LAUTERBACH A

OS Awareness Manual ThreadX

Release 09.2024

OS Awareness Manual ThreadX

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
OS AWareness MaANUAISccciicecrriiiissiriinissss s rssssss s s s ssss e s eassam s s e e s s amn e s enasame s e e ansammn e nnnsan r—~
OS Awareness Manual ThreadXcccccooiccoemimnsssmrrrssssmerressssmserresssmmsssssssmmesssssssmmeseesssmmssseas 1
L 1= (o 4

O oY = 4
Terminology 5
Brief Overview of Documents for New Users 5
Supported Versions 5
ConfiguIration ... e 6
Quick Configuration Guide 7
Hooks & Internals in ThreadX 7
== LT == 8
Display of Kernel Resources 8
Task Stack Coverage 8
Task-Related Breakpoints 9
Task Context Display 10
SMP Support 11
Dynamic Task Performance Measurement 12
Task Runtime Statistics 12
Task State Analysis 13
Function Runtime Statistics 15
ThreadX specific Menu 17

B == T Q0T o T3 1T 4T T T - 18
TASK.BLockmem Display block memory pools 18
TASK.BYtemem Display byte memory pools 18
TASK.EVent Display event flags 19
TASK.ExecLOG Display thread performance log 19
TASK.MUtex Display mutexes 20
TASK.QUeue Display queues 20
TASK.SEmaphore Display semaphores 21
TASK.THread Display threads 22
TASK.TImer Display application timers 23
TASK.TRACE Display event trace buffer 23
©1989-2024 Lauterbach OS Awareness Manual ThreadX 2

TASK.TRACEVM Copy event trace buffer to LOGGER 23

ThreadX PRACTICE FUNCHIONSccccciiciieecccmmmrnnnisssssssssssssmmssn s s s s s sssssssssssmssmmssssssnssenssnsssssnnnnnes 25
TASK.CONFIG() OS Awareness configuration information 25
TASK.TH.MAGIC() Magic number of thread 25
TASK.BY.MAGIC() Magic number of byte pool 25
TASK.BL.MAGIC() Magic number of block pool 26

©1989-2024 Lauterbach OS Awareness Manual ThreadX | 3

OS Awareness Manual ThreadX

History

Version 05-Oct-2024

04-Feb-21

Overview

Removing legacy command TASK. TASKState.

/A TRACE32 for ThreadX =n| Wl <
File Edit View Var Break Run CPU Misc Trace Pef Cov ThreadX Window Help
M3 el »n|E 2w o= s @&i‘l@'éfﬂ
P
e BiTASK.THread [=o[=] =] @%B::TASKQUeue(szmaat [=o[=] =]
agic state prio [runcount [name | agic capacity msgsize engqueued suspended name |
00021050 |[Ready 0. 170 System.TimeroThread . 00020464 100. 1. . 0. queuesD L
00020154 [Sleep 1. 35. threadu0
000201E4 |Executing 16. 171. threadul messages
00020274 |Ready 16. | 170. [|thread.2 L 1. O0O00043BC T
00020304 [Sleep 8. | 171. |thread.3 3 2. 000043BD T
00020394 |Sema Susp 8. | 171. |thread.4 3. 000043BE L
00020424 |[Event Flag| 4. 35. |thread.s 4. 0OD0O043BF e
5. 000043C0 MECY -
da BrTASK THread 0x20304 [[=] == |1 : 1 n L
|| Imagic state prio [runcount [name [1
00020304 |5Teep |~ 8.] 171. [thread.s oA B:TASK.BVtemem 0x20584 (o '= =]
thread entry function and parameter 2g1c avall — 'Fr‘a_g_ents suspended n_h_ame |
00010478 thread_3_and_4_entry (0D000003) 00020584 | 980. 1100. [0. [Thread.l.Byte.PooT .
thread timer: remaining 2. = 1 ZSEEEEE: e
timeout-function and parameter = = =
OOOZOAOC in use 40.
00013138 _tx_thread_timeout (0D0Z20304) 00020434 in use 72
current pc: 00010940 context current 00020A7C free 930.
-
ofa BiTASK. Tlmer o B:TASKSTack (===
name | low high Towest spare max [0 10 2
Ty i T re;g” Eggfﬁ;gg 27 [Timer Thread [0002160C 000ZIADE D0021A78 00D0039C 0% = s
: : thread 0 |00021ADC 00021EDE 00021E8C 000003B0 T |
thread 1 00021EDC 000222DEB 00022240 00000364 15% |—
d il thread 2 [000222DC 000226DB 00022674 00000398 105 | E
i thread 3 |000226DC 00022ADE 00022A8C 000003B0 T |
M Bu:Trace.Chart. TASK thread 4 |00022ADC 00022EDEB 00022E90 00000364 T |
— thread 5 |00022EDC 000232DEB 00023270 00000394 105 |e—
(& setup... | i1 Groups... | =8 Gonfig.. (R Goto. <
-4.500ms < 1 v
range{y |
thread 1/ n———— @ R .
_ CkermeDel . on W A (N b BETASKEVert GOS8 o[-]
Timer Threadi NI agic current suspended name
thread 4Ry 00020508 00000000 1. eventuT .
thread 3§
thread 2Ry = -uspended threads
thread 04 e 1. 00020424 thread.s
thread 58 = -
4 [mr o« AR 1 ¢
E::TASK.|
[THread | [Timer |[Queue |[sEmaphore| [Mutex |[Event | [BLockmem|[BYtemem || ExeclOG |[other | [pravious
SR:000125D8 \\demo\Global_tx_thread_resume+0x140 thread 1 stopped MIX |UP

The OS Awareness for ThreadX contains special extensions to the TRACE32 Debugger. This manual

describes the additional features, such as additional commands and statistic evaluations.

©1989-2024 Lauterbach

OS Awareness Manual ThreadX

4

Terminology

Note the terminology: while ThreadX talks about “threads”, the OS Awareness uses the term “task”. They
are used interchangeably in this context.

Brief Overview of Documents for New Users

Architecture-independent information:

. “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.
J “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

. “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

J “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently ThreadX is supported for the following versions:

. ThreadX 3.0, 4.0 and 5.x on ARC, ARM, ColdFire, MicroBlaze, MIPS32/64, Nios-II, PowerPC,
SH4, StarCore, x86, XScale and XTENSA.

©1989-2024 Lauterbach OS Awareness Manual ThreadX | 5

Configuration

The TASK.CONFIG command loads an extension definition file called “threadx.t32” (directory
“~~/demo/<processor>/kernel/threadx”). It contains all necessary extensions.

Automatic configuration tries to locate the ThreadX internals automatically. For this purpose all symbol tables
must be loaded and accessible at any time the OS Awareness is used.

If you want to display the OS objects “On The Fly” while the target is running, you need to have access to
memory while the target is running. In case of ICD, you have to enable SYStem.MemAccess or
SYStem.CpuAccess (CPU dependent).

For system resource display and analyzer functionality, you can do an automatic configuration of the OS
Awareness. For this purpose it is necessary that all system internal symbols are loaded and accessible at
any time, the OS Awareness is used. Each of the TASK.CONFIG arguments can be substituted by '0', which
means that this argument will be searched and configured automatically. For a fully automatic configuration,
omit all arguments:

I TASK.CONFIG threadx

See also the example “~~/demo/<processor>/kernel/threadx/threadx.cmm”.

©1989-2024 Lauterbach OS Awareness Manual ThreadX | 6

Quick Configuration Guide

To get a quick access to the features of the OS Awareness for ThreadX with your application, follow
this roadmap:

1. Start the TRACE32 Debugger.
2. Load your application as normal.

3. Execute the command:

TASK.CONFIG ~~/demo/<arch>/kernel/threadx/threadx.t32

See “Configuration”.

4. Execute the command:

MENU.ReProgram ~~/demo/<arch>/kernel/threadx/threadx.men

See “ThreadX Specific Menu”.

5. Start your application.
Now you can access the ThreadX extensions through the menu.

In case of any problems, please carefully read the previous Configuration chapter.

Hooks & Internals in ThreadX

No hooks are used in the kernel.

To retrieve information on kernel objects, the OS Awareness uses the global ThreadX pointers exported by
the ThreadX library, and the structures defined in the tx_api.h file. Be sure that your application is compiled
and linked with debugging symbols switched on. The ThreadX library may be compiled without debugging

symbols.

©1989-2024 Lauterbach OS Awareness Manual ThreadX | 7

Features

The OS Awareness for ThreadX supports the following features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following
ThreadX components can be displayed:

TASK.BLockmem Block memory
TASK.BYtemem Byte memory
TASK.EVent Event flags
TASK.MUtex Mutexes
TASK.QUeue Queues
TASK.SEmaphore Semaphores
TASK.THread Threads
TASK.TImer Timers

For a description of the commands, refer to chapter “ThreadX Commands”.

If your hardware allows memory access while the target is running, these resources can be displayed “On
The Fly”, i.e. while the application is running, without any intrusion to the application.

Without this capability, the information will only be displayed if the target application is stopped.

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this
command will open a window displaying with all active tasks. If you specify only a task magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command
TASK.STacK.PATtern (default value is zero).

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and
select the task from the TASK.STacK.* window.

It is recommended to display only the tasks you are interested in because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

©1989-2024 Lauterbach OS Awareness Manual ThreadX | 8

b BuTASK.STack o -E =]

name | low hig =p % [lowest spare max [0 10 |
System Timer Thread [000058B4 ODOOSCAF (000D % (00005C5C O00003A8 8% -
thread 00007324 0000771F |0
thread 0000772C 00007B27
thread 00007634 00007F2ZF
thread 00007F3C 00008337
thread 00008344 0000873F
thread 0000874C 00008647
thread 00008654 00008F4F
00008F5C 00009357 |0

J 4 T 3

000076CC 000003A8 8%
00007ACC Q000D03A0 8%
00007ECC 00000398 9%
000082DC Q0O00D03A0 8%
000086E4 Q000D03A0 8%
00008AD4 00000388 11%
0000BEF4 Q00003A0 8%
000092ZFC Q000D03A0 8%

R A TN]

thread

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

I Break.Set <address>|<range> [[<option>] [TASK <task> Set task-related breakpoint.

. Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

J For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.

This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

NOTE: Task-related breakpoints impact the real-time behavior of the application.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

For example, on ARM architectures: Ifthe RTOS serves the Context ID register at task switches, and ifthe
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

Break.CONFIG.UseContextlD ON Enables the comparison to the whole Context ID register.
Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.

©1989-2024 Lauterbach OS Awareness Manual ThreadX | 9

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,
you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

a B::Break.List EI@
B senp... || 3% Delete All|| O Disable Al @ Enable All| @ Init | 52 store...| 52 Load... || B set...
address type method |[task |
SP:0D011AFOProgram SOFT "thread 2 y & | _tx_semaphore_get
SP:00011F94 |Program SOFT "thread 1" y [| _tx_gueue_send

Task Context Display

You can switch the whole viewing context to a task that is currently not being executed. This means that all
register and stack-related information displayed, e.g. in Register, List.auto, Frame etc. windows, will refer
to this task. Be aware that this is only for displaying information. When you continue debugging the
application (Step or Go), the debugger will switch back to the current context.

To display a specific task context, use the command:

I Frame.TASK [<task>] Display task context.

J Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

J To switch back to the current context, omit all parameters.

To display the call stack of a specific task, use the following command:

I Frame /Task <task> Display call stack of a task.

If you'd like to see the application code where the task was preempted, then take these steps:
1. Open the Frame /Caller /Task <task> window.

2. Double-click the line showing the OS service call.

©1989-2024 Lauterbach OS Awareness Manual ThreadX | 10

ﬁ B:Frame EI@

1. Up Down MArgs [Mlocals [caller Task: | "thread 4" ~|
-000[[tx_thread_suspend(thread_ptr = 0x0) ~
thread_ptr = 0x0

= interrupt_save = 0

« priority = 0

= priority_map = 0

= priority_group = 1
tx_semaphore_get(semaphore_ptr = 0x000509E0, wait_option = 4294967295)
semaphore_ptr = 0x000509E0

= wait_option = 4294967295

= interrupt_save = 32768

= status = 0

thread_ptr = 0Ox00050888
-002|[thread_3_and_4_entry(thread_input = 4)
= thread_input = 4

= status = 0
-003|[tx_thread_shell_entryv()

= interrupt_save = 0

-004 |exit{asm)

— [end of frame

-001

SMP Support

The OS Awareness supports symmetric multiprocessing (SMP).

An SMP system consists of multiple similar CPU cores. The operating system schedules the threads that
are ready to execute on any of the available cores, so that several threads may execute in parallel.
Consequently an application may run on any available core. Moreover, the core at which the application runs
may change over time.

To support such SMP systems, the debugger allows a “system view”, where one TRACE32 PowerView GUI
is used for the whole system, i.e. for all cores that are used by the SMP OS. For information about how to set
up the debugger with SMP support, please refer to the Processor Architecture Manuals.

All core relevant windows (e.g. Register.view) show the information of the current core. The state line of the
debugger indicates the current core. You can switch the core view with the CORE.select command.

Target breaks, be they manual breaks or halting at a breakpoint, halt all cores synchronously. Similarly, a Go
command starts all cores synchronously. When halting at a breakpoint, the debugger automatically switches
the view to the core that hit the breakpoint.

Because it is undetermined, at which core an application runs, breakpoints are set on all cores
simultaneously. This means, the breakpoint will always hit independently on which core the application
actually runs.

©1989-2024 Lauterbach OS Awareness Manual ThreadX | 11

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in

changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the

PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide

P” (general_ref_p.pdf).

= B:PERF.LTASK = =R

& setp.. || 38 anfig... | (A Goto... | B Detsled | O, View || i/ Profile || @ mit || Disable| @ Amm
runtime: 100%

name ratio 1% 2% 5% 10% 20% 50% 100 |

6l.875%

38.125%

0. 000%
0. 000%
0. 000%
0. 000%
0. 000%

System Timer Thread

Task Runtime Statistics

NOTE:

36 (trace32_concepts.pdf).

This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” in TRACE32 Concepts, page

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spent in

a task and display it statistically and graphically.

©1989-2024 Lauterbach

OS Awareness Manual ThreadX

12

To evaluate the contents of the trace buffer, use these commands:

Trace.List List. TASK DEFault
Trace.STATistic.TASK
Trace.Chart.TASK
Trace.PROfileSTATistic.TASK

Trace.PROfileChart.TASK

Trace.FindAll Address TASK.CONFIG(magic)

Trace.FindAll CYcle owner OR CYcle context

Display trace buffer and task switches
Display task runtime statistic evaluation
Display task runtime timechart

Display task runtime within fixed time intervals
statistically

Display task runtime within fixed time intervals as
colored graph

Display all data access records to the “magic”
location

Display all context ID records

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as

“(unknown)”.
il B Trace. Chart. TASK = =R
2 senup.. || §if Gros.. | 38 Gonfig..)| (A Goto... | (3 Goto... || #3 Find...| <O In||v0¢ Out | €81 Ful
2.000ms -871.000ms -870.000ms -869.000ms
rangefy |
€ nter"r"up%o =
Ceerme D@ VL0000
thread 0% W oo
thread 5@ [N
thread 34
thread 454
tnr‘eag LRK[= BuTrace. STATistic. TASK total min max ratio bar EI@
thread 2Ly —
) 2 ... || 1if Goups... || 58 Gonfig... | | Detailed || {7 Nesting|| il Chart || B Profile
tasks: 8. total: 2.558ms
range: -8719959..-8694382
range total min max ratio® [1% 2% 5% |
thread 2 51.100us 1.800us | 49.300us 1.997% | e— ~
thread 0| 49.600us | 49.600us | 49.600us | 1.939% |
(kernel) 9. 000us 1.800us 1.800us 0.351% |+
thread 5| 46.400us | 46.400us | 46.400us | 1.814% |eos—
thread 3| 66.500us| 66.500us | 66.500us | 2.599%
thread 4| 45.400us | 45.400us | 45.400us | 1.775% e
thread 1 2.290ms 2.290ms 2.290ms | 89.521% v
< >
NOTE: This feature is only available, if your debug environment is able to trace task

switches and data accesses (program flow trace is not sufficient). It requires
either an on-chip trace logic that is able to generate a data trace, or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” in TRACE32 Concepts, page
36 (trace32_concepts.pdf).

The time different tasks are in a certain state (running, ready, suspended or waiting) can be evaluated

statistically or displayed graphically.

©1989-2024 Lauterbach

OS Awareness Manual ThreadX | 13

This feature requires that the following data accesses are recorded:
J All accesses to the status words of all tasks

J Accesses to the current task variable (= magic address)

Adjust your trace logic to record all data write accesses, or limit the recorded data to the area where all TCBs
are located (plus the current task pointer).

Example: This script assumes that the TCBs are located in an array named TCB_array and consequently
limits the tracing to data write accesses on the TCBs and the task switch.

Break.Set Var.RANGE (TCB_array) /Write /TraceData
Break.Set TASK.CONFIG(magic) /Write /TraceData

To evaluate the contents of the trace buffer, use these commands:

Trace.STATistic. TASKState Display task state statistic
Trace.Chart. TASKState Display task state timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

All kernel activities up to the task switch are added to the calling task.

! BTrace. Chart. TASKSTATE = =R
B senp.. || 38 @nfig... | 1 Goto... | #3Find... | i Chart || @ In || »0¢ Out||EH Ful
-872.100ms -872.000ms -871.900ms -871.800ms -871.700ms
rangeqy
System Timer Threadf
thread 0OF
thread 1§
thread
thread | — " . L
thread | = BuTrace.5TATistic. TASKSTATE total.run total.rdy total.wait c.run c.rdy cowait ratio bar EI@
thread = 7
B senp... || 38 anfig... || (L Goto...|| = Detaled || o Chart
tasks: 8. total: 104.857ms
task |[total.run [total.rdy [total.wait |c.run |c.rdy [c.wait |[ratio% [1% 2% 5% |
System Timer Thread 0.000us 0.000us [12.568ms 0. 0. 1. 0.000% ~
thread 0 25.800us | 233.200us 12.269ms 1. 1. 2. 0.024% |+
thread 1 6.708ms 5.590ms | 193.300us 3. 4. 4. 6. 3075 | ———
thread 2 5.260ms 7.072ms | 122.100us 3. 3. 3. 5. 0165 (————
thread 3 43.200us | 222.700us 12.152ms 1. 1. 2. 0.041% |+
thread 4 28.100us | 253.900us 12.099ms 1. 1. 2. 0.026% |+
thread 5 29, 600us | 101. 600us 12.214ms 1. 1. 2. 0.028% |+ hd
£ >

©1989-2024 Lauterbach OS Awareness Manual ThreadX | 14

Function Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” in TRACE32 Concepts, page
36 (trace32_concepts.pdf).

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG (magic) /TraceData

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

To evaluate the contents of the trace buffer, use these commands:

Trace.ListNesting Display function nesting
Trace.STATistic.Func Display function runtime statistic
Trace.STATistic.TREE Display functions as call tree
Trace.STATistic.sYmbol /SplitTASK Display flat runtime analysis
Trace.Chart.Func Display function timechart
Trace.Chart.sYmbol /SplitTASK Display flat runtime timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

©1989-2024 Lauterbach OS Awareness Manual ThreadX | 15

% B:Trace. CHART.FUNC = =R
2 senp... || §if Gous... | 38 Gonfig... | (A Goto...|| A Goto...|| F4Find... | O In |[»0¢ Out||EH Full
-872.000ms -871.950ms -871.900ms -871.850ms
rangehs 1 1 1 1 I
(root) 4y - 1 —— = A
| interrupt_return+0x64 ! |
(root) HH .=
|_tx_thread_shell_entry HH L -
thread_0_entry AR
set_leds e .
_tx_thread_sleep W
_tx_timer_activate 1 I .
_tx_thread_suspend AE . .
| interrupt_return+0x64 HH LI
(root) HH L=
|_tx_thread_shell_entry HH B
thread_5_entry i O
set _led i —
_tx_event_flag| _
_tx_thread_su 5 BuTraceSTATistic.TREE task tree total max count internalratio internalbar
|_interrupt_return| — — —
4 &Ez‘eiup 111 Goups... | &8 Config... || (Y Goto...|| =|Detaikd || fE} Nesting | %af Chart
| tx_thread_shell| {funcs: 54. total: 2.558ms
thread_3_and_4_| |range: -8719959..-8694382
task tree total max count intern® 1% 2%
thread & = (root) 45, 400us | 45.400us - 0. 00
thread 4 L— _tx_thread_interrupt_retur.. 7.900us 7.900us 1.(1/0) 0.308% |+
thread 4 = _tx_thread_shell_entry 37.500us 37.500us 1.(0/1) 0.066% |+
thread 4 = thread_3_and_4_entry 35. 800us 35. 800us 1.(0/1) 0.097% |+
thread 4 L— set_leds 11.100us | 11.100us 1. 0.433% |+
thread 4 # _tx_semaphore_get 22.200us 22.200us 1.(0/1) 0.254% |+
thread 1 = (root) 2.290ms 2.290ms - 0. 000%
thread 1 L— _tx_thread_interrupt_retur.. 7.900us 7.900us 1.(1/0) 0.308% |+
thread 1 = _tx_thread_shell_entry 2.282ms 2.282ms 1.(0/1) 0.066% |+
thread 1 = thread_1_entry 2.280ms 2.280ms 1.(0/1) B.460% | —
thread 1 set_leds 1.121ms | 11.100us 101. 43, 832% | e———
thread 1 tx_timer_create 14.800us | 14.800us 1. 0.312% |+
thread 1 _tx_block_pool_create 17.700us 17.700us 1. 0.692% |+
thread 1 _tx_block_allocate 5.800us 5.800us 1. 0.226% |+
thread 1 tx_byte_pool_create 9. 600us 9. 600us 1. 0.375% |+
thread 1 tx_byte_allocate 32.500us 17.400us 2. 0.500% |+
jhr‘ead 1 tx_queue_send 862.200us 21.800us 101, {0/1) | 33.135% |e————
£ >

©1989-2024 Lauterbach

OS Awareness Manual ThreadX

16

ThreadX specific Menu

The menu file “threadx.men” contains a menu with ThreadX specific menu items. Load this menu with the
MENU.ReProgram command.

You will find a new menu called ThreadX.
. The Display menu items launch the appropriate kernel resource display windows.

J The Stack Coverage submenu starts and resets the ThreadX specific stack coverage, and
provide an easy way to add or remove threads from the stack coverage window.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

. The Trace menu is extended. In the List submenu, you can choose if you want a trace list window
to show only thread switches (if any) or thread switches together with default display.

o The Perf menu contains additional submenus for thread runtime statistics, thread related function
runtime statistics or statistics on task states.

/A TRACE32 for ThreadX - O X
File Edit View Var Break Run CPU Misc Trace Perf Cov PPC40x | ThreadX Window Help
MK A4+ & | » || 28| @] 5 8|k DisplayThreads
P s Display Timers
o (=== = Display Queues (= = | =]
magic state prio |[runcount |[name | T HOT
00051344 [Suspended 0. 0. SystemoTimeroThrea , I_ ‘R_‘ Dy S TS P Go || IN Besk| ifZ| Mode 6] -
00050648 |Sleep 1. 1. |[thread.0 dr /11 Display Mutexes I
00050608 |Ready 16. 192, thread.l . -
00050768 |[Executing | 16. | 192. [thread.2 Display Events NC thread. Snouts
000507F8 [Sleep B. 1. thread.3 7 read_input)
00050888 |Sema Susp | 8. 1. |thread.a Af |yl
00050918 |Event Flag| 4. 1. |thread.s Display Byte Memory
e IEN =N EE Stack Coverage y L. Tmemptra;
mag c capacity msgsize enqueued suspended name | 27T SET_TEasTUTy
00050948 100. 1. 54, 0. queues0 o
223 tx_timer_create (&threadltimer, "Thread 1 Timer", t
nessages 1, 200, 80, TX_AUTO_ACTIVATE);
1. 0O0004C3F L?
2. 00004C40 NN @ 226 tx_block_pool_create (&threadlblockpool, "Thread 1
3. 00004C41 HE) A 227 tx_block_allocate (&threadlblockpool, &blockptr, 20
4. 00004C42 NELB v 2
< > < >
BE:: TASK.|
THread TImer QUeue | SEmaphore MUtex EVent BLockmem BYtemem | ExecLOG TRACE othar pravious
ASP:00010394 \\demo\demo'set_leds+0x128 thread 2 stopped (inside line) HLL up

©1989-2024 Lauterbach OS Awareness Manual ThreadX | 17

ThreadX Commands

TASK.BLockmem

Display block memory pools

Format:

TASK.BLockmem <blkpool>

Displays a table with the pools of the Block Memory. Specifying a magic number or pool name will show you

detailed information about that pool.

o B:TASK.BLockmem "Thread 1 Block Pool” =n| Wl <
magic availl total blksize suspended name |
00020554 7. 3. 128. 0. Threadoi.BlockoPool .

4 T

TASK.BYtemem

Display byte memory pools

Format:

TASK.BYtemem <bytpool>

Displays a table with the pools of the Byte Memory. Specifying a magic number or pool name will show you

detailed information about that pool.

% B:TASK.BYtemem "Thread 1 Byte Pool”

(=[O el

avail =ize fragments suspended [name |
00020584 | 980. | 1100.| 4. | 0. |[Threadol.Byte.Pool .

00020454
000Z0A7C free 980.

M

©1989-2024 Lauterbach

OS Awareness Manual ThreadX | 18

TASK.EVent Display event flags

Format: TASK.EVent <event>

Displays a table with the ThreadX event lag groups. Specifying an event flag magic number or name will
show you the suspended threads of that event.

% B:TASK.EVent "event flags 0" EI@

magic current suspended name

00020508 00000000 1. eventuflagsu0 .

suspended threads
1. 00020424 thread.s

4 1 2

“magic” defines a unique ID which the OS Awareness uses for the event identification.
The fields 'magic' and 'name' are mouse sensitive. Double-clicking on them will perform the appropriate
action.

TASK.ExecLOG Display thread performance log

Format: TASK.ExecLOG

TASK.ExecLOG displays the kernel internal buffer of the thread performance information log.

o B:TASK.ExecL OG =n| Wl <
index magic prio [name |
0. 2. |00005ACE 8. [thread.s i
1. 3. |00005E94 8. [thread.4
2. 4. 00005034 8. [threadu6 L
3. 5. [00005SED4 8. [thread.? =
4. 6. (00005924 16. [threadul
5. 7. |000059F4 16. [thread.2
6. 0. (00005924 16. [threadul
7. 1. |000059F4 16. |[thread.2
4 10 3

ThreadX must be built with TX_THREAD_ENABLE_PERFORMANCE_INFO. See ThreadX documentation
more information on this ThreadX feature.

©1989-2024 Lauterbach OS Awareness Manual ThreadX | 19

TASK.MUtex Display mutexes

Format: TASK.SEmaphore <sema>

Displays a table with the ThreadX mutexes. Specifying a mutex magic number or name will show you the
suspended threads of that mutex.

o B:TASK.MUtex "mutex 0" =n| Wl <
magic name count prio [owner suspended |
00005545 [mutex.0 2. 0. [thread.é 1. ~

suspended threads
1. 00005444 thread.?

4 1 2

“magic” defines a unique ID which the OS Awareness uses for the mutex identification.
The fields 'magic' and 'name' are mouse sensitive. Double-clicking on them will perform the appropriate
action.

TASK.QUeue Display queues

Format: TASK.QUeue <queue>

Displays a table with the ThreadX queues. Specifying a queue magic number or queue name will show you
the messages in that queue and waiting threads.

5?. B:TASK.QUeue "queue0” EI@
magic capacity msgsize enqueued suspended name |
00020464 100. 1. 2. 0. queue.ld

ages
0002606A T3
00026068 %3k

m
Fa i
n

4 1 2

“magic” defines a unique ID which the OS Awareness uses for the queue identification. The fields 'magic'
and 'name' are mouse sensitive. Double-clicking on them will perform the appropriate action.

©1989-2024 Lauterbach OS Awareness Manual ThreadX | 20

TASK.SEmaphore Display semaphores

Format: TASK.SEmaphore <sema>

Displays a table with the ThreadX semaphores. Specifying a semaphore magic number or name will show
you the suspended threads of that semaphore.

o B:TASK.SEmaphore 0:2MEC [= |[B |[m23]

magic count suspended name |
000204EC 0. 1. semaphore.0

suspended threads
1. 00020304 thread.3

4 T b

“magic” defines a unique ID which the OS Awareness uses for the semaphore identification.
The fields 'magic' and 'name' are mouse sensitive. Double-clicking on them will perform the appropriate
action.

©1989-2024 Lauterbach OS Awareness Manual ThreadX | 21

TASK.THread Display threads

Format: TASK.THread [<thread> [/[SORTup | /SORTDOWN <sortitem>]]

Displays the thread table of ThreadX or detailed information about one specific thread.

Without any arguments, a table with all created threads will be shown.

B B:TASK THread == =]
im. 1

state prio |[runcount |[name |
Ready 0. 170. System.TimeroThread .
Sleep 1. 35. threadu0
Executing 16. 171. threadul
Ready 16. 170. thread.2
Sleep B. 171. threadu3
Sema Susp B. 171. thread.4
Event Flag| 4. 35. threadus

m

1 }

You can sort the window to the entries of a column by clicking on the column header. An initial sorting can be
specified by using a comma as placeholder for “thread” and specifying the sort direction together with the
sort item. Use MAGIC, STATE, PRIO, RUNCOUNT or NAME as sort item. Example:

TASK.THread , /SORTup NAME

To display detailed information on one thread, specify a thread name in quotes or a magic number to the
command.

o B:TASK.THread "thread 3" =n| Wl <
magic state prio |[runcount |[name |
00020304 |51eep [~ 8.| 201. [thread.s .

thread entry function and parameter
00010478 thread_3_and_4_entry (00000003)

thread timer: remaining 2.
timeout-function and parameter

00013138 _tx_thread_timeout (0D0Z20304)
current pc: 00010940 context current
4 n 3

“magic” is a unique ID, used by the OS Awareness to identify a specific thread (address of the TCB).

The fields “magic”, “thread entry” and “timeout function” are mouse sensitive, double clicking on them opens
appropriate windows. Right clicking on them will show a local menu.

Pressing the “context” button (if available) changes the register context to this thread. “current” resets it to the
current context. See “Thread Context Display”.

©1989-2024 Lauterbach OS Awareness Manual ThreadX | 22

TASK.TImer Display application timers

Format: TASK.TImer <timer>

Displays a table with the ThreadX application timers. Specifying a timer magic number or timer name wiill
show you more information on that timer.

o B:TASK.TImer "Thread 1 Timer" =] ==

magic remain_reinit function name
000205238 48, 80. 000102C0 Thread.i.Timer

000102C0 timer

and paramete
1 _function 00000001

4 1 2

“magic” defines a unique ID which the OS Awareness uses for the timer identification. The fields “magic”
“function” and “name” are mouse sensitive. Double-clicking on them will perform the appropriate action.

TASK.TRACE Display event trace buffer

Format: TASK.TRACE

TASK.TRACE displays the kernel internal buffer of the event trace feature.

o B:TASK.TRACE =n| Wl <
thread prio timestamp [event object intormation |
thread.l 16. |[00017F44 [queue send queue.l L
threadul 16. |00017F45 |queue send queue.d
threadul 16. |00017F46 |queue send queue.d

threadul 16. |00017F47 [thread suspend |thread.l |next: threadu2
thread.2 16. |00D17F48 |queue receive queue.d

threadu2 16. |00017F49 [thread resume threadul

thread.2 16. |00D17F4A |queue receive queue.d

thread.2 16. |000D17F4E |queue receive queue.d

thread.2 16. |00017F4C |queue receive queue.d -
4 M b

ThreadX must be built with TX_ENABLE_EVENT_TRACE. See ThreadX documentation more information
on this ThreadX feature.

TASK.TRACEVM Copy event trace buffer to LOGGER

Format: TASK.TRACEVM

TASK.TRACEVM copies the entries of the kernel internal event trace to a debugger-internal buffer in virtual
memory (VM:), using the LOGGER structure layout.

ThreadX must be built with TX_ENABLE_EVENT_TRACE. See ThreadX documentation more information
on this ThreadX feature.

©1989-2024 Lauterbach OS Awareness Manual ThreadX | 23

Activate the LOGGER and copy the buffers with:

Trace.METHOD Logger

Logger.
.ADDRESS VM:0x1000
Logger.
Logger.
Logger.

Logger

RESet

TimeStamp Up
TimeStamp.Rate 1000.
Init

TASK.TRACEVM

Logger.
Logger.

After this, you can use the Logger contents for Task Runtime Statistics and Task State Analysis.

ARM
OFF

©1989-2024 Lauterbach

OS Awareness Manual ThreadX

24

ThreadX PRACTICE Functions

There are special definitions for ThreadX specific PRACTICE functions.

TASK.CONFIG() OS Awareness configuration information

Syntax: TASK.CONFIG(magic | magicsize)

Parameter and Description:

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

Return Value Type: Hex value.

TASK.TH.MAGIC() Magic number of thread

Syntax: TASK.TH.MAGIC(<thread_name>)

Returns the magic number of the given thread.
Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

TASK.BY.MAGIC() Magic number of byte pool

Syntax: TASK.BY.MAGIC(<pool_name>)

Returns the magic number of the given byte pool.
Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual ThreadX | 25

TASK.BL.MAGIC() Magic number of block pool

Syntax: TASK.BL.MAGIC(<pool_name>)

Returns the magic number of the given block pool.
Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual ThreadX | 26

	OS Awareness Manual ThreadX
	History
	Overview
	Terminology
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Quick Configuration Guide
	Hooks & Internals in ThreadX

	Features
	Display of Kernel Resources
	Task Stack Coverage
	Task-Related Breakpoints
	Task Context Display
	SMP Support
	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Task State Analysis
	Function Runtime Statistics
	ThreadX specific Menu

	ThreadX Commands
	TASK.BLockmem Display block memory pools
	TASK.BYtemem Display byte memory pools
	TASK.EVent Display event flags
	TASK.ExecLOG Display thread performance log
	TASK.MUtex Display mutexes
	TASK.QUeue Display queues
	TASK.SEmaphore Display semaphores
	TASK.THread Display threads
	TASK.TImer Display application timers
	TASK.TRACE Display event trace buffer
	TASK.TRACEVM Copy event trace buffer to LOGGER

	ThreadX PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information
	TASK.TH.MAGIC() Magic number of thread
	TASK.BY.MAGIC() Magic number of byte pool
	TASK.BL.MAGIC() Magic number of block pool

