
MANUAL

Release 09.2024

OS Awareness Manual
MicroC/OS-II

OS Awareness Manual MicroC/OS-II

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 OS Awareness Manuals .. 

 OS Awareness Manual MicroC/OS-II .. 1

 History .. 4

 Overview .. 5

 Brief Overview of Documents for New Users 6

 Supported Versions 6

 Configuration ... 7

 Manual Configuration 7

 Automatic Configuration 9

 Quick Configuration Guide 9

 Hooks & Internals in µC/OS-II 9

 Features ... 11

 Display of Kernel Resources 11

 Task Stack Coverage 11

 Task-Related Breakpoints 12

 Task Context Display 13

 Dynamic Task Performance Measurement 13

 Task Runtime Statistics 14

 Task State Analysis 15

 Function Runtime Statistics 16

 µC/OS-II specific Menu 17

 µC/OS-II Commands .. 18

 TASK.Event Display events 18

 TASK.Flag Display flags 18

 TASK.Memory Display memory partitions 19

 TASK.PARtition Display space partitions 19

 TASK.PROCess Display MPU processes 20

 TASK.Task Display tasks 20

 TASK.TImer Display timers 21

 µC/OS-II PRACTICE Functions ... 22

 TASK.CONFIG() OS Awareness configuration information 22

 TASK.PAR.AVAIL() Space partitions 22
OS Awareness Manual MicroC/OS-II | 2©1989-2024 Lauterbach

 TASK.PROC.AVAIL() MPU processes 22

 TASK.STRUCT() Symbol type name of the TCB structure 23
OS Awareness Manual MicroC/OS-II | 3©1989-2024 Lauterbach

OS Awareness Manual MicroC/OS-II

Version 05-Oct-2024

History

04-Feb-21 Removing legacy command TASK.TASKState.
OS Awareness Manual MicroC/OS-II | 4©1989-2024 Lauterbach

Overview

The OS Awareness for µC/OS-II contains special extensions to the TRACE32 Debugger. This manual
describes the additional features, such as additional commands and statistic evaluations.
OS Awareness Manual MicroC/OS-II | 5©1989-2024 Lauterbach

Brief Overview of Documents for New Users

Architecture-independent information:

• “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.

• “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently µC/OS-II is supported for the following versions:

• µC/OS-II V2.5 to 2.93 on Andes, ARC, ARM, Blackfin, C16x, C2xxx, C6xxx, ColdFire,
HC08/HC12, MIPS, NiosII, PowerPC, RISC-V, TriCore, V850 and Xtensa.

• µC/OS-II V2.92 with partitioning on PowerPC

• µC/OS-II wV2.92 with MPU and certification on ARM
OS Awareness Manual MicroC/OS-II | 6©1989-2024 Lauterbach

Configuration

The TASK.CONFIG command loads an extension definition file called “ucos.t32” (directory
“~~/demo/<processor>/kernel/ucos”). It contains all necessary extensions.

Automatic configuration tries to locate the µC/OS-II internals automatically. For this purpose all symbol
tables must be loaded and accessible at any time the OS Awareness is used.

If a system symbol is not available or if another address should be used for a specific system variable, then
the corresponding argument must be set manually with the appropriate address. This can be done by
manual configuration which can require some additional arguments.

If you want to display the OS objects “On The Fly” while the target is running, you need to have access to
memory while the target is running. In case of ICD, you have to enable SYStem.MemAccess or
SYStem.CpuAccess (CPU dependent).

Manual Configuration

Manual configuration for the µC/OS OS Awareness can be used to explicitly define some memory locations.
It is recommended to use automatic configuration.

Since µC/OS-II version 2.60, it supports task names. If you’d like to have task names, use the OS internal
mechanisms for this purpose. The OS Awareness for µC/OS-II detects those task names automatically.

For versions before 2.60, you can implement task names in a way, that is supported by the OS Awareness
for µC/OS:

OS_TASK_CREATE_EXT_EN must be defined to enable task names, and OSTCBExtPtr must point to the
TCB extension of the task.

Format: TASK.CONFIG ucos <magic_address> <args>

<magic_address> Specifies a memory location that contains the current running task. This
address can be found at “OSTCBCur”. Specify 0 to automatically search for
this symbol.

<args> <task_name_indirection> <task_name_offset>
See below for details.
OS Awareness Manual MicroC/OS-II | 7©1989-2024 Lauterbach

There are two possibilities to configure task names:

1. The TCB Extension contains the name itself.

Specify “1” for the task name indirection. Specify additionally the offset, where the first character of
the task name can be found in the TCB extension. E.g.

2. The TCB Extension contains a pointer to the task name.

Specify “2” for the task name indirection. Specify additionally the offset, where the pointer to the task
name can be found in the TCB extension. E.g.

Specifying “0” to both naming arguments means, that no task name is evaluated.

NOTE: There is one exception on this. If the naming arguments are “0”, or if they are committed, a special
case is searched automatically: If the TCB Extension structure is named TASK_USER_DATA, and if it
contains (not points to) the task name in a member variable called TaskName, then this is automatically
found and configured. If, for any reason, this automatic evaluation leads to wrong displays, you can either
configure it manually as described above, or disable it by “task.config 0 0 1”.

OSTCBExtPtr points to
struct

OSTCBExtPtr points to
struct

OSTCBExtPtr points
directly to name

struct {
INT16U someval;
char name[8];
INT16U someval2;

}

struct {
char name[8];
INT16U someval;
INT16U someval2;

}

char name[] =
’’Task1’’;

task.config 0 1 2 task.config 0 1 0 task.config 0 1 0

OSTCBExtPtr points to struct OSTCBExtPtr points to struct

struct {
INT16U someval;
char* name;
INT16U someval2;

}

struct {
char* name;
INT16U someval;
INT16U someval2;

}

task.config 0 2 2 task.config 0 2 0
OS Awareness Manual MicroC/OS-II | 8©1989-2024 Lauterbach

Automatic Configuration

For system resource display and trace functionality, you can do an automatic configuration of the OS
Awareness. For this purpose it is necessary that all system internal symbols are loaded and accessible at
any time, the OS Awareness is used. Each of the TASK.CONFIG arguments can be substituted by '0', which
means that this argument will be searched and configured automatically. For a fully automatic configuration,
omit all arguments:

Task names are automatically found, if the OS internal mechanisms are used (since version 2.60), or if the
TCB Extension structure is named TASK_USER_DATA, and if it contains (not points to) the task name in a
member variable called TaskName.

If a system symbol is not available, or if another value should be used for a specific system variable, then the
corresponding argument must be set manually with the appropriate value (see Manual Configuration).

Quick Configuration Guide

To access all features of the OS Awareness you should follow the following roadmap:

1. Run the PRACTICE demo script (~~/demo/<processor>/kernel/ucos/ucos.cmm). Start the demo
with “do ucos” and “go”. The result should be a list of tasks, which continuously change their
state.

2. Make a copy of the PRACTICE script file “ucos.cmm”. Modify the file according to your
application.

3. Run the modified version in your application. This should allow you to display the kernel
resources and use the trace functions (if available).

Hooks & Internals in µC/OS-II

No hooks are used in the kernel.

To retrieve information on kernel objects, the OS Awareness uses the global µC/OS Variables and the
structures defined in the ucos-ii.h file. Be sure that your application is compiled and linked with debugging
symbols switched on.

Note for 68HC08 COSMIC compilers:

Format: TASK.CONFIG ucos
OS Awareness Manual MicroC/OS-II | 9©1989-2024 Lauterbach

The compiler does not export symbol information on typedefs to unnamed structures. You have to change
them (in the ucos-ii.h file) to become named structures:

Original ucos-ii.h Change to:

typedef struct {
…

} OS_EVENT;

typedef struct os_event {
…

} OS_EVENT;
OS Awareness Manual MicroC/OS-II | 10©1989-2024 Lauterbach

Features

The OS Awareness for µC/OS-II supports the following features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following
µC/OS-II components can be displayed:

For a description of the commands, refer to chapter “µC/OS-II Commands”.

If your hardware allows memory access while the target is running, these resources can be displayed “On
The Fly”, i.e. while the application is running, without any intrusion to the application.

Without this capability, the information will only be displayed if the target application is stopped.

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this
command will open a window displaying with all active tasks. If you specify only a task magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command
TASK.STacK.PATtern (default value is zero).

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and
select the task from the TASK.STacK.* window.

It is recommended to display only the tasks you are interested in because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

Task Stack Coverage is only available, if you enabled OS_TASK_CREATE_EXT_EN, and if you created your
tasks with OSTaskCreateExt(). To ensure proper stack calculation, specify OS_TASK_OPT_STK_CLR
as an create option.

TASK.Task Tasks

TASK.Event Intertask Communication

TASK.Flag Event Flags

TASK.TImer Timers

TASK.Memory Memory Partitions

TASK.PARtition Space Partitions

TASK.PROCess MPU Processes
OS Awareness Manual MicroC/OS-II | 11©1989-2024 Lauterbach

Note for C166 using Tasking Compiler:
The version 1.0 of the Tasking C166 port (author: K. Wannenmacher) lacks the updating of the
OSTCBStkPtr variable. This causes, that the “current stack pointer” is displayed wrong.

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

• Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

• For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.
This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

For example, on ARM architectures: If the RTOS serves the Context ID register at task switches, and if the
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,
you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

Break.Set <address>|<range> [/<option>] /TASK <task> Set task-related breakpoint.

NOTE: Task-related breakpoints impact the real-time behavior of the application.

Break.CONFIG.UseContextID ON Enables the comparison to the whole Context ID register.

Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK.List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.
OS Awareness Manual MicroC/OS-II | 12©1989-2024 Lauterbach

Task Context Display

You can switch the whole viewing context to a task that is currently not being executed. This means that all
register and stack-related information displayed, e.g. in Register, List.auto, Frame etc. windows, will refer
to this task. Be aware that this is only for displaying information. When you continue debugging the
application (Step or Go), the debugger will switch back to the current context.

To display a specific task context, use the command:

• Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

• To switch back to the current context, omit all parameters.

To display the call stack of a specific task, use the following command:

If you’d like to see the application code where the task was preempted, then take these steps:

1. Open the Frame /Caller /Task <task> window.

2. Double-click the line showing the OS service call.

The TASK.TASK <task> window contains a button (“context”) to execute this command with the displayed
task, and to switch back to the current context (“current”).

Not available for C166!
The version 1.0 of the Tasking C166 port (author: K. Wannenmacher) lacks the updating of the
OSTCBStkPtr variable. This disables the usage of this feature, as we are not able to find the context of the
task.

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the
PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

Frame.TASK [<task>] Display task context.

Frame /Task <task> Display call stack of a task.
OS Awareness Manual MicroC/OS-II | 13©1989-2024 Lauterbach

For a general description of the PERF command group, refer to “General Commands Reference Guide
P” (general_ref_p.pdf).

Task Runtime Statistics

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spent in
a task and display it statistically and graphically.

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” in TRACE32 Concepts, page
36 (trace32_concepts.pdf).

Trace.List List.TASK DEFault Display trace buffer and task switches

Trace.STATistic.TASK Display task runtime statistic evaluation

Trace.Chart.TASK Display task runtime timechart

Trace.PROfileSTATistic.TASK Display task runtime within fixed time intervals
statistically

Trace.PROfileChart.TASK Display task runtime within fixed time intervals as
colored graph

Trace.FindAll Address TASK.CONFIG(magic) Display all data access records to the “magic”
location

Trace.FindAll CYcle owner OR CYcle context Display all context ID records
OS Awareness Manual MicroC/OS-II | 14©1989-2024 Lauterbach

Task State Analysis

The time different tasks are in a certain state (running, ready, suspended or waiting) can be evaluated
statistically or displayed graphically.

This feature requires that the following data accesses are recorded:

• All accesses to the status words of all tasks

• Accesses to the current task variable (= magic address)

Adjust your trace logic to record all data write accesses, or limit the recorded data to the area where all TCBs
are located (plus the current task pointer).

Example: This script assumes that the TCBs are located in an array named TCB_array and consequently
limits the tracing to data write accesses on the TCBs and the task switch.

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

All kernel activities added to the calling task.

NOTE: This feature is only available, if your debug environment is able to trace task
switches and data accesses (program flow trace is not sufficient). It requires
either an on-chip trace logic that is able to generate a data trace, or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” in TRACE32 Concepts, page
36 (trace32_concepts.pdf).

Break.Set Var.RANGE(TCB_array) /Write /TraceData
Break.Set TASK.CONFIG(magic) /Write /TraceData

Trace.STATistic.TASKState Display task state statistic

Trace.Chart.TASKState Display task state timechart
OS Awareness Manual MicroC/OS-II | 15©1989-2024 Lauterbach

Function Runtime Statistics

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” in TRACE32 Concepts, page
36 (trace32_concepts.pdf).

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG(magic) /TraceData

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

Trace.ListNesting Display function nesting

Trace.STATistic.Func Display function runtime statistic

Trace.STATistic.TREE Display functions as call tree

Trace.STATistic.sYmbol /SplitTASK Display flat runtime analysis

Trace.Chart.Func Display function timechart

Trace.Chart.sYmbol /SplitTASK Display flat runtime timechart
OS Awareness Manual MicroC/OS-II | 16©1989-2024 Lauterbach

µC/OS-II specific Menu

The menu file “ucos.men” contains a menu with µC/OS-II specific menu items. Load this menu with the
MENU.ReProgram command.

You will find a new menu called µC/OS.

• The Display menu items launch the appropriate kernel resource display windows.

• The Stack Coverage submenu starts and resets the µC/OS specific stack coverage and provides
an easy way to add or remove tasks from the stack coverage window.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

• The Trace menu is extended. In the List submenu, you can choose if you want a trace list window
to show only task switches (if any) or task switches together with the default display.

• The Perf menu contains additional submenus for task runtime statistics and statistics on task
states.

NOTE: Load first the application symbols, then the µC/OS-II specific menu. The loading
of the menu evaluates the existence of some µC/OS-II objects and creates the
menu accordingly.
OS Awareness Manual MicroC/OS-II | 17©1989-2024 Lauterbach

µC/OS-II Commands

TASK.Event Display events

Displays the event table of µC/OS-II or detailed information about one specific event. The event table holds
all intertask communication mechanisms.

Without any arguments, a table with all created events will be shown. Specify a event magic number to
display detailed information on that event.

“magic” is a unique ID, used by the OS Awareness to identify a specific event (address of the OS_EVENT
structure).

The fields “magic”, “ptr” and several fields in the detailed window are mouse sensitive, double clicking on
them opens appropriate windows.

TASK.Flag Display flags

Displays the flag table of µC/OS-II or detailed information about one specific flag
.

Without any arguments, a table with all created flags will be shown. Specify a flag magic number to display
detailed information on that flag.

“magic” is a unique ID, used by the OS Awareness to identify a specific flag (address of the OS_FLAG_GRP
structure). The field “magic”, and the task fields in the detailed window are mouse sensitive, double clicking
on them opens appropriate windows.

Format: TASK.Event <event>

Format: TASK.Flag <flag>
OS Awareness Manual MicroC/OS-II | 18©1989-2024 Lauterbach

TASK.Memory Display memory partitions

Displays the table of all created memory partitions of µC/OS-II.

“magic” is a unique ID, used by the OS Awareness to identify a specific memory partition (address of the
OS_MEM).

The field “address” is mouse sensitive, double clicking on it opens the appropriate window.

TASK.PARtition Display space partitions

Displays the table of all created space partitions of µC/OS-II.

“magic” is a unique ID, used by the OS Awareness to identify a specific space partition.

Format: TASK.Memory

Format: TASK.PARtition
OS Awareness Manual MicroC/OS-II | 19©1989-2024 Lauterbach

TASK.PROCess Display MPU processes

Displays the table of all created MPU processes of µC/OS-II.

“magic” is a unique ID, used by the OS Awareness to identify a specific process.

TASK.Task Display tasks

Displays the task table of µC/OS-II or detailed information about one specific task.

Without any arguments, a table with all created tasks will be shown.
Specify a task magic number to display detailed information on that task.

“magic” is a unique ID, used by the OS Awareness to identify a specific task (address of the TCB).

The fields “magic”, “event”, “msg” and “stack ptr” are mouse sensitive, double clicking on them opens
appropriate windows. “magic” has a context sensitive menu, too.

Pressing the “context” button changes the register context to this task. “current” resets it to the current
context. See “Task Context Display”.

Format: TASK.PROCess

Format: TASK.Task <task>
OS Awareness Manual MicroC/OS-II | 20©1989-2024 Lauterbach

TASK.TImer Display timers

Displays the timer table of µC/OS (since 2.80) or detailed information about one specific timer.

Without any arguments, a table with all created timers will be shown. Specify a timer magic number to
display detailed information on that timer.

“magic” is a unique ID, used by the OS Awareness to identify a specific timer (address of the OS_TMR
structure). The fields “magic”, and “callback” are mouse sensitive, double clicking on them opens
appropriate windows.

Format: TASK.TImer <timer>
OS Awareness Manual MicroC/OS-II | 21©1989-2024 Lauterbach

µC/OS-II PRACTICE Functions

There are special definitions for µC/OS specific PRACTICE functions.

TASK.CONFIG() OS Awareness configuration information

Parameter and Description:

Return Value Type: Hex value.

TASK.PAR.AVAIL() Space partitions

Returns 1 if space partitions are configured.

Return Value Type: Hex value.

TASK.PROC.AVAIL() MPU processes

Returns 1 if MPU processes are configured.

Return Value Type: Hex value.

Syntax: TASK.CONFIG(magic | magicsize)

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

Syntax: TASK.PAR.AVAIL()

Syntax: TASK.PROC.AVAIL()
OS Awareness Manual MicroC/OS-II | 22©1989-2024 Lauterbach

TASK.STRUCT() Symbol type name of the TCB structure

Returns the symbol type name of the TCB structure.

Return Value Type: Hex value.

Syntax: TASK.STRUCT(tcb)
OS Awareness Manual MicroC/OS-II | 23©1989-2024 Lauterbach

	OS Awareness Manual MicroC/OS-II
	History
	Overview
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Manual Configuration
	Automatic Configuration
	Quick Configuration Guide
	Hooks & Internals in µC/OS-II

	Features
	Display of Kernel Resources
	Task Stack Coverage
	Task-Related Breakpoints
	Task Context Display
	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Task State Analysis
	Function Runtime Statistics
	µC/OS-II specific Menu

	µC/OS-II Commands
	TASK.Event Display events
	TASK.Flag Display flags
	TASK.Memory Display memory partitions
	TASK.PARtition Display space partitions
	TASK.PROCess Display MPU processes
	TASK.Task Display tasks
	TASK.TImer Display timers

	µC/OS-II PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information
	TASK.PAR.AVAIL() Space partitions
	TASK.PROC.AVAIL() MPU processes
	TASK.STRUCT() Symbol type name of the TCB structure

