
MANUAL

Release 09.2022

Training JTAG Interface

Training JTAG Interface

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Training ..

 Debugger Training ..

 Advanced Debugging Topics ..

 Training JTAG Interface .. 1

 Introduction .. 3

 Related Documents 3

 Debugging a JTAG Session 4

 JTAG Basics ... 6

 Main Concept 7

 DTAP Components 8

 Communication with the DTAB 12

 JTAG Implementation .. 14

 Single TAP Controller 14

 Multiple TAP Controllers 15

 Parallel Solution 15

 Serial Solution by Daisy-chaining 16

 Custom JTAG Access .. 27

 Overview 28

 Available Signals 28

 Access Levels 28

 Debugger State 29

 Remote API 30

 Basics 30

 Direct Access 33

 Raw Access 36

 Low-level Access 38

 Command Line Control 40

 Basics 40

 Direct Access 41

 Raw Access 43

 JTAG Commands via the Remote API 45
Training JTAG Interface | 2©1989-2022 Lauterbach

Training JTAG Interface

Version 26-Oct-2022

Introduction

For most embedded CPU architecture implementations, the JTAG port is used by the debugger to interface
the chip for debugging one or more cores. The normal user will probably not need to know details of the
JTAG implementation unless there is a need to debug several daisy-chained JTAG TAP controllers or to
access special test functions or configurations via JTAG that are not implemented in the debugger software.

This training manual explains the basics of JTAG in case of a single TAP controller or several daisy-chained
TAP controllers and how to perform a custom access to the JTAG port by using the TRACE32 software.

Related Documents

This training does not focus on any specific architecture, so the best document to find any architecture- and
CPU specific information is the corresponding Processor Architecture Manual. Not only ARM users will
find the “Arm JTAG Interface Specifications” (app_arm_jtag.pdf) interesting since it contains information
applicable to any device and general information on the TRACE32 debug cable internals.

Processor Architecture Manual Processor Architecture Manuals

ARM JTAG Interface Specifications “Arm JTAG Interface Specifications”
(app_arm_jtag.pdf)

Remote API Manual “API for Remote Control and JTAG Access in
C” (api_remote_c.pdf)

Command Reference for Letter J “General Commands Reference Guide J”
(general_ref_j.pdf)
Training JTAG Interface | 3©1989-2022 Lauterbach

Debugging a JTAG Session

For debugging any JTAG communication the use of a logic analyzer such as the TRACE32 PowerProbe is
recommended:

TRACE32 PowerProbe

Connection details
Training JTAG Interface | 4©1989-2022 Lauterbach

By using this tool it is not only possible to record the signals but also decode the JTAG protocol for a better
interpretation. The JTAG decoder is built-in but also available as source-code allowing to extend the analysis
by a higher-level decoder for custom use:
Training JTAG Interface | 5©1989-2022 Lauterbach

JTAG Basics

JTAG is the name used for the IEEE 1149.1 standard entitled Standard Test Access Port and Boundary-
Scan Architecture for test access ports (TAP) used for testing printed circuit boards (PCB) using boundary
scan.

JTAG is the acronym for Joint Test Action Group, the name of the group of people that developed the IEEE
1149.1 standard.

The functionality usually offered by JTAG is Debug Access and Boundary Scan:

• Debug Access is used by debugger tools to access the internals of a chip making its resources
and functionality available and modifiable, e.g. registers, memories and the system state.

• Boundary Scan is used by hardware test tools to test the physical connection of a device, e.g. on
a PCB. Although this is usually not the task of a debugger tool the TRACE32 debugger offers
mechanisms to access the JTAG TAP in a generic way, e.g. to perform boundary scan using a
PRACTICE script or a custom application.

Although the TAP (Test Access Port) access itself is generic for all architectures, the functionality
implemented behind JTAG is different for each device.

The following chapter explains all necessities for accessing a JTAG TAP. For a complete description of JTAG
see the IEEE 1149.1 standard.
Training JTAG Interface | 6©1989-2022 Lauterbach

Main Concept

JTAG is defined as a serial communication protocol and a state machine accessible via a TAP. The DTAB
(Debug and Test Access Block) is implemented on the target chip as a “passive” device that never sends
data without request.

The DTAB mainly consists of the following:

• The TAP (Test Access Port) with its physical connections (signals) to the external world.

• The TAP Controller (a 16-state state machine).

• One IR (Instruction Register) and several DRs (Data Registers).

• The Debug Bus for communication with the on-chip debug logic.

JTAG standard

Device specific functionality
Training JTAG Interface | 7©1989-2022 Lauterbach

DTAP Components

TAP (Test Access Port)

The TAP defines the interface between the DTAB and the debug tool. The JTAG Port is the physical
connector on the PCB where the debug cable is plugged.

The IEEE standard defines the following TAP signals, used for the serial communication and driving the TAP
controller (JTAG state machine):

The TMS and TDI line are sampled by the DTAP on each rising edge on the TCK line. The TDO line
changes its value after a falling edge on the TCK line.

Instruction and Data Registers

The functionality of the DTAB is accessible via different instructions stuffed into the Instruction Register. By
loading an instruction, the corresponding Data Register is selected for access, providing and/or accepting
data according to the selected instruction.

Only a few instructions are defined by the IEEE standard, and only a few of them are mandatory, e.g. the

• BYPASS instruction (mandatory) for use in daisy-chained multi-core configurations

• IDCODE instruction (not mandatory) for identifying a device

Unused instruction codes can be freely implemented by the device manufacturer.

The width of the IR is not specified by the JTAG standard but needs to be the same for all instructions of a
specific device. Since the DR is selected according to the loaded instruction the DR width is variable.

TDI Test Data In serial data from debugger to target

TDO Test Data Out serial data from target to debugger

TCK Test Clock

TMS Test Mode Select controls the TAP controller state transitions

TRST Test Reset optional, resets the TAP controller
Training JTAG Interface | 8©1989-2022 Lauterbach

The following schematic shows the connection of the input signals with the DTAB and the selection of the
Data Register depending on the content of the Instruction Register:
Training JTAG Interface | 9©1989-2022 Lauterbach

TAP Controller

The IEEE standard defines a 16-state state machine called the TAP controller to control several actions:

Each state of the TAP controller can be reached by a sequence of bits transmitted via the TMS line
depending on the current state.

Normally a DR or IR shift access starts from the pause parking position, changes to one of the shift states
where data is transmitted and ends up in the pause parking position again.

Pause parking position: state the TAP controller holds while waiting for the next shift operation.
Training JTAG Interface | 10©1989-2022 Lauterbach

The following states of the TAP controller are of importance:

• Test Logic Reset sets the Instruction Register to its reset value (IDCODE or BYPASS). This state
can be reached from any other state by shifting five times “1” on TMS.

Some CPUs do also reset the DTAB and/or the on-chip debug logic when this state is entered.
As a result an active debug connection might get lost, if this state is driven by a PRACTICE script
or a custom application.

• Run-Test/ Idle and Select DR-Scan are used by most debuggers as pause parking position.

• In the Shift-IR state the debug tool shifts an instruction into the Instruction Register. The
instruction is activated once the TAP controller reaches the Update-IR state.

• In the Shift-DR state the debug tool shifts data to/from the Data Register selected by the
currently loaded instruction.

Debug Bus

The debug functionality is usually not implemented in the DTAB but realized as a separate IP block. Thus the
implementation of the Debug Bus and the on-chip debug logic (Debug System) is device specific.

On some CPUs the access to the Debug Bus is enabled by a dedicated JTAG instruction. Communication is
then completely handled via a dedicated Data Register. The DTAB just enables accesses to the on-chip
debug logic by using the DR path.

Other on-chip components may be accessible with their own JTAG instruction, e.g. ETM/ ETB, MCDS or an
auxiliary processor. However this is implementation specific.
Training JTAG Interface | 11©1989-2022 Lauterbach

Communication with the DTAB

The debug tool communicates with the DTAB by reading and/or writing IRs and DRs.

The debug tool first drives the TAP Controller to the Shift-IR state to write the appropriate instruction to IR.
Then it drives to the Shift-DR state where the DR can be read or written. Once the Update-DR state is
reached, the processing of DR is started, e.g. the data contained in DR is forwarded to the on-chip debug
system.

The following example shows how the chip ID code is read on a TriCore processor
(IR: 8 bits, IDCODE DR: 32 bits)
Training JTAG Interface | 12©1989-2022 Lauterbach

Reading or writing the IR or DR is performed bitwise from LSB to MSB. With every bit shifted into the TAP
controller via TDI, the contents of DR is rightshifted one bit, providing the LSB on TDO.
Training JTAG Interface | 13©1989-2022 Lauterbach

JTAG Implementation

For embedded microprocessor designs with one chip and one core there is usually only one DTAB with one
TAP and so only one JTAG port. This is the single-TAP scenario.

Cases become more complex when there is more than one CPU core in the design. Depending on how the
on-chip debug resources are implemented, there are basically two possibilities:

• There is only one DTAB and the on-chip debug logic of all cores is accessible by loading different
instructions into the Instruction Register. This is a special case of the single-TAP Scenario, so
physically there is no difference to a scenario with only one core.

• Each core in the embedded system has its own DTAB, accessed by its own TAP. This is the
multi-TAP scenario, available in different flavours.

Of course any combination of these two basic concepts and their different varieties is possible. Anyway an
understanding of an isolated single- and multi-TAP scenario is sufficient to create and handle complex
solutions. The design recommendation is to keep it as simple as possible.

Single TAP Controller

The single TAP Scenario does not need special consideration, the signals of the chip’s TAP are connected
directly to the on-board JTAG connector where the debug cable is plugged.
Training JTAG Interface | 14©1989-2022 Lauterbach

Multiple TAP Controllers

In a multi-TAP scenario each of the cores has its own DTAB. The assumption is that each DTAB has it’s own
JTAG TAP.

Parallel Solution

The simplest solution is having a dedicated JTAG port for each DTAB to connect a separate debugger, so
each TAP can be accessed independently the same way as in the single-TAP solution:

This is the solution with the least complexity. Each debugger can control its core without caring of the others,
using the full bandwidth for communication. No special multi-core setup is required, depending on the CPU
each debugger runs out-of-the-box. Even designs containing special cores or architectures can be
supported without any kind of adaption.

In this scenario each DTAB has its dedicated JTAG port requiring a physical connector, PCB routing and
signal handling, e.g. for line compensation (cross-talk). For embedded designs with several CPU cores,
each core to be debugged simultaneously requires a dedicated debugger. With more DTABs involved the
costs for this solution quickly increase.

Depending on the involved core architectures, advanced features such as synchronous multi-core start are
difficult to implement or even become impossible.
Training JTAG Interface | 15©1989-2022 Lauterbach

Serial Solution by Daisy-chaining

JTAG offers the possibility to chain different TAPs in a serial configuration. The output (TDO) of the previous
TAP is connected to the input (TDI) of the next TAP:

The wiring is as follows:

Note that only the TDI and TDO signals are chained. All other signals such as TMS, TCK and the resets are
parallel and have a simultaneous effect on all participating TAPs, DTABs and cores:

• The TAP controllers of all DTABs are synchronized and in the same state.

• A Test Logic Reset state and a System Reset affects all connected DTABs and cores.

A separate TRACE32 instance is required for each core to be debugged. Even if all instances are connected
to the same POWER DEBUG MODULE only one TRACE32 instance can access it’s core while the other
instances remain idle. Using the term Debugger as alias for a TRACE32 instance leads to the following
consequences:

• There is a defined master debugger, which controls the resets. The slave debuggers (all others)
never trigger any reset. A reset will terminate all established debug connections.

• All debuggers have a common neutral parking position defined where they hand over and
receive communication from another debugger.

• Each debugger must know the position of it´s core in the TAP chain to correctly access it.
Training JTAG Interface | 16©1989-2022 Lauterbach

The chaining can either be done on board level by connecting the TAPs of each DTAB as in the example
above or on chip level resulting in one JTAG port for all connected TAP controllers as shown below:

From the debugger’s point of view there is no difference where the daisy-chaining is done, on-board or on-
chip. Even mixed on-board/on-chip solutions are possible although the signal routing requires careful
consideration.

Note that any daisy-chained scenario requires a POWER DEBUG MODULE. Older DEBUG MODULEs
(without the Power prefix) do not support this kind of configuration.
Training JTAG Interface | 17©1989-2022 Lauterbach

Shifting in a Daisy-chained Multi-TAP Solution

The TAP controllers of all DTABs are synchronized. So when transmitting data in Shift-IR and Shift-DR
states this means that the Instruction- and Data Registers are chained, too. Communication with all DTABs
simultaneously is not possible since the connected debuggers all have different tasks to do and so have an
individual communication with their core. Instead only one debugger at a time communicates with one single
DTAB, by loading the Instruction Registers of all other DTABs with the BYPASS instruction (“ignore” mode).

Loading the BYPASS instruction into the Instruction Register will switch the Bypass Register into the Data
Register path:

• The JTAG standard defines the BYPASS instruction to consist of “1”s only. In case the width of
the Instruction Register (IR-width) is 4 bit, the JTAG instruction is 0xf, in case IR-width is 7 bit, the
BYPASS instruction is 0x7f.

• The Bypass Register must be a 1-bit register and is preloaded with “0” in the Capture-DR state.

So depending on the position of the DTAB to be addressed, the Instruction-/Data-Registers of the other
DTABs have to be filled with BYPASS instructions, respectively “bypass” bits.
Training JTAG Interface | 18©1989-2022 Lauterbach

On the following pages an example chip is used, which provides a chain of three DTABs (one TAP each):

The picture below shows the Instruction/Data Registers if TAP1 is accessed.:

Remember that shifting is performed from LSB to MSB, so in case of an IR shift, the BYPASS instruction(s)
of the TAP(s) after the addressed TAP are shifted in first. Accordingly these bits are called IR_PRE bits. The
BYPASS instructions of the TAP(s) before are shifted in last so these bits are called IR_POST. The same
applies to the DR path with DR_PRE and DR_POST.
Training JTAG Interface | 19©1989-2022 Lauterbach

Advantages and Disadvantages

On embedded designs with several TAPs the signals can be chained on board level, so only one common
debug connector is required. This saves space and costs. In case the TAPs are already connected on-chip
this also saves pins.

In case a single debugger hardware handles access to all cores under debug, advanced debug features
such as the synchronous multi-core start can be implemented more performant.

The tool must be able to address its core within the TAP chain (multi-TAP capable), and it must be able to
share the JTAG port with other tools. Because all IRs need to be accessed for shifting instructions, the
complete TAP chain can only be as fast as the slowest TAP thus reducing performance of faster TAPs. This
is especially the case in designs with a return clock (RTCK), e.g. DTABs from ARM.

The connection of the JTAG signals as well as the on-board or on-chip routing must be handled with care to
avoid electrical interference, e.g. by interference of reflections at the end of branch lines.
Training JTAG Interface | 20©1989-2022 Lauterbach

Setup Basics of a Daisy-chained Multi-TAP System

For handling a multi-TAP system, TRACE32 needs to know only few details about the chain:

• IR_POST is the sum of the IR-width of all TAPs between the TDI pin of the debug connector and
the addressed TAP.

• IR_PRE is the sum of the IR-width of all TAPs between the addressed TAP and the TDO pin of
the debug connector.

• DR_POST usually is the sum of the bypass registers of all TAPs between the TDI pin of the
debug connector and the addressed TAP.

• DR_PRE usually is the sum of the bypass registers of all TAPs between the addressed TAP and
the TDO pin of the debug connector.

• TAP State is the neutral parking position where a TRACE32 instance hands over control of the
JTAG chain to another TRACE32 instance or another debug tool. The following code are
available for the neutral parking position:

• Master- and Slave Instances: Exactly one TRACE32 instance has to control the resets (Test
Reset and System Reset), all other instances are slaves.

This necessary information can either be obtained from the CPU manual or read out by using the TRACE32
command SYStem.DETECT DaisyChain.

The command SYStem.DETECT DaisyChain scans the chain and computes the multi-core settings
IR_POST, IR_PRE, DR_POST and DR_PRE. The results are printed to the AREA window. Note that this
only works for TAPs and chips that are fully compilant to the JTAG standard, others may result in incomplete
or wrong information.

In a multi-TAP configuration it is not always possible to determine the IR width of a TAP, this is the case if the
ID-code isn´t known by TRACE32 or if an ID-code is ambiguous.

0 Exit2-DR 8 Exit2-IR

1 Exit1-DR 9 Exit1-IR

2 Shift-DR 10 Shift-IR

3 Pause-DR 11 Pause-IR

4 Select-IR/ Scan 12 Run-Test/ Idle

5 Update-DR 13 Update-IR

6 Capture-DR 14 Capture-IR

7 Select-DR/ Scan 15 Test-Logic Reset
Training JTAG Interface | 21©1989-2022 Lauterbach

Assuming a separate TRACE32 instance is used to access each of the three cores (TAPs of DTABs) in the
above example and the instance for the first core is the master, the setup would be as follows:

TRACE32 instance for core 0 (TAP 0):

SYStem.CONFIG IRPOST 0. ; no previous Instruction Registers

SYStem.CONFIG IRPRE 11. ; consecutive Instruction Register
; bits: 5 + 6 = 11

SYStem.CONFIG DRPOST 0. ; no previous Bypass Registers

SYStem.CONFIG DRPRE 2. ; consecutive Bypass Register bits:
; 1 + 1 = 2

SYStem.CONFIG TAPState 12. ; neutral parking position is
; Run-Test/Idle

SYStem.CONFIG SLAVE OFF ; this instance controls the resets
Training JTAG Interface | 22©1989-2022 Lauterbach

TRACE32 instance for core 1 (TAP 1):

SYStem.CONFIG IRPOST 4. ; previous Instruction Register bits: 4

SYStem.CONFIG IRPRE 6. ; consecutive Instruction Register
; bits: 6

SYStem.CONFIG DRPOST 1. ; previous Data Register bits: 1

SYStem.CONFIG DRPRE 1. ; consecutive Data Register bits: 1

SYStem.CONFIG TAPState 12. ; neutral parking position is
; Run-Test/Idle

SYStem.CONFIG SLAVE ON ; this instance has no reset control
Training JTAG Interface | 23©1989-2022 Lauterbach

TRACE32 instance for core 2 (TAP 2):

SYStem.CONFIG IRPOST 9. ; previous Instruction Register bits:
4 + 5 = 9

SYStem.CONFIG IRPRE 0. ; no consecutive Instruction Registers

SYStem.CONFIG DRPOST 2. ; previous Data Register bits: 1 + 1 = 2

SYStem.CONFIG DRPRE 0. ; no consecutive Data Registers

SYStem.CONFIG TAPState 12. ; neutral parking position is
; Run-Test/Idle

SYStem.CONFIG SLAVE ON ; this instance has no reset control
Training JTAG Interface | 24©1989-2022 Lauterbach

Changing the JTAG Chain

As already mentioned one disadvantage is that a daisy-chained TAP configuration can not be operated with
a higher JTAG clock than the maximum possible of the slowest TAP. Depending on the involved debug
architecture this can slow down the performance more or less drastically. To overcome this issue some
systems offer the possibility to add or remove TAPs to or from the chain on demand.

One possible solution is to add a board management logic, e.g. implemented by an FPGA. Different TAP
chains can be selected by DIP switches or jumper settings. Advantage of this solution is that the debugger is
not involved in changing the chain: The user selects the desired configuration by hand and configures the
debugger(s) accordingly. Due to the additionally required on-board logic this solution can only be offered at
an early stage of the development process. Also it does not offer much flexibility in case an issue under
debug suddenly requires changing the chain.

To add more flexibility to the system the board management logic could be implemented as a master
DTAB, offering appropriate instructions and methods for changing the TAP chain layout.

A changed daisy-chain also requires an immediate change of the debugger’s multi-core settings to address
the selected TAP correctly. Since these switching mechanisms are highly dependent on a dedicated on-
board circuit the debugger can neither know about all possible configurations nor provide any generic
configuration options. Instead TRACE32 offers the possibility of a raw access to the debugger’s JTAG
interface for addressing the master DTAB, changing the JTAG chain and modifying the multi-core settings by
using the SYStem.CONFIG commands. By using the PRACTICE script language this can be automatized.
Additionally the TRACE32 user interface can be extended by menu- or tool-items for an on-demand
configuration.

Of course the board management logic can be implemented on-chip to provide configurability of the daisy-
chain at all times during the development process, reducing the necessary on-board logic.

For further information on raw access to the JTAG port see chapter “Custom JTAG Access” on page 26.

Both methods require that during debugging the scan chain configuration will not change again. Due to
dynamic power saving states of single cores and the wish to debug them thru these states, it might be
necessary to handle the scan chain configuration dynamically. In that case the switching mechanism need to
be supported by debuggers firmware. The debugger itself therefor provides the command
SYStem.CONFIG MULTITAP to select the right mechanism.
Training JTAG Interface | 25©1989-2022 Lauterbach

Daisy-chained Multi-core System with Multiple Debuggers (obsolete)

Earlier versions of TRACE32 required a separate (POWER) DEBUG MODULE for each core under debug,
even if their DTABs TAPs were daisy-chained. Although this solution is still applicable today, it is
recommended to switch to a solution with one POWER DEBUG MODULE only.

In case this is not possible, e.g. if only DEBUG MODULES (without the “Power” prefix) are available, each
TRACE32 instance connects to its own DEBUG MODULE. All debug cables are connected to the same on-
board debug connector via a special adapter. Additionally SYStem.CONFIG TriState has to be enabled for
each TRACE32 instance. All other SYStem.CONFIG commands are set up as usual.
Training JTAG Interface | 26©1989-2022 Lauterbach

Custom JTAG Access

For implementing the debug features the TRACE32 debugger only makes use of a few JTAG functions.
Other functions can be used by accessing the JTAG TAP controller directly, possible use cases are

• Boundary scan

• Device and design verification

• Switching to special CPU or chip modes

• Configuring the JTAG chain (see chapter “Changing the JTAG Chain” on page 23).

• Communication with special devices accessible via a JTAG TAP, e.g. for board setup

TRACE32 offers two interfaces for performing a custom JTAG access:

• Remote API

• JTAG commands.
Training JTAG Interface | 27©1989-2022 Lauterbach

Overview

Available Signals

The following signals can be accessed:

VTREF is read-only and indicates whether the target has power or not.

nENOUT enables or disables (tristates) the output drivers of the debug cable.

nRESET and VTREF are also available in a latched version to check whether there was a system reset or a
power fail since the last check.

Access Levels

Depending on the use case, there are different access levels:

• Direct Access for reading or altering the state of a dedicated signal. This is mainly useful for
signals that are not used for communication, e.g. nRESET, VTREF,

Another use case is selecting a certain chip mode which becomes active when a signal has a
certain value at a defined event, e.g. TMS is high when nRESET becomes inactive (note that
although this is common this violates the JTAG standard).

• Raw Access for sending and receiving bit patterns on several signals (lines) simultaneously.
This allows a comfortable walk through the TAP controller’s state machine, simultaneously
sending and receiving data on TDI and TDO. The TCK signal is automatically driven, the timing
depends on the JTAG clock as set by the SYStem.JtagClock command.

• Low-level Access is provided for the main use cases where the Instruction and Data Registers
are to be written.

Of course any combination of these levels is possible and required in many cases.

JTAG signals TMS, TCK, TDI, TDO, nTRST

System signals nRESET, VTREF

Debugger related signals nENOUT
Training JTAG Interface | 28©1989-2022 Lauterbach

Debugger State

The current state of the debugger is an important issue.

In case the debugger is in a state where it is logically not connected to the target device
(SYStem.Mode Down or SYStem.Mode NoDebug) basically all JTAG manipulations are allowed. Just in
case the debugger is expected to connect to the target afterwards, the signals should be reset to default
state as far as possible, especially TMS, TCK and TDI.

A more complex case is when the work of the debugger is to be interrupted for some custom access. This
should be done as follows:

1. Lock the JTAG port for the debugger. Now the TAP controller is in the pause parking position.
Consult the Processor Architecture Manual to find out what is the pause parking position for
your core. Normally this is either 12. (Run-Test/Idle) or 7. (Select-DR Scan).

2. Perform your JTAG access.

3. Return to the pause parking position.

4. Unlock the JTAG port for the debugger. The debugger will resume operation immediately.

As long as the JTAG port is locked, the debugger will not access the target.

In case an active debug session is interrupted, never issue a reset or alter the on-chip debug resources
unless you know exactly what you do. This may confuse the debugger or leads to a corrupted debug
session.
Training JTAG Interface | 29©1989-2022 Lauterbach

Remote API

The TRACE32 Remote API is a software interface and allows access to a running TRACE32 instance from
an external application. The connection is based on UDP/IP, so the application may reside on another host.
Interface support is offered for different programming languages on different host systems, e.g. C/ C++,
Python, TCL on Windows, Linux or Solaris. The necessary interface files can be found in the ~~/demo/api/
directory.

The remote API is completely documented in the “API for Remote Control and JTAG Access in C”
(api_remote_c.pdf). Additional to some basic functions for starting and terminating a connection with the
TRACE32 instance, there are special functions for performing a raw- or low-level JTAG access as
documented in chapter ICD TAP Access API Functions.

The main advantage is the full control of the JTAG port for almost all use cases with the cost of effort in
programming. To explain the usage of the TRACE32 remote API, the following examples show different use
cases and methods accessing the TAP controller. The main task will be reading out the ID-code for device
identification. Most examples are based on the TriCore architecture.

Basics

The shown examples are based on the following prerequisites:

• A TRACE32 instance is running on the local host, listening for incoming remote API connections
on UDP Port 20000. For this the TRACE32 configuration file (config.t32 as default) contains
these lines:

• The POWER DEBUG MODULE is connected to a powered target board.

• All remote API interface calls are expected to return successfully to make the examples more
readable. In a real application, error checking is strongly recommended.

; TRACE32 API access
RCL=NETASSIST
PORT=20000
PACKLEN=1024
Training JTAG Interface | 30©1989-2022 Lauterbach

JTAG Port Locking and Unlocking

The TAP access functions of the TRACE32 remote API automatically lock the JTAG port for the API. Each
function is passed a parameter (a handle of the type T32_TAPACCESS_HANDLE), which defines whether
the JTAG port shall be released (unlocked) after the access:

When unlocking, an active debugger (in SYStem.Mode Up) will immediately resume operation on the JTAG
port. As a general recommendation, try to bundle as much operations as possible but do not block the JTAG
port permanently unless the debugger is inactive.

The JTAG Port can be released with T32_TAPAccessRelease() at any time without condition.

T32_TAPACCESS_HOLD /* do not release JTAG port */

T32_TAPACCESS_RELEASE /* release JTAG port */
Training JTAG Interface | 31©1989-2022 Lauterbach

Connection with TRACE32

The following C-code demonstrates how a custom application uses the remote API to connect to the
TRACE32 instance:

T32_Config() is used to specify on which host and port the TRACE32 instance is listening for incoming
connections.

T32_Init() followed by T32_Attach()connect to TRACE32 .

Before T32_Exit() is used to terminate the connection to TRACE32 T32_TAPAccessRelease()
unlocks the JTAG port. Note that there is no automatic return to the pause parking position!

For documentation on compilation details please refer to the remote API documentation.

Now that the connection handling is explained, the ID-code is read out using different methods.

#include "t32.h"

void main(void)
{
 /* connect to TRACE32 */
 T32_Config("NODE=", "localhost"); /* host with TRACE32 running */
 T32_Config("PORT=", "20000"); /* port where TRACE32 listens */
 T32_Init(); /* connect to TRACE32 */
 T32_Attach(T32_DEV_ICD); /* mandatory due to historical*/
 /* reasons */

 /* connected, now performing JTAG operations */
 /* execute command sequence */
 T32_TAPAccessDirect(T32_TAPACCESS_HOLD,…);
 ...

 /* terminate connection */
 T32_TAPAccessRelease(); /* release JTAG port */
 T32_Exit();
}

Training JTAG Interface | 32©1989-2022 Lauterbach

Direct Access

The following example assumes that the debugger is inactive (in SYStem.Mode Down or NoDebug).

Timed Access to Different Signals

The task is to release a potential active system reset and to perform a TAP reset via asserting nTRST:

#include "t32.h"

typedef unsigned long u_int32;

void main(void)
{
 /* direct TAP access */
 byte nCommand[8]; /* commands for direct TAP access */

 /* connect to TRACE32 */
 ...

 /* define access sequence:
 - enable the debug cable if it was tristated,
 - release system reset and reset TAP controller
 - then wait before disabling TAP controller reset
 */
 nCommand[0] = T32_TAPACCESS_nENOUT | T32_TAPACCESS_SET_LOW;
 nCommand[1] = T32_TAPACCESS_nRESET | T32_TAPACCESS_SET_HIGH;
 nCommand[2] = T32_TAPACCESS_nTRST | T32_TAPACCESS_SET_LOW;
 nCommand[3] = T32_TAPACCESS_SLEEP_MS;
 nCommand[4] = 50;
 nCommand[5] = T32_TAPACCESS_nTRST | T32_TAPACCESS_SET_HIGH;
 nCommand[6] = T32_TAPACCESS_SLEEP_MS;
 nCommand[7] = 50;

 /* execute command sequence */
 T32_TAPAccessDirect(T32_TAPACCESS_HOLD, 8, nCommand, 0);

 /* perform other JTAG operation */
 ...

 /* terminate connection */
 ...
}

Training JTAG Interface | 33©1989-2022 Lauterbach

By using the byte-array nCommand[8], a sequence of line- and wait operations can be defined. So it is
possible to implement a timing-specific control of each signal independently. Delays can be defined in ms
and µs.

The command sequence is finally executed with the T32_TAPAccessDirect() function. The first
parameter is the handle, the second one defines the number of command bytes to execute. The third
parameter is the command array, and the last parameter optionally returns the results of the corresponding
commands as a byte array. If no result is required a NULL pointer can be used instead.

; line operation (write)
T32_TAPACCESS_<signal_name>| T32_TAPACCESS_SET_<signal_level>

; wait operation
T32_TAPACCESS_SLEEP_<time_unit>
<number_of_time_units>
Training JTAG Interface | 34©1989-2022 Lauterbach

Read a Signal

The following C-code shows how to read from a line:

#include "t32.h"

typedef unsigned long u_int32;

void main(void)
{
 /* direct TAP Access */
 byte nCommand[2]; /* commands for direct TAP access */
 byte nResult[2]; /* results from direct TAP acccess */
 int bPower, bReset;

 /* connect to TRACE32 */
 ...

 /* read lines */
 nCommand[0] = T32_TAPACCESS_VTREF; /* check target power */
 nCommand[1] = T32_TAPACCESS_nRESET; /* check system reset */
 T32_TAPAccessDirect(T32_TAPACCESS_HOLD, 2, nCommand, nResult);

 bPower = !!nResult[0];
 bReset = !nResult[1]; /* active low */

 /* perform other JTAG operation */
 ...

 /* terminate connection */
 ...
}

; line operation (read)
T32_TAPACCESS_<signal_name>
Training JTAG Interface | 35©1989-2022 Lauterbach

Raw Access

The task is reading out the ID-code available from the DR right after a TAP reset:

#include "t32.h"

typedef unsigned long u_int32;

void main(void)
{
 /* shift data */
 byte nTMSBits[4]; /* bits for controlling the state machine */
 byte nTDOBits[4]; /* bits for data from target device */
 u_int32 nIDCode = 0; /* ID-code */

 /* connect to TRACE32 */
 ...

 /* release system reset and reset TAP controller */
 ...

 /* TAP Controller may be in unknown state,
 reset via TMS and move to Run-Test/ Idle */
 nTMSBits[0] = 0x7f; /* TMS sequence: 1 1 1 1 1 1 1 0 */
 T32_TAPAccessShiftRaw(T32_TAPACCESS_HOLD, 8, nTMSBits, 0, 0,
 SHIFTRAW_OPTION_NONE);

 /* move TAP Controller to Shift-DR state */
 nTMSBits[0] = 0x1; /* TMS sequence: 1 0 0 */
 T32_TAPAccessShiftRaw(T32_TAPACCESS_HOLD, 3, nTMSBits, 0, 0,
 SHIFTRAW_OPTION_NONE);

 /* read ID-code and leave Shift-DR state with last bit */
 T32_TAPAccessShiftRaw(T32_TAPACCESS_HOLD, 32, 0, 0, nTDOBits,
 SHIFTRAW_OPTION_LASTTMS_ONE);

 /* return to Run-Test/Idle and return control to the debugger */
 nTMSBits[0] = 0x1; /* TMS sequence: 1 0 */
 T32_TAPAccessShiftRaw(T32_TAPACCESS_RELEASE, 2, nTMSBits, 0, 0,
 SHIFTRAW_OPTION_NONE);

 /* assemble ID-code */
 nIDCode = ((u_int32)nTDOBits[3]<<24) | ((u_int32)nTDOBits[2]<<16) |
 ((u_int32)nTDOBits[1]<<8) | (u_int32)nTDOBits[0];

 /* terminate connection */
 ...
}

Training JTAG Interface | 36©1989-2022 Lauterbach

Beside the lock handle the T32_TAPAccessShiftRaw() function requires the number of bits to shift. The
shift data is passed by two byte arrays, one for TMS and one for TDI.

If only one or no shift arrays is passed, the SHIFTRAW_OPITION_* defines the behavior.

A third byte array is used for the TDO data. Bits are shifted starting with the LSB of the first array element. In
case no input or output data is required the corresponding arrays can be replaced by NULL pointers.

SHIFTRAW_OPTION_NONE Don´t care

SHIFTRAW_OPTION_LASTTMS_ONE If no TMS shift array is specified, shift at least “1” at the
last shift, to change to the next TAP controller state

int T32_TAPAccessShiftRaw(T32_TAPACCESS_HANDLE connection,

 int numberofbits, byte * pTMSBits, byte * pTDIBits,
 byte * pTDOBits, int options);
Training JTAG Interface | 37©1989-2022 Lauterbach

Low-level Access

For the main task of a custom JTAG port access, accessing IR and DR, the remote API provides functions
for a one-command access from the pause parking position. The above tasks can also be implemented this
way:

Beside the lock handle the T32_TAPAccessShiftIR() and T32_TAPAccessShiftIR() functions
require the number of bits to shift. The shift data is passed by a byte arrays for TDI while TMS is driven
automatically depending on the pause parking position. A second byte array is used for TDO data. Bits are
shifted starting with the LSB of the first array element. In case no input or output data is required the
corresponding arrays can be replaced by NULL pointers.

An active debugger always moves the TAP controller to the pause parking position when locking. For an
inactive debugger the current position in the state machine is undefined.

#include "t32.h"

typedef unsigned long u_int32;

void main(void)
{
 /* shift data */
 byte nTMSBits[4]; /* bits for controlling the state machine */
 byte nTDOBits[4]; /* bits for data from target device */
 u_int32 nIDCode = 0; /* ID-code */

 /* connect to TRACE32 */
 ...

 /* release system reset and reset TAP controller */
 ...

 /* TAP controller may be in unknown state,
 reset via TMS and move to pause parking position (Run-Test/Idle) */
 nTMSBits[0] = 0x1f; /* TMS sequence: 1 1 1 1 1 0 */
 T32_TAPAccessShiftRaw(T32_TAPACCESS_HOLD, 6, nTMSBits, 0, 0,
 SHIFTRAW_OPTION_NONE);

 /* move TAP controller to Shift-DR state, read the 32 bit ID Code and
 returnto Run-Test/Idle state (pause parking position) and return
 control to the debugger */
 T32_TAPAccessShiftDR(T32_TAPACCESS_RELEASE, 32, 0, nTDOBits);

 /* assemble JTAG ID Code */
 nIDCode = ((u_int32)nTDOBits[3]<<24) | ((u_int32)nTDOBits[2]<<16) |
 ((u_int32)nTDOBits[1]<<8) | (u_int32)nTDOBits[0];

 /* terminate connection */
 ...
}

Training JTAG Interface | 38©1989-2022 Lauterbach

The T32_TAPAccessShiftIR() and T32_TAPAccessShiftIR()functions can also handle daisy-
chained TAP Controllers. The configuration is defined by the T32_TAPAccessSetInfo() function. The
settings of the SYStem.CONFIG commands are not used.

Low-level Access Interrupting the Debugger

Things get more complicated when the current work of the debugger is to be interrupted for some low-level
JTAG access.

The following example interrupts the debugger for reading out the ID-code. Since a debug session is already
active, it is not possible to perform any TAP reset (neither via nTRST nor via TMS) any more.

#include "t32.h"

typedef unsigned long u_int32;

void main(void)
{
 /* shift data */
 byte nTDIBits[4]; /* bits for data to target device */
 byte nTDOBits[4]; /* bits for data from target device */
 u_int32 nIDCode = 0; /* ID-code */

 /* connect to TRACE32 */
 ...

 /* shift IDCODE instruction */
 nTDIBits[0] = 0x04;
 T32_TAPAccessShiftIR(T32_TAPACCESS_HOLD, 8, nTDIBits, 0);

 /* read 32 bit ID Code and return control to debugger */
 T32_TAPAccessShiftDR(T32_TAPACCESS_RELEASE, 32, 0, nTDOBits);

 /* assemble JTAG ID Code */
 nIDCode = ((u_int32)nTDOBits[3]<<24) | ((u_int32)nTDOBits[2]<<16) |
 ((u_int32)nTDOBits[1]<<8) | (u_int32)nTDOBits[0];

 /* terminate connection */
 ...
}

Training JTAG Interface | 39©1989-2022 Lauterbach

Command Line Control

The JTAG commands offer the possibility of a custom JTAG access directly from the command line.

The commands can be issued either directly from the command line or from a PRACTICE script without
having to write an external application. So a dedicated board-setup can be implemented in the default
startup scripts.

The JTAG commands are documented in the “General Commands Reference Guide J”
(general_ref_j.pdf), chapter JTAG.

Note that the JTAG commands do not offer low-level shift functions. Driving through the TAP controller’s
states and taking multi-TAP settings into account is up to the user.

Basics

Locking the JTAG port is simple, only the two commands JTAG.LOCK and JTAG.UNLOCK are required:

Note that the above example also resets the TMS and TDI lines before returning control to the debugger to
avoid unintended effects.

; Lock JTAG port
 JTAG.LOCK

; perform JTAG operation
 ...

; Release JTAG port
 JTAG.PIN TMS 0 ; Pull TMS pin to 0
 JTAG.PIN TDI 0 ; Pull TDI pin to 0
 JTAG.UNLOCK

ENDDO

JTAG.LOCK Disable all debugger activity on the JTAG port when the first manual
command (e.g. JTAG.PIN) performs.

JTAG.PIN <pin> 0 | 1 Set the specified signal level to <pin> of the JTAG connector.

JTAG.UNLOCK Re-enable debugger activity on the JTAG port.
Training JTAG Interface | 40©1989-2022 Lauterbach

Direct Access

As already seen in the previous example a direct access to a dedicated signal can be easily done with the
JTAG.PIN command. The following example assumes an inactive debugger. The example enables the
debug cable, removes the system reset and performs a TAP reset via nTRST:

; Lock JTAG port and enable debug cable
 JTAG.LOCK
 JTAG.PIN ENable

; release System Reset and reset TAP Controller
 JTAG.PIN NRESET HIGH
 JTAG.PIN NTRST LOW
 WAIT 50.MS ; wait until reset is active
 JTAG.PIN NTRST HIGH
 WAIT 50.MS ; wait until reset is released

; perform JTAG operation
 ...

; Release JTAG port
 JTAG.PIN TMS 0 ; Pull TMS pin to 0
 JTAG.PIN TDI 0 ; Pull TMS pin to 0
 JTAG.UNLOCK

ENDDO

JTAG.PIN ENable Enable the output drivers for all output signals of the JTAG
connector.

WAIT <time> Advise TRACE32 to wait the specified time.
Training JTAG Interface | 41©1989-2022 Lauterbach

To read the current status of a signal the TRACE32 function JTAG.PIN(<pin>) is used:

; Lock JTAG port and enable debug cable
 JTAG.LOCK
 JTAG.PIN ENable

 &power=JTAG.PIN(VTREF)
 &nreset=JTAG.PIN(NRESET)

; Release JTAG port
 JTAG.UNLOCK

 IF (&power==1)
 (
 PRINT "Target has Power"
 IF (&nreset==0)
 PRINT "Target is in Reset"
 ELSE
 PRINT "Target is not in Reset"
)
 ELSE
 PRINT "Target has no Power"

ENDDO
Training JTAG Interface | 42©1989-2022 Lauterbach

Raw Access

The raw access is used for shifting bit patterns on single lines. The following example shows how to read out
the JTAG ID code after a TAP reset:

; Lock JTAG port and enable debug cable
 JTAG.LOCK
 JTAG.PIN ENable

; release System Reset
; reset TAP Controller and move to “Run-Test/ Idle“
; ID-code is automatically loaded to IDCODE register is available
 ...

; read 32 bit IDCODE register:

; move from “Run-Test/ Idle“ to "Shift-DR" state
 JTAG.SHIFTTMS 1 0 0

; 16 Bit "Shift-DR", WITHOUT exiting "Shift-DR"
 JTAG.SHIFTTDI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
; get data read out via TDO
 &lowid=JTAG.SHIFT()

; 16 Bit "Shift-DR", WITH exiting to "Exit1-DR"
 JTAG.SHIFTREG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
; get data read out via TDO
 &highid=JTAG.SHIFT()

; move from "Exit1-DR" to "Run-Test/ Idle" state
 JTAG.SHIFTTMS 1 0

; release JTAG port
 JTAG.PIN TMS 0 ; Pull TMS pin to 0
 JTAG.PIN TDI 0 ; Pull TDI pin to 0
 JTAG.UNLOCK

; assemble ID-code
 &idcode=FORMAT.HEX(4,&highid)+FORMAT.HEX(4,&lowid)
 PRINT "ID-code of device : &idcode"

ENDDO
Training JTAG Interface | 43©1989-2022 Lauterbach

The PRACTICE commands JTAG.SHIFTTMS is used to shift an arbitrary bit pattern on TMS while zero is
shifted on TDI. The leftmost bit is shifted in first. Any number of bits can be shifted.

JTAG.SHIFTTDI and JTAG.SHIFTREG are used to shift data on TDI with the leftmost bit shifted first. The
difference in both commands is the pattern shifted simultaneously on TMS: Using JTAG.SHIFTTDI results in
a zero bit TMS sequence and so stays in Shift-IR or Shift-DR state. Using JTAG.SHIFTREG shifts a one on
the last TMS bit for leaving to Exit1-IR or Exit1-DR. Any number of bits can be shifted.

With every shift operation the data on TDO is read out. To obtain the data of the last TMS or TDI shift, the
function JTAG.SHIFT() is used.

JTAG.SHIFTTMS <bit> [<bit> …] Walk through the states of the TAP controller.

JTAG.SHIFTTDI <bit> [<bit> …] Shift data if the TAP controller is in “Shift-DR”
state.

JTAG.SHIFTREG<bit> [<bit> …] Shift data if the TAP controller is in “Shift-DR”
state. Leave “Shift-DR” state at the end of shift.

JTAG.SHIFT() Return TDO output

FORMAT.HEX(<width>,<value>) Return a string of the specified <width> that
shows <value> as a hex. number
Training JTAG Interface | 44©1989-2022 Lauterbach

Many Instruction- and Data Registers have a length of a multiple of 8, 16 or 32 bits. In this case the
JTAG.SHIFT* commands can be used in a different way:

In this notation, the length of the shift is specified by the well-known PRACTICE operators, e.g. %Byte,
%Word or %Long. The bits to shift are passed as a hexadecimal value, LSB is shifted first.

JTAG Commands via the Remote API

Of course it is possible to use the described commands via the TRACE32 Remote API by using the
T32_Cmd() or T32_CmdWin() interface functions.

; Lock JTAG port and enable debug cable
 JTAG.LOCK
 JTAG.PIN ENable

; release System Reset
; reset TAP Controller and move to “Run-Test/ Idle“
 ...

; read JTAG ID Code:

; move TAP controller from “Run-Test/ Idle“ to "Shift-DR" state
 JTAG.SHIFTTMS 1 0 0

; 32 Bit "Shift-DR", WITH exiting to "EXIT1-DR"
 JTAG.SHIFTREG %Long 0x0
; get data read out via TDO
 &idcode=JTAG.SHIFT()

; move TAP controller from "Exit1-DR" to "Run-Test/ Idle" state
 JTAG.SHIFTTMS 1 0

; Release JTAG port
 JTAG.PIN TMS 0 ; pull TMS pin to 0
 JTAG.PIN TDI 0 ; pull TDI pin to 0
 JTAG.UNLOCK

 PRINT "ID-code of device : &idcode"

ENDDO

JTAG.SHIFTREG %LONG <value> Shift 32-bit data if the TAP controller is in “Shift-
DR” state. Leave “Shift-DR” state at the end of
shift.
Training JTAG Interface | 45©1989-2022 Lauterbach

	Training JTAG Interface
	Introduction
	Related Documents
	Debugging a JTAG Session

	JTAG Basics
	Main Concept
	DTAP Components
	Communication with the DTAB

	JTAG Implementation
	Single TAP Controller
	Multiple TAP Controllers
	Parallel Solution
	Serial Solution by Daisy-chaining

	Custom JTAG Access
	Overview
	Available Signals
	Access Levels
	Debugger State

	Remote API
	Basics
	Direct Access
	Raw Access
	Low-level Access

	Command Line Control
	Basics
	Direct Access
	Raw Access
	JTAG Commands via the Remote API

