LAUTERBACH A

OS Awareness Manual
Nucleus PLUS

Release 09.2024

OS Awareness Manual Nucleus PLUS

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
OS AWareness MaANUAISccciicecrriiiissiriinissss s rssssss s s s ssss e s eassam s s e e s s amn e s enasame s e e ansammn e nnnsan r—~
OS Awareness Manual Nucleus PLUS ... e s s s 1
L 1= (o 4

O oY = 4
Brief Overview of Documents for New Users 5
Supported Versions 5
L0704} T 11T = Lo o 6
Manual Configuration 6
Automatic Configuration 7
Quick Configuration Guide 7
Hooks & Internals of Nucleus PLUS 8
=Y 1 = 9
DBUG+ Terminal Emulation 9
Display of Kernel Resources 9
Display of History Component 10
Task Stack Coverage 10
Task-Related Breakpoints 11
Task Context Display 12
SMP Support 12
Dynamic Task Performance Measurement 13
Task Runtime Statistics 13
Task State Analysis 14
Function Runtime Statistics 15
Nucleus specific Menu 17
Debugging Nucleus Processes 17
Symbol Autoloader 18

LAV T T= T3 005 T T 1 T 20
TASK.DynMem Display dynamic memory status 20
TASK.EventStat Display event group status 20
TASK.FDT Display flattened device tree 21
TASK.Hlsr Display HISRs 21
TASK.HISTory Display Nucleus history 22
©1989-2024 Lauterbach OS Awareness Manual Nucleus PLUS 2

TASK.MbxStat Display mailbox status 22
TASK.PartMem Display partition memory status 23
TASK.PipeStat Display pipe status 23
TASK.ProcList Display process list 24
TASK.QueueStat Display queue status 24
TASK.REGistry Display registry entries 25
TASK.SemaStat Display semaphore status 25
TASK.TaskStat Display task status 25
TASK.TImerstat Display timer status 26
Nucleus PLUS PRACTICE FUNCLIONSccccviiiiemiiriinssisinsssssssssssssmss s ssssss s s ssssms s s ssssssms s snnass 27
TASK.CONFIG() OS Awareness configuration information 27
TASK.DM.AVAIL() Bytes of dyn. pool 27
TASK.PL.ENTRY() Entry address of process 27
©1989-2024 Lauterbach OS Awareness Manual Nucleus PLUS | 3

OS Awareness Manual Nucleus PLUS

History

Version 05-Oct-2024

04-Feb-21

Overview

Removing legacy command TASK. TASKState.

/A TRACE32 for Nucleus
File Edit View Var Break Run CPU Misc Trace Perf Cov Window Help
I+ e[rn|E ool =ums
&% B:TASK TaskStat == " pisplay Queuss 3:TASK.QueueStat
fragic name status scheduTe [prio [preem slice Display P 1c name start gsize availl msgs [typ [msize [Styp
001991C4 |state QUELE 3. 0. | YE5 |DISABL play Cipes 99200 [process 00199318 1. 1. 0. [FIX 1. |FIFO
001A86C4 |DevDisc |[EVENTS 23. 3.| No |DISABL Display Semaphores P94ES |process (00199530 1. 1. 0. |FIX| 1. |FIFO
001ADB44 |DED_ADV QUEUE 2. 0. | YES |DISABL X = 97878 |[QUEUELOD 002FBA40 100 100. 0. |FIX 1. [FIFO
001AD298 [PMCTean |[QUEUE 2. 0. | YES 10.] Display Events 4D030 |SocketQ 002DBO1C 30. 30. 0. |FIX 2. [FIFO
001BDASC |PMError QUEUE 1. 0. | YES 10.) Display T DeCE4 |SNTPC_Q 002D7804 10. 10. 0. |FIX 1. |FIFO
001ADAEC |DVES.OP | STOPPED 0. o. | no |prsast isplay Timers ASB28 |CLNRQUE 002D4BD0 10. | 10. 0. [FIX 1. |FIFO
001AD984 |WDTask EVENTS 1. 10. | YES 5. Display Partitions ACD4C (DHCPBEQ 002C0DD0 80. 80. 0. |FIX 2. |[FIFO
001BF530 |USBH-5t SEMA 1. 8. | YES |DISABL - ACB60 (EviQueu 002CB278 192. | 192. 0. |FIX 3. [FIFO
001BF66C [USBH-HU |[QUEUE 1. 10. | YES |DISABL Display Dyn. Mem, C992C |event_q 001C9994 32, 3z. 0. |FIX 2. |PRIO
002BF318 |SDIOWHe EVENTS 1. 3. | YES |DISAEBL Display HISRs A3BCC |BCM_ERR 002C2B00 50. 50. 0. [FIX 5. |PRIO
001A7E94 |SDIO.He |EVENTS 1 3 | ves |pTsasl play BF780 |HubQueu 001BF740 16. | 16. 0. [FIX 1. |FIFO
001C985C |MS_EV_R QUELE 1. 101. | YES 20.) Display Processes AD468 |DVFSLOP 001ADS B0 1. 1. 0. [FIX 1. |FIFO
001CA2A4 |NUFTask |STOPPED 0. [103. | YES |DISABL AECO8 PMERR 001BDSF4 60. | 60. 0. [FIX| 20. |FIFO
001AC6A8 |EvntDis QUELE 179. 3. | YES |DISABL Stack C » AD368 PMC]E&_” 001ED1E4 4. 4. 0. |FIX 4. |FIFQ
001AC778 |TIMER EVENTS 2. 3. | YES |pIsaBl 2tack Coverage ADC14 |DBGADVQ 00LADCE4 80. | 80. 0. [FIX 4. |FIFO
001ACBA4 |DHCPECL STOPPED 4. 3. NO |DISABL _
001ACCT4 |DHCPGEV QUEUE 1. 3. | YES |DISAEL Symbol Autoloader r [3
001A3000 |NETLINK EVENTS 1. 3. | YES |DISABL L
001CAC54 |ETHCFGT EVENTS 1. 17. NO |DISABL
001A8834 |TFTPSER |STOPPED 2. 3.| NO |DISABL o BrTASK.ProcList
001AB95S |FTRSERV |STOFPED 2. - NO |pIsasL agic 1d _[name state Toad addr entr exit [kernel
ornores [sworece WENEn | s | 30| "h Pisasc - || porsszag T o-[kerne =tarted 00000000 (00000000 [0. true |-
q - i 00199358 1. |A:proc_hello.Toad |started ODZFBEFS |DOZF8FFO |0, Talse
C 00199470 2. |A:proc_test.load |stopped 00314460 |00314524 |0, Talse
o B:TASK.STack oa BuTASK.SemaStat =R ERIEE
name [Tow high Towest spare name count |styp waiting [first i
state [00IAI740 D01AZ740 001AZ634 D00D00EF3 Devlist 1. [fito 0. |[none L
DevDisc [001B8AB84 Q01BE280 001BEOE4 0Q00025E0Q protect 1. [prio inh 0. [none
DED_ADV (0O1BC1A4 001BDLAD 001BDO74 QO000DEDD process 1. [prio inh 0. [none
PMCTean [001BDLE4 QO01BDSEQ 001ED4D4 000002F0Q SEMuO 0. |fifo 1. |TASKL3
PMError (001ED&70 O01BDATO 001BD94C Q0000ZDC HTTPCLI 1. [fifo 0. [none
DVF5 OP (001AD584 001AD9B0 001ADS3C 00000363 Display 1. [fifo 0. [none
WDTask (001BE614 OO1BEDEQ 001BECBC 000006AS SHELLCM 1. |prio inh 0. |none
USBH-5t [001EFS814 001C1810 001C173C 00001F28 SHELL 1. [prio inh 0. [none
USBH-HU [001C1824 001C3320 001C36DC QOOO1EES SHELLCM 1. [prio inh 0. [none
SDIO He [00ZCO0Z0 002C1020 002COEDC QO000EBC DHSEMA 1. [prio 0. [none -
4 mn 3
[TaskStat | | MbxStat | [QueueStat] | PipeStat | [SemaStat | [EventStat | [TImerstat | [PartMem | [DynMem | [HIsr | [Proclist || HISTory | [other | [previow |
IST:00001CE0D | |kerme!_ demo-2c72fuc:_commen’TCCT_Cortrol_To_ System+eiC (task) TASK 0 0 |system ready MIX P

The OS Awareness for Nucleus contains special extensions to the TRACE32 Debugger. This manual
describes the additional features, such as additional commands and statistic evaluations.

©1989-2024 Lauterbach

OS Awareness Manual Nucleus PLUS

4

Brief Overview of Documents for New Users

Architecture-independent information:

. “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

. “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently Nucleus is supported and tested for the following versions:
. Nucleus (PLUS) for ARM9/11, Cortex-M/R/A, ColdFire, Microblaze, MIPS, PowerPC;

o Nucleus Versions 1.x to 3.x, 2013.x, 2015.x

©1989-2024 Lauterbach OS Awareness Manual Nucleus PLUS | 5

Configuration

The TASK.CONFIG command loads an extension definition file called “nucleus.t32” (directory
~~/demo/<arch>/kernel/nucleus). It contains all necessary extensions.

Automatic configuration tries to locate the Nucleus internals automatically. For this purpose all symbol tables
must be loaded and accessible at any time the OS Awareness is used.

If a system symbol is not available or if another address should be used for a specific system variable then
the corresponding argument must be set manually with the appropriate address. In this case, use the
manual configuration, which can require some additional arguments.

If you want to display the OS objects “On The Fly” while the target is running, you need to have access to

memory while the target is running. In case of ICD, you have to enable SYStem.MemAccess or
SYStem.CpuAccess (CPU dependent).

Manual Configuration

Manual configuration for the OS Awareness for Nucleus can be used to explicitly define some memory
locations. It is recommended to use automatic configuration.

Format: TASK.CONFIG nucleus <magic_address> <ticktime> <args>

<magic_address> Specifies a memory location that contains the current running task. This
address can be found at the label “TCD_Current_Thread”.

<ticktime> <ticktime> tells the OS Awareness, how many milliseconds one Nucleus
PLUS tick has. This is currently only used in the TASK.HISTory command.
(Don't forget the dot for a decimal number!)

<args> The additional arguments specify the symbols of the object lists. Use them
as shown below:
TCD_Created_Tasks_List MDB_Created_Mailboxes_List
QUD_Created_Queues_List PID_Created_Pipes_List
SMD_Created_Semaphores_List
EVD_Created_Event_Groups_List TMD_Created_Timers_List
PMD_Created_Pools_List DMD_Created_Pools_List

See also the example “~~/demo/<arch>/kernel/nucleus/nucleus.cmm”, which is a sample start-up script.

©1989-2024 Lauterbach OS Awareness Manual Nucleus PLUS | 6

Automatic Configuration

For system resource display and trace functionality, you can do an automatic configuration of the OS
Awareness. For this purpose it is necessary that all system internal symbols are loaded and accessible at
any time, the OS Awareness is used. Each of the TASK.CONFIG arguments can be substituted by '0', which
means that this argument will be searched and configured automatically. For a fully automatic configuration
omit all arguments:

Format: TASK.CONFIG nucleus

If a system symbol is not available, or if another address should be used for a specific system variable, then
the corresponding argument must be set manually with the appropriate address (see Manual Configura-
tion).

See Hooks & Internals for details on the used symbols.

See also the example “~~/demo/<arch>/kernel/nucleus/nucleus.cmm”, which is a sample start-up script.

Quick Configuration Guide

To get a quick access to the features of the OS Awareness for Nucleus with your application, follow
this roadmap:

1. Start the TRACE32 Debugger.
2. Load your application as normal.

3. Execute the command:

TASK.CONFIG ~~/demo/<arch>/kernel/nucleus/nucleus.t32

See “Automatic Configuration”.

4, Execute the command:

MENU.ReProgram ~~/demo/<arch>/kernel/nucleus/nucleus.men

See “Nucleus Specific Menu”.

5. Start your application.
Now you can access the Nucleus extensions through the menu.
If you use Nucleus Processes, please also set up the Symbol Autoloader.

In case of any problems, please carefully read the previous Configuration chapters.

©1989-2024 Lauterbach OS Awareness Manual Nucleus PLUS | 7

Hooks & Internals of Nucleus PLUS

No hooks are used in the kernel.

For retrieving the kernel data structures, the OS Awareness uses the global kernel symbols and structure
definitions. Ensure that the kernel is compiled with debug information and that access to the kernel
structures is possible every time when features of the OS Awareness are used.

Be sure that your application is compiled and linked with debugging symbols switched on.
For detecting the running task, the variable “TCD_Current_Thread” is used.

To find the OS objects, the labels mentioned in “Manual Configuration” are used.

©1989-2024 Lauterbach OS Awareness Manual Nucleus PLUS | 8

Features

The OS Awareness for Nucleus supports the following features.

DBUG+ Terminal Emulation

The terminal emulation window can be used to communicate with the target resident Nucleus debugger,
called DBUG+. The communication via two memory cells requires no external hardware interface. See the
TERM command group for a description of the terminal emulation. On request LAUTERBACH can provide
you with the source code for the target interface routine.

The 68k example (“~~/demo/m68k/kernel/nucleus/nucleus.cmm”) contains this interface and the terminal
emulation for the Nucleus debugger DBUG+.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following
Nucleus PLUS components can be displayed:

TASK TaskStat Tasks
TASK.MbxStat Mailboxes
TASK.QueueStat Queues
TASK.PipeStat Pipes
TASK.SemaStat Semaphores
TASK.EventStat Events

TASK. TImerstat Timers
TASK.PartMem Partitions
TASK.DynMem Dynamic pools
TASK.Hlsr HISRs
TASK.ProcList Processes

For a description of the commands, refer to chapter “Nucleus Commands”.

If your hardware allows memory access while the target is running, these resources can be displayed “On
The Fly”, i.e. while the application is running, without any intrusion to the application.

Without this capability, the information will only be displayed if the target application is stopped.

©1989-2024 Lauterbach OS Awareness Manual Nucleus PLUS | 9

Display of History Component

NOTE: This feature is not available on all platforms. If you'd like to use this feature on your platform, but it is
not yet supported, please contact LAUTERBACH.

If you added the History Component of Nucleus to your application, the OS Awareness can display the
contents of the Nucleus history buffer (which contains kernel calls). See TASK.HISTory for details.

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this
command will open a window displaying with all active tasks. If you specify only a task magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command
TASK.STacK.PATtern (default value is zero).

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and
select the task from the TASK.STacK.* window.

It is recommended to display only the tasks you are interested in because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

To have the task stacks initialized with a pattern, you need to configure the Nucleus kernel accordingly.
Depending on the Nucleus version, this may be the configuration option
CFG_NU_OS_KERN_PLUS_CORE_STACK_FILL or CFG_NU_OS_KERN_PLUS_COMMON_STACK_FILL.

&b B:TASKSTack [E=5EoR 5
name | low high =p % [lowest spare max 10 20 30 40 |
state [001A1740 001AZ2740 [¥

DevDisc |001E8A84 001BB280
DED_ADV (001BC1A4 001EDLAD
PMClean |001ED1E4 001BDSEQ
PMError (001BD670 OO01EDATOD
DVFS OP (001AD584 001ADS80
WDTask |001BE614 001BEDED
USBH-5t [001BF814 001C1810
USBH-HU (001C1824 001C3820
5DI0 He (002C0020 002C1020
5DIO He (002C1030 002C2Z030
M5_EV_R |001C9AA4 001CALTS
NUFTask [001CA388 001CAB33

5% |001BBO&4 000025ED 5%
7% |001BDO74 0O0000EDD 7%
26% |D01ED4D4 QO000ZF0 Z255% |e— =
28% |001BDS4C Q0000ZDC 255 |e—

6% [001ADS3C 000003E8 6%
14% |O01BECEC 000006AS 14%
2% (001C173C 00001FZ8 2%
4% |001C36DC 0000L1EES 3%
8% (002COEDC 00000EEBC]

(1]
6% [001AZ2634 O0000EF4 BFf |m— ~

7% (002C1FOC 00000EDC]
16% 001CADG4 000005C0O 15%
3% |001CAE44 000007EBC 3%
EvntDis [002CB588 002CC528 8% [002CC3EC 00000EGS 7%
TIMERJOOZCCSSS 002CDECO 4% |002CD7CC 00001294 A%

4 m b

©1989-2024 Lauterbach OS Awareness Manual Nucleus PLUS | 10

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

I Break.Set <address>|<range> [I<option>] [TASK <task> Set task-related breakpoint.

J Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

J For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.

This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

NOTE: Task-related breakpoints impact the real-time behavior of the application.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

For example, on ARM architectures: Ifthe RTOS serves the Context ID register at task switches, and ifthe
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

Break.CONFIG.UseContextiD ON Enables the comparison to the whole Context ID register.
Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK . List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,
you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

©1989-2024 Lauterbach OS Awareness Manual Nucleus PLUS | 11

Task Context Display

You can switch the whole viewing context to a task that is currently not being executed. This means that all
register and stack-related information displayed, e.g. in Register, List.auto, Frame etc. windows, will refer
to this task. Be aware that this is only for displaying information. When you continue debugging the
application (Step or Go), the debugger will switch back to the current context.

To display a specific task context, use the command:

I Frame.TASK [<task>]

Display task context.

J Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

o To switch back to the current context, omit all parameters.

To display the call stack of a specific task, use the following command:

I Frame /Task <task>

Display call stack of a task.

If you'd like to see the application code where the task was preempted, then take these steps:

1. Open the Frame /Caller /Task <task> window.
2. Double-click the line showing the OS service call.
Sﬁ B:Frame [::::]II!II[:::]

L. Up | ["¥ Down V| Args Locals Caller Task: "TASKO"

-

—000][TCCT_Control_To_System()

-002|[NU_STeep(ticks = 100)
-003||Task_0_Entry(argc = 0, argv = 0x0)
004 [TCC_Task_shell()

end of frame

-001|[TCC_Suspend_Task({task_ptr = 0x001972C4, suspend_type = 2, cleanup = 0x0, i i

SMP Support

The OS Awareness supports symmetric multiprocessing (SMP).

An SMP system consists of multiple similar CPU cores. The operating system schedules the threads that
are ready to execute on any of the available cores, so that several threads may execute in parallel.
Consequently an application may run on any available core. Moreover, the core at which the application runs

may change over time.

To support such SMP systems, the debugger allows a “system view”, where one TRACE32 PowerView GUI
is used for the whole system, i.e. for all cores that are used by the SMP OS. For information about how to set
up the debugger with SMP support, please refer to the Processor Architecture Manuals.

All core relevant windows (e.g. Register.view) show the information of the current core. The state line of the
debugger indicates the current core. You can switch the core view with the CORE.select command.

©1989-2024 Lauterbach

OS Awareness Manual Nucleus PLUS | 12

Target breaks, be they manual breaks or halting at a breakpoint, halt all cores synchronously. Similarly, a Go
command starts all cores synchronously. When halting at a breakpoint, the debugger automatically switches
the view to the core that hit the breakpoint.

Because it is undetermined, at which core an application runs, breakpoints are set on all cores
simultaneously. This means, the breakpoint will always hit independently on which core the application
actually runs.

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the
PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide
P” (general_ref_p.pdf).

£ B:PERF ListTASK =n| Wl <

(& setup...| 28 onfig..)[Y Goto... || 5] Detailed] [€3, View |y Profile][€ Init |[C Disable|| @ Arm

name ratio 1% 2% 5% 10% 20% 50% 100 |

DEUG+ 65.753% ~

SYSTEM H 19.178%

TASK 2 10.959%

TASK 0O 2. 7405 (e—

TASK 4 1.370% |m— -
4 }

Task Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” in TRACE32 Concepts, page
36 (trace32_concepts.pdf).

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spent in
a task and display it statistically and graphically.

©1989-2024 Lauterbach OS Awareness Manual Nucleus PLUS | 13

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as

Trace.List List. TASK DEFault
Trace.STATistic.TASK
Trace.Chart.TASK
Trace.PROfileSTATistic.TASK

Trace.PROfileChart.TASK

Trace.FindAll Address TASK.CONFIG(magic)

Trace.FindAll CYcle owner OR CYcle context

statistically

colored graph

location

Display task runtime timechart

Display all context ID records

Display trace buffer and task switches

Display task runtime statistic evaluation

“(unknown)”.
#u| Biit.chart.task EI@
[& stup.. || i Gougs... || B8 @nfig... (% Goto... | #3Find... |[4» In | p40ut|[MMFull
-10.000ms -9.000ms -8.000ms -7.0
rangeR| | 1 1 1 I
Qunknownd @
SYSTEM Hiy Il == = = A 2 = =N = = O Em
Ckernel) @l 111 N N NN
DBUGHR| "= =®E =E ®E =®E = =E =B = n
TASK 1@y . = = = = = = = = =
TASK 2@ - - @
TASK Dm0 L
TASK 5@ = L]
£ | B:Trace.STATistic. TASK total min max ratio bar EI@
[& setup... || 71 Groups... || 22 Gonfig... |[= | Detaiied | [Nesting][v{Chart || BProfie |
tasks: 8. total: 16.466ms
range total min max ratio® [|1% 2% 5% 10% 20% 50%

Cunknown) 0.400us 0.400us 0.400us 0.002% [+
SYSTEM H 6.195ms | 119.600us | 193.600us | 37.624%

[

(kernel) . 062ms 5.600us 7.900us 6.450%
DEUGH 171ms 67.100us 68.800us | 19.255%

3.
TASK 1 3.359ms 68. 700us 81.300us | 20.401%
TASK 2 1.793ms | 199.200us | 199.200us | 10.887%
TASK 0 557.500us | 111.100us | 111.600us 3.385%
TASK 5 | 328.000us 65. 600us 65. 600us 1.991% | e———

4 T

Task State Analysis

Display task runtime within fixed time intervals

Display all data access records to the “magic”

Display task runtime within fixed time intervals as

NOTE:

36 (trace32_concepts.pdf).

This feature is only available, if your debug environment is able to trace task
switches and data accesses (program flow trace is not sufficient). It requires
either an on-chip trace logic that is able to generate a data trace, or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” in TRACE32 Concepts, page

The time different tasks are in a certain state (running, ready, suspended or waiting) can be evaluated

statistically or displayed graphically.

©1989-2024 Lauterbach

OS Awareness Manual Nucleus PLUS

14

This feature requires that the following data accesses are recorded:
J All accesses to the status words of all tasks

J Accesses to the current task variable (= magic address)

Adjust your trace logic to record all data write accesses, or limit the recorded data to the area where all TCBs
are located (plus the current task pointer).

Example: This script assumes that the TCBs are located in an array named TCB_array and consequently
limits the tracing to data write accesses on the TCBs and the task switch.

Break.Set Var.RANGE (TCB_array) /Write /TraceData
Break.Set TASK.CONFIG(magic) /Write /TraceData

To evaluate the contents of the trace buffer, use these commands:

Trace.STATistic. TASKState Display task state statistic
Trace.Chart. TASKState Display task state timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

All waiting conditions (in Nucleus PLUS called 'suspend’) are counted as 'waiting'. The conditions ‘finished'
and 'terminated' are counted as 'suspended'. The states 'running’ and ’ready’ calculated as is.

All kernel activities except the scheduler are added to the calling task. The scheduler itself is calculated as
“(kernel)”.

Function Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” in TRACE32 Concepts, page
36 (trace32_concepts.pdf).

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

©1989-2024 Lauterbach OS Awareness Manual Nucleus PLUS | 15

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG (magic) /TraceData

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

To evaluate the contents of the trace buffer, use these commands:

Trace.ListNesting Display function nesting
Trace.STATistic.Func Display function runtime statistic
Trace.STATistic.TREE Display functions as call tree
Trace.STATistic.sYmbol /SplitTASK Display flat runtime analysis
Trace.Chart.Func Display function timechart
Trace.Chart.sYmbol /SplitTASK Display flat runtime timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

©1989-2024 Lauterbach OS Awareness Manual Nucleus PLUS | 16

Nucleus specific Menu

The menu file “nucleus.men” contains a menu with Nucleus PLUS specific menu items. Load this menu with
the MENU.ReProgram command.

You will find a new menu called Nucleus+.

A TRACE32 for Nucleus - O X
File Edit View Var Break Run CPU Misc Trace Perf Cov MNucleus+ Window Help
kA e nE 2R 0]y E BTSN
= Display Mailboxes
+ = a
& & & | a E &| Display Queues
o BrTASK TaskStat [Foules] | Display Pipes

name status zchedule [prio [preem [s1ice Display Semaphores
ERCTASK [QUELE ; -] YES |DISAE Display Events
DevDisc EVENTS NO |DISAE

EvntDis QUEUE

i

YES |DISAR Display Timers

© 08 Ga W O

TIMER EVENTS g YES |DISAE = .
NETLINK |EVENTS 2. vEs |pIsag | Display Partitions
MAIN FINISHED 1 26. | YES 20 Display Dyn. Mem.
Display HISRs
Stack Coverage b —
TaskStat MbxStat | QueueStat = PipeStat | SermaStat | | EventStat othar pravions
SR04 ||ello-ac72lft_com (other) stopped MIX |UP
. The DBUG+ Terminal menu item (if available) brings up a terminal emulation window, which
communicates with the preconfigured DBUG+ debugger.
J The Display menu items launch the kernel resource display windows.
. The Stack Coverage submenu starts and resets the Nucleus specific stack coverage and

provides an easy way to add or remove tasks from the stack coverage window.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

o The Trace menu is extended. In the List submenu, you can choose if you want a trace list window
to show only task switches (if any) or task switches together with default display.

o The Perf menu contains additional submenus for task runtime statistics, task-related function
runtime statistics or statistics on task states.

Debugging Nucleus Processes

Nucleus can load and link additional software parts, so-called “Processes”. Debugging of these processes is
possible with the help of the OS Awareness for Nucleus.

First, load your process into the target. After loading, TASK.ProcList should show the newly loaded
process. Then, load the symbols of the process using the Symbol Autoloader, by either using the
command sYmbol.AutoLOAD.TOUCH, or by right clicking on the process’ “magic” in TASK.ProcList and
selecting “Load Symbols”. After this you have access to all symbols of the process. E.g. set a breakpoint on
main() and start the process. It should halt at its main entry point.

©1989-2024 Lauterbach OS Awareness Manual Nucleus PLUS | 17

Symbol Autoloader

The OS Awareness for Nucleus contains an autoloader, which automatically loads symbol files. The
autoloader maintains a list of address ranges, corresponding Nucleus processes and the appropriate load
command. Whenever the user accesses an address within an address range specified in the autoloader, the
debugger invokes the appropriate command. The command is usually a call to a PRACTICE script that
loads the symbol file to the appropriate addresses.

The command sYmbol.AutoLOAD.List shows a list of all known address ranges/components and their
symbol load commands.

The autoloader reads the target’s tables for the processes and fills the autoloader list with the processes
found on the target. All necessary information, such as load addresses, are retrieved from kernel-internal
information.

I sYmbol.AutoLOAD.CHECKCoMmanD " <action>"

<action> Action to take for symbol load, e.g.
"DO ~~/demo/arm/kernel/nucleus/autoload.cmm"

If an address is accessed that is covered by the autoloader list, the autoloader calls <action> and appends
the load addresses and the space ID of the component to the action. Usually, <action> is a call to a
PRACTICE script that handles the parameters and loads the symbols. Please see the example script
“autoload.cmm” in the ~~/demo directory.

The point in time when the component information is retrieved from the target can be set:

I sYmbol.AutoLOAD.CHECK [ON | OFF | ONGO]

(no argument) A single sYmbol.AutoLOAD.CHECK command refreshes the information
about the target.

ON The debugger automatically reads the information on every go/halt or
step cycle. This significantly slows down the debugger’s speed when
single stepping.

ONGO The debugger automatically reads the information on every go/halt cycle,
but not when single stepping.

OFF no automatic update of the autoloader table will be done, you have to
manually trigger the information read when necessary. To accomplish
that, execute the sYmbol.AutoLOAD.CHECK command without
arguments.

NOTE: The autoloader covers only components that are already started. Components that
are not in the current process table are not covered.

©1989-2024 Lauterbach OS Awareness Manual Nucleus PLUS | 18

[3% Delete Al [© Check |

=]
C:002FBEFE--002F3547 [A:proc_helTo. [0 autoToad.cmm "A:proc_helTo.Toad” Ox1 Ox2FBEF8 Ox2F35E4
C:00314460--0031489F |A:proc_test. 'Iuad do autoload.cmm "A:proc_test.load” Ox1 0x314460 O0x0

©1989-2024 Lauterbach OS Awareness Manual Nucleus PLUS | 19

Nucleus Commands

TASK.DynMem

Display dynamic memory status

Format:

TASK.DynMem <dynamic>

Displays a table with the Nucleus dynamic memory pools. Specifying a dynamic pool magic number will
show you the waiting tasks of that dynamic pool.

o B:TASK.DynMen =0 E=H =
name start poolsz minimum__ [avail type |wait first
SYSMEM 001B668C [1FE49964 (00000020 |[1FCFe670 |FIFO 0. MNONE ~
heap 002FAGED |00QOFFCS |00000008 |O000OFFAS |FIFO 0. NONE
UC-USEP 20000010 (00100000 |00000020 |OOOFEFEQ |FIFO 0. NONE
C-USEP 001BEDF4 (00100000 (00000020 |000F348C |FIFO 0. NONE
USYSMEM 20000000 |[1FFFFFFO |00000020 |[1FESBES40 |FIFO 0. NONE

M

'wait' shows the number of task waiting on this pool.
first' is the first task waiting.

TASK.EventStat

Display event group status

Format:

TASK.EventStat <evenigr>

Displays a table with the Nucleus event groups. Specifying an event group magic number will show you the
waiting tasks of that event group.

ofb B:TASK.EventStat =n| Wl <
Tlags waiting [first |
FFFFFFFE 0. |[none ~
001A3728 FFFFFFFE 0. |none
001ABG2C 0ooo0000 1. |DevDisc
001E7408 0ooo0000 0. |none
001E74CC 0ooo0000 0. |none
001ADEZ0 0ooo0000 1. |WDTask
001AD274 0ooo0000 0. |none
00144504 0ooo0000 1. |ETHCFGT
001A7DAS 0ooo0000 0. |none
001BES D4 0oo00000 0. |none &
4 m 3

'waiting' shows the number of task waiting on this event group.
first' is the first task waiting.

©1989-2024 Lauterbach

OS Awareness Manual Nucleus PLUS | 20

TASK.FDT Display flattened device tree

Format: TASK.FDT

Shows the flattened device tree (aka DTB) used by Nucleus.

& BTASKFDT =R o
Tdt |
header ~
memory reservation block
= structure block

start address = 000000000002BEBS

compatible = xTnx,zyngmp-zcul02-revB;
#address-cells = 00000002;
#size-cells = 00000002;
model = ZyngMPLZCUL02.RevE;
cpus
cpu_opp_table
= dec {
compatible = arm,dcc;
status = okay;
u-boot ,dm-pre-reloc = ;

o

pinctrl

power -domains

mailbox@ffaa0400

pmu

psci

firmware v

HEHEEH

TASK.Hlsr Display HISRs

Format: TASK_.Hlsr <hisr>

Displays a table with the Nucleus HISRs. Specifying a HISR magic number will show you detailed
information on that HISR.

o BiTASK.HIsr =n| Wl <
name prio [activate schedule [entry |
SYSTEMuL 2. 0. 5851. 00005C34 TMC_Timer_HISR ~
CANLHIS 0. 0. 0. 000C4CD0 CAN_Tgt_Driver_HISR
buf_sus 2. 0. 0. 00087BCE MEM_Buffer_Suspension
SDHISR 2. 0. 116. 0000EESC SDC_Serial_HISR
SPT 0. 0. 0. 000E7DDC SPI_Handler_Entry A
I2C 0. 0. 0. 001491AC I2C_Handler_Entry =
CANRxH 0. 0. 0. 000ESE88 CAN_Rx_Handler_Entry
CANTxH 0. 0. 0. 000ESD90 CAN_Tx_Handler_Entry
USBHISR 1. 0. 0. 000473BC usbh_hisr
USEF_HI 1. 0. 0. 0002F020 usbf_hisr

1 3

The fields “magic”, “name” and “entry” are mouse sensitive, double clicking on them opens appropriate
windows. Right clicking a HISR magic number will show a local menu.

©1989-2024 Lauterbach OS Awareness Manual Nucleus PLUS | 21

TASK.HISTory Display Nucleus history

Format: TASK.HISTory

This feature is not available on all platforms. If you'd like to use this feature on your platform, but it is not yet
supported, please contact Lauterbach.

This command shows a window with the content of the Nucleus History Component entries. This is only

available, if you included the Nucleus History Component in your application. The display is sorted with
showing the oldest entry first and the newest entry last.

Some fields (depending on their meaning) are mouse sensitive. Double click on them to get more
information. Double clicking on the entry number will show you the raw data.

TASK.MbxStat Display mailbox status

Format: TASK.MbxStat <mailbox>

Displays a table with the Nucleus mailboxes. Specifying a mailbox magic number will show you the message
content and the waiting tasks of that mailbox.

o B:TASK.MbxStat = =R
magic name type msg waiting first |
00041344 MAILBOX1 PRIO NO 0. NONE -

message content
ho message present

waiting tasks
no tasks waiting

The field 'msg' specifies, whether a message is present or not.
‘waiting' shows the number of task waiting on this mailbox.
first' is the first task waiting.

©1989-2024 Lauterbach OS Awareness Manual Nucleus PLUS | 22

TASK.PartMem Display partition memory status

Format: TASK.PartMem <part>

Displays a table with the Nucleus partition memory pools. Specifying a partition magic number will show you
the waiting tasks of that partition pool.

b BuTASK.PartMem

[E=5EoR 5
magic name start poolsz |partsz |avail alloc [type |wait first |
002DC3ES |RAMDISK |002DC430 | 82320. | 4036. | 0. 20. FIFO | 0. NONE =
4 m

3

'wait' shows the number of task waiting on this pool.
first' is the first task waiting.

TASK_.PipeStat Display pipe status

Format: TASK.PipeStat <pipe>

Displays a table with the Nucleus pipes. Specifying a pipe magic number will show you the pipe pointers,
pipe message contents and the waiting tasks of that pipe.

&% B:TASK PipeStat [E=N =R
magic name start psize avail msgs typ msize styp wait first |
00041220 PIPE O 00801344 100. 100. 0. FIX 1. PRIC 0. NONE 2
start end read pt write pt
00801344 00801420 00801344 00801344
waiting tasks
no tasks waiting

v
£ >

'wait' shows the number of task waiting on this pipe. first' is the first task waiting.

©1989-2024 Lauterbach OS Awareness Manual Nucleus PLUS | 23

TASK.ProcList Display process list

Format: TASK.ProclList <process>

Displays a table with all created Nucleus processes. Specifying a process magic number or name will show
you detailed information on that process.

&% BuTASK Proclist o -E =]

magic id |name state load addr entr exit kernel

00199358 1: A:proc_hello.load |started 002FBEFS |D0ZFBFFD |0. false
00199470 2. [A:proc_test.load stopped 00314460 |00314524 |0. false

a 1| o B:TASK.ProcList 0x199140 == 5

magic id |name state load addr entr exit kernel

[CASKS

001991C4 =tate

00197744 TASKuLE

00197604 TASKLS

00197604 TASKL4

00197534 TASKL3

00197464 TASKLZ =2
4 1 }

The fields “magic”, “name”, “load addr” and “entry” are mouse sensitive, double clicking on them opens
appropriate windows. Right -clicking a process magic nhumber will show a local menu.

TASK.QueueStat Display queue status

Format: TASK.QueueStat <queue>

Displays a table with the Nucleus queues. Specifying a queue magic number will show you the queue
pointers, queue message contents and the waiting tasks of that queue.

5?. B::TASK.QueueStat EI@
magic name start gsize avall msgs [typ msize [styp wait Tirst |
00199200 |process 00199313 1. 1. 0. [FIX 1. |FIFOQ 1. state
001994E8 |process 00199530 1. 1. 0. |FIX 1. |FIFOQ 0. NONE
00197878 |QUEUELD 002FBA40 100. | 100. 0. |FIX 1. |FIFOQ 1. TASK.LZ
001AD0D30 |SocketQ 0020801C 30. 30. 0. |FIX 2. |FIFOQ 2. serverd
002D6CE4 [SNTPC_Q 00207804 10. 10. 0. |FIX 1. |FIFOQ 0. NONE
001ABE28 |[CLNRQUE 00204BD0 10. 10. 0. |FIX 1. |FIFOQ 1. CLEANER
001ACD4C |DHCPEQ 002CD000 80. 80. 0. |FIX 2. |FIFOQ 1. DHCPGEV
001ACEE0 |[EvtQueu 002CB273 192. | 192. 0. |FIX 3. |FIFO 1. EvntDis
001C992C |event_q 001C9994 32. 32. 0. [ETX PRTO 1. M5 EV R
001A3BCC |BCM_ERR 002C2B00 50. 50.
001BF780 |HubQueu 001BF740 16. | 16. g BrTASK.QueueStat 0:1AD030 EI@
001AD468 |[DVFSLOP 001ADS 80 1. 1.

magic name start gsize avall msgs typ msize [styp wait first |
001AECOS |PMERR 001BD5F4 &60. &0
001AD368 |PMCean O001BDLR4 4 4 O01ADOSO |SEEEetQ 002D801C | 30. [30.] 0. [FIX] 2. [FIFO[2. serverA
001ADC14 |DEGADVQ |001ADCE4 | 80. | BO. || |otart end read ptr write ptr

0020801C 00208094 002D301C 002D301C
4 m

waiting tasks
O001ADOYE serverA
001AD148 serverB

4 T b

'wait' shows the number of task waiting on this queue. first' is the first task waiting.

©1989-2024 Lauterbach OS Awareness Manual Nucleus PLUS | 24

TASK.REGistry Display registry entries

Format: TASK.REGistry

Shows the registry entries of Nucleus.

&% BiTASK REGistry =N SR

address key value symbol [string
0000000000024660 |® root A
00000000000264F8 |# bsp_root

0000000000024EL8 = user_root

00000000000240ES = nu oo

0000000000024CF8 ® os

0000000000024E00 = 1init

0000000000024 0A0 =5 oo

0000000000024D5 8 1 00024010 J/nufos/conn/serial
0000000000024068 =1 oo

0000000000024070 1 00024D28 Jnu/os/kern/devmgr
0000000000024000 = 31

0000000000024D88 1 00024040 Jnufos/sves fappinit

TASK.SemaStat Display semaphore status

Format: TASK.SemaStat <sema>

Displays a table with the Nucleus semaphores. Specifying a semaphore magic number will show you the
waiting tasks of that semaphore.

o B:TASK.SemaStat =n| Wl <
magic name count |styp waiting [first |
002BF264 |SD_CRIT 1. [prio 0. |[none ~
002BF224 |SD_CRIT 1. |prio 0. |[none
002BF1E4 |SD_CRIT 1. |prio 0. |[none
001A7D70 [i2c_sem 1. [fifo 0. [none
D01AE4BD |CANHW 0. [prio 0. |[none
001EF7C8 |[USEHHUB 0. |fifo 0. |none
D01BF3EC |USEHLOC 1. |prio 0. |[none
001EF498 |USBH-IR 0. |prio 1. |USBH-5t
0D01EF428 |USEH-CBE 0. [prio 0. |[none
001EF460 |USEH-CT 1. |prio 0. |[none
D01EF284 |USEH-LK 1. |prio 0. |[none
D01BF21C |USEH-LK 1. |prio 0. |[none
O01EF1B4 |USEH-LK 1. [prio 0. |none =
001BF14C |USEH-LK 1. |prio 0. |[none T
001AD430 |[DVFS.LOP 1. [fife 0. |none

4 1 3

'waiting' shows the number of task waiting on this semaphore.
first' is the first task waiting.

TASK.TaskStat Display task status

Format: TASK.TaskStat <task>

Displays the task table of Nucleus or detailed information about one specific task.

©1989-2024 Lauterbach OS Awareness Manual Nucleus PLUS | 25

The display is similar to the DBUG+ 'ts' dump.

Without any arguments, a table with all created tasks will be shown.

Specify a task name or magic number to display detailed information on that task.

“magic” is a unique ID, used by the OS Awareness to identify a specific task (address of the TCB).

The fields “magic”,

N3

name’,

]

o B:TASK TaskStat =n| Wl <
magic name status schedule prio preem [sTice |
001991C4 |[state QUELUE 3. 0. | YES |DISAEL .
001A86C4 |DevDisc EVENTS 23. 3. NO |DISAEL
001ADE44 |DED_ADV |QUELE 2. 0. | YES |DISAEL
001AD238 |PMClean QUELUE 2. 0. | YES 10.
001EDASD |PMError QUELUE 1. 0. | YES 10.
001AD4BOD |DVFSLOP STOPPED 0. 0. NO |DISABL |_
001AD384 |WDTask EVENTS 1. 10. | YES 5. |7
001EF530 |USEH-5t SEMA 1. 8. | YES |DISAEL
001EF66C |USEH-HU QUEUE 1. 10. | YES |DISABL
002BEF318 |5DI0uHe EVENTS 1. 3. | YES |DISAEL
001A7ES4 |SDIOLHe EVENTS 1. 3. | YES |DIj
D01C985C MS_EV_R |QUEUE 1. [101. | YES % BuTASK TaskStat 0:1993DC =l e =]
001CA2A4 |NUFTask |STOPPED 0. 103. | YES |DIj Imagic name status schedule [prio jpreem [sTice |
DOLACEGAE (EwvntDis |QUEUE 179. YES |DI [D015993DC |root [FINISHED | 1. | 16. | YEs | 10. .
001AC77E |TIMER EVENTS 2. YES |DIf
001ACEA4 |DHCPECL |STOPPED 4. 3.| NO |DI§ signal: handler mask present
D01ACC74 |DHCPGEV |QUEUE 1. 3. | YES |DI B0000000 NONE
001AS000 |NETLINK EVENTS 1. 3 YES |DI
D01CACS4 |ETHCFGT [EVENTS 1. 17. | N0 |DI{ |entry point
00148834 |TFTPSER |STOPPED 2. 3.| NO |DIY [5o3FBEFD
“ 1

stack start size minimum

002F9678 4096. 0.

viewing context

context current

“ 1 ¢

stkbase” and “handler” are mouse sensitive, double clicking on them opens

appropriate windows. Right clicking a value in the magic column will show a local menu.

TASK.TImerstat

Display timer status

Format:

TASK.TImerstat

Displays a table with the Nucleus application timers.

&b BuTASK TImerstat

(=[O el

name state expired [1d initial [resched routine

WDTimer |DISABLED 0. . . 0. [0DOBEGE10 PMS_Watchdog_Timer &
timer DISABELED 0. 1880532, 1. 0. (00023580 NU_USBF_ACM_NEG_SEND_
Timer DISABELED 0. 18330848, 100. 100. |00026328 NU_USBF_KE_Timer_expi
Timer DISAELED 0. 0. 100. 100. |000D533C NU_USBF_MSE_Timer_exp
SNTPC_T |ENAELED 1 2977100, 1. |180000. |0O0BGE300

I

SNTPC_Send_Request_Ha

3

©1989-2024 Lauterbach

OS Awareness Manual Nucleus PLUS

Nucleus PLUS PRACTICE Functions

There are special definitions for Nucleus PLUS specific PRACTICE functions.

TASK.CONFIG() OS Awareness configuration information

Syntax: TASK.CONFIG(magic | magicsize)

Parameter and Description:

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

Return Value Type: Hex value.

TASK.DM.AVAIL() Bytes of dyn. pool

Syntax: TASK.DM.AVAIL(" <dyn_pool_name>")

Returns the available bytes of the specified dyn. pool.
Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

TASK.PL.ENTRY() Entry address of process

Syntax: TASK.PL.ENTRY(<process_magic>)

Returns the entry address of the specified process.
Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual Nucleus PLUS | 27

	OS Awareness Manual Nucleus PLUS
	History
	Overview
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Manual Configuration
	Automatic Configuration
	Quick Configuration Guide
	Hooks & Internals of Nucleus PLUS

	Features
	DBUG+ Terminal Emulation
	Display of Kernel Resources
	Display of History Component
	Task Stack Coverage
	Task-Related Breakpoints
	Task Context Display
	SMP Support
	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Task State Analysis
	Function Runtime Statistics
	Nucleus specific Menu
	Debugging Nucleus Processes
	Symbol Autoloader

	Nucleus Commands
	TASK.DynMem Display dynamic memory status
	TASK.EventStat Display event group status
	TASK.FDT Display flattened device tree
	TASK.HIsr Display HISRs
	TASK.HISTory Display Nucleus history
	TASK.MbxStat Display mailbox status
	TASK.PartMem Display partition memory status
	TASK.PipeStat Display pipe status
	TASK.ProcList Display process list
	TASK.QueueStat Display queue status
	TASK.REGistry Display registry entries
	TASK.SemaStat Display semaphore status
	TASK.TaskStat Display task status
	TASK.TImerstat Display timer status

	Nucleus PLUS PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information
	TASK.DM.AVAIL() Bytes of dyn. pool
	TASK.PL.ENTRY() Entry address of process

