
MANUAL

Release 09.2023

Training Intel® Processor Tracing

Training Intel® Processor Tracing

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Training ..

 Training Intel® x86/x64 ...

 Training Intel® Processor Tracing .. 1

 Protocol Description ... 6

 Basic Trace Packets 6

 OS-Aware Tracing 7

 Time Information 8

 Tool Timestamp (POWER TRACE II / POWER TRACE III only) 8

 CycleAccurate Tracing 10

 Synchronization Time 10

 Trace Configuration .. 11

 Off-chip Trace 11

 SDRAM Trace 18

 Trace Errors 22

 ERRORS 22

 TARGET FIFO OVERFLOW 25

 TRACE32 Abstractions 27

 SystemTrace 27

 (Core) Trace 29

 Displaying the Trace Contents ... 31

 Influencing Factors on the Trace Information 31

 Settings in the TRACE32 Trace Configuration Window 32

 States of the Trace 43

 The AutoInit Command 44

 Basic Display Commands 45

 Default Listing 45

 Basic Formatting 47

 Correlating the Trace Listing with the Source Listing 48

 Browsing through the Trace Buffer 49

 Find a Specific Record 50

 Display Items 51

 Default Display Items 51

 Further Display Items 54

 Belated Trace Analysis 60
Training Intel® Processor Tracing | 2©1989-2023 Lauterbach

 Save the Trace Information to an ASCII File 61

 Postprocessing with TRACE32 Instruction Set Simulator 62

 Export STP Byte Stream 67

 Trace Control by Filters .. 68

 TraceEnable 69

 TraceOFF 71

 OS-Aware Tracing ... 73

 Process Switch Packets 73

 Program Flow and Process Switches 75

 Process Runtime Analysis 76

 Time Chart 77

 Statistic 78

 Find Process Switches in the Trace 79

 OS-aware Filtering 81

 Filtering by Privilege Level 81

 Filtering by Process 82

 Filter on Function executed by Process 84

 Belated Analysis 86

 Example for Linux 86

 Trace-based Debugging (CTS) ... 88

 Setup 88

 Get Started 89

 Forward and Backward Debugging 92

 Forward Debugging 92

 Backward Debugging 92

 CTS Technique 93

 Function Run-Time Analysis - Basic Concept .. 94

 Software under Analysis (no OS, OS or OS+MMU) 94

 Flat vs. Nesting Analysis 94

 Basic Knowledge about Flat Analysis 95

 Basic Knowledge about Nesting Analysis 96

 Summary 98

 Flat Function-Runtime Analysis .. 99

 Function Time Chart 99

 Default Time Chart 99

 Core Options 100

 TASK Options 101

 Function Run-time Statistic 103

 Further Commands 104

 Nesting Function Analysis OS ... 105

 Survey 106
Training Intel® Processor Tracing | 3©1989-2023 Lauterbach

 range Column 107

 Default Results 110

 Net Results 112

 Interrupt Details 114

 Time in Other Tasks 115

 Tree Display 116

 Structure your Trace Evaluation .. 117

 GROUPs for OS-aware Tracing 117

 GROUP Status ENable 118

 GROUP Status ENable+Merge 119

 GROUP Status Enable+HIDE 120

 GROUP Creation 121
Training Intel® Processor Tracing | 4©1989-2023 Lauterbach

Training Intel® Processor Tracing

Version 10-Oct-2023
Training Intel® Processor Tracing | 5©1989-2023 Lauterbach

Protocol Description

Basic Trace Packets

To enable a trace tool to reconstruct the instruction execution sequence the following trace packets are
generated:

TNT packets

Taken Not Taken packets track the direction of up to 6 conditional branches. Since the address at which the
program execution continues when the branch was taken is part of the source code TNT packets provide
sufficient information to reconstruct the instruction execution sequence.

N

N

T

T

T

T

Training Intel® Processor Tracing | 6©1989-2023 Lauterbach

Target IP packets

Ret instructions, register indirect calls and similar instructions as well as exception and interrupts cause the
generation of a Target IP packet. Since the address at which the program execution continues is only known
at run-time, a Target IP packet contains this address fully or in a compressed format.

OS-Aware Tracing

Paging Information Packet (PIP)

x86/x64 processors have a CR3 control register that contains the Process Context Identifier (PCID). On
every context switch the corresponding PCID is loaded to CR3.

Intel® PT generates a Paging Information Packet (PIP) when a write to CR3 occurs.
Training Intel® Processor Tracing | 7©1989-2023 Lauterbach

Time Information

Tool Timestamp (POWER TRACE II / POWER TRACE III only)

POWER TRACE II / POWER TRACE III timestamps the trace information when it is stored in its trace buffer.

The resolution of the POWER TRACE II / POWER TRACE III timestamp is 5 ns.

8 trace record have always an identical timestamp. There are two reasons for this:

• The TRACE32 recording technology.

• The smallest Intel® PT packet is one byte.

8

8

Training Intel® Processor Tracing | 8©1989-2023 Lauterbach

In the standard trace display timestamp information is displayed for the first record with the new timestamp.
All following records with an identical timestamp show <0.005us.
Training Intel® Processor Tracing | 9©1989-2023 Lauterbach

CycleAccurate Tracing

If configured Intel® PT can generate cycle count information. The cycle count information indicates how
much core clocks it took to execute a program section.

Cycle accurate tracing requires up to 2 times more bandwidth.

Synchronization Time

Not implemented yet.
Training Intel® Processor Tracing | 10©1989-2023 Lauterbach

Trace Configuration

Off-chip Trace

Recording the trace information exported via a PTI (Parallel Trace Interface) requires:

• A POWER TRACE II hardware (1 GByte, 2 GByte or 4 GByte of trace memory) or a POWER
TRACE III hardware (4 GByte or 8 GByte of trace memory)

TRACE32 PowerView uses the name Analyzer to refer to the trace memory within POWER
TRACE II / POWER TRACE III.

• An Preprocessor for Intel® Atom™ AUTOFOCUS 600 MIPI

The following configuration steps are required for off-chip tracing:

POWER DEBUG PRO

POWER TRACE II

POWER DEBUG PRO
POWER TRACE II

SWITCH PC or
Workstation

1 GBit Ethernet

Ethernet
Cable

Target

CombiProbe

V
2

M
IP

I6
0

-C
V

2

CABLE

B A

M
IP
I

Co
nn

ec
to
r

CABLE

C B A

Tr
ac
e

Co
nn

ec
to
r

PREPROCESSOR FOR INTEL®
PT AUTOFOCUS MIPI60-P
Training Intel® Processor Tracing | 11©1989-2023 Lauterbach

1. Configure Parallel Trace Interface on target.

Configuration is required for:

- PTI port size

- PTI frequency

- GPIO pins used for PTI

The following commands are provided for this purpose:

Data.Set is equivalent to PER.Set.simple if the configuration register is memory mapped.

The access class A: allow to use the physical address for the write operations.

Please refer to your chip manual for the physical addresses of the configuration registers.

2. Configure TRACE32 for a PTI that exports STP (System Trace Protocol) packets.

; write <value> to the configuration register addressed by A:<physical_address>
; in the specified <format>
PER.Set.simple A:<physical_address> %<format> <value>

; write <value> to the memory location addressed by A:<physical_address>
; in the specified <format>
Data.Set A:<physical_address> %<format> <value>

Per.Set.simple A:0xf9009000 %Long 0x3e715

Data.Set A:0xf9009000 %Long 0x3e715

SYStem.CONFIG STM Mode STP64 ; inform TRACE32 that your
; chip provides a STM that
; generated 64-bit STPv1
; packets

STM.PortSize 16. ; inform TRACE32 that your
; PTI size is 16 pins
Training Intel® Processor Tracing | 12©1989-2023 Lauterbach

3. Inform TRACE32 which core traces you want to analyze.

Example 1: Each core has its own master ID.

IPT.TraceID <value> | <bitmask> Specify which masters/channels (that produce Intel®
PT trace information) you want to analyze with the help
of TRACE32.

<value> <value> is a 32-bit number. The first 16 bits represent the master
ID, the last 16 bits represent the channel ID.

<bitmask> bitmask representation of <value>

IPT.TraceID 0x00800000 ; master ID 0x80 is used to export Intel®

; PT trace information for core 0

IPT.TraceID 0x008x0000 ; master ID 0x80, 0x81, 0x82 … are used to

; export Intel® PT trace information
; master ID 0x80 represents core 0
; the other master IDs consecutively
; represent core 1 to core 15

Intel® PT
(Core 0)

Intel® PT
(Core 1)

Intel® PT
(Core 15)

Master 0x80 Master 0x81 Master 0x8F Master k

other trace sources
...

STM

...

PTI

STM = System Trace Module
PTI = MIPI Parallel Trace Interface
Training Intel® Processor Tracing | 13©1989-2023 Lauterbach

Example 2: Each core has its own channel ID, all cores use the same master ID.

4. Enable Intel® PT on the target and allow TRACE32 to configure it.

IPT.TraceID 0x0080000x ; master ID 0x80 is used to export Intel®

; PT
; trace information
; channel ID 0x0 represents core 0
; the other channel IDs consecutively
; represent core 1 to core 15

IPT.ON

Intel® PT
(Core 0)

Intel® PT
(Core 1)

Intel® PT
(Core 15)

Channel 0x0 Channel 0x1 Channel 0xF

Master

other trace sources

...

STM

PTI

STM = System Trace Module
PTI = MIPI Parallel Trace Interface

Master 0x80 ...
Training Intel® Processor Tracing | 14©1989-2023 Lauterbach

5. Calibrate the Preprocessor for Intel® Atom™ AUTOFOCUS 600 MIPI for recording.

TRACE32 supports three methods of generating outputs on the trace lines for calibration.

- On-chip test pattern generator (not tested yet).

- Test executable provided by Lauterbach.

- Application program.

Please be aware that TRACE32 PowerView displays “Analyzer data capture o.k.” only if:

- All trace lines toggled while calibration is performed.

- There are no short circuits between the trace lines.

- An error-free trace decoding was possible.

Test executable provided by Lauterbach

In order to use the test executable provided by Lauterbach for calibration, the following command
sequence is recommended.

A manual setup is required if your target is using a gated clock. Refer to “Manual Setup” in
AutoFocus User’s Guide, page 18 (autofocus_user.pdf) for assistance.

; example for a free-running clock (Tangier)

AREA.view ; open TRACE32 Message AREA
; to observe calibration
; results

Analyzer.THreshold VCC ; advise TRACE32 to use
; 1/2 VCC as threshold level
; for the trace signals

Analyzer.AutoFocus /NoTHreshold ; start the calibration by
; using test executable

; advise TRACE32 to keep
; the threshold level
Training Intel® Processor Tracing | 15©1989-2023 Lauterbach

Application program

In order to use the application program for calibration, the following command sequence is
recommended.

A manual setup is required if your target is using a gated clock. Refer to “Manual Setup” in
AutoFocus User’s Guide, page 18 (autofocus_user.pdf) for assistance.

; example for a free-running clock (Tangier)

AREA.view ; open TRACE32 Message AREA
; to observe calibration
; results

Data.LOAD.Elf demo_x86.elf /PlusVM ; download application program
; to the target,
; in order to perform trace
; decoding while the
; application program is
; running, the program code
; has to be copied to the
; TRACE32 Virtual Memory

Go ; start the execution of the
; application program

Analyzer.THreshold VCC ; advise TRACE32 to use
; 1/2 VCC as threshold level
; for the trace signals

Analyzer.AutoFocus /NoTHreshold ; start the calibration

; advise TRACE32 to keep
; the threshold level

WAIT 1.s ; wait 1 second

Break ; stop the program execution
Training Intel® Processor Tracing | 16©1989-2023 Lauterbach

After a successful configuration of the off-chip tracing the following command can be used to inspect the
STP packet stream:

The Intel® PT based core traces can be displayed by the following command:

STMAnalyzer.List Display STP packet stream recorded to POWER TRACE II / POWER
TRACE III.

Analyzer.List Display all core trace information decoded out of the STP packet
stream.
Training Intel® Processor Tracing | 17©1989-2023 Lauterbach

SDRAM Trace

If the Intel® PT trace information is routed to SDRAM, a fixed amount of memory is assigned to each core.
The max. SDRAM size per core is currently 4 MByte.

Configure TRACE32

1. Advise TRACE32 to read the trace information from SDRAM.

TRACE32 reads the onchip trace via JTAG.

2. Provide further details on the SDRAM configuration to TRACE32.

Trace.METHOD Onchip

Onchip.Buffer IPT ; inform TRACE32 that the SDRAM

; provides Intel® PT trace
; information

Onchip.Buffer BASE 0x5000000 ; inform TRACE32 that the SDRAM

; allocated for Intel® PT trace
; starts at address 0x5000000

Onchip.Buffer SIZE 0x1000000 ; inform TRACE32 that the SDRAM

; allocated for Intel® PT trace has
; a size of 16 MByte

Intel® PT
(Core 0)

Intel® PT
(Core 1)

Intel® PT
(Core 3)...

SDRAM
Training Intel® Processor Tracing | 18©1989-2023 Lauterbach

3. Enable Intel® PT on the target and allow TRACE32 to configure it.

IPT.ON
Training Intel® Processor Tracing | 19©1989-2023 Lauterbach

If the command Onchip.List is used, TRACE32 merges the Intel® PT traces from the individual cores as
follows:

This procedure will change with the decoding of synchronisation packets.

Intel® PT packet 2

Intel® PT packet 3

Intel® PT packet 4

Intel® PT packet 5

SDRAM block
core 0

SDRAM block
core 1

SDRAM block
core 2

SDRAM block
core 3

Intel® PT packet 1 of core 0

Intel® PT packet 1 of core 1

Intel® PT packet 1 of core 3

Onchip.List

Intel® PT packet 2 of core 0

Intel® PT packet 2 of core 1

Intel® PT packet 2 of core 2

Intel® PT packet 3 of core 0

Intel® PT packet 1

Intel® PT packet 2

Intel® PT packet 3

Intel® PT packet 4

Intel® PT packet 5

Intel® PT packet 1

Intel® PT packet 2

Intel® PT packet 3

Intel® PT packet 4

Intel® PT packet 5

Intel® PT packet 1 Intel® PT packet 1

Intel® PT packet 6

Intel® PT packet 7

Intel® PT packet 6

Intel® PT packet 1 of core 2
Training Intel® Processor Tracing | 20©1989-2023 Lauterbach

Onchip.List ; display trace listing for all
; cores

Onchip.List /CORE 1 ; display trace listing for core 1
Training Intel® Processor Tracing | 21©1989-2023 Lauterbach

Trace Errors

ERRORS

If the trace contains ERRORS, please try to set up a proper trace recording before you start to
evaluate or analyze the trace contents.

ERRORS can be caused by the following:

• TRACE32 detected an invalid trace packet. TRACE32 additionally displays the error indicator
HARDERROR, if it is likely that the error was caused by pin problems.

• TRACE32 could not decode the packet.
Training Intel® Processor Tracing | 22©1989-2023 Lauterbach

• The trace information is not consistent with the program code in the target memory.

Background: In order to provide an intuitive trace display the following sources of information are
merged:

- The trace information recorded.

- The program code from the target memory read via the JTAG interface.

- The symbol and debug information already loaded to TRACE32.

Symbol and debug
information loaded

to TRACE32

Recorded trace
information

Uploaded from
the source of

trace information

Program code from
target memory

Read via
JTAG

interface
Training Intel® Processor Tracing | 23©1989-2023 Lauterbach

Diagnosis

The TRACE32 function Trace.FLOW.ERROR() returns the number of ERRORS as a hex. number.

To find ERRORS in the trace use the keyword FLOWERROR on the Expert page of the Trace Find dialog.

PRINT %Decimal Trace.FLOW.ERRORS() ; display the number of ERRORS
; as a decimal number in the
; TRACE32 PowerView Message Line

Trace.Find FLOWERROR
Training Intel® Processor Tracing | 24©1989-2023 Lauterbach

TARGET FIFO OVERFLOW

Inside each Intel® PT generation module trace packets are queued to a FIFO buffer in order to send them
out to the STM/SDRAM.

If trace packets are generated faster than can be sent out, the FIFO buffer can overflow and trace packets
are lost.

The affected Intel® PT generates a Buffer Overflow packet (FUP.OVF) to indicate that its FIFO is full and
trace packets are no longer generated.

A Asynchronous Flow Update packet, that provides the address of the next instruction that will be executed,
is generated to indicate that the packet generation now continues.

The TRACE32 function Trace.FLOW.FIFOFULL() returns the number of TARGET FIFO OVERFLOWs as a
hex. number.

To find TARGET FIFO OVERFLOWs in the trace use the keyword FIFOFULL on the Expert page in the
Trace Find dialog.

PRINT %Decimal Trace.FLOW.FIFOFULL() ; display the number of TARGET
; FIFO OVERFLOWs as a decimal
; number in the TRACE32
; PowerView Message Line

Trace.Find FIFOFULL

Intel® PT
(Core k)

FIFO
Training Intel® Processor Tracing | 25©1989-2023 Lauterbach

TARGET FIFO OVERFLOWs are strictly speaking not errors. They can occur in normal operation.

Since gaps in the instruction execution sequence are likely to disturb the nesting trace analyses, TRACE32
explicitly points them out.
Training Intel® Processor Tracing | 26©1989-2023 Lauterbach

TRACE32 Abstractions

SystemTrace

Depending on where the STP packets are stored, the following TRACE32 command groups can be used to
analyze and display these packets:

• STMAnalyzer.<sub_cmd>, if the STP packets are stored in the trace memory provided by
POWER TRACE II / POWER TRACE III.

• STMLA.<sub_cmd>, if the STP packets were recorded without a TRACE32 trace tool, and if they
were loaded to TRACE32 PowerView for analysis.
Training Intel® Processor Tracing | 27©1989-2023 Lauterbach

The command groups usable in your current configuration can be get from the TRACE32 PowerView
Softkey line.

TRACE32 PowerView offers the following abstraction, since most <sub_cmd> are identical for all command
groups:

SystemTrace.METHOD Analyzer | LA

SystemTrace.METHOD Analyzer ; inform TRACE32 PowerView that the
; STP packets are stored in POWER
; TRACE II

SystemTrace.List ; List STP packet stream

Push trace to get access to all command groups
that analyze trace information.

Push other to see more command groups.

POWER TRACE II / POWER TRACE III is used in the current configuration,
so the command group STMAnalyzer is enabled.

The command group STMLA is always enabled.
Training Intel® Processor Tracing | 28©1989-2023 Lauterbach

(Core) Trace

Depending on where the trace packets are stored, the following TRACE32 command groups can be used to
analyze and display the core trace information:

• Analyzer.<sub_cmd>, if the STP packets are stored in the trace memory provided by POWER
TRACE II / POWER TRACE III.

• Onchip.<sub_cmd>, if the Intel® PT trace packets are stored in the target SDRAM.

• LA.<sub_cmd>, if the trace packets were recorded without a TRACE32 trace tool, and if they
were loaded to TRACE32 PowerView for analysis.

TRACE32 PowerView offers the following abstraction, since most <sub_cmd> are identical for all command
groups:

Trace.METHOD Analyzer | Onchip | LA

Trace.METHOD Analyzer ; inform TRACE32 PowerView that the
; trace packets are stored in POWER
; TRACE II

Trace.List ; List core trace information
Training Intel® Processor Tracing | 29©1989-2023 Lauterbach

Selecting the trace METHOD has the following additional consequences:

All Trace.<sub_cmd> commands offered in the TRACE32 PowerView menu apply to the selected trace
METHOD.

TRACE32 is advised to use the trace information from the trace specified by METHOD as source for the
trace evaluations of the following command groups:

COVerage.<sub_cmd> Trace-based code coverage

ISTAT.<sub_cmd> Detailed instruction analysis

MIPS.<sub_cmd> MIPS analysis
Training Intel® Processor Tracing | 30©1989-2023 Lauterbach

Displaying the Trace Contents

Influencing Factors on the Trace Information

The main influencing factor on the trace information is the Intel® PT. It specifies what type of trace
information is generated for the user.

Basics about the trace messages are described in “Protocol Description”, page 6.

Advanced setting can be found in “Trace Control by Filters”, page 68.

Another important influencing factor are the settings in the TRACE32 Trace Configuration window. They
specify how much trace information can be recorded and when the trace recording is stopped.
Training Intel® Processor Tracing | 31©1989-2023 Lauterbach

Settings in the TRACE32 Trace Configuration Window

The Mode settings in the Trace Configuration window specify how much trace information can be recorded
and when the trace recording is stopped.

The following modes are provided, if the Trace.METHOD Analyzer is selected:

• Fifo, Stack, Leash Mode: allow to record as much trace records as indicated in the SIZE field of
the Trace Configuration window.

• STREAM Mode: STREAM mode specifies that the trace information is immediately streamed to
a file on the host computer. STREAM mode allows a trace memory size of several T Frames.
Training Intel® Processor Tracing | 32©1989-2023 Lauterbach

• PIPE Mode: PIPE mode specifies that the trace information is immediately streamed to a named
pipe on the host computer.

PIPE mode creates the path to convey trace raw data to an application outside of TRACE32
PowerView. The named pipe has to be created by the receiving application before TRACE32 can
connect to it.

Trace.Mode PIPE

Trace.PipeWrite <pipe_name> Connect to named pipe

Trace.PipeWrite \\.\pipe\<pipe_name> Connect to named pipe (Windows)

Trace.PipeWrite Disconnect from named pipe

…

Trace.Mode PIPE ; switch trace to PIPE mode

Trace.PipeWRITE \\.\pipe\pproto00 ; connect to named pipe
; (Windows)

…

Trace.PipeWRITE ; disconnect from named pipe

STP packets (no timestamp) are conveyed in PIPE mode.
Training Intel® Processor Tracing | 33©1989-2023 Lauterbach

If the Trace.METHOD Onchip is selected only Fifo mode can be used:

• Fifo: allows to record as much trace records as indicated in the SIZE field of the Trace
Configuration window.
Training Intel® Processor Tracing | 34©1989-2023 Lauterbach

Fifo Mode

Trace.Mode Fifo ; default mode

; when the trace memory is full
; the newest trace information will
; overwrite the oldest one

; the trace memory contains all
; information generated until the
; program execution stopped

In Fifo mode negative record numbers are used. The last record gets the smallest negative number.
Training Intel® Processor Tracing | 35©1989-2023 Lauterbach

Stack Mode (Analyzer only)

Trace.Mode Stack ; when the trace memory is full
; the trace recording is stopped

; the trace memory contains all
; information generated directly
; after the start of the program
; execution

The trace recording is
.stopped as soon as

the trace memory is
full (OFF state)

Green running in the Debug State Field
indicates that program execution is running

OFF in the Trace State Field
indicates that the trace
recording is switched off
Training Intel® Processor Tracing | 36©1989-2023 Lauterbach

TRACE32 needs to read the program code from the target memory in order to display the core trace
information. This is not possible while the program execution is running. This is the reason why the
Trace.List window indicates NOACCESS.

Stop the program execution to allow TRACE32 to read the program code from the target. Or if you need to
display the core trace information while the program execution is running, load a copy of the program code to
the TRACE32 Virtual Memory.

Data.LOAD.Elf <file> /PlusVM Load the program code to the target and to the TRACE32
Virtual Memory.

Since the trace recording starts with the program execution and stops,
when the trace memory is full, positive record numbers are used in Stack mode.
The first record in the trace gets the smallest positive number.
Training Intel® Processor Tracing | 37©1989-2023 Lauterbach

Leash Mode (Analyzer only)

Trace.Mode Leash ; when the trace memory is nearly
; full the program execution is
; stopped

; Leash mode uses the same record
; numbering scheme as Stack mode

The program execution is stopped as soon as
the trace buffer is nearly full.

Since stopping the program execution when the trace
buffer is nearly full requires some logic/time, used is
smaller then the maximum SIZE.
Training Intel® Processor Tracing | 38©1989-2023 Lauterbach

STREAM Mode (Analyzer only)

The trace information is immediately streamed to a file on the host computer after it was placed into the trace
memory. This procedure extends the size of the trace memory to several T Frames.

• STREAM mode requires a 64-bit host computer and a 64-bit TRACE32 executable to handle the
large trace record numbers.

By default the streaming file is placed into the TRACE32 temp. directory
(OS.PresentTemporaryDirectory()).

The command Trace.STREAMFILE <file> allows to specify a different name and location for the streaming
file.

TRACE32 stops the streaming when less then 1 GByte free memory is left on the drive by default.

The command Trace.STREAMFileLimit <+/- limit in bytes> allows a user-defined free memory limitation.

Please be aware that the streaming file is deleted as soon as you de-select the STREAM mode or when you
exit TRACE32.

Trace.Mode STREAM ; stream the recorded trace
; information to a file on the host
; computer

; STREAM mode uses the same record
; numbering scheme as Stack mode

Trace.STREAMFILE d:\temp\mystream.t32 ; specify the location for
; your streaming file

Trace.STREAMFileLimit 5000000000. ; streaming file is limited to
; 5 GByte

Trace.STREAMFileLimit -5000000000. ; streaming is stopped when less
; the 5 GByte free memory is left
; on the drive
Training Intel® Processor Tracing | 39©1989-2023 Lauterbach

At high data rates your host computer might have problems saving the trace data to the streaming file. The
command Trace.STREAMCompression allow to configure a better compression.

In STREAM mode the used field is split:

Trace.STREAMCompression HIGH

Number of records buffered by the trace memory of POWER TRACE II / POWER TRACE III

Number of records saved to streaming file

STREAM mode can
generate very large
record numbers
Training Intel® Processor Tracing | 40©1989-2023 Lauterbach

STREAM mode can only be used if the average data rate at the trace port does not exceed the maximum
transmission rate of the host interface in use. Peak loads at the trace port are intercepted by the memory in
POWER TRACE II / POWER TRACE III, which can be considered to be operating as a large FIFO.

If the average data rate at the trace port exceeds the maximum transmission rate of the host interface in use,
a PowerTrace FIFO Overrun occurs. TRACE32 stops streaming and empties the POWER TRACE II /
POWER TRACE III FIFO. Streaming is re-started after the POWER TRACE II / POWER TRACE III FIFO is
empty.

A PowerTrace FIFO Overrun is indicated as follows:

1. A ! in the used area of the Trace Configuration window indicates an overrun of the POWER
TRACE II / POWER TRACE III FIFO.
Training Intel® Processor Tracing | 41©1989-2023 Lauterbach

2. The OVERRUN is indicated in all trace display windows.

OVERRUNs are not visible at record level.

A large ti.back value (tool timestamp only) can be considered as an OVERRUN indicator.

T

Trace.FindAll TIme.Back 10.s--50.s ; find all trace records with
; a timestamp between 10.s and
; 50.s
Training Intel® Processor Tracing | 42©1989-2023 Lauterbach

States of the Trace

The trace buffer can either sample or allows the read-out for information display.

The current state of the trace is always indicated in the Trace State field of the TRACE32 state line.

Since Intel® PT does not provide a mean to indicate a trigger, the Trace states trigger and break are never
reached.

States of the Trace

DISable The trace is disabled.

OFF The trace is not sampling. The trace contents can be analyzed and
displayed.

Arm The trace is sampling. There is no access to the trace contents.
Training Intel® Processor Tracing | 43©1989-2023 Lauterbach

The AutoInit Command

Init Button Clear the trace memory. All other settings in the Trace
configuration window remain valid.

AutoInit CheckBox ON: The trace memory is cleared whenever the program execution
is started (Go, Step).
Training Intel® Processor Tracing | 44©1989-2023 Lauterbach

Basic Display Commands

Default Listing

Conditional
branch not taken

Conditional
branch taken

Timing information

(pastel printed)
Training Intel® Processor Tracing | 45©1989-2023 Lauterbach

The trace information for all cores is displayed by default in the Trace.List window. The column run and the
coloring of the trace information are used for core indication.

Trace.List /CORE <n> The option CORE allows a per core display of the trace information.
Training Intel® Processor Tracing | 46©1989-2023 Lauterbach

Basic Formatting

The More button works vice versa.

1. time Less Suppress the display of the ptrace packets.

2. time Less Suppress the display of the assembly code.

1.

2.
Training Intel® Processor Tracing | 47©1989-2023 Lauterbach

Correlating the Trace Listing with the Source Listing

Tracking between the Trace Listing and the Source Listing is based on the program addresses.

Active Window

All windows opened with
the /Track option follow the
cursor movements in the
active window
Training Intel® Processor Tracing | 48©1989-2023 Lauterbach

Browsing through the Trace Buffer

Pg Scroll page up.

Pg Scroll page down.

Ctrl - Pg Go to the first record sampled in the trace buffer.

Ctrl - Pg Go to the last record sampled in the trace buffer.
Training Intel® Processor Tracing | 49©1989-2023 Lauterbach

Find a Specific Record

The Trace.List window provides a “Find…” button to open the Trace Find dialog. The Trace Find dialog
allows to search for events of interest in the trace.

Example: Find the entry to the function func10.

A detailed description of the Trace Find dialog can be found in “Application Note for Trace.Find”
(app_trace_find.pdf).
Training Intel® Processor Tracing | 50©1989-2023 Lauterbach

Display Items

Default Display Items

• Column record

Displays the record numbers

• Column run

The column run displays some graphic element to provide a quick overview on the instruction
execution sequence.

Trace.List List.ADDRESS DEFault

Sequential
program execution

Non-sequential
program execution

(solid line)

(broken line)
Training Intel® Processor Tracing | 51©1989-2023 Lauterbach

The column run also indicates Interrupts and TRAPs.

• Column cycle

The main cycle type is:

- ptrace (program trace information)

• Column address/symbol

The address column shows the following information:
<access class>:<address>

Information on the other available access classes can be found in “Intel® x86/x64 Debugger”
(debugger_x86.pdf).

The symbol column shows the corresponding symbolic address.

Access Classes

NP Program address in 32-bit Protected Mode

XP Program address in 64-bit mode
Training Intel® Processor Tracing | 52©1989-2023 Lauterbach

• Column ti.back

The ti.back column shows the time distance to the previous timestamped record.

For details on the TRACE32 tool timestamp refer to “Tool Timestamp (POWER TRACE II /
POWER TRACE III only)”, page 8.
Training Intel® Processor Tracing | 53©1989-2023 Lauterbach

Further Display Items

Time Information

TIme.Back Time relative to the previous record (red)

TIme.Fore Time relative to the next record (green).

TIme.Zero Time relative to the global zero point.

Trace.List TIme.Back TIme.Fore TIme.Zero Address CYcle sYmbol
Training Intel® Processor Tracing | 54©1989-2023 Lauterbach

Set the Global Zero Point (PowerTrace II only)

ZERO.RESet
(tool timestamp only)

TIme.Zero is the zero point of the timestamp counter commonly used
by all TRACE32 hardware modules.

ZERO.offset <time> TIme.Zero is the zero point of the timestamp counter commonly used
by all TRACE32 hardware modules minus the specified <time>.

PRINT Trace.RECORD.TIME(-99.) ; print the timestamp of
; record -99.

ZERO.offset Trace.RECORD.TIME(-99.) ; specify the time of record
; -99. as global zero point

Establish the
selected record as
global zero point
Training Intel® Processor Tracing | 55©1989-2023 Lauterbach

Cylce Accurate Tracing

• Cycle Accurate Tracing Pros.

Provides how much core clocks it took to execute a program section.

Allows to synchronize traces from different trace sources if Time Synchronization packets are
available (not implemented yet).

• Cycle Accurate Tracing Cons.

Cycle accurate tracing requires up 2 times more bandwidth.
Training Intel® Processor Tracing | 56©1989-2023 Lauterbach

Cycle accurate tracing and changing core clock while recording

Cycle accurate tracing has to be enabled in the IPT configuration window.

The following command allows to specify this display as default for the Trace.List window.

TRACE32 displays the warning above when the recorded trace information is analyzed and displayed the
first time. This warning points out that all displayed time information (TIme.Back, TIme.Zero) might be
inaccurate.

IPT.CycleAccurate ON Advise Intel® PT to generate cycle count information.

; advise TRACE32 to display a trace listing with
; cycle count information (CLOCKS.Back)
; advise TRACE32 to suppress the display
; of the timestamp information (TIme.Back.OFF)
Trace.List CLOCKS.Back DEFault TIme.Back.OFF

SETUP.ALIST CLOCKS.Back DEFault TIme.Back.OFF
Training Intel® Processor Tracing | 57©1989-2023 Lauterbach

Cycle count information
relative to the previous record
Training Intel® Processor Tracing | 58©1989-2023 Lauterbach

Packet Decoding

; advise TRACE32 to display a trace listing with the decoded trace packet
; (TPINFO)
Trace.List TPINFO DEFault
Training Intel® Processor Tracing | 59©1989-2023 Lauterbach

Belated Trace Analysis

There are several ways for a belated trace analysis:

1. Save a part of the trace contents into a file (ASCII, CSV or XML format) and analyze this trace
contents outside of TRACE32 PowerView.

2. Save the trace contents in a compact format into a file. Load the trace contents at a subsequent
date into a TRACE32 Instruction Set Simulator and analyze it there.

3. Export the STP byte stream to postprocess it with an external tool.
Training Intel® Processor Tracing | 60©1989-2023 Lauterbach

Save the Trace Information to an ASCII File

Saving a part of the trace contents to an ASCII file requires the following steps:

1. Select Printer Setting… in the File menu to specify the file name and the output format.

2. It might make sense to save only a part of the trace contents into the file. Use the record
numbers to specify the trace part you are interested in.

TRACE32 provides the command prefix WinPrint. to redirect the result of a display command into a
file.

3. Analyze the result outside of TRACE32.

PRinTer.FileType ASCIIE ; specify output format
; here enhanced ASCII

PRinTer.FILE test_run.lst ; specify the file name

; save the trace record range (-8976.)--(-2418.) into the
; specified file
WinPrint.Trace.List (-8976.)--(-2418.)
Training Intel® Processor Tracing | 61©1989-2023 Lauterbach

Postprocessing with TRACE32 Instruction Set Simulator

1. Save the contents of the trace memory into a file.

The default extension for the trace file is .ad.

Trace.SAVE testrun1
Training Intel® Processor Tracing | 62©1989-2023 Lauterbach

2. Start a TRACE32 Instruction Set Simulator (PBI=SIM).

Training Intel® Processor Tracing | 63©1989-2023 Lauterbach

3. Select your target CPU within the simulator. Then establish the communication between
TRACE32 and the simulator.

4. Load the trace file.

Trace.LOAD testrun
Training Intel® Processor Tracing | 64©1989-2023 Lauterbach

5. Display the trace contents.

6. Load symbol and debug information if you need it.

The TRACE32 Instruction Set Simulator provides the same trace display and analysis commands as the
TRACE32 debugger.

Data.LOAD.Elf sieve_funcs_x86.elf /NoCODE

Postprocessing of recorded trace information with the TRACE32 Instruction
Set Simulator becomes more complex if an operating system that uses
dynamic memory management to handle processes/task is used (e.g. Linux).

LOAD indicates that the source for the trace information is the loaded file.
Training Intel® Processor Tracing | 65©1989-2023 Lauterbach

Script version

Save the trace contents in the recording TRACE32 instance:

Prepare the TRACE32 Instruction Set Simulator for off-line processing of the trace information:

Trace.SAVE testrun.ad

SYStem.CPU TANGIER

SYStem.Up

Trace.LOAD testrun.ad

Data.LOAD.Elf sieve_funcs_x86.elf /NoCODE

Trace.List
Training Intel® Processor Tracing | 66©1989-2023 Lauterbach

Export STP Byte Stream

Trace.EXPORT.TracePort <file> Export trace raw data (no timestamps).

SystemTrace.EXPORT.TracePort mytest1.ad
Training Intel® Processor Tracing | 67©1989-2023 Lauterbach

Trace Control by Filters

Intel® PT provides 2 address ranges for trace control. The smallest range size is 4 bytes.

TRACE32 PowerView provides access to these address ranges by the action field in the Break.Set dialog.

The 2 address ranges can be used for the following purposes:

TraceEnable advises Intel® PT to generate program flow information for the specified address range only.

TraceOFF advises Intel® PT to stop the generation of program flow information as soon as a specified
address range is reached.

Both filters are programmed to all Intel® PT in an SMP configuration.
Training Intel® Processor Tracing | 68©1989-2023 Lauterbach

TraceEnable

Example 1: Advise Intel® PT to generate program flow information only for function func10.

1. Set a Program breakpoint to the address range of func10 and select the action
TraceEnable.

2. Start and stop the program execution.

3. Display the result.

TRACE ENABLE indicates the start of the message generation. It might be necessary to search for it.
Training Intel® Processor Tracing | 69©1989-2023 Lauterbach

Break.Delete /ALL

Var.Break.Set func10 /Program /TraceEnable

Go

…

Break

Trace.List
Training Intel® Processor Tracing | 70©1989-2023 Lauterbach

TraceOFF

Example 2: Advise Intel® PT to stop the generation of program flow information as soon as function func10
is entered.

1. Set a Program breakpoint to the start address of func10 plus 5 bytes and select the action
TraceOFF.

2. Start the program execution.

TRACE32 has, unfortunately, no way to detect that Intel® PT stopped the generation of trace
information.

Off-chip trace: Since the Analyzer is recording STP packets, used could increase, because other
trace sources continue generating STP packets.

Onchip trace: TRACE32 can not read the filling level of the onchip trace while recording.
Training Intel® Processor Tracing | 71©1989-2023 Lauterbach

3. Stop the program execution.

4. Display the result.

Break.Delete /ALL

Break.Set func10++0x5 /Program /TraceOFF

Go

…

Break

Trace.List
Training Intel® Processor Tracing | 72©1989-2023 Lauterbach

OS-Aware Tracing

OS-aware tracing requires that OS-aware debugging is configured. For more information refer to “OS-aware
Debugging” (glossary.pdf).

Process Switch Packets

x86/x64 processors have a CR3 control register that contains the Process Context Identifier (PCID). On
every context switch the corresponding PCID is loaded to CR3.

Intel® PT generates a Paging Information Packet (PIP) when a write to CR3 occurs.

TRACE32 names the cycle type owner if the PCID loaded to CR3 can be assigned to a process.

The command TASK.List.tasks can be used the check all assignments currently known to TRACE32. The
traceid represents the PCID in this display.
Training Intel® Processor Tracing | 73©1989-2023 Lauterbach

TRACE32 names the cycle type context if the PCID loaded to CR3 can not be assigned to a process.

The fact that the PCID can not be assigned to a process results in the following,:

• Since TRACE32 does not require the PCID to decode trace information for the common address
range, full trace decoding is possible.

• For all other address ranges a decoding of the trace information is not possible. The cycle type
unknown is used for trace information that can not be decoded.

; command in the setup for the OS Awareness
TRANSlation.COMMON 0xffff880000000000--0xffffffffffffffff

NOTE: The Real-Time Instruction Trace (RTIT), doesn’t feature the process switching
packets. If multiple user space applications are traced, it is only possible to decode
the trace packets of the kernel. The cycle type unknown is used for the user space
trace packets. For decoding the trace packets of a user application, it is necessary to
filter the process of interest using the CR3 filter.
RTIT was implemented on very few devices, then it was extended to the Intel
Processor Trace which supports the process switching trace. The RTIT trace is
also covered by TRACE32 using the IPT command group.
Training Intel® Processor Tracing | 74©1989-2023 Lauterbach

Program Flow and Process Switches

Trace.List List.TASK DEFault ; display trace listing with
; decoded task switch information
Training Intel® Processor Tracing | 75©1989-2023 Lauterbach

Process Runtime Analysis

NOTE: This is a process switch analysis, since Paging Information Packets (PIP) only
indicate process switches, but no thread switches.

Threads do not have their own traceid
Training Intel® Processor Tracing | 76©1989-2023 Lauterbach

Time Chart

contextid:<trace_id> indicates process switches for which the <trace_id> can not be assigned to a process.

The recording time before the first Paging Information Packet (PIP) is assigned to the (unknown) task.

Trace.Chart.TASK [/SplitCORE] Display process time chart
- graphical display
- split the results per core
- sort the results per recording order

Trace.Chart.TASK /MergeCORE Display process time chart
- graphical display
- merge the results of all cores

Trace information is analyzed independently for each core.
The time chart summarizes these results to a single result.
Training Intel® Processor Tracing | 77©1989-2023 Lauterbach

Statistic

Trace.STATistic.TASK [/SplitCORE] Process runtime statistic
- numerical display
- split the results per core
- sort the results per recording order

Trace.STATistic.TASK /MergeCORE Process runtime statistic
- numerical display
- merge the results of all cores

Trace information is analyzed independently for each
core. The statistic summarizes these results to a single
result.
Training Intel® Processor Tracing | 78©1989-2023 Lauterbach

Find Process Switches in the Trace

1. Open a process time chart window and a trace listing with decoded process switch
information. Link both windows by using the /Track option.

Trace.Chart.TASK /Track ; open process time chart
; window

Trace.List List.TASK DEFault /Track ; open a default trace
; listing that includes
; process information

; both windows use the /Track option
; a window opened with the /Track option follows the cursor movement
; of the active window

; tracking between trace windows is based on the timestamp
; information
Training Intel® Processor Tracing | 79©1989-2023 Lauterbach

2. Use the arrow keys of the process of interest to move to next state change.

The trace listing follows the
cursor movement in he
Trace.Chart.TASK window
Training Intel® Processor Tracing | 80©1989-2023 Lauterbach

OS-aware Filtering

Filtering by Privilege Level

 Intel® PT can be advised to generate program flow information only for:

• privilege level 0

• all privilege levels greater than 0

Example: Advise Intel® PT to generate only program flow information for privilege level 0.

1. Uncheck TraceUSER in the IPT configuration window.

2. Start and stop the program execution.

3. Display the result.

IPT.state

IPT.TraceUSER OFF

Go

…

Trace.List
Training Intel® Processor Tracing | 81©1989-2023 Lauterbach

Filtering by Process

Intel® PT can be advised to generate program flow information only for a process of interest.

Example: Advise Intel® PT to generate only program flow information for the process “logcat”.

1. Program the CR3 filter via the IPT window.

IPT.state ; open IPT configuration
; window

; specify the <trace_id> of the process "logcat"
IPT.CR3 0x386D9000

; IPT.CR3 TASK.PROC.NAME2TRACEID("logcat")

TASK.PROC.NAME2TRACEID(<process_name>) Returns the <trace_id> of specified
process.
Training Intel® Processor Tracing | 82©1989-2023 Lauterbach

2. Start and stop the program execution.

3. Display the result.

TRACE ENABLE indicates the re-start of the program flow trace generation.

Please be aware that TRACE32 decodes all trace information for the process specified in the

command IPT.CR3 <trace_id>. Intel® PT does not generate Paging Information Packet (PIP) in this
scenario.
Training Intel® Processor Tracing | 83©1989-2023 Lauterbach

Filter on Function executed by Process

Example: Advise Intel® PT to generate only program flow information when the function “logger_poll” is
running in the context of the process “logcat”.

1. Set a Program breakpoint to the address range of the function logger_poll and select the
action TraceEnable.

2. Program the CR3 filter via the IPT window.

IPT.state ; open IPT configuration
; window

IPT.CR3 TASK.PROC.NAME2TRACEID("logcat")
Training Intel® Processor Tracing | 84©1989-2023 Lauterbach

3. Start and stop the program execution.

4. Display the result.

TRACE ENABLE indicates the re-start of the program flow trace generation.
Training Intel® Processor Tracing | 85©1989-2023 Lauterbach

Belated Analysis

Postprocessing of recorded trace information with the TRACE32 Instruction Set Simulator requires complex
preparations if an operating system that uses dynamic memory management to handle processes is used
(e.g. Linux).

The following information has to be store after recording and re-loaded to the TRACE32 Instruction Set
Simulator:

• The recorded trace information

• The whole kernel address space (code and data)

• The core registers

• All MMU-related registers

• The settings of the Debugger Address Translation (TRACE32 command group: TRANSlation)

Example for Linux

The Generate RAM Dump command in the Linux menu provides a store framework. It generates a CMM
file that summarizes all commands for the TRACE32 Instruction Set Simulator.
Training Intel® Processor Tracing | 86©1989-2023 Lauterbach

If you start a TRACE32 Instruction Set Simulator and run the generated script, the recorded trace
information can be analyzed there. Please be aware that additional settings might be necessary e.g. the
specification of the search paths for the C/C++ sources.
Training Intel® Processor Tracing | 87©1989-2023 Lauterbach

Trace-based Debugging (CTS)

Trace-based debugging allows to re-run the recorded program section within TRACE32 PowerView.

Setup

Since Intel® PT does not provide any information on read/write accesses, UseMemory has to be
unchecked. A full explanation on this is given later in the chapter “CTS Technique”, page 93.

CTS.UseMemory OFF
Training Intel® Processor Tracing | 88©1989-2023 Lauterbach

Get Started

Specify the starting point for the trace re-run by selecting Set CTS from the Trace pull-down menu. The
starting point in the example below is the entry to the function activate_task executed by core 1.

Selecting Set CTS has the following effect:

• TRACE32 PowerView will use the preceding trace packet as starting point for the trace re-run.
Training Intel® Processor Tracing | 89©1989-2023 Lauterbach

• The TRACE32 PowerView GUI does no longer show the current state of the target system, but it
shows the target state as it was, when the starting point instruction was executed. This display
mode is called CTS View.

CTS View means:

- The instruction pointers of all cores are set to the values they had when the starting point
instruction was executed.

- The content of the core registers of all cores is reconstructed (as far as possible) to the values they
had when the starting point instruction was executed. If TRACE32 can not reconstruct the
content of a register it is displayed as empty.

TRACE32 PowerView uses a yellow look-and-feel to indicate CTS View.

The Off button in the source listing can be used to switch off the CTS View.
Training Intel® Processor Tracing | 90©1989-2023 Lauterbach

TRACE32 PowerView displays the state of the target as it was when
the instruction of the trace record -470020435.0 was executed
Training Intel® Processor Tracing | 91©1989-2023 Lauterbach

Forward and Backward Debugging

Now you can start to re-run the recorded program section within TRACE32 PowerView by forward or
backward debugging.

Forward Debugging

Backward Debugging

Forward debugging commands Backward debugging commands

No function No function

Single step

Step over call Re-run until function exit

Single step
backward

Step backward
over call

Re-run backward
to function entry
Training Intel® Processor Tracing | 92©1989-2023 Lauterbach

CTS Technique

If CTS.UseMemory is ON and TRACE32 detects that a memory address was not changed by the recorded
program section, TRACE32 PowerView displays the current content of this memory in CTS display mode.

Since Intel® PT does not provide any information on read/write accesses and since most read/write
accesses are done by using an indirect address, TRACE32 can not detect which memory content was
changed. This is the reason why CTS.UseMemory has to be set to OFF.

If CTS.UseMemory is switch OFF, but your memory contains constants, you can configure TRACE32 to use
these constants by the following commands:

If CTS.UseRegister is ON and TRACE32 detects that a register was not changed by the recorded program
section, TRACE32 PowerView displays the current content of this register in CTS display mode.

CTS.UseRegister has to be set to OFF, if you are using Stack mode for tracing.

CTS.UseMemory ON Default setting within TRACE32

MAP.CONST <address_range>

CTS.MapConst ON

CTS.UseRegister ON Default setting within TRACE32

Contents of the
trace buffer

Current state of the target

Memory and CPU register and

CTS

Memory-mapped
peripherals

SFR register

Command: CTS.UseMemory ON Command: CTS.UseRegister ON
Training Intel® Processor Tracing | 93©1989-2023 Lauterbach

Function Run-Time Analysis - Basic Concept

Software under Analysis (no OS, OS or OS+MMU)

For the use of the function run-time analysis it is helpful to differentiate between three types of application
software:

1. Software without operating system (abbreviation: no OS)

2. Software that includes an operating system (abbreviation: OS)

3. Software with an operating system that uses dynamic memory management to handle
processes/tasks (OS+MMU).

Flat vs. Nesting Analysis

TRACE32 provides two methods to analyze function run-times:

• Flat analysis

• Nesting analysis
Training Intel® Processor Tracing | 94©1989-2023 Lauterbach

Basic Knowledge about Flat Analysis

The flat function run-time analysis bases on the symbolic instruction addresses of the trace entries. The time
spent by an instruction is assigned to the corresponding function/symbol region.

min shortest time continuously in the address range of the
function/symbol region

max longest time continuously in the address range of the
function/symbol region

main

func1

func2

func1
func3

func1

main

func1

func3

func1

main

maxmin

Entry of func1 Entry of func1

Exit of func1 Exit of func1
Training Intel® Processor Tracing | 95©1989-2023 Lauterbach

Basic Knowledge about Nesting Analysis

The function nesting analysis analyses only high-level language functions.
Training Intel® Processor Tracing | 96©1989-2023 Lauterbach

In order to display a nesting function run-time analysis TRACE32 analyzes the structure of the program
execution by processing the trace information. The focus is put on the transition between functions (see
picture above). The following events are of interest:

1. Function entries

2. Function exits

3. Entries to interrupt service routines

4. Exits of interrupt service routines

5. Entries to TRAP handlers

6. Exits of TRAP handlers

min shortest time within the function including all subfunctions and traps

max longest time within the function including all subfunctions and traps

func1

func2

interrupt_service1

main

func1

func2

func1

func3

func1

main

func1
func3

func1

main

Entry of func1 Entry of func1

Exit of func1 Exit of func1

max min
Training Intel® Processor Tracing | 97©1989-2023 Lauterbach

Summary

The nesting analysis provides more details on the structure and the timing of the program run, but it is much
more sensitive then the flat analysis. Missing or tricky function entries/exits may require additional setups
before nesting analysis can be used.
Training Intel® Processor Tracing | 98©1989-2023 Lauterbach

Flat Function-Runtime Analysis

Function Time Chart

Default Time Chart

NOTE: As long a TRACE32 does not support Synchronisation Time, cycle accurate
tracing should be disabled for all kind of runtime measurement.

Trace.Chart.sYmbol [/SplitCore /Sort CoreTogether] Flat function run-time analysis
- graphical display
- split the result per core
- sort results per core and then per
recording order

Pushing the Chart button in the Trace.List window
opens a Trace.Chart.sYmbol window
Training Intel® Processor Tracing | 99©1989-2023 Lauterbach

Core Options

Trace.Chart.sYmbol [/SplitCORE] /Sort CoreSeparated Flat function run-time analysis
- graphical display
- split the result per core
- sort the results per recording order

Trace.Chart.sYmbol /MergeCORE Flat function run-time analysis
- graphical display
- merge the results of all cores

Trace information is analyzed
independently for each core. The
time chart summarizes these results
to a single result.
Training Intel® Processor Tracing | 100©1989-2023 Lauterbach

TASK Options

Trace.Chart.sYmbol /SplitTASK Display function time chart including process
information (OS, OS+MMU only)

@<task_name> Process name information

@(unknown) Function was recorded before first process switch information was
recorded

Trace.Chart.sYmbol /TASK <name> Display function time chart for specified process
(OS, OS+MMU only)

@<task_name> Process name information

(root)@(unknown) Everything outside of the specified process.
Training Intel® Processor Tracing | 101©1989-2023 Lauterbach

Did you know?

If Window in the Sort visible field is switched ON in the Chart Config window, the functions that are active
at the selected point of time are visualized in the scope of the Trace.Chart.sYmbol window. This is helpful
especially if you scroll horizontally.

Switch Window
on
Training Intel® Processor Tracing | 102©1989-2023 Lauterbach

Function Run-time Statistic

Analog to the timing diagram there is also a numerical analysis.

survey

item number of recorded functions/symbol regions

total time period recorded by the trace

samples total number of recorded changes of functions/symbol regions
(program flow continuously in the address range of a
function/symbol region)

function details

address function/symbol region name (here per core)

(other) program sections that can not be assigned to a
function/symbol region

total time period in the function/symbol region during the recorded time
period

min shortest time continuously in the address range of the
function/symbol region

max longest time continuously in the address range of the
function/symbol region

avr average time continuously in the address range of the
function/symbol region (calculated by total/count)
Training Intel® Processor Tracing | 103©1989-2023 Lauterbach

Further Commands

count number of new entries (start address executed) into the address
range of the function/symbol region

ratio ratio of time in the function/symbol region with regards to the total
time period recorded

Trace.PROfileChart.sYmbol Display dynamic program behavior graphically.

MIPS.PROfileChart.sYmbol Display MIPS for all program symbols graphically.

MIPS.STATistic.sYmbol Display MIPS for all program symbols numerically.

Pushing the Config button provides the possibility to specify a different
column layout and a different sorting criterion for the address column.
By default the functions/symbol regions are sorted by their recording order.
Training Intel® Processor Tracing | 104©1989-2023 Lauterbach

Nesting Function Analysis OS

Function nesting analysis for OS requires that OS-aware debugging is configured. For more information
refer to “OS-aware Debugging” (glossary.pdf).

Trace.STATistic.Func Nesting function run-time analysis
- numeric display
- core information is discarded exceptions are the
@(unknown) task and the @(interrupt) task
Training Intel® Processor Tracing | 105©1989-2023 Lauterbach

Survey

survey

func number of functions in the trace

total total measurement time

intr total time in interrupt service routines

survey (issue indication)

stopped: <time> The analyzed trace recording contains program stops. <time>
indicates the total time the program execution was stopped.

<number> problems The nesting analysis contains problems. Please contact
support@lauterbach.com.

<number> workarounds The nesting analysis contains issues, but TRACE32 found solutions
for them. It is recommended to perform a sanity check on the
proposed solutions.

stack overflow at
<record>

The nesting analysis exceeds the nesting level 200. It is highly likely
that the function exit for an often called function is missing. The
command Trace.STATistic.TREE can help you to identify the
function. If you need further help please contact
support@lauterbach.com.

stack underflow at
<record>

The nesting analysis exceeds the nesting level 200. It is highly likely
that the function entry for an often executed function is missing. The
command Trace.STATistic.TREE can help you to identify the
function. If you need further help please contact
support@lauterbach.com.

survey
Training Intel® Processor Tracing | 106©1989-2023 Lauterbach

range Column

HLL function hrtimer_cancel running in process @logcat.

Please be aware that no core information is provided for processes and their functions.

columns

range (NAME) function name, sorted by their recording order as default
Training Intel® Processor Tracing | 107©1989-2023 Lauterbach

Nesting function run-time analysis can also be performed per process.

Trace.STATistic.Func /TASK <task_magic> | <task_name> | <task_id>

Trace.STATistic.Func /TASK "logcat"
Training Intel® Processor Tracing | 108©1989-2023 Lauterbach

Interrupt Functions

Interrupt service routines are assigned to the @(interrupt) task. Core information is provided for the
@(interrupt) task.

An arrow before the interrupt function indicates the function executed after the interrupt occurred:

The unknown Task

All function recorded before the first process switch is recorded are assigned to the @(unknown) task. Core
information is provided for the @(unknown) task.
Training Intel® Processor Tracing | 109©1989-2023 Lauterbach

Default Results

columns (cont.)

total total time within the function

min shortest time between function entry and exit, time spent in interrupt
service routines is excluded

No min time is displayed if a function exit was never executed.

max longest time between function entry and exit, time spent in interrupt
service routines is excluded

avr average time between function entry and exit, time spent in interrupt
service routines is excluded
Training Intel® Processor Tracing | 110©1989-2023 Lauterbach

If function entries or exits are missing, this is displayed in the following format:

<times within the function >. (<number of missing function entries>/<number of missing function exits>).

Interpretation examples:

1. 2. (2/0): 2 times within the function, 2 function entries missing

2. 4. (0/3): 4 times within the function, 3 function exits missing

3. 11. (1/1): 11 times within the function, 1 function entry and 1 function exit is missing.

columns (cont.)

count number of times within the function

If the number of missing function entries or exits is higher the 1 the analysis
performed by the command Trace.STATistic.Func might fail due to nesting
problems. A detailed view to the trace contents is recommended.

columns (cont.)

intern%
(InternalRatio,
InternalBAR.LOG)

ratio of time within the function without subfunctions, TRAP
handlers, interrupts (net time)
Training Intel® Processor Tracing | 111©1989-2023 Lauterbach

Net Results

Pushing the Config… button allows to display additional columns
Training Intel® Processor Tracing | 112©1989-2023 Lauterbach

columns (cont.) - times only in function

Internal total time between function entry and exit without called sub-functions,
TRAP handlers, interrupt service routines

IAVeRage average time between function entry and exit without called sub-
functions, TRAP handlers, interrupt service routines

IMIN shortest time between function entry and exit without called sub-
functions, TRAP handlers, interrupt service routines

IMAX longest time spent in the function between function entry and exit without
called sub-functions, TRAP handlers, interrupt service routines

InternalRatio <Internal time of function>/<Total measurement time> as a numeric
value.

InternalBAR <Internal time of function>/<Total measurement time> graphically.
Training Intel® Processor Tracing | 113©1989-2023 Lauterbach

Interrupt Details

columns (cont.) - interrupt times

ExternalINTR total time the function was interrupted

ExternalINTRMAX max. time one function pass was interrupted

INTRCount number of interrupts that occurred during the function run-time
Training Intel® Processor Tracing | 114©1989-2023 Lauterbach

Time in Other Tasks

columns - process related information

TASKCount number of tasks that interrupt the function/task

ExternalTASK total time in other tasks

ExternalTASKMAX max. time 1 function/task pass was interrupted by a task
Training Intel® Processor Tracing | 115©1989-2023 Lauterbach

Tree Display

It is also possible to get a task/process-specific tree.

Trace.STATistic.TREE Nesting function run-time analysis
- tree display

Trace.STATistic.TREE /TASK "rild"
Training Intel® Processor Tracing | 116©1989-2023 Lauterbach

Structure your Trace Evaluation

GROUPs for OS-aware Tracing

TRACE32 PowerView provides the GROUP command to structure the trace evaluation.

If you use a target OS such a Linux, the following groups are created by the Lauterbach scripts and
Lauterbach OS menus:

• A GROUP “kernel”, color RED, to mark the OS kernel.

• A GROUP “droid”, color BLUE, to mark virtual machine byte code e.g. Android/Dalvik.

• A GROUP <process_name> per process, color GREEN.

• A GROUPs <module_name> per kernel module, color YELLOW.

A group can have the following statuses:

• enable

• enable + merge

• enable + hide
Training Intel® Processor Tracing | 117©1989-2023 Lauterbach

GROUP Status ENable

If a GROUP is enabled:

• The trace information recorded for the group members is marked with the color assigned to the
group.

• Group-based trace analyses commands are provided e.g. Trace.STATistic.GROUP.
Training Intel® Processor Tracing | 118©1989-2023 Lauterbach

GROUP Status ENable+Merge

If a GROUP is enabled and merge is checked:

• The group represents its members in all trace analysis windows. No details about group
members are displayed.
Training Intel® Processor Tracing | 119©1989-2023 Lauterbach

GROUP Status Enable+HIDE

If a GROUP is enabled and hide is checked:

• The group represents its members in all trace analysis windows. No details about group
members are displayed (same as merge checked).

• The trace information recorded for the group members is hidden in the Trace.List window.
Training Intel® Processor Tracing | 120©1989-2023 Lauterbach

GROUP Creation

The GROUPs “kernel” and “droid” are typically created in the start-up script that sets up the OS-aware
debugging.

<process> or <module> GROUPs are created when their symbol information is loaded.

For more details about GROUPs refer to the GROUP command group.

GROUP.Create <group_name> <address_range> /<color>

GROUP.Create "kernel" XP:0xffffffff80000000--0xffffffffffffffff /RED

GROUP.Create "droid" XP:0x0000000040000000--0x000000006FFFFFFF /BLUE
Training Intel® Processor Tracing | 121©1989-2023 Lauterbach

	Training Intel® Processor Tracing
	Protocol Description
	Basic Trace Packets
	OS-Aware Tracing
	Time Information
	Tool Timestamp (POWER TRACE II / POWER TRACE III only)
	CycleAccurate Tracing
	Synchronization Time

	Trace Configuration
	Off-chip Trace
	SDRAM Trace
	Trace Errors
	ERRORS
	TARGET FIFO OVERFLOW

	TRACE32 Abstractions
	SystemTrace
	(Core) Trace

	Displaying the Trace Contents
	Influencing Factors on the Trace Information
	Settings in the TRACE32 Trace Configuration Window
	States of the Trace
	The AutoInit Command
	Basic Display Commands
	Default Listing
	Basic Formatting
	Correlating the Trace Listing with the Source Listing
	Browsing through the Trace Buffer
	Find a Specific Record

	Display Items
	Default Display Items
	Further Display Items

	Belated Trace Analysis
	Save the Trace Information to an ASCII File
	Postprocessing with TRACE32 Instruction Set Simulator
	Export STP Byte Stream

	Trace Control by Filters
	TraceEnable
	TraceOFF

	OS-Aware Tracing
	Process Switch Packets
	Program Flow and Process Switches
	Process Runtime Analysis
	Time Chart
	Statistic

	Find Process Switches in the Trace
	OS-aware Filtering
	Filtering by Privilege Level
	Filtering by Process
	Filter on Function executed by Process

	Belated Analysis
	Example for Linux

	Trace-based Debugging (CTS)
	Setup
	Get Started
	Forward and Backward Debugging
	Forward Debugging
	Backward Debugging

	CTS Technique

	Function Run-Time Analysis - Basic Concept
	Software under Analysis (no OS, OS or OS+MMU)
	Flat vs. Nesting Analysis
	Basic Knowledge about Flat Analysis
	Basic Knowledge about Nesting Analysis
	Summary

	Flat Function-Runtime Analysis
	Function Time Chart
	Default Time Chart
	Core Options
	TASK Options

	Function Run-time Statistic
	Further Commands

	Nesting Function Analysis OS
	Survey
	range Column
	Default Results
	Net Results
	Interrupt Details
	Time in Other Tasks
	Tree Display

	Structure your Trace Evaluation
	GROUPs for OS-aware Tracing
	GROUP Status ENable
	GROUP Status ENable+Merge
	GROUP Status Enable+HIDE
	GROUP Creation

