
MANUAL

Release 09.2024

Simulator for TriCore

Simulator for TriCore

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents ..

 TRACE32 Instruction Set Simulators ..

 Simulator for TriCore ... 1

 Introduction ... 5

 Simulator Features 5

 TRACE32 Simulator License 5

 Brief Overview of Documents for New Users 6

 Demo and Start-up Scripts 6

 Quick Start of the Simulator ... 7

 Peripheral Simulation ... 9

 Debugging .. 10

 Troubleshooting 10

 Memory Classes 10

 Breakpoints 11

 Examples for Breakpoints 11

 Trace ... 12

 FAQ ... 12

 CPU specific SYStem Commands ... 13

 SYStem.CONFIG Configure debugger according to target topology 13

 SYStem.CPU Select CPU 13

 SYStem.LOCK Tristate the JTAG port 14

 SYStem.MemAccess Select run-time memory access method 15

 SYStem.Mode Establish the communication with the CPU 16

 SYStem.Option CPU specific commands 17

 SYStem.Option.DCFREEZE Do not invalidate cache 17

 SYStem.Option.DUALPORT Implicitly use run-time memory access 17

 SYStem.Option.OVERLAY Enable overlay support 17

 SYStem.Option.ETK Debugging together with ETK from ETAS 18

 SYStem.Option.HeartBeat Bug fix to avoid FPI bus conflict 18

 SYStem.Option.ICFLUSH Flush instruction cache at “Go” or “Step” 18

 SYStem.Option.IMASKASM Disable interrupts while single stepping 19

 SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 19

 SYStem.Option.PERSTOP Enable global peripheral suspend 19
Simulator for TriCore | 2©1989-2024 Lauterbach

 SYStem.Option.SOFTLONG Set 32 bit software breakpoints 19

 SYStem.RESetOut CPU reset command 19

 SYStem.state Open SYStem.state window 20

 CPU specific TrOnchip Commands ... 21

 TrOnchip Onchip triggers 21
Simulator for TriCore | 3©1989-2024 Lauterbach

Simulator for TriCore

Version 05-Oct-2024
Simulator for TriCore | 4©1989-2024 Lauterbach

Introduction

This document describes the processor-specific settings and features for the TRACE32 Instruction Set
Simulator for TriCore.

All general commands are described in the “PowerView Command Reference” (ide_ref.pdf) and
“General Commands Reference”.

Simulator Features

The TRACE32 Simulator for TriCore covers the following:

• TriCore instruction set, starting from core version 1.2 up to the newest version.

• MultiCore simulation starting from core version 1.6.1 / TC2xx.

• Trap simulation.

• Interrupt simulation starting from core version 1.6.1 / TC2xx.

• Simple memory map simulation:

- segment 0 is simulated as bus error,

- starting from core version 1.6.1 / TC2xx: local / global adressing of scratchpad RAMs.

• MPU simulation starting from core version 1.6.1 / TC2xx.

Peripherals are not included but can be simulated by loading appropriate models.

TRACE32 Simulator License
[build 68859 - DVD 02/2016]

The extensive use of the TRACE32 Instruction Set Simulator requires a TRACE32 Simulator License.

For more information, see www.lauterbach.com/sim_license.html.
Simulator for TriCore | 5©1989-2024 Lauterbach

www.lauterbach.com/sim_license.html

Brief Overview of Documents for New Users

Architecture-independent information:

• “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.

• “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your debug cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Demo and Start-up Scripts

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:

• Type at the command line: WELCOME.SCRIPTS

• or choose File menu > Search for Script.

You can now search the demo folder and its subdirectories for PRACTICE start-up scripts
(*.cmm) and other demo software.

You can also manually navigate in the ~~/demo/tricore/ subfolder of the system directory of TRACE32.
Simulator for TriCore | 6©1989-2024 Lauterbach

Quick Start of the Simulator

To start the simulator, proceed as follows:

1. Select the device prompt for the Simulator and reset the system.

The device prompt B:: is normally already selected in the TRACE32 command line. If this is not the
case, enter B:: to set the correct device prompt. The RESet command is only necessary if you do
not start directly after booting TRACE32.

2. Specify the CPU specific settings.

The default values of all other options are set in such a way that it should be possible to work without
modification. Please consider that this is probably not the best configuration for your target.

B::

RESet

SYStem.CPU <cpu_name>
Simulator for TriCore | 7©1989-2024 Lauterbach

3. Enter debug mode.

This command resets the CPU and enters debug mode. After this command is executed it is possible
to access memory and registers.

4. Load the program.

See the Data.LOAD command reference for a list of supported file formats. If uncertain about the
required format, try Data.LOAD.auto.

A detailed description of the Data.LOAD command and all available options is given in the reference
guide.

5. Start-up example

A typical start sequence is shown below. This sequence can be written to a PRACTICE script file
(*.cmm, ASCII format) and executed with the command DO <file>.

*) These commands open windows on the screen. The window position can be specified with the
WinPOS command.

SYStem.Up

Data.LOAD.<file_format> <file> ; load program and symbols

B:: ; Select the ICD device prompt

WinCLEAR ; Clear all windows

SYStem.CPU <cpu_name> ; Select CPU type

SYStem.Up ; Reset the target and enter
; debug mode

Data.LOAD.<file_format> <file> ; Load the application

Register.Set pc main ; Set the PC to function main

PER.view ; Show clearly arranged
; peripherals in window *)

List.Mix ; Open source code window *)

Register.view /SpotLight ; Open register window *)

Frame.view /Locals /Caller ; Open the stack frame with
; local variables *)

Var.Watch %Spotlight flags ast ; Open watch window for
; variables *)
Simulator for TriCore | 8©1989-2024 Lauterbach

Peripheral Simulation

For more information, see “API for TRACE32 Instruction Set Simulator” (simulator_api.pdf).

In a TriCore system, multiple peripherals can generate interrupt requests to interrupt service providers e.g.
CPUs.

The TriCore simulator supports interrupts starting from core version 1.6.1 / TC2xx. The Interrupt Control
Unit (ICU) is to be implemented by a simulation model. The interrupt handling flow is as follows:

• The ICU (simulation model) arbitrates among the pending interrupts and writes the Pending
Interrupt Priority Number (PIPN) of the winning service request to the Interrupt Control Register
(ICR) of the CPU (the service provider). The simulation model signals the presence of a pending
interrupt request to the simulator by setting the interrupt port of the corresponding CPU. The
interrupt port number (p) is calculated from the service provider core number (n) as follows

p= (-2) - (8 * n)

• If the simulated CPU decides to accept the requested interrupt, it updates the Current CPU
Priority Number (CCPN) and clears the PIPN from the ICR register.

• The simulation model intercepts clearing the PIPN as an Interrupt acknowledge and clears down
the requesting interrupt source. It must also determine the next pending interrupt or clear the
interrupt port when all pending interrupts are served.

Changes to ICR from the simulator and the simulation model are visible via memory access callbacks to the
corresponding CSFR memory address.

A demo simulation model for AURIX STM timers is available in the subdirectory
~~/demo/tricore/simulator/stm_aurix
Simulator for TriCore | 9©1989-2024 Lauterbach

Debugging

Troubleshooting

No information available.

Memory Classes

The following memory classes are available:

P: and D: display the same memory, the difference is in handling the symbols.

Prepending an E as attribute to the memory class will make memory accesses possible even when the CPU
is running. See SYStem.MemAccess and SYStem.CpuAccess for more information.

In the Simulator, all memories are dual-port capable by default.

Memory Class Description

P Program

D Data

EEC Emulation Memory on EEC
Only available on TriCore Emulation Devices for accessing the Emulation
Extension Chip
Simulator for TriCore | 10©1989-2024 Lauterbach

Breakpoints

There are two types of breakpoints available: Software breakpoints and On-chip breakpoints.

The simulator does not differ between software- and on-chip breakpoints.

Examples for Breakpoints

• Examples for instruction breakpoints:

• Examples for breakpoints on data:

Breakpoint on write access to 0xAFE10200.

Breakpoint on read access to 0xAFE10400.

Break.Set 0xD4001FD0 /Program ; breakpoint on instruction

Break.Set 0xAFE10200 /Write ; data write access breakpoint

Break.Set 0xAFE10400 /Read ; data read access breakpoint
Simulator for TriCore | 11©1989-2024 Lauterbach

Trace

The Simulator offers a complete instruction and data trace. Use Trace.List to display.

FAQ

Please refer to https://support.lauterbach.com/kb.
Simulator for TriCore | 12©1989-2024 Lauterbach

https://support.lauterbach.com/kb

CPU specific SYStem Commands

SYStem.CONFIG Configure debugger according to target topology

The SYStem.CONFIG commands have no effect in Simulator. These commands describe the physical
configuration at the JTAG port and the trace port of a multi-core hardware target. Since the simulator
normally just simulates the instruction set, these commands will be ignored. Refer to the relevant Processor
Architecture Manual in case you want to know the effect of these commands on a debugger.

SYStem.CPU Select CPU

Default: TC1797.

Selects the processor type.

<parameter>:
(JTAG):

DRPRE <bits>
DRPOST <bits>
IRPRE <bits>
IRPOST <bits>
TAPState <state>
TCKLevel <level>
TriState [ON | OFF]
Slave [ON | OFF]

Format: SYStem.CPU <cpu>

<cpu> For a list of supported CPUs, use the command SYStem.CPU * or refer
to the chip search on the Lauterbach website.

NOTE: In case your device is listed on the website but not listed in the SYStem.CPU *
list, you may require a software update. Please contact your responsible
Lauterbach representative.
Simulator for TriCore | 13©1989-2024 Lauterbach

SYStem.LOCK Tristate the JTAG port

Command has no effect on the TRACE32 Instruction Set Simulator.
Simulator for TriCore | 14©1989-2024 Lauterbach

SYStem.MemAccess Select run-time memory access method

Default: Enable.

This option declares if and how a non-intrusive memory access can take place while the simulated CPU is
executing code. Run-time memory access creates an additional load on the simulation. The MemAccess
mode is printed in the state line.

The run-time memory access has to be activated for each window by using the memory class E: (e.g.
Data.dump ED:0xA1000000) or by using the format option %E (e.g. Var.View %E var1). It is also possible to
enable non-intrusive memory access for all memory areas displayed by setting
SYStem.Option.DUALPORT ON.

SYStem.ACCESS is an alias for this command.

Format: SYStem.MemAccess <mode>
SYStem.ACCESS (deprecated)

<mode>: Enable | Denied | StopAndGo

Enable
CPU (deprecated)

The dlebugger performs non-intrusive memory accesses.

Denied Non-intrusive memory access is disabled while the simulated CPU is
executing code. Instead intrusive accesses can be configured with
SYStem.CpuAccess.

StopAndGo Temporarily halts the simulated CPU to perform a memory access.
Simulator for TriCore | 15©1989-2024 Lauterbach

SYStem.Mode Establish the communication with the CPU

Initial Mode: Down.

Format: SYStem.Mode <mode>

SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)

<mode>: Down
Up

Down The CPU is held in reset, debug mode is not active. Default state and state after
fatal errors.

Up The CPU is not in reset but halted. Debug mode is active. In this mode the CPU
can be started and stopped. This is the most typical way to activate debugging.
Simulator for TriCore | 16©1989-2024 Lauterbach

SYStem.Option CPU specific commands

The SYStem.Option command group provides architecture and CPU specific commands.

SYStem.Option.DCFREEZE Do not invalidate cache

Command has no effect on the TRACE32 Instruction Set Simulator.

SYStem.Option.DUALPORT Implicitly use run-time memory access

All TRACE32 windows that display memory are updated while the processor is executing code (e.g.
Data.dump, List.auto, PER.view, Var.View). This setting has no effect if SYStem.MemAccess is disabled.

If only selected memory windows should update their content during runtime, leave
SYStem.Option.DUALPORT OFF and use the access class prefix E or the format option %E for the
specific windows.

SYStem.Option.OVERLAY Enable overlay support

Default: OFF.

Format: SYStem.Option.DUALPORT [ON | OFF]

Format: SYStem.Option.OVERLAY [ON | OFF | WithOVS]

ON Activates the overlay extension and extends the address scheme of the
debugger with a 16 bit virtual overlay ID. Addresses therefore have the
format <overlay_id>:<address>. This enables the debugger to handle
overlaid program memory.
Simulator for TriCore | 17©1989-2024 Lauterbach

Example:

SYStem.Option.ETK Debugging together with ETK from ETAS

Command has no effect on the TRACE32 Instruction Set Simulator.

SYStem.Option.HeartBeat Bug fix to avoid FPI bus conflict

Command has no effect on the TRACE32 Instruction Set Simulator.

SYStem.Option.ICFLUSH Flush instruction cache at “Go” or “Step”

Command has no effect on the TRACE32 Instruction Set Simulator.

OFF Disables support for code overlays.

WithOVS Like option ON, but also enables support for software breakpoints. This
means that TRACE32 writes software breakpoint opcodes to both, the
execution area (for active overlays) and the storage area. This way, it is
possible to set breakpoints into inactive overlays. Upon activation of the
overlay, the target’s runtime mechanisms copies the breakpoint opcodes
to the execution area. For using this option, the storage area must be
readable and writable for the debugger.

SYStem.Option.OVERLAY ON
List.auto 0x2:0x11c4 ; List.auto <overlay_id>:<address>
Simulator for TriCore | 18©1989-2024 Lauterbach

SYStem.Option.IMASKASM Disable interrupts while single stepping

Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during assembler single-step operations. The
interrupt routine is not executed during single-step operations. After single step the interrupt mask bits are
restored to the value before the step.

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping

Default: OFF.
If enabled, the interrupt mask bits of the CPU will be set during HLL single-step operations. The interrupt
routine is not executed during single-step operations. After single step the interrupt mask bits are restored to
the value before the step.

SYStem.Option.PERSTOP Enable global peripheral suspend

Command has no effect on the TRACE32 Instruction Set Simulator.

SYStem.Option.SOFTLONG Set 32 bit software breakpoints

Command has no effect on the TRACE32 Instruction Set Simulator.

SYStem.RESetOut CPU reset command

The command asserts nRESET on the JTAG connector in the TRACE32 In-Circuit Debugger (ICD) but is
ignored by the TRACE32 Instruction Set Simulator. However, the command is allowed in the simulator so
that you can run scripts which have actually been made for the debugger. For more information about the
effect in the debugger, refer to your Processor Architecture Manual (debugger_<arch>.pdf).

Format: SYStem.Option.IMASKASM [ON | OFF]

Format: SYStem.Option.IMASKHLL [ON | OFF]
Simulator for TriCore | 19©1989-2024 Lauterbach

SYStem.state Open SYStem.state window

Opens the SYStem.state window with settings of CPU specific SYStem commands. Settings can also be
changed here.

Format: SYStem.state
Simulator for TriCore | 20©1989-2024 Lauterbach

CPU specific TrOnchip Commands

TrOnchip Onchip triggers

This command group has no effect on the TRACE32 Instruction Set Simulator.
Simulator for TriCore | 21©1989-2024 Lauterbach

	Simulator for TriCore
	Introduction
	Simulator Features
	TRACE32 Simulator License
	Brief Overview of Documents for New Users
	Demo and Start-up Scripts

	Quick Start of the Simulator
	Peripheral Simulation
	Debugging
	Troubleshooting
	Memory Classes
	Breakpoints
	Examples for Breakpoints

	Trace
	FAQ
	CPU specific SYStem Commands
	SYStem.CONFIG Configure debugger according to target topology
	SYStem.CPU Select CPU
	SYStem.LOCK Tristate the JTAG port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Establish the communication with the CPU
	SYStem.Option CPU specific commands
	SYStem.Option.DCFREEZE Do not invalidate cache
	SYStem.Option.DUALPORT Implicitly use run-time memory access
	SYStem.Option.OVERLAY Enable overlay support
	SYStem.Option.ETK Debugging together with ETK from ETAS
	SYStem.Option.HeartBeat Bug fix to avoid FPI bus conflict
	SYStem.Option.ICFLUSH Flush instruction cache at “Go” or “Step”
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.Option.PERSTOP Enable global peripheral suspend
	SYStem.Option.SOFTLONG Set 32 bit software breakpoints
	SYStem.RESetOut CPU reset command
	SYStem.state Open SYStem.state window

	CPU specific TrOnchip Commands
	TrOnchip Onchip triggers

