
MANUAL

Release 09.2024

OS Awareness Manual QNX

OS Awareness Manual QNX

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents ..

 OS Awareness Manuals ..

 OS Awareness and Run Mode Debugging for QNX ..

 OS Awareness Manual QNX ... 1

 History ... 5

 Overview ... 6

 Terminology 6

 Brief Overview of Documents for New Users 7

 Supported Versions 7

 Configuration .. 8

 Quick Configuration Guide 8

 Hooks & Internals in QNX 8

 Requirements for Debugging 9

 Requirements for Tracing 9

 Requirements for QNX Hypervisor 10

 Debug Features .. 11

 Display of Kernel Resources 11

 Task Stack Coverage 11

 Task-Related Breakpoints 12

 Task Context Display 14

 MMU Support 16

 Space IDs 16

 MMU Declaration 16

 Scanning System and Processes 19

 Symbol Autoloader 20

 SMP Support 22

 Dynamic Task Performance Measurement 23

 QNX specific Menu 24

 Trace Features .. 26

 Task Runtime Statistics 26

 Task State Analysis 27

 Function Runtime Statistics 28

 QNX specific Menu for Tracing 30
OS Awareness Manual QNX | 2©1989-2024 Lauterbach

 Debugging QNX Components ... 31

 Initial Program Loader (IPL) 31

 QNX Kernel 31

 Downloading the QNX Image 32

 Debugging the Kernel Startup 32

 Debugging the Kernel 33

 User Processes 33

 Debugging the Process 34

 Debugging into Shared Libraries 35

 Debugging QNX Threads 36

 Trapping Segmentation Violation 36

 QNX Commands ... 38

 TASK.ASINFO Display address space information 38

 TASK.IFS Display directory of IFS 38

 TASK.MMU.SCAN Scan process MMU space 39

 TASK.Option Set awareness options 40

 TASK.PIDIN Display “pidin” like information 40

 TASK.Process Display processes 41

 TASK.QVM Display VMs 42

 TASK.SHMEM Display contents of shmem 42

 TASK.SLOGGER2 Display contents of slogger2 buffers 43

 TASK.sYmbol Process symbol management 44

 TASK.sYmbol.DELete Unload process symbols and MMU 44

 TASK.sYmbol.DELeteLib Unload library symbols 45

 TASK.sYmbol.LOAD Load process symbols and MMU 45

 TASK.sYmbol.LOADLib Load library symbols 46

 TASK.sYmbol.Option Set symbol management options 46

 TASK.Thread Display threads 48

 TASK.TLOGger Display tracelogger buffer 49

 TASK.TLOGger.VMLOGger Copy tracelogger buffer to LOGGER 50

 TASK.Watch Watch processes 51

 TASK.Watch.ADD Add process to watch list 51

 TASK.Watch.DELete Remove process from watch list 51

 TASK.Watch.DISable Disable watch system 52

 TASK.Watch.DISableBP Disable process creation breakpoints 52

 TASK.Watch.ENable Enable watch system 52

 TASK.Watch.ENableBP Enable process creation breakpoints 53

 TASK.Watch.View Show watched processes 53

 QNX PRACTICE Functions .. 56

 TASK.ASINFO.SIZE() Size of address space 56

 TASK.ASINFO.START() Start of address space 56

 TASK.CONFIG() OS Awareness configuration information 57

 TASK.CORE.ASSIGN() Core assignment 57
OS Awareness Manual QNX | 3©1989-2024 Lauterbach

 TASK.CURRENT() Current process or thread 57

 TASK.LIB.ADDRESS() Address of library 58

 TASK.PROC.ID() Process ID 59

 TASK.PROC.MAGIC() Magic number of process 59

 TASK.PROC.NAME() Name of process 59

 TASK.PROC.SID2MAGIC() Process of space ID 59

 TASK.PROC.SPACE() Space ID of process 60

 TASK.PROC.THREADS() List of threads 60

 TASK.PROC.TTB() TTB of process 60

 TASK.QVM.FORMAT() Machine ID of VM 61

 TASK.QVM.MAGIC() Magic number of VM 61

 TASK.QVM.MID() Machine ID of VM 61

 TASK.QVM.NAME() Name of VM 61

 TASK.QVM.VMLIST() List of VMs 62

 Appendix ... 63

 Appendix A: Kernel debug information 63
OS Awareness Manual QNX | 4©1989-2024 Lauterbach

OS Awareness Manual QNX

Version 05-Oct-2024

History

07-Feb-2024 New functions: TASK.QVM.NAME() and TASK.QVM.VMLIST().

04-Apr-2022 Split the “Features” chapter into two chapters, “Debug Features” and “Trace Features”.

04-Apr-2022 Updated “Hooks & Internals in QNX” chapter.

11-Mar-2022 New functions: TASK.CORE.ASSIGN(), TASK.PROC.ID(), TASK.PROC.TTB(),
TASK.ASINFO.START(), TASK.ASINFO.SIZE().

11-Mar-2022 New functions: TASK.QVM.MAGIC(), TASK.QVM.MID(), and TASK.QVM.FORMAT().

10-Mar-2022 New commands: TASK.IFS, TASK.SHMEM, TASK.SLOGGER2, and TASK.QVM.
New option /TTBHV for the command TASK.Option.
OS Awareness Manual QNX | 5©1989-2024 Lauterbach

Overview

The OS Awareness for QNX contains special extensions to the TRACE32 Debugger. This manual describes
the additional features, such as additional commands and statistic evaluations.

Terminology

QNX uses the terms “processes” and “threads”. If not otherwise specified, the TRACE32 term “task”
corresponds to QNX threads.
OS Awareness Manual QNX | 6©1989-2024 Lauterbach

Brief Overview of Documents for New Users

Architecture-independent information:

• “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.

• “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently QNX is supported for the following versions:

• QNX 6.1 to 6.6:

- “armle” on ARM architectures,

- “ppcbe” on PowerPC,

- “shle” on SH4,

- “x86” on Intel x86 architectures (32bit implementation)

• QNX 7.0, 7.1 and 8.0:

- “armle-v7” on ARM32 architectures,

- “aarch64le” on ARM64 architectures,

- “x86” on Intel x86 architectures (32bit implementation)

- “x86_64” on Intel x86 architectures (64bit implementation)
OS Awareness Manual QNX | 7©1989-2024 Lauterbach

Configuration

The TASK.CONFIG command loads an extension definition file called “qnx.t32” (directory
“~~/demo/<processor>/kernel/qnx”). It contains all necessary extensions.

Automatic configuration tries to locate the QNX internals automatically. For this purpose all symbol tables
must be loaded and accessible at any time the OS Awareness is used (see also “Hooks & Internals”).

If you want to display the OS objects “On The Fly” while the target is running, you need to have access to
memory while the target is running. In case of ICD, you have to enable SYStem.MemAccess or
SYStem.CpuAccess (CPU dependent).

For system resource display and trace functionality, you can do an automatic configuration of the OS
Awareness. For this purpose it is necessary that all system internal symbols are loaded and accessible at
any time, the OS Awareness is used. Each of the TASK.CONFIG arguments can be substituted by '0', which
means that this argument will be searched and configured automatically. For a fully automatic configuration
omit all arguments:

(Note: “~~” refers to the TRACE32 installation directory)

Note that the kernel symbols from “procnto” must be loaded into the debugger. See Hooks & Internals for
details on the used symbols.

See also the examples in the demo directories “~~/demo/<cpu>/kernel/qnx”.

Quick Configuration Guide

To access all features of the OS Awareness you should follow the following roadmap:

1. Carefully read the demo start-up scripts (~~/demo/<cpu>/kernel/qnx).

2. Make a copy of the PRACTICE script “qnx.cmm”. Modify the file according to your application.

3. Run the modified version in your application. This should allow you to display the kernel
resources and use the trace functions (if available).

Now you can access the QNX extensions through the menu.

In case of any problems, please carefully read the previous Configuration chapters.

Hooks & Internals in QNX

No hooks are used in the kernel.

Format: TASK.CONFIG ~~/demo/<cpu>/kernel/qnx/qnx.t32
OS Awareness Manual QNX | 8©1989-2024 Lauterbach

There are some requirements to do a successful debugging and tracing with QNX. In case of problems,
please check carefully these items.

Requirements for Debugging

For retrieving the kernel data structures, the OS Awareness uses the global kernel symbols of “procnto”.
This means that every time, when features of the OS Awareness are used, the symbols of “procnto” must be
available and accessible.

The system builder generates a linked symbol file called “procnto.sym” in the workspace’s “Images”
directory, which needs to be loaded into the debugger.

QNX 6.2: To create the symbol file in your image directory, you need to add a line “[+keeplinked]” to
your system build file.

QNX 6.3/6.4: To create the symbol file in your image directory, change in the System Builder Project
(project.bld) the property “System -> Procnto/Startup Symbol Files” to “Yes”.

QNX 6.5: To create the symbol files in your image directory, open the System Builder Project (project.bld)
and set the “System” properties “Create startup sym file?” and “Create proc sym file?” to “Yes”.

QNX 6.6/7.0: To create the symbol file in your image directory, you need to add a line “[+keeplinked]” to
your system build file.

Please look at the demo startup script qnx.cmm, how to load the system symbols and the symbols of your
application.

Requirements for Tracing

Tracing with QNX requires that the on-chip trace generation logic can generate process and/or thread
information. For details refer to “OS-aware Tracing” (trace32_concepts.pdf).

On Arm architectures, QNX serves the ContextID register with the address space ID (ASID) of the process.
This allows tracking the program flow of the processes and evaluation of the process switches. But it does
not provide trace information of threads.

To allow tracing of QNX threads, the context ID must contain the thread ID. See Task Runtime Analysis for
an appropriate patch.

NOTE: In QNX version 6.5 and 6.6, the standard installation does not include debug
information of the kernel, i.e. you will not be able to see the internal structures of
a process or thread. The QNX awareness does not need this, so it’s sufficient to
use the standard kernel. However, if you want access to these internal
structures, you have to install and use the debug version - see Appendix A.
OS Awareness Manual QNX | 9©1989-2024 Lauterbach

Requirements for QNX Hypervisor

TRACE32 can be used to debug both, the QNX hypervisor host and any guest running as virtual machine
(VM) within the hypervisor. In QNX, a VM is bound to a special QNX host process, called “qvm”. To be able
to debug guests, the following requirements must be met:

• TRACE32 must be set up as a hypervisor debug environment.

• The QNX awareness for the QNX host must be set up completely.

• The symbols of the “qvm” process must be loaded. If there is more than one qvm process, it is
enough to load the symbols of only one qvm.

• To be able to work with several qvm processes, the QNX host must not use ASLR, Ensure to
start procnto with the switch “-m~r” to switch off address space layout randomization.
OS Awareness Manual QNX | 10©1989-2024 Lauterbach

Debug Features

The OS Awareness for QNX supports the following debug features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following QNX
components can be displayed:

For a description of the commands, refer to chapter “QNX Commands”.

If your hardware allows memory access while the target is running, these resources can be displayed “On
The Fly”, i.e. while the application is running, without any intrusion to the application.

Without this capability, the information will only be displayed if the target application is stopped.

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this
command will open a window displaying with all active tasks. If you specify only a task magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command
TASK.STacK.PATtern (default value is zero).

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and
select the task from the TASK.STacK.* window.

It is recommended to display only the tasks you are interested in because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

TASK.Process Processes

TASK.Thread Threads

TASK.PIDIN pidin

TASK.ASINFO address space information

TASK.IFS IFS directory

TASK.SHMEM shmem

TASK.SLOGGER2 slogger2

TASK.TLOGger tracelogger

TASK.QVM VMs
OS Awareness Manual QNX | 11©1989-2024 Lauterbach

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

• Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

• For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.
This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

NOTE: The stack coverage only evaluates the stack area that is currently mapped into the
MMU of the process. While running, QNX may map additional pages to the stack.
QNX usually does not initialize the stack before use. Thus the maximum stack
usage may show wrong results.

Break.Set <address>|<range> [/<option>] /TASK <task> Set task-related breakpoint.

NOTE: Task-related breakpoints impact the real-time behavior of the application.
OS Awareness Manual QNX | 12©1989-2024 Lauterbach

For example, on ARM architectures: If the RTOS serves the Context ID register at task switches, and if the
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,
you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

Break.CONFIG.UseContextID ON Enables the comparison to the whole Context ID register.

Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK.List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.
OS Awareness Manual QNX | 13©1989-2024 Lauterbach

Example for a task-related breakpoint, equivalent to the Break.Set <function> /TASK <task> command:

Task Context Display

You can switch the whole viewing context to a task that is currently not being executed. This means that all
register and stack-related information displayed, e.g. in Register, List.auto, Frame etc. windows, will refer
to this task. Be aware that this is only for displaying information. When you continue debugging the
application (Step or Go), the debugger will switch back to the current context.

To display a specific task context, use the command:

• Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

• To switch back to the current context, omit all parameters.

To display the call stack of a specific task, use the following command:

If you’d like to see the application code where the task was preempted, then take these steps:

Frame.TASK [<task>] Display task context.

Frame /Task <task> Display call stack of a task.

name of function

name of thread

breakpoint is set on

related to this breakpoint

click on “advanced”
to get more options
OS Awareness Manual QNX | 14©1989-2024 Lauterbach

1. Open the Frame /Caller /Task <task> window.

2. Double-click the line showing the OS service call.
OS Awareness Manual QNX | 15©1989-2024 Lauterbach

MMU Support

To provide full debugging possibilities, the Debugger has to know, how virtual addresses are translated to
physical addresses and vice versa. All MMU and TRANSlation commands refer to this necessity.

Space IDs

Different processes of QNX may use identical virtual addresses. To distinguish those addresses, the
debugger uses an additional identifier, the so-called space ID (memory space ID) that specifies, to which
virtual memory space the address refers to. The command SYStem.Option.MMUSPACES ON enables the
use of the space ID. For all processes using the kernel address space, the space ID is zero. For processes
using their own address space, the space ID corresponds to the process ID (but is not equal to). Threads of
a particular process use the memory space of the invoking parent process. Consequently threads have the
same space ID as the parent process.

You may scan the whole system for space IDs using the command TRANSlation.ScanID. Use
TRANSlation.ListID to get a list of all recognized space IDs.

The function task.proc.space(“<process>”) returns the space ID for a given process.

MMU Declaration

To access the virtual and physical addresses correctly, the debugger needs to know the format of the MMU
tables in the target.

The following command is used to declare the basic format of MMU tables:

MMU.FORMAT <format> [<base_address> [<logical_kernel_address_range>
 <physical_kernel_address>]]

Define MMU
table structure
OS Awareness Manual QNX | 16©1989-2024 Lauterbach

<format> Options for ARM:

<format> Options for PowerPC:

<format> Description

QNX.PLAIN QNX format using the ARM FCSE translation. Use this format only if the
kernel address range starts at a lower addresses than 0xFC000000. Other
than format QNX.fcse, page table entries in the range 0x02000000 <= VA
< 0xFC000000 are not hidden, but MMU.List.PageTable shows valid
translations between 0x02000000 and the begin of the kernel address
space which are actually not used by the OS. */

QNX.fcse Standard QNX format using the ARM FCSE translation, assuming a
kernel address range of 0xFC000000--0xFFFFFFFF. Page table entries
for 0x02000000 <= VA < 0xFC000000 are hidden because these are
neither process nor kernel specific addresses. */

STD Standard format defined by the CPU

TINY MMU format using a tiny page size of only 1024 bytes

<format> Description

QNX QNX standard format

QNXBIG QNX format with 64-bit table entries
(QNX 6.4/6.5 at booke and 900 cores). Covers 32-bit virtual address
range.

STD Standard format defined by the CPU
OS Awareness Manual QNX | 17©1989-2024 Lauterbach

<format> Options for RISC-V:

<format> Options for SH4:

<format> Options for x86:

<format> Description

STD Automatic detection of the page table format from the SATP register.

SV32 32-bit page table format (for SV32 targets only)

SV32X4 Stage 2 (G-stage) 32-bit page table format for page tables translating
intermediate physical addresses. Not applicable to other page tables.

SV39 39-bit page table format (for SV64 targets only)

SV39X4 Stage 2 (G-stage) 39-bit page table format for page tables translating
intermediate physical addresses. Not applicable to other page tables.

SV48 48-bit page table format (for SV64 targets only)

SV48X4 Stage 2 (G-stage) 48-bit page table format for page tables translating
intermediate physical addresses. Not applicable to other page tables.

SV57 57-bit page table format (for SV64 targets only)

SV57X4 Stage 2 (G-stage) 57-bit page table format for page tables translating
intermediate physical addresses. Not applicable to other page tables.

<format> Description

QNX QNX standard format

<format> Description

EPT Extended page table format (type autodetected)

EPT4L Extended page table format (4-level page table)

EPT5L Extended page table format (5-level page table)

P32 32-bit format with 2 page table levels

PAE Format with 3 page table levels

PAE64 64-bit format with 4 page table levels

PAE64L5 64-bit format with 5 page table levels

STD Automatic detection of the page table format used by the CPU
OS Awareness Manual QNX | 18©1989-2024 Lauterbach

<base_address>

<base_address> is currently unused. Specify zero.

<logical_kernel_address_range>

<logical_kernel_address_range> specifies the virtual to physical address translation of the kernel address
range. Typically the kernel has a 1:1 translation.

<physical_kernel_address>

<physical_kernel_address> specifies the physical start address of the kernel.

When declaring the MMU layout, you should also create the kernel translation manually with
TRANSlation.Create.

The kernel code, which resides in the kernel space, can be accessed by any process, regardless of the
current space ID. Use the command TRANSlation.COMMON to define the complete address range that is
addressed by the kernel as commonly used area.

Enable the debugger’s table walk with TRANSlation.TableWalk ON, and switch on the debugger’s MMU
translation with TRANSlation.ON.

Setting up the MMU declaration is highly architecture and system dependent, please see the example
scripts in the ~~/demo directory.

Scanning System and Processes

To access the different process spaces correctly, the debugger needs to know the address translation of
every virtual address it uses. You can either scan the MMU tables and place a copy of them into the
debugger’s address translation table, or you can use a table walk, where the debugger walks through the
MMU tables each time it accesses a virtual address.

The command MMU.SCAN only scans the contents of the current processor MMU settings. Use the
command MMU.SCAN ALL to go through all space IDs and scan their MMU settings. Note that on some
systems, this may take a long time. In this case you may scan single processes (see below).

The MMU of the SH4 has an address translation that cannot be scanned fully automatically. However, the
current used memory areas can be scanned with MMU.SCAN UTLB and MMU.SCAN ITLB.

To scan the address translation of a specific process, use the command MMU.SCAN TaskPageTable
<process>. This command scans the space ID of the specified process. To scan the kernel space, use:

TRANSlation.List shows the address translation table for all scanned space IDs.

If you set TRANSlation.TableWalk ON, the debugger tries first to look up the address translation in it’s own
table (TRANSlation.List). If this fails, it walks through the target MMU tables to find the translation for a
specific address. This feature eliminates the need of scanning the MMU each time it changed, but walking

MMU.SCAN TaskPageTable "procnto"
OS Awareness Manual QNX | 19©1989-2024 Lauterbach

through the tables for each address may result in a very slow reading of the target. The address translations
found with the table walk are only temporarily valid (i.e. not stored in TRANSlation.List), and are invalidated
at each Go or Step.

See also chapter “Debugging QNX Kernel and User Processes”.

Symbol Autoloader

The OS Awareness for QNX contains a “Symbol Autoloader”, which automatically loads symbol files
corresponding to executed processes or libraries. The autoloader maintains a list of address ranges,
corresponding to QNX components and the appropriate load command. Whenever the user accesses an
address within an address range specified in the autoloader (e.g. via Data.List), the debugger invokes the
command necessary to load the corresponding symbols to the appropriate addresses (including relocation).
This is usually done via a PRACTICE script.

In order to load symbol files, the debugger needs to be aware of the currently loaded components. This
information is available in the kernel data structures and can be interpreted by the debugger. The command
sYmbol.AutoLOAD.CHECK defines, when these kernel data structures are read by the debugger (only on
demand or after each program execution).

The loaded components can change over time, when processes are started and stopped and libraries are
loaded or unloaded. The command sYmbol.AutoLOAD.CHECK configures the strategy, when to “check”
the kernel data structures for changes in order to keep the debugger’s information regarding the
components up-to-date.

Without parameters, the sYmbol.AutoLOAD.CHECK command immediately updates the component
information by reading the kernel data structures. This information includes the component name, the load
address and the space ID and is used to fill the autoloader list (shown via sYmbol.AutoLOAD.List).

With sYmbol.AutoLOAD.CHECK ON, the debugger automatically reads the component information each
time the target stops executing (even after assembly steps), having to assume that the component
information might have changed. This significantly slows down the debugger which is inconvenient and often
superfluous, e.g. when stepping through code that does not load or unload components.

With the parameter ONGO, the debugger checks for changed component info like with ON, but not when
performing single steps.

With sYmbol.AutoLOAD.CHECK OFF, no automatic read is performed. In this case, the update has to be
triggered manually when considered necessary by the user.

NOTE: The autoloader covers only components that are already started. Components that are not in the
current process or library table are not covered.

sYmbol.AutoLOAD.CHECK [ON | OFF | ONGO]
OS Awareness Manual QNX | 20©1989-2024 Lauterbach

The command TASK.sYmbol.Option AutoLoad configures which types of components the autoloader
shall consider:

• Processes,

• All libraries, or

• Libraries of the current process.

It is recommended to restrict the components to the minimal set of interest (rather than all components),
because it makes the autoloader checks much faster. By default, only processes are checked by the
autoloader.

When configuring the OS Awareness for QNX, set up the symbol autoloader with the following command:

The command sYmbol.AutoLOAD.CHECKQNX is used to define which action is to be taken, for loading
the symbols corresponding to a specific address. The action defined is invoked with specific parameters
(see below). With QnX, the pre-defined action is to call the script ~~/demo/<cpu>/kernel/qnx/autoload.cmm.

Note: the action parameter needs to be written with quotation marks (for the parser it is a string).

Note that defining this action, does not cause its execution. The action is executed on demand, i.e. when the
address is actually accessed by the debugger e.g. in the Data.List or Trace.List window. In this case the
autoloader executes the <action> appending parameters indicating the name of the component, its type
(process, library), the load address and space ID.

Format: sYmbol.AutoLOAD.CHECKQNX "<action>"

<action>: action to take for symbol load, e.g.: "do autoload"
OS Awareness Manual QNX | 21©1989-2024 Lauterbach

For checking the currently active components use the command sYmbol.AutoLOAD.List. Together with the
component name, it shows details like the load address, the space ID, and the command that will be
executed to load the corresponding object files with symbol information. Only components shown in this list
are handled by the autoloader.

SMP Support

The OS Awareness supports symmetric multiprocessing (SMP).

An SMP system consists of multiple similar CPU cores. The operating system schedules the threads that
are ready to execute on any of the available cores, so that several threads may execute in parallel.
Consequently an application may run on any available core. Moreover, the core at which the application runs
may change over time.

To support such SMP systems, the debugger allows a “system view”, where one TRACE32 PowerView GUI
is used for the whole system, i.e. for all cores that are used by the SMP OS. For information about how to set
up the debugger with SMP support, please refer to the Processor Architecture Manuals.

All core relevant windows (e.g. Register.view) show the information of the current core. The state line of the
debugger indicates the current core. You can switch the core view with the CORE.select command.

Target breaks, be they manual breaks or halting at a breakpoint, halt all cores synchronously. Similarly, a Go
command starts all cores synchronously. When halting at a breakpoint, the debugger automatically switches
the view to the core that hit the breakpoint.

Because it is undetermined, at which core an application runs, breakpoints are set on all cores
simultaneously. This means, the breakpoint will always hit independently on which core the application
actually runs.

NOTE: The GNU compiler generates different code if an application is built with debug info
(option “-g”), even if the optimization level is the same. Ensure that you always use
the debug version on both sides, the target where you start the application, and the
debugger where you load the symbol file.
OS Awareness Manual QNX | 22©1989-2024 Lauterbach

In SMP systems, the TASK.Thread command contains a “cpu” column that shows at which core the task is
running, or was running the last time.

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the
PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide
P” (general_ref_p.pdf).

OS Awareness Manual QNX | 23©1989-2024 Lauterbach

QNX specific Menu

The menu file “qnx.men” contains a menu with QNX specific menu items. Load this menu with the
MENU.ReProgram command.

You will find a new menu called QNX.

• The Display menu items launch the kernel resource display windows. See chapter “Display of
Kernel Resources”.

• Process Debugging refers to actions related to process based debugging.
See also chapter “Debugging the Process”.

- Use Load Symbols and Delete Symbols to load rsp. delete the symbols of a specific
process. See also TASK.sYmbol.

- Debug Process on main allows you to start debugging a process on it’s main() function.
Select this prior to starting the process. Specify the name of the process you want to debug.
Then start the process in your terminal. The debugger will load the symbols and halt at
main(). See also the demo script “app_debug.cmm”.

- Watch Processes opens a process watch window or adds or removes processes from the
process watch window. Specify a process name. See TASK.Watch for details.

- Scan Process MMU Pages scans the MMU pages of the specified process.

- Scan All MMU Tables performs a scan over all target side kernel and process MMU pages.
See also chapter “Scanning System and Processes”.

• “Library Debugging” refers to actions related to library based debugging.
See also chapter “Debugging into Shared Libraries”.

- Use Load Symbols and Delete Symbols to load rsp. delete the symbols of a specific library.
Please specify the library name and the process name that uses this library. You may select a
symbol file on the host with the Browse button. See also TASK.sYmbol.

- Scan Process MMU Pages scans the MMU pages of the specified process. Specify the
name of the process that uses the library you want to debug.
Scan All MMU Tables performs a scan over all target side kernel and process MMU pages.
See also chapter “Scanning System and Processes”.

• Use the Autoloader submenu to configure the symbol autoloader.
See also chapter “Symbol Autoloader”.

- List Components opens a sYmbol.AutoLOAD.List window showing all components
currently active in the autoloader.
OS Awareness Manual QNX | 24©1989-2024 Lauterbach

- Check Now! performs a sYmbol.AutoLOAD.CHECK and reloads the autoloader list.

- Set Loader Script allows you to specify the script that is called when a symbol file load is
required. You may also set the automatic autoloader check.

- Use Set Components Checked to specify, which QNX components should be managed by
the autoloader. See also TASK.sYmbol.Option AutoLOAD.

• The Stack Coverage submenu starts and resets the QNX specific stack coverage and provides
an easy way to add or remove threads from the stack coverage window.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

• The Trace menu is extended. In the List submenu, you can choose if you want a trace list
window to show only thread switches (if any) or thread switches together with the default display.

The Perf menu contains additional submenus for task runtime statistics, task-related function runtime
statistics or statistics on task states, if a trace is available. See also chapter “Task Runtime Statistics”.
OS Awareness Manual QNX | 25©1989-2024 Lauterbach

Trace Features

The OS Awareness for QNX supports the following trace features.

Task Runtime Statistics

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spent in
a task and display it statistically and graphically.

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

All kernel activities up to the thread switch are added to the calling thread.
If a process or thread terminates before the trace is evaluated, the debugger cannot assign a correct name
to it. Instead the debugger will show a hex value for this process/thread.

On ARM architectures, QNX serves the ContextID register with the address space ID (ASID) of the process.
This allows tracking the program flow of the processes and evaluation of the process switches. But it does
not provide performance information of threads.

To allow a detailed performance analysis on QNX threads, the context ID must contain the thread ID. Set the
lower 8 bit of the context ID register with the process’ ASID, and set the upper 24 bit with the lower 24bit of
the address of the thread entry, i.e. “(thread << 8) | ASID”.

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” in TRACE32 Concepts, page
36 (trace32_concepts.pdf).

Trace.List List.TASK DEFault Display trace buffer and task switches

Trace.STATistic.TASK Display task runtime statistic evaluation

Trace.Chart.TASK Display task runtime timechart

Trace.PROfileSTATistic.TASK Display task runtime within fixed time intervals
statistically

Trace.PROfileChart.TASK Display task runtime within fixed time intervals as
colored graph

Trace.FindAll Address TASK.CONFIG(magic) Display all data access records to the “magic”
location

Trace.FindAll CYcle owner OR CYcle context Display all context ID records
OS Awareness Manual QNX | 26©1989-2024 Lauterbach

The QNX awareness needs to be informed about the changed format of the context ID:

TASK.Option THRCTX ON

To implement the above context ID setting, either patch the kernel or implement a
“kerop_microaccount_hook”. Ask Lauterbach for support if you need assistance.

Task State Analysis

The time different tasks are in a certain state (running, ready, suspended or waiting) can be evaluated
statistically or displayed graphically.

This feature requires that the following data accesses are recorded:

• All accesses to the status words of all tasks

• Accesses to the current task variable (= magic address)

Adjust your trace logic to record all data write accesses, or limit the recorded data to the area where all TCBs
are located (plus the current task pointer).

Example: This script assumes that the TCBs are located in an array named TCB_array and consequently
limits the tracing to data write accesses on the TCBs and the task switch.

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

NOTE: This feature is only available, if your debug environment is able to trace task
switches and data accesses (program flow trace is not sufficient). It requires
either an on-chip trace logic that is able to generate a data trace, or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” in TRACE32 Concepts, page
36 (trace32_concepts.pdf).

Break.Set Var.RANGE(TCB_array) /Write /TraceData
Break.Set TASK.CONFIG(magic) /Write /TraceData

Trace.STATistic.TASKState Display task state statistic

Trace.Chart.TASKState Display task state timechart
OS Awareness Manual QNX | 27©1989-2024 Lauterbach

Function Runtime Statistics

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

If a process or thread terminates before the trace is evaluated, the debugger cannot assign a correct name
to it. Instead the debugger will show a hex value for this process/thread. Additionally, if the process
terminated, the debugger may no longe have access to the code and cannot decode the program flow of this
process.

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” in TRACE32 Concepts, page
36 (trace32_concepts.pdf).

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG(magic) /TraceData

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

Trace.ListNesting Display function nesting

Trace.STATistic.Func Display function runtime statistic

Trace.STATistic.TREE Display functions as call tree

Trace.STATistic.sYmbol /SplitTASK Display flat runtime analysis

Trace.Chart.Func Display function timechart

Trace.Chart.sYmbol /SplitTASK Display flat runtime timechart
OS Awareness Manual QNX | 28©1989-2024 Lauterbach

On ARM architectures, QNX serves the ContextID register with the address space ID (ASID) of the process.
This allows tracking the program flow of the processes and evaluation of the process switches. But it does
not provide performance information of threads.

To allow a detailed performance analysis on QNX threads, the context ID must contain the thread ID. See
Task Runtime Analysis for an appropriate patch.
OS Awareness Manual QNX | 29©1989-2024 Lauterbach

QNX specific Menu for Tracing

The menu entries specific to tracing are already described in the menu for debug features.
OS Awareness Manual QNX | 30©1989-2024 Lauterbach

Debugging QNX Components

QNX runs on virtual address spaces. The kernel uses a static address translation. Each user process gets
its own user address space when loaded, mapped to any physical RAM area that is currently free. Due to
this address translations, debugging the QNX kernel and the user processes requires some settings to the
debugger.

To distinguish those different memory mappings, TRACE32 uses “space IDs”, defining individual address
translations for each ID. The kernel itself (procnto) is attached to the space ID zero. Each process that has its
own memory space, gets a space ID that corresponds (but is not equal to) its process ID. QNX threads get
the space ID of the parent process.

See also chapter “MMU Support”.

Initial Program Loader (IPL)

The IPL usually resides in Flash on the target to allow reloading of the system image via any target interface.
If you’re using an IPL, and you want to debug it, simply load the symbols of the appropriate IPL image into
the debugger. The image is located in the QNX SDK directory target/qnx6/<arch>/boot/sys.

Example:

QNX Kernel

The QNX system builder generates an image (IFS) that contains the startup code, the kernel and any given
application. The file format of the IFS depends on the target system, usually it is in ELF or binary format.

Additionally, the QNX Awareness needs the symbols of the procnto kernel. Please see section “Hooks &
Internals” how to generate the symbol files of the kernel.

Data.LOAD.Elf ipl-sengine /NoCODE
OS Awareness Manual QNX | 31©1989-2024 Lauterbach

Downloading the QNX Image

If you start the QNX image from Flash, or if you download the image using the IPL, do this as you are doing
it without debugging.

If you want to download the QNX image using the debugger, you have to watch about the file IFS format. If
the IFS is in ELF format, simply download this to the target. If the IFS is in binary format, you have to tell the
debugger at which address to download it. Please check the example scripts, which version to use and how
to obtain the download address.

Examples:

To create the IFS in ELF format (in QNX 6.3 and up), change in the System Builder Project (project.bld) the
property “System -> Boot File” to “elf”.

When downloading the kernel via the debugger, remember to set startup parameters that the kernel
requires, before booting the kernel. Usually the IPL passes these parameters to the image.

Debugging the Kernel Startup

The kernel image starts with a special startup routine, called “startup-<board>”. If you want to debug this
(tiny) startup sequence, you have to load the symbols of this module. If you generated the procnto symbol
file, the system builder also preserved the symbol file of the startup image.

Example:

As soon as the startup sequence ended, you have to load the kernel symbols. See the next chapter on how
to debug the kernel in the virtual address space.

Data.Load.Elf mbx800.ifs ; downloading ELF IFS

Data.Load.Binary pxa250tmdp.ifs 0xa0800000 ; downloading binary IFS

Data.LOAD.ELF startup-pxa250tmdp.sym /NoCODE
OS Awareness Manual QNX | 32©1989-2024 Lauterbach

Debugging the Kernel

For debugging the kernel itself, and for using the QNX awareness, you have to load the virtual addressed
symbols of the kernel into the debugger. The procnto symbol file contains all addresses in virtual format, so
it’s enough to simply load the file:

User Processes

Each user process in QNX gets its own virtual memory space. To distinguish the different memory spaces,
the debugger assigns a “space ID”, which correlates (but is not equal) to the process ID. Using this space ID,
it is possible to address a unique memory location, even if several processes use the same virtual address.

Note that at every time the QNX awareness is used, it needs the kernel symbols. Please see the chapters
above on how to load them. Hence, load all process symbols with the option /NoClear to preserve the
kernel symbols.

Data.Load.Elf procnto.sym /NoCODE

NOTE: Debug Builds:
By default, the QNX IDE builds two binaries for the process, one with
optimization (e.g. “hello”), and one with debug information, usually with the
suffix “_g” (e.g. “hello_g”). Those files contain different code, do not mix them!
To be able to debug the process, use the debug variant on both sides, i.e. start
“hello_g” on the target system, and load the symbol file “hello_g” into the
debugger.

NOTE: Regarding ASLR:
If you use address space layout randomization (ASLR) with “position independent
executable” (PIE) code, then use the symbol autoloader to load the symbols of
processes and libraries. Each time you invoke a process or a library, it will be
loaded onto a different address, making it almost impossible to load the symbols
manually. The symbol autoloader takes care of the dynamic loading and loads the
symbols to the appropriate locations.
OS Awareness Manual QNX | 33©1989-2024 Lauterbach

Debugging the Process

To correlate the symbols of a user process with the virtual addresses of this process, it is necessary to load
the symbols into this space ID.

Manually Load Process Symbols:

For example, if you’ve got a a process called “hello” with the space ID 12 (the dot specifies a decimal
number!):

The space ID of a process may also be calculated by using the PRACTICE function
task.proc.spaceid() (see chapter “QNX PRACTICE Functions”).

Automatically Load Process Symbols:

If a process name is unique, and if the symbol files are accessible at the standard search paths, you can use
an automatic load command

This command loads the symbols of “hello”. See TASK.sYmbol.LOAD for more information.

Using the Symbol Autoloader:

If the symbol autoloader is configured (see chapter “Symbol Autoloader”), the symbols will be
automatically loaded when accessing an address inside the process. You can also force the loading of the
symbols of a process with

Using the Menus:

Select the menu item “QNX” -> “Process Debugging” -> “Load Symbols” to load the symbols of a specific
process. Alternatively, select “Display Processes”, right click on the “magic” of a process, and select “Load
Symbols”.

Data.LOAD.Elf hello 12.:0 /NoCODE /NoClear

TASK.sYmbol.LOAD "hello" ; load symbols of "hello"

sYmbol.AutoLOAD.CHECK
sYmbol.AutoLOAD.TOUCH "hello"
OS Awareness Manual QNX | 34©1989-2024 Lauterbach

Debugging a Process From Scratch, Using a Script:

If you want to debug your process right from the beginning (at “main()”), you have to load the symbols before
starting the process. This is a tricky thing because you have to know the process ID, which is assigned first
at the process start-up. The demo directory contains a script “app_debug.cmm” that assists you for this
purpose. Call the script with the process name as argument before the process is started:

Then, start the process in QNX. The debugger should automatically halt at the entry point of the process.
You can also use the menu item “QNX” -> “Process Debugging” -> “Debug Process on main...”, which does
essentially the same within a dialog. See also chapter “QNX Specific Menu”.

Debugging a Process From Scratch, with Automatic Detection:

The TASK.Watch command group implements the above script as an automatic handler and keeps track of
a process launch and the availability of the process symbols. See TASK.Watch.View for details.

Debugging into Shared Libraries

If the process uses shared libraries, QNX loads them into the address space of the process. The process
itself contains no symbols of the libraries. If you want to debug those libraries, you have to load the
corresponding symbols into the debugger.

Manually Load Library Symbols:

1. Start your process and open a TASK.Process window.

2. Double-click the magic value of the process that uses the library.

3. Expand the “libraries” tree (if available).

A list will appear that shows the loaded libraries and the corresponding load addresses.

4. Load the symbols to this address and into the space ID of the process.

E.g. if the process has the space ID 12., the library is called “lib.so.2” and it is loaded on address
0x01000000, then use the command:

You can also use PRACTICE functions to automatically load the symbols of a library with a script. E.g.:

DO ~~/demo/<cpu>/kernel/qnx/app_debug.cmm hello

Data.LOAD.Elf lib.so.2 12.:0x01000000 /NoCODE /NoClear

local &spaceid &magic &address

&spaceid=task.proc.space("hello")
&magic=task.proc.magic("hello")
&address=task.lib.address("lib.so.2",&magic)

Data.LOAD.Elf mylib &spaceid:&address /NoCODE /NoClear
OS Awareness Manual QNX | 35©1989-2024 Lauterbach

Of course, this library must be compiled with debugging information.

Automatically Load Library Symbols:

If a library name is unique, and if the symbol files are accessible at the standard search paths, you can use
an automatic load command:

This command loads the symbols of the library “libc.so”, used by the process “hello”. See
TASK.sYmbol.LOADLib for more information.

Using the Symbol Autoloader:

If the symbol autoloader is configured (see chapter “Symbol Autoloader”), the symbols will be
automatically loaded when accessing an address inside the library. You can also force the loading of the
symbols of a library with:

Using the Menus:

Select the menu item “QNX” -> “LIbrary Debugging” -> “Load Symbols” to load the symbols of a specific
library. Alternatively, select “Display Processes”, double click on the “magic” of the process, expand the
“libraries” section, right click on the “magic” of a library and select “Load Symbols”.

Debugging QNX Threads

QNX threads share the same virtual memory of the parent process. The OS Awareness for QNX assigns
one space ID for all threads that belong to a specific process. It is sufficient, to load the debug information of
this process only once (onto its space ID) to debug all threads of this process. See chapter “Debugging the
Process” for loading the process’ symbols.

The TASK.Thread window shows which thread is currently running (“running”).

Trapping Segmentation Violation

“Segmentation Violation” happens, if the code tries to access a memory location that cannot be mapped in
an appropriate way. E.g. if a process tries to write to a read-only area, or if the kernel tries to read from a
non-existent address. A user segmentation violation is detected inside the kernel routine “usr_fault()”, if the
mapping of page fails.

TASK.sYmbol.LOADLib "hello" "libc.so.2"

sYmbol.AutoLOAD.CHECK
sYmbol.AutoLOAD.TOUCH "libc.so.2"
OS Awareness Manual QNX | 36©1989-2024 Lauterbach

To trap segmentation violations, set a breakpoint onto the label “usr_fault”. This function is called with three
parameters:

• “code_signo” that specifies the signal codes delivered to the thread;

• “thread” specifies, which thread caused the fault;

• “fault_addr” is the address that caused the fault.

On ARM systems these parameters are stored in R0, R1 and R2.
On PowerPC systems these parameters are stored in R3, R4 and R5.

When halted at “usr_fault”, you may load the temporary register set of TRACE32 with the values that are
stored in the thread structure of the faulting thread. See the example script “segv.cmm” in the ~~/demo
directory.

Use Data.List, Var.Local etc. then to analyze the fault.

As soon as debugging is continued (e.g. Step, Go, ...), the original register settings at “bad_area” are
restored.
OS Awareness Manual QNX | 37©1989-2024 Lauterbach

QNX Commands

TASK.ASINFO Display address space information

Displays information about the QNX address spaces, similar to the “pidin syspage=asinfo” command of
QNX. This command is available, even if “pidin” is not included in your image.

TASK.IFS Display directory of IFS

Displays the directory contents of the Image File System (IFS).

This command shows only the directories and files that are available within the IFS. It does not show
directories and files on a different file system, even if it is linked into the IFS.

Format: TASK.ASINFO

Format: TASK.IFS [<process>]

<process> Specify a process magic or name to show the root file system of this
process.

If left empty, the root file system of the kernel is shown.
OS Awareness Manual QNX | 38©1989-2024 Lauterbach

TASK.MMU.SCAN Scan process MMU space

Scans the target MMU of the space ID, specified by the given process, and sets the Debugger MMU
appropriately, to cover the physical to logical address translation of this specific process.

The command walks through all page tables which are defined for the memory spaces of the process and
prepares the Debugger MMU to hold the physical to logical address translation of this process. This is
needed to provide full HLL support. If a process was loaded dynamically, you must set the Debugger MMU
to this process, otherwise the Debugger won’t know where the physical image of the process is placed.

To successfully execute this command, space IDs must be enabled (SYStem.Option.MMUSPACES ON).

Example:

See also MMU Support.

Format: TASK.MMU.SCAN [<process>]

<process> Specify a process magic, space ID or name.
If no argument is specified, the command scans all current processes.

; scan the memory space of the process "hello"
TASK.MMU.SCAN "hello"
OS Awareness Manual QNX | 39©1989-2024 Lauterbach

TASK.Option Set awareness options

Set various options to the awareness.

TASK.PIDIN Display “pidin” like information

Displays information like the “pidin” command of QNX without using “pidin” itself or any other kernel
resources. This command is available, even if “pidin” is not included in your image.

Format: TASK.Option <option>

<option>: THRCTX [ON | OFF]
TTBHV <address>

THRCTX Set the context ID type that is recorded with the real-time trace (e.g. ETM).
If set to on, the context ID in the trace contains thread switch detection.
See Task Runtime Statistics.

TTBHV If QNX is used as a hypervisor, this command sets the translation table base
address of the hypervisor. This is necessary to allow the awareness access to
the hypervisor internals, even if currently a guest is active.

Format: TASK.PIDIN [FAm | FLags | PMEM | MEM]
OS Awareness Manual QNX | 40©1989-2024 Lauterbach

TASK.Process Display processes

Displays the process table of QNX or detailed information about one specific process.

Without any arguments, a table with all created processes will be shown.
Specify a process magic number to display detailed information on that process.

“magic” is a unique ID, used by the OS Awareness to identify a specific process (address of the PCB).

The fields “magic”, “parent”, “sibling” and “child” are mouse sensitive, double clicking on them opens
appropriate windows. Right clicking on them will show a local menu.

Format: TASK.Process [<process>]
OS Awareness Manual QNX | 41©1989-2024 Lauterbach

TASK.QVM Display VMs

If QNX is used as a hypervisor, this command displays a table of VMs or detailed information about one
specific VM.

Without any arguments, a table with all created VMs will be shown. Specify a VM magic, name or ID to
display detailed information about that VM.

TASK.SHMEM Display contents of shmem

Displays the contents of the physical address pages of the given shared memory file.

Format: TASK.QVM [<vm>]

NOTE: This feature is only available if at least one qvm process is running, and if the
symbol information of the process "qvm" is loaded.

Format: TASK.SHMEM <shmem_file_path>

<shmem_file_path> Specify a fully qualified path name to the shmem file.
OS Awareness Manual QNX | 42©1989-2024 Lauterbach

Example:

TASK.SLOGGER2 Display contents of slogger2 buffers

Displays the contents of buffers created by slogger2.

Example:

; show the contents of shared memory named “myshmem”

TASK.SHMEM “/dev/shmem/myshmem”

Format: TASK.SLOGGER2 <slogger2_buffer_name>

<slogger2_buffer_name> Specify a slogger 2 buffer name.

NOTE: This feature heavily depends on the used QNX version and slogger2 daemon.

Contact Lauterbach support if you see inconsistencies in the buffer display.

; show the contents of slogger2 buffer named "random.6"

TASK.SLOGGER2 "random.6"
OS Awareness Manual QNX | 43©1989-2024 Lauterbach

TASK.sYmbol Process symbol management

The TASK.sYmbol command group helps to load and unload symbols of a given process or library. In
particular the commands are:

TASK.sYmbol.DELete Unload process symbols and MMU

When debugging of a process is finished, or if the process exited, you should remove loaded process
symbols and MMU entries. Otherwise the remaining entries may interfere with further debugging.
This command deletes the symbols of the specified process.

TASK.sYmbol.LOAD Load process symbols and MMU

TASK.sYmbol.LOAD Unload process symbols and MMU

TASK.sYmbol.LOADLib Load library symbols

TASK.sYmbol.DELeteLib Unload library symbols

TASK.sYmbol.Option Set symbol management options

Format: TASK.sYmbol.DELete <process>

<process> Specify the process name (in quotes) or magic to unload the symbols of this
process.
OS Awareness Manual QNX | 44©1989-2024 Lauterbach

TASK.sYmbol.DELeteLib Unload library symbols

When debugging of a library is finished, or if the library is removed from the kernel, you should remove
loaded library symbols. Otherwise the remaining entries may interfere with further debugging.
This command deletes the symbols of the specified library.

Example:

See also chapter “Debugging Into Shared Libraries”.

TASK.sYmbol.LOAD Load process symbols and MMU

Specify the process name (in quotes) or magic to load the symbols of this process.

In order to debug a user process, the debugger needs the symbols of this process (see chapter “Debugging
User Processes”).
This command retrieves the appropriate space ID and loads the symbol file of an existing process. Note that
this command works only with processes that are already loaded in QNX (i.e. processes that show up in the
TASK.Process window).

The actual command used for loading the symbols can be changed with TASK.sYmbol.Option
LOADCMD.

Format: TASK.sYmbol.DELeteLib <process> <library>

<process> Specify the process to which the desired library belongs (name in quotes
or magic).

<library> Specify the library name in quotes. The library name must match the
name as shown in TASK.Process <process>, ”libraries”.

TASK.sYmbol.DELeteLib “hello" "libc-2.2.1.so"

Format: TASK.sYmbol.LOAD <process>
OS Awareness Manual QNX | 45©1989-2024 Lauterbach

TASK.sYmbol.LOADLib Load library symbols

As first parameter, specify the process to which the desired library belongs (name in quotes or magic).
Specify the library name in quotes as second parameter. The library name must match the name as shown
in TASK.Process <process>, ”libraries”.

In order to debug a library, the debugger needs the symbols of this library, relocated to the correct addresses
where QNX linked this library. This command retrieves the appropriate load addresses and loads the .so
symbol file of an existing library. Note that this command works only with libraries that are already loaded in
QNX (i.e. libraries that show up in the TASK.Process <process> window).

Example:

See also chapter “Debugging Into Shared Libraries”.

TASK.sYmbol.Option Set symbol management options

Set a specific option to the symbol management.

LOADCMD:

This setting is only active, if the symbol autoloader for processes is off.

TASK.sYmbol.LOAD uses a default load command to load the symbol file of the process. This loading
command can be customized using this option with the command enclosed in quotes. Two parameters are
passed to the command in a fixed order:

Format: TASK.sYmbol.LOADLib <process> <library>

TASK.sYmbol.LOADLib "hello" "libc-2.2.1.so"

Format: TASK.sYmbol.Option <option>

<option>: LOADCMD <command>
LOADLCMD <command>
MMUSCAN [ON | OFF]
AutoLoad <option>

%s Name of the process

%x Space ID of the process
OS Awareness Manual QNX | 46©1989-2024 Lauterbach

Examples:

LOADLCMD:

This setting is only active, if the symbol autoloader for libraries is off.

TASK.sYmbol.LOADLib uses a default load command to load the symbol file of the library. This loading
command can be customized using this option with the command enclosed in quotes. Three parameters are
passed to the command in a fixed order:

Examples:

MMUSCAN:

This option controls, if the symbol loading mechanisms of TASK.sYmbol scan the MMU page tables of the
loaded components, too. When using TRANSlation.TableWalk, then switch this off.

AutoLoad:

This option controls, which components are checked and managed by the symbol autoloader:

The options are set *additionally*, not removing previous settings.

TASK.sYmbol.Option LOADCMD "Data.LOAD.Elf %s 0x%x:0 /NoCODE /NoClear"

TASK.sYmbol.Option LOADCMD "DO myloadscript %s 0x%x"

%s name of the library

%x space ID of the library

%x load address of the library.

TASK.sYmbol.Option LOADLCMD "D.LOAD.Elf %s 0x%x:0x%x /NoCODE /NoClear"

TASK.sYmbol.Option LOADLCMD "DO myloadlscript %s 0x%x 0x%x"

Process Check processes

Library Check all libraries of all processes

CurrLib Check only libraries of current process

ALL Check processes, and all libraries

NoProcess Don’t check processes

NoLibrary Don’t check libraries

NONE Check nothing.
OS Awareness Manual QNX | 47©1989-2024 Lauterbach

TASK.Thread Display threads

Displays the thread table of QNX or detailed information about one specific thread.

Without any arguments, a table with all created threads will be shown.
Specify a thread magic number to display detailed information on that thread.

“magic” is a unique ID, used by the OS Awareness to identify a specific thread (address of the TCB).

The fields “magic” and “owner” are mouse sensitive. Double-clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

Format: TASK.Thread [<thread>]
OS Awareness Manual QNX | 48©1989-2024 Lauterbach

TASK.TLOGger Display tracelogger buffer

TASK.TLOGger displays the kernel internal buffer of the kernel tracelogger feature.

See QNX documentation for tracelogger. “tracelogger” is only available in intrumented QNX kernels and
must be started in QNX to fill the kernel buffers

TASK.TLOGger only displays the kernel buffers. As soon as they are flushed to the file, they're gone from
the kernel buffers. I.e. TASK.TLOGger shows only data as long as "tracelogger" is still active.

Example:

Format: TASK.TLOGger [<option> [/<option> [...]]]

<option>: Reverse
Filter Control | Kercall | Int | Process | Thread | coMm

Reverse Displays the most recent entries first.

Filter Filter the given class of event. You can specify this option several
times to filter several classes.

; display tracelogger buffer in reverse order and
; do not display kernel call events and control events
TASK.TLOGger /Reverse /Filter Kercall /Filter Control
OS Awareness Manual QNX | 49©1989-2024 Lauterbach

TASK.TLOGger.VMLOGger Copy tracelogger buffer to LOGGER

TASK.TLOGger.VMLOGger copies the thread state entries of the kernel internal tracelogger buffer to a
debugger-internal buffer in virtual memory (VM:), using the LOGGER structure layout.
In SMP systems, specify the cpu number of the events to copy.

See QNX documentation for tracelogger. “tracelogger” is only available in intrumented QNX kernels and
must be started in QNX to fill the kernel buffers

TASK.TLOGger.VMLOGger only copies the kernel buffers. As soon as they are flushed to the file, they're
gone from the kernel buffers. I.e. TASK.TLOGger.VMLOGger works only as long as "tracelogger" is still
active.

Activate the LOGGER and copy the buffers with:

After this, you can use the Logger contents for Task Runtime Statistics and Task State Analysis.

Format: TASK.TLOGger.VMLOGger [<cpu>]

Trace.METHOD Logger
Logger.RESet
Logger.ADDRESS AVM:0x1000
Logger.TimeStamp Up
Logger.TimeStamp.Rate 100000.
Logger.Init
TASK.TLOGger.VMLOGger
Logger.ARM
Logger.OFF
OS Awareness Manual QNX | 50©1989-2024 Lauterbach

TASK.Watch Watch processes

The TASK.Watch command group builds a watch system that watches your QNX target for specified
processes. It loads and unloads process symbols automatically. Additionally it covers process creation and
may stop watched processes at their entry points.

In particular the watch commands are:

TASK.Watch.ADD Add process to watch list

Adds a process to the watch list.

Please see TASK.Watch.View for details.

TASK.Watch.DELete Remove process from watch list

Removes a process from the watch list.

Please see TASK.Watch.View for details.

TASK.Watch.View Activate watch system and show watched processes

TASK.Watch.ADD Add process to watch list

TASK.Watch.DELete Remove process from watch list

TASK.Watch.DISable Disable watch system

TASK.Watch.ENable Enable watch system

TASK.Watch.DISableBP Disable process creation breakpoints

TASK.Watch.ENableBP Enable process creation breakpoints

Format: TASK.Watch.ADD <process>

<process> Specify the process name (in quotes) or magic.

Format: TASK.Watch.DELete <process>

<process> Specify the process name (in quotes) or magic.
OS Awareness Manual QNX | 51©1989-2024 Lauterbach

TASK.Watch.DISable Disable watch system

Disables the complete watch system. The watched processes list is no longer checked against the target
and is not updated. You’ll see the TASK.Watch.View window grayed out.

This feature is useful if you want to keep process symbols in the debugger, even if the process terminated.

TASK.Watch.DISableBP Disable process creation breakpoints

Prevents the debugger from setting on-chip breakpoints for the detection of process creation. After executing
this command, the target will run in real-time. However, the watch system can no longer detect process
creation. Automatic loading of process symbols will still work.

This feature is useful if you’d like to use the on-chip breakpoints for other purposes.

Please see TASK.Watch.View for details.

TASK.Watch.ENable Enable watch system

Enables the previously disabled watch system. It enables the automatic loading of process symbols as well
as the detection of process creation.

Please see TASK.Watch.View for details.

Format: TASK.Watch.DISable

Format: TASK.Watch.DISableBP

Format: TASK.Watch.ENable
OS Awareness Manual QNX | 52©1989-2024 Lauterbach

TASK.Watch.ENableBP Enable process creation breakpoints

Enables the previously disabled on-chip breakpoints for detection of process creation.

Please see TASK.Watch.View for details.

TASK.Watch.View Show watched processes

Activates the watch system for processes and shows a table of the watched processes.

Description of Columns in the TASK.Watch.View Window

Format: TASK.Watch.ENable

Format: TASK.Watch.View [<process>]

NOTE: This feature may affect the real-time behavior of the target application!
Please see below for details.

<process> Specify a process name for the initial process to be watched.

process The name of the process to be watched.

spaceid The current space ID of the watched process.
If grayed, the debugger is currently not able to determine the space ID of the
process (e.g. the target is running).
OS Awareness Manual QNX | 53©1989-2024 Lauterbach

The watch system for processes is able to automatically load and unload the symbols of a process,
depending on their state in the target. Additionally, the watch system can detect the creation of a process
and halts the process at its entry point.

The watch system for processes is active as long as the TASK.Watch.View window is open or iconized. As
soon as this window is closed, the watch system will be deactivated.

Automatic Loading and Unloading of Process Symbols

In order to detect the current processes, the debugger must have full access to the target, i.e. the target
application must be stopped (with one exception, see below for creation of processes). As long as the target
runs in real time, the watch system is not able to get the current process list, and the display will be grayed
out (inactive).

If the target is halted (either by hitting a breakpoint, or by halting it manually), the watch system starts its
work. For each of the processes in the watch list, it determines the state of this process in the target.

If a process is active on the target, which was previously not found there, the watch system loads the
appropriate symbol files. In fact, it executes TASK.sYmbol.LOAD for the new process.

If a watched process was previously loaded but is no longer found on the QNX process list, the watch
system unloads the symbols. The watch system executes TASK.sYmbol.DELete for this process.

If the process was previously loaded and is now found with another space ID (e.g. if the process terminated
and started again), the watch system first removes the process symbols and reloads them to the appropriate
space ID.

You can disable the loading / unloading of process symbols with the command TASK.Watch.DISable.

state The current watch state of the process.
If grayed, the debugger is currently not able to determine the watch state.
no process: The debugger couldn’t find the process in the current QNX process
list.
no symbols: The debugger found the process and loaded the MMU settings of the
process but couldn’t load the symbols of the process (most likely because the
corresponding symbol files were missing).
loaded: The debugger found the process and loaded the process’s MMU settings
and symbols.

entry The process entry point, which is main().
If grayed, the debugger is currently not able to detect the entry point or is unable
to set the process entry breakpoint (e.g. because it is disabled with
TASK.Watch.DISableBP).

TASK.Watch.ADD Adds processes to the watch list.

TASK.Watch.DELete Removes processes from the watch list.
OS Awareness Manual QNX | 54©1989-2024 Lauterbach

Detection of Process Creation

To halt a process at its main entry point, the watch system can detect the process creation and set the
appropriate breakpoints.

To detect the process creation, the watch system sets an on-chip breakpoint on a kernel function that is
called upon creation of processes. Every time the breakpoint is hit, the debugger checks if a watched
process is started. If not, it simply resumes the target application. If the debugger detects the start of a newly
created (and watched) process, it sets an on-chip breakpoint onto the main entry point of the process
(main()) and resumes the target application. A short while after this, the main breakpoint will hit and halt
the target at the entry point of the process. The process is now ready to be debugged.

If you don’t want the watch system to set breakpoints, you can disable them with the command
TASK.Watch.DISableBP. Of course, detection of process creation won’t work then.

NOTE: This feature uses one permanent on-chip breakpoint and one temporary on-chip
breakpoint when a process is created. Please ensure that at least those two
on-chip breakpoints are available when using this feature.

Upon every process creation, the target application is halted for a short time and
resumed after searching for the watched processes. This impacts the real-time
behavior of your target.
OS Awareness Manual QNX | 55©1989-2024 Lauterbach

QNX PRACTICE Functions

There are special definitions for QNX specific PRACTICE functions.

TASK.ASINFO.SIZE() Size of address space

Returns the size of a QNX address space specified by the address space name and index.

Parameter and Description:

Return Value Type: Hex value.

TASK.ASINFO.START() Start of address space

Returns the start address of a QNX address space specified by the address space name and index.

Parameter and Description:

Return Value Type: Hex value.

Syntax: TASK.ASINFO.SIZE("<asinfo_name>",<index>)

<asinfo_name> Parameter Type: String.
Name of the QNX address space

<index> Parameter Type: Decimal or hex or binary value.
Index of the entry for the given address space, if an address space covers
several ranges.
Returns -1 if the index is bigger than available address ranges.

Syntax: TASK.ASINFO.START("<asinfo_name>",<index>)

<asinfo_name> Parameter Type: String.
Name of the QNX address space

<index> Parameter Type: Decimal or hex or binary value.
Index of the entry for the given address space, if an address space covers
several ranges.
Returns -1 if the index is bigger than available address ranges.
OS Awareness Manual QNX | 56©1989-2024 Lauterbach

TASK.CONFIG() OS Awareness configuration information

Parameter and Description:

Return Value Type: Hex value.

TASK.CORE.ASSIGN() Core assignment
x86/x64

Returns the core assignment of the specified process.

QNX may change the order of the cores between different runs. This means, core number 1 in QNX may be
assigned to different physical cores when rebooting.

This function returns the actual used core assignment string to be used with CORE.ASSIGN.

Return Value Type: String.

TASK.CURRENT() Current process or thread

Return the current process, thread or space ID.

Parameter Type: String (without quotation marks).

Parameter and Description:

Syntax: TASK.CONFIG(magic | magicsize)

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

Syntax: TASK.CORE.ASSIGN()

Syntax: TASK.CURRENT(process | thread | spaceid)

process Returns the current process magic number.

thread Returns the current thread magic number.

spaceid Returns the current space ID.
OS Awareness Manual QNX | 57©1989-2024 Lauterbach

Return Value Type: Hex value.

TASK.LIB.ADDRESS() Address of library

Returns the start address of the given library used by the specified process.

Parameter and Description:

Return Value Type: Hex value.

Syntax: TASK.LIB.ADDRESS("<library_name>",<process_magic>)

<library_name> Parameter Type: String (with quotation marks).

<process_magic> Parameter Type: Decimal or hex or binary value.
OS Awareness Manual QNX | 58©1989-2024 Lauterbach

TASK.PROC.ID() Process ID

Returns the PID of the specified process.

Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

TASK.PROC.MAGIC() Magic number of process

Returns the magic number of the specified process.

Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

TASK.PROC.NAME() Name of process

Returns the name of the specified process.

Parameter Type: Decimal or hex or binary value.

Return Value Type: String.

TASK.PROC.SID2MAGIC() Process of space ID

Returns the magic number of a process with the given space ID.

Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

Syntax: TASK.PROC.ID(<process_magic>)

Syntax: TASK.PROC.MAGIC("<process_name>")

Syntax: TASK.PROC.NAME(<process_magic>)

Syntax: TASK.PROC.SID2MAGIC(<space_id>)
OS Awareness Manual QNX | 59©1989-2024 Lauterbach

TASK.PROC.SPACE() Space ID of process

Returns the debugger MMU space ID of the specified process.

Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

TASK.PROC.THREADS() List of threads

Returns the next magic in the thread list of the specified process.

Parameter and Description:

Return Value Type: Hex value.

Return Value and Description:

TASK.PROC.TTB() TTB of process

Returns the translation table base address of the specified process.

Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

Syntax: TASK.PROC.SPACE("<process_name>")

Syntax: TASK.PROC.THREADS(<process_magic>,<thread_magic>)

<process_magic> Parameter Type: Decimal or hex or binary value.

<thread_magic> Parameter Type: Decimal or hex or binary value.
Use zero as <thread_magic> for the first thread.

 -1 Returns -1 if no further thread available.

<thread_magic> Returns the next magic in list.

Syntax: TASK.PROC.TTB(<process_magic>)
OS Awareness Manual QNX | 60©1989-2024 Lauterbach

TASK.QVM.FORMAT() Machine ID of VM

Returns the (QNX internal) format of a VM as value.

Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

TASK.QVM.MAGIC() Magic number of VM

Returns the magic number of the specified VM.

Parameter Type: String.

Return Value Type: Hex value.

TASK.QVM.MID() Machine ID of VM

Returns the machine ID of the specified VM.

Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

TASK.QVM.NAME() Name of VM

Returns the name of the specified VM.

Parameter Type: Decimal or hex or binary value.

Return Value Type: String.

Syntax: TASK.QVM.FORMAT(<qvm_magic>)

Syntax: TASK.QVM.MAGIC(<qvm_name>)

Syntax: TASK.QVM.MID(<qvm_magic>)

Syntax: TASK.QVM.NAME(<qvm_magic>)
OS Awareness Manual QNX | 61©1989-2024 Lauterbach

TASK.QVM.VMLIST() List of VMs

Returns the first or next magic in the VM list.

Parameter and Description:

Return Value and Description:

Syntax: TASK.QVM.VMLIST(<qvm_magic>)

<qvm_magic> Parameter Type: Decimal or hex or binary value.
Use zero as <qvm_magic> to get the magic of the first VM.

<qvm_magic> Returns the next magic in the VM list.

0 Returns 0 if no further VM available.
OS Awareness Manual QNX | 62©1989-2024 Lauterbach

Appendix

Appendix A: Kernel debug information

In QNX version 6.5 and 6.6, the standard installation does not include debug information of the kernel, i.e.
you will not be able to see the internal structures of a process or thread. The QNX awareness does not need
this, so it’s sufficient to use the standard kernel. However, if you want access to these internal structures, you
have to install and use the debug version. Please follow this sequence to create kernel symbol files:

1. Locate the debug info files in the QNX SDP installation media, in the subdirectory
“debugging_info”, or download "QNX Software Development Platform 6.x.x [Build xxxxxxxxxxxx]
- Full Installation Debug Info Tar [For Reduced DVD]" from the QNX developer network download
site.

2. Extract your target architecture’s (e.g. “armle”) debug files to a temporary directory.

3. Copy the <arch>/boot/sys/procnto*-xxxxxxxxxxxx.sym files to the QNX installation directory
target/qnx6/<arch>/boot/sys/ and remove the .sym extension from these files.

4. Open your system builder project (project.bld) and set the “System” properties “Create startup
sym file?” to “Yes”, “Create proc sym file?” to “Yes” and for “Procnto” select the “procnto*-
xxxxxxxxxxxx” file.

5. Rebuild the image.
OS Awareness Manual QNX | 63©1989-2024 Lauterbach

	OS Awareness Manual QNX
	History
	Overview
	Terminology
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Quick Configuration Guide
	Hooks & Internals in QNX
	Requirements for Debugging
	Requirements for Tracing
	Requirements for QNX Hypervisor

	Debug Features
	Display of Kernel Resources
	Task Stack Coverage
	Task-Related Breakpoints
	Task Context Display
	MMU Support
	Space IDs
	MMU Declaration
	Scanning System and Processes

	Symbol Autoloader
	SMP Support
	Dynamic Task Performance Measurement
	QNX specific Menu

	Trace Features
	Task Runtime Statistics
	Task State Analysis
	Function Runtime Statistics
	QNX specific Menu for Tracing

	Debugging QNX Components
	Initial Program Loader (IPL)
	QNX Kernel
	Downloading the QNX Image
	Debugging the Kernel Startup
	Debugging the Kernel

	User Processes
	Debugging the Process
	Debugging into Shared Libraries
	Debugging QNX Threads

	Trapping Segmentation Violation

	QNX Commands
	TASK.ASINFO Display address space information
	TASK.IFS Display directory of IFS
	TASK.MMU.SCAN Scan process MMU space
	TASK.Option Set awareness options
	TASK.PIDIN Display “pidin” like information
	TASK.Process Display processes
	TASK.QVM Display VMs
	TASK.SHMEM Display contents of shmem
	TASK.SLOGGER2 Display contents of slogger2 buffers
	TASK.sYmbol Process symbol management
	TASK.sYmbol.DELete Unload process symbols and MMU
	TASK.sYmbol.DELeteLib Unload library symbols
	TASK.sYmbol.LOAD Load process symbols and MMU
	TASK.sYmbol.LOADLib Load library symbols
	TASK.sYmbol.Option Set symbol management options
	TASK.Thread Display threads
	TASK.TLOGger Display tracelogger buffer
	TASK.TLOGger.VMLOGger Copy tracelogger buffer to LOGGER
	TASK.Watch Watch processes
	TASK.Watch.ADD Add process to watch list
	TASK.Watch.DELete Remove process from watch list
	TASK.Watch.DISable Disable watch system
	TASK.Watch.DISableBP Disable process creation breakpoints
	TASK.Watch.ENable Enable watch system
	TASK.Watch.ENableBP Enable process creation breakpoints
	TASK.Watch.View Show watched processes

	QNX PRACTICE Functions
	TASK.ASINFO.SIZE() Size of address space
	TASK.ASINFO.START() Start of address space
	TASK.CONFIG() OS Awareness configuration information
	TASK.CORE.ASSIGN() Core assignment
	TASK.CURRENT() Current process or thread
	TASK.LIB.ADDRESS() Address of library
	TASK.PROC.ID() Process ID
	TASK.PROC.MAGIC() Magic number of process
	TASK.PROC.NAME() Name of process
	TASK.PROC.SID2MAGIC() Process of space ID
	TASK.PROC.SPACE() Space ID of process
	TASK.PROC.THREADS() List of threads
	TASK.PROC.TTB() TTB of process
	TASK.QVM.FORMAT() Machine ID of VM
	TASK.QVM.MAGIC() Magic number of VM
	TASK.QVM.MID() Machine ID of VM
	TASK.QVM.NAME() Name of VM
	TASK.QVM.VMLIST() List of VMs

	Appendix
	Appendix A: Kernel debug information

