advanced part of the Probe window:

The input pins for this trigger are x.0-x.7. Internally the Async Trigger Unit generates two signals, which are
called DATA and CLOCK. These signals are active, when the specified pattern is recognized on the input
pins. For both signals it can be specified if they are active high or active low; this is selected with the
DataPOL and ClockPOL settings. So the schematic of the Async Trigger Unit looks like this:

X.0.. X7

Asynchronous Trigger

Trigger the PowerProbe
(Probe.TSELect ASYNC ON)

Show trigger on pin TOUT4

Show trigger on PODBUS
(Probe.TOUT BUSA)
Training Power Probe | 22©1989-2024 Lauterbach

x.0

x.7

x.1
x.2
x.3
x.4
x.5
x.6

&
DATA

x.0

x.7

x.1
x.2
x.3
x.4
x.5
x.6

&
CLOCK
Training Power Probe | 23©1989-2024 Lauterbach

The Async Trigger Output is generated by using this two internal signals. The Mode box defines how the two
signals are used. The following modes are possible:

It is usually more convenient to use the Simple Trigger; but the Async Trigger has one advantage if it is used
as external trigger source: It’s faster (see next chapter).

DATA Trigger when the Data pattern matches, the Clock pattern is ignored.

CLOCK Trigger when Clock pattern matches, the Data pattern is ignored.

SYNC Sample the Data signals with the Clock signal is active; trigger when the sampled
Data pattern matches.

LONGER Trigger when the Data pattern is longer active than the specified time.

SHORTER Trigger when the Data pattern is shorter active than the specified time.

Glitch+ Trigger when the Data pattern is active for under 5 ns (positive Glitch).

Glitch- Trigger when the Data pattern is inactive for under 5 ns (negative Glitch).

Glitch Trigger when the Data pattern has a positive or negative Glitch

Probe.ASYNC.view ; display configuration window for
; the asynchronous trigger

Probe.ASYNC.Data 0yxxxx0000 ; specifiy pattern for X.0..X.3

Probe.ASYNC.Mode LONGER ; an asynchronous trigger is
; generated if the pattern is
; valid LONGER then the specified
; time

Probe.ASYNC.Time 120ns

Probe.TSELect ASYNC ON ; allow the asynchronous trigger
; to stop the PowerProbe recording
Training Power Probe | 24©1989-2024 Lauterbach

Trigger Outputs

Sometimes it’s useful to generate external trigger signals. The PowerProbe has several output pins, which
will become active when a trigger is detected. This output pins are all located on the middle column of the
PowerProbe.

The output of the Async Trigger is directly available on output pin TOUT4.

The output of the Simple Trigger is available on output pins TOUT7 and TOUT8. This two outputs can be
controlled with the command Probe.TOut E and Probe.TOut F. For both outputs it can be selected if they
are enabled, and if they are active high or low.

The advantage of the Async trigger output is that it’s a lot faster than the Simple Trigger outputs:

The output pins TOUT0 to TOUT3 are also trigger outputs which can be activated by the Complex Trigger
Unit (see chapter Complex Trigger Unit Introduction). With the commands Probe.TOut A to Probe.TOut D
you can configure if these output pins are active high or active low.
Training Power Probe | 25©1989-2024 Lauterbach

Protocol Analysis

The PowerProbe offers the possibility to analyze data which was recorded according to a given protocol.
This protocol analysis can be extended by the user to support any arbitrary protocol. To do this the user has
to provide a protocol specific DLL (Dynamic Link Library). If you are interested in this customized protocol
analysis please refer to “Protocol Analyzer Application Note” (protocol_app.pdf).

For the following common serial protocols the PowerProbe already has built-in support:

Here is an example of an I2C protocol analysis:

JTAG IEEE 1194.1 serial boundary scan test protocol

CAN CAN bus protocol

USB USB 1.1 protocol (USB 2.0 is NOT supported)

I2C I2C two wire serial bus protocol

ASYNC Asynchronous serial protocols (like RS232)
Training Power Probe | 26©1989-2024 Lauterbach

; JTAG <tck> <tms> <tdi> <tdo> <trst> <initstate>
; when the sampling is started the JTAG state machine is in state
; run-test/idle

Probe.PROTOcol.List JTAG x.8 x.9 x.4 x.12 x.14 Run-Test/Idle

; CAN <canline> <frequency> DEFault | ALL
; the frequency is defined in Hz
Probe.PROTOcol.List CAN x.7 1.MHZ DEFault

; USB <+signal> <-signal>

Probe.PROTOcol.List USB X.17 X.18

; I2C <scl> <sda>

Probe.PROTOcol.List USB X.17 X.18

; asynchronous communication interface
; ASYNC <asyline> <frequency> +|- <parity> <length> <stopbit>

Probe.PROTOcol.List ASYNC X.6 3600. + EVEN 7 1STOP STRING
Probe.PROTOcol.List ASYNC X.5 2400. - NONE 5 2STOP CHAR

; special protocols
; TRACE32 offers a API that allows to use special, customer specific
; protocols

Probe.PROTOcol.List protojtag.dll X.4 X.12 X.14

; examples for special protocols are provided in the TRACE32 system
; directory under ~~\demo\proto
Training Power Probe | 27©1989-2024 Lauterbach

Track Option

Usually you want to correlate your windows; for example you want your timing window to be time correlated
to your protocol analysis window. That means that you want to see the physical signal levels to a given
analyzed protocol part. This is possible by adding the /Track option to the Probe.Timing and the
Probe.Proto window. All windows which have been opened with the /Track option are time correlated; that
means if you move to some point of time in a window which has timestamped data, all the windows which
have the /Track option enabled will jump to the same point of time.

The /Track option also works to time correlate the trace data of the PowerProbe to the trace data of the
PowerTrace. So with the /Track option you can correlate your program flow and data trace to the recording of
your physical signals. There is some problem with this tracking: program flow and data traces are usually not
very accurate and there usually is quite a big offset between the execution of an instruction and the
generation of some corresponding trace data.
Training Power Probe | 28©1989-2024 Lauterbach

To make the time correlation as good as possible, the PowerTrace analyzer needs to know the frequency of
your target, to compensate for the time offset introduced by the generation of flow or data trace. This
frequency can be set in the Analyzer Window:

Here is an example. The write to the address 0x1040 coincides with the change of w.Data to 04:
Training Power Probe | 29©1989-2024 Lauterbach

Complex Trigger Introduction

Like the PowerTrace, the PowerProbe also has a Complex Trigger Unit (CTU). To use the CTU you have to
activate it by selecting the Program Checkbox in the advanced Probe window:

X.0.. Xn

Complex Trigger

Trigger the PowerProbe
(Probe.TSELect Program ON)

Show trigger on pins TOUT1..TOUT3

Show trigger on PODBUS
(BUS.A IF <condition>)

(Probe.TOutA/B/C/D and
OUT.A/B/C/D IF <condition>)
Training Power Probe | 30©1989-2024 Lauterbach

As with the PowerTrace you have to write a Trigger Program to define the actions of the CTU.

The most important declaration for the PowerProbe is the definition of a data selector. A data selector
defined a pattern on the PowerProbe input pins.

Here is a simple example:

SELECTOR <name> <pin> <value>

SELECTOR dataIsZero w.data 0 x.wr 1 x.cs 1

; Define an input selector which is called
; dataIsZero. This selector will become true,
; when w.data==0 and x.wr==1 and x.cs==1

Trigger.TRACE IF dataIsZero

; Trigger PowerProbe when dataIsZero becomes true
Training Power Probe | 31©1989-2024 Lauterbach

So basically a Trigger Program has two parts:

In the first part all the resources which you want to use are defined, by giving them names. (In the above
example a selector is defined with the name dataIsZero).

In the second part you define action / condition pairs. Each action will only be executed if the corresponding
condition is met. (In the above example the action trigger.trace is executed if dataIsZero is true).

In a Complex Trigger Program for the PowerProbe you can define up to 8 data selectors, so you can react on
8 different patterns. The Complex Trigger contains 3 counters, which can be used to count occurrences of
conditions or to measure time. Counters can also be used in conditions: A counter will become “true” when
the counter reaches a user-defined value:

Both of the above examples can also be handled with the Simple Trigger. Here is another example which
cannot be handled with the Simple Trigger:

There is also the possibility to stimulate external trigger outputs with the CTU. With the complex trigger
program commands OUT.A to OUT.D you can activate the output pins TOUT0 to TOUT3, which are located
on the middle pin column of the PowerProbe. With the commandline commands Probe.Tout A to
Probe.Tout D you can select if the output pins are active high or active low.

SELECTOR dataIsF w.data 0xF x.wr 1 x.cs 1

; Selector definition

EVENTCOUNTER cnt 10. ; define counter cnt which will count up to 10

Counter.Increment cnt if dataIsF

; increment cnt if selector dataIsF is true

Trigger.TRACE IF cnt ; Trigger PowerProbe when counter cnt reaches
; limit.

SELECTOR dataIsF W.Data 0xF x.wr 1 x.cs 1

; Selector definitions

SELECTOR dataIsA W.Data 0xA x.wr 1 x.cs 1

EVENTCOUNTER cnt 10. ; counter definition

Counter.Increment cnt IF dataIsF

Trigger.TRACE IF cnt&&dataIsA

; Trigger PowerProbe when counter reaches limit
; and selector dataIsA becomes true.
Training Power Probe | 32©1989-2024 Lauterbach

One of the most useful features of the CTU is the ability to act as a trace filter. It is a common case, that one
of the signals you are recording is a clock signal. In that case the trace memory of the PowerProbe will
rapidly fill up, because a clock is always transient. (As you may remember: The PowerProbe records signal
changes in transient mode.)

With the CTU it is possible to filter out clock cycles in which nothing interesting is happening. With such a
filter you can use the memory of the PowerProbe much more efficiently and thus the real trace depth grows
a lot.

Here is an example of such a filter application:
Assume that we want to trace a simple serial protocol, which has a free-running clock. To indicate that a data
transfer is in progress, there is a strobe signal, which is high when data is transferred. So the traced data will
look like this:

As you can see there are many clock transitions on which no data is transferred.

Now we use the following trigger program:

With this CTU program, the PowerProbe will only store trace data if the x.STR signal is high. So all the idle
clock cycles are filtered out. The result looks like this:

As you can see, the recording is only enabled while the x.STR signal is high.

SELECTOR shiftIsActive x.STR 1 ; Selector definitions

Sample.Enable IF shiftIsActive ; Only enable tracing if the
; shiftIsActive selector is true
Training Power Probe | 33©1989-2024 Lauterbach

Synchronous Recording

The PowerProbe also offers the possibility to sample your data with an external clock. This clock has to be
connected to one of the SCLK0,SCLK1,SCLK2 or SCLK3 pins on the middle pin column of the
PowerProbe. Only input pins x.0 - x.31 offer synchronous sampling, so you have to connect your data
signals to one of those input pins. In the Probe window you can select in the SyncClock box which input
clock pin is used and if you want to sample your data on the rising or falling edge of your clock:

Probe.SyncClock SCLK0 Rising

X.0.. X31

Sampling with SCLKx

Trace RAM

SCLK0..3
Training Power Probe | 34©1989-2024 Lauterbach

The next step is to configure your input pins to be recorded synchronously with the selected clock. This is
done via the Name window. You can choose for all pins from x.0 to x.31 if the pin is recorded synchronously
or not:

NAME.Set X.4 X.D3 + Sync
Training Power Probe | 35©1989-2024 Lauterbach

Now your recording will look like this:

Because the data is sampled on the rising edge of x.CLK the x.D inputs change on the rising edge of the
sampling clock. The PowerProbe will use one trace record for each external clock cycle. So when you
sample synchronously, the memory of the PowerProbe will fill up rapidly. If you have idle clock cycles (clock
cycles which don’t transfer meaningful data), you can use the CTU to increase your record length
dramatically by filtering out these idle cycles.
Training Power Probe | 36©1989-2024 Lauterbach

Pulse Generator

If you need to generate a pulse for example to stimulate some behavior of your application, you can use the
Pulse Generator which is integrated in the PowerProbe. The Pulse Generator has an output level of 3.3V. It
can either generate Pulses on request, or it can send out a continuos PWM (pulse-width modulation) clock
signal. To open up the control window of the Pulse Generator you have to enter the command Pulse:

The output pin of the Pulse Generator is on the middle column of the PowerProbe and is labelled TOUT5.

Click on this button to generate a single Pulse
BusA means: Generate a single Pulse, when a PodBus
Trigger is received.

High Active Pulse
Low Active Pulse
Only for periodic signal: Use 50/50 duty cycle

Pulse Width. (Width of active period.)

Generate periodic signal

Period length, for periodic signal
Pulse, generated
by this settings
Training Power Probe | 37©1989-2024 Lauterbach

Pattern Generator

If you want to generate more complex outputs, you can use the built-in Pattern Generator of the
PowerProbe. To use the Pattern Generator you first of all have to open up the control window by entering the
command Pattern into the command line:

The Pattern generator has to be programmed via a pattern program file. Here is an example of such a file:

The Pattern Generator controls the output pins AUX0-AUX8. This pins are locate on the middle pin column
of the PowerProbe. The above program produces the following pattern on the pins AUX0-AUX3:

set 0x001
delay 90ns
set 0x002
delay 90ns
set 0x004
delay 90ns
set 0x008
delay 60ns
restart

; Set a pattern for output pins (takes 10 ns)
; Wait for 90ns (takes 90 ns)

…

; Wait for 60ns (takes 60 ns)
; Go back to start (takes 30 ns)
Training Power Probe | 38©1989-2024 Lauterbach

To repeat a pattern sequence, you can use the RePeaT command in your pattern program:

The pattern generator uses an internal 100 Mhz clock as default. If you want to use an external clock, you
have to connect this external clock to input pin x.24. Additionally you have to select in the CMode box, if you
want to output the data on the rising or falling edge of the external clock.

You can also provide an external clock enable signal for your external clock by connecting the enable signal
to input pin x.25. If you want to use such an external clock enable pin, you have to select in the CEnable box,
if the enable signal is active high or active low.

The second method to use an external clock is to connect the external clock to one of the SCLK0, SCLK1,
SCLK2 or SCLK3 pins on the middle row, and then configure a synchronous clock in the Probe Window
(see Synchronous Recording chapter). For this method you have to select SYnch in the CMode box.

The last clocking option is to single step your pattern. For this method you have to select single in the
CMode box. If you start your pattern generator, you can then use the Step button to send a single clock
cycle to the Pattern Generator.

The Pattern Generator also offers the possibility to wait on a trigger signal. This is done by using a wait
commando in your pattern program:

In the TSelect box, you have to select which trigger source is used. You can use the input pins X.26--X.29 as
input trigger pins, or you can use the Complex Trigger as trigger source, or you can use the PodBus Trigger.

If you want to use an input pin as trigger source, then you have to select in the TMode box, if you want to
trigger on high, low, rising edge or falling edge of the input signal.

If the TLatch checkbox is selected, the trigger will be held active until the Pattern Generator reaches a wait
statement. The wait statement will then clear the trigger. Without the TLatch checkbox the Pattern
Generator will ignore triggers when no wait statement is active.

RePeaT 5.
(

set 0x001
delay 90ns
set 0x000
delay 90ns

)

; Repeat the next block 5 times.

set 0x001
wait
set 0x002
wait
set 0x004
wait
set 0x008
wait
restart

; The wait commando waits until a trigger is
; received.
Training Power Probe | 39©1989-2024 Lauterbach

	Training Power Probe
	Basics
	The PowerProbe Configuration Window
	The PowerProbe Connector
	Standard Sampling Mode
	Arm/Disarm the PowerProbe
	Signal Names
	Link the PowerProbe to the Application Debugging
	Fifo/Stack Mode
	Measurement Statistics
	Postprocessing

	Simple Trigger
	Asynchronous Trigger
	Trigger Outputs
	Protocol Analysis
	Track Option
	Complex Trigger Introduction
	Synchronous Recording
	Pulse Generator
	Pattern Generator

