LAUTERBACH A

OS Awareness Manual
ChibiOS/RT

Release 09.2024

OS Awareness Manual ChibiOS/RT

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
OS AWareness MaANUAISccciicecrriiiissiriinissss s rssssss s s s ssss e s eassam s s e e s s amn e s enasame s e e ansammn e nnnsan r—~
OS Awareness Manual ChibiOS/RTcoocccocmiiiirrrrrrssscrrrsss e s essssmme s e smee s e e s s smme s e e s s smmeneeas 1
0 Y= = 3
Terminology 3
Brief Overview of Documents for New Users 4
Supported Versions 4

L0 o3} T 11T = Lo o 5
Quick Configuration Guide 6
Hooks & Internals in ChibiOS 6
== LT == 7
Display of Kernel Resources 7
Task Stack Coverage 7
Task-Related Breakpoints 8
Task Context Display 9
Dynamic Task Performance Measurement 10
Task Runtime Statistics 11
Function Runtime Statistics 12
ChibiOS specific Menu 14

L0 311 o 710 LS 0T o 1 T F=T o T - 15
TASK.CONDvar Display condition variables 15
TASK.EVenT Display events 15
TASK.Heap Display heaps 16
TASK.MailBox Display mailboxes 16
TASK.MuTeX Display mutexes 17
TASK.Pool Display memory pools 17
TASK.Queue Display queues 18
TASK.SEMaphore Display semaphores 18
TASK.Thread Display threads 19
TASK.VTimer Display virtual timers 19
ChibiOS PRACTICE FUNCLIONSc.ccicccceeriicseccerrsssscesrsssssmse s ssssmmessesssnmsssssssmmessssssnmnssenssnmnnnees 20
TASK.CONFIG() OS Awareness configuration information 20
©1989-2024 Lauterbach OS Awareness Manual ChibiOS/RT 2

OS Awareness Manual ChibiOS/RT

Overview

Version 05-Oct-2024

_iSimuIator
File Edit View Var Break Run

MK (4| »nlE 2

CPU Misc Trace

Perf Cov STM32F10x

s s @z P

ChibiOS/RT Window Help

(=[O sl

-
[&) Biterm % B:TASK.Thread = IERES
Chib105/RT test suite name state prio |
test3 wtsem B8, ~
Kernel 2.4.3 testz wtsem 67.
Compiled Apr 25 2014 - 08:57:10 testl wksem 65.
Compiler GCC 4.7.2 test wtsem 69.
Architecture: ARMv7-M ~ idle ready 1.
Core Variant: Cortex-M3 * |main current |84,
Port Info: Advanced kernel mode S
1 ¢
--- Test Case 1.1 (Threads, enqueuing test #1)
--- Result: SUCCESS &% B TASK.MailBox mbl =n| Wl <
--- Test Case 1.2 (Threads, enqueuing test #2) magic size |count waiting symbol I
- Result: SUCCESS ' 20000864 [5. [0. | b1 =
___ E— buffer read write
- Egiﬁﬁ?sguégésghma‘js' priority change) Z00Z0E70 20020E70 20020E70
--- Test Case 1.4 (Threads, delays) messages
--- Result: SUCCESS - L
waiting tasks
--- Test Case 2.1 (Semaphores, enqueuing) i
k
] 1 ¢
fa B::Trace. CHART.TASK

[&=t || i Gougs... [28 @nfig... | (% Goto... || #3Find... |[4»In | p40u|(]

&% B:TASK.SEMaphore.. | = || = || 22 |

. 000ms -2.000ms -1.000ms 0.00
rangef|; | | | magic count waiting [symbol |
Cunknown) dH 20000830 [-4. [4. [seml ~
O ———— T —— i o
i P I R N iaiting tasks
e v SO0Z0ETT fest
Piaerdy IR v 20020FAD tostl
e N 20021000 tostz
test3f| N |[20021200 test3
4 (0 4 4 I 3
B:: TASK.
[Thread | [sEMaphore| [MuTex || conDvar | [MaiBox | [EvenT |[Heap |[other | [previous
STOBNIEIEC || festsem| sem]_senute+ (0 main stopped HLL |UP

The OS Awareness for ChibiOS contains special extensions to the TRACE32 Debugger. This manual
describes the additional features, such as additional commands and statistic evaluations.

Terminology

Note the terminology: while ChibiOS talks about “threads”, the OS Awareness uses the term “task”. They
are used interchangeably in this context.

©1989-2024 Lauterbach

OS Awareness Manual ChibiOS/RT 3

Brief Overview of Documents for New Users

Architecture-independent information:

. “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

. “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently ChibiOS/RT is supported for the following versions:
o Versions 2.4.x, 2.6.x, 3.0.x, 16.x to 19.x on ARM/Cortex.

©1989-2024 Lauterbach OS Awareness Manual ChibiOS/RT | 4

Configuration

The TASK.CONFIG command loads an extension definition file called “chibios.t32” (directory
“~~/demo/<arch>/kernel/chibios”). It contains all necessary extensions.

Automatic configuration tries to locate the ChibiOS internals automatically. For this purpose all symbol tables
must be loaded and accessible at any time the OS Awareness is used.

If you want to display the OS objects “On The Fly” while the target is running, you need to have access to
memory while the target is running. In case of ICD, you have to enable SYStem.MemAccess or
SYStem.CpuAccess (CPU dependent).

For system resource display and analyzer functionality, you can do an automatic configuration of the OS
Awareness. For this purpose it is necessary that all system internal symbols are loaded and accessible at
any time, the OS Awareness is used. Each of the TASK.CONFIG arguments can be substituted by '0', which
means that this argument will be searched and configured automatically. For a fully automatic configuration,
omit all arguments:

Format: TASK.CONFIG chibios.t32

See also the example “~~/demo/<arch>/kernel/chibios/chibios.cmm”.

©1989-2024 Lauterbach OS Awareness Manual ChibiOS/RT | 5

Quick Configuration Guide

To get a quick access to the features of the ChibiOS debugger with your application, follow the following
roadmap:

1. Start the TRACE32 Debugger.
2. Load your application as normal.

3. Execute the command
TASK.CONFIG ~~/demo/<arch>/kernel/chibios/chibios.t32
(See “Configuration”).

4. Execute the command

MENU.ReProgram ~~/demo/<arch>/kernel/chibios/chibios.men
(See “ChibiOS Specific Menu”).

5. Start your application.
Now you can access the ChibiOS extensions through the menu.

In case of any problems, please carefully read the previous Configuration chapter.

Hooks & Internals in ChibiOS

No hooks are used in the kernel.

For retrieving the kernel data and structures, the OS Awareness uses the global kernel symbols and
structure definitions. Ensure that access to those structures is possible every time when features of the OS
Awareness are used.

In order to display the threads list, set the Chibios configuration “CH_CFG_USE_REGISTRY” as TRUE.

Be sure that your application is compiled and linked with debugging symbols switched on.

©1989-2024 Lauterbach OS Awareness Manual ChibiOS/RT | 6

Features

The OS Awareness for ChibiOS supports the following features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following
ChibiOS components can be displayed:

TASK.Threads Threads
TASK.SEMaphore Semaphores
TASK.MuTeX Mutexes
TASK.CONDvar Condition Variables
TASK.MailBox Mailboxes
TASK.Heap Heaps

TASK.Pool Memory pools
TASK.Queue Queues
TASK.VTimer Virtual timers

For a description of the commands, refer to chapter “ChibiOS Commands”.

If your hardware allows memory access while the target is running, these resources can be displayed “On
The Fly”, i.e. while the application is running, without any intrusion to the application.

Without this capability, the information will only be displayed if the target application is stopped.

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this
command will open a window displaying with all active tasks. If you specify only a task magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command
TASK.STacK.PATtern (default value is zero).

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and
select the task from the TASK.STacK.* window.

It is recommended to display only the tasks you are interested in because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

©1989-2024 Lauterbach OS Awareness Manual ChibiOS/RT | 7

ChibiOS itself does not store information about the stack size of a task. To calculate the stack size and stack
endings, the debugger tries to determine the stack characteristics from the work area of the task. If this fails,
no stack coverage for this task is available.

o B:TASK.STacK.view =n| Wl <
name | low high =p % [lowest spare max [0 10 20 30 |
test4 (200213738 200214§C 2002143C 000000C4 ~

test3 |20021248
test2 |20021118
testl |20020FES

2002130C 000000C4
2002110C 000000C4
2 2002104C 000000C4 E
test (20020EE8 20021460 B 20020F7C 000000CS 565 |m—
idle |20000930 20000948 |2 83% (20000944 00000014 83%
main |200009F0 200009F0 |2 44 200009F0 00000000
(other) 2002144C -
4 1 [3

As a workaround, you can use TASK.STacK.ADD to set the stack characteristics of each task manually.
Example to set the stack of task “test1” to start address 0x20020FE8 with a size of 1024 bytes:

; Adapt stack characteristics of task named "testl"
; Stack of this task starts at 0x20020FE8 with a size of 0x400 bytes

TASK.STacK.view
TASK.STacK.ADD task.magic("testl") 0x20020FE8++ (0x400-1)

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

I Break.Set <address>|<range> [I<option>] [TASK <task> Set task-related breakpoint.

J Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

o For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.

This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

NOTE: Task-related breakpoints impact the real-time behavior of the application.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

©1989-2024 Lauterbach OS Awareness Manual ChibiOS/RT | 8

For example, on ARM architectures: Ifthe RTOS serves the Context ID register at task switches, and ifthe
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

Break.CONFIG.UseContextiD ON Enables the comparison to the whole Context ID register.
Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK.List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,
you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

e B::Break.List EI-@
(3% Dette | © Dischiz Al | @ Enctietll || @ Init |&91mp| [B2 swee... |53 Load...) [Bl Set.... |

address types impl
o= 08001190Jprogram SOFT

chSemWait
chSemSignal

ma‘l n"

T:080012E0 (Program SOFT "testl"”

Task Context Display

You can switch the whole viewing context to a task that is currently not being executed. This means that all
register and stack-related information displayed, e.g. in Register, List.auto, Frame etc. windows, will refer
to this task. Be aware that this is only for displaying information. When you continue debugging the
application (Step or Go), the debugger will switch back to the current context.

To display a specific task context, use the command:
I Frame.TASK [<task>] Display task context.

J Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

o To switch back to the current context, omit all parameters.

To display the call stack of a specific task, use the following command:

I Frame /Task <task> Display call stack of a task.

If you'd like to see the application code where the task was preempted, then take these steps:

©1989-2024 Lauterbach OS Awareness Manual ChibiOS/RT | 9

1. Open the Frame /Caller /Task <task> window.

2. Double-click the line showing the OS service call.

@ B:Var.Frame /Locals /Caller /Task track.address()

(=[O el

"3 Dowr| [#largs [Clocals [Clcaller | Task: “main”

-

-000][chSchGoSTeepSinewstate = 7))
-001||chThdwait(tp = 0x20020E70)
-002||[test_wait_threads()
-003|[thd2_execute()

-004 |execute_test(tcp = Ox08008300)
-005 [TestThread(p = 0x200008E0)
-006 [main{argc = 0, argv = 0x0)
-007 |ResetHandler ()

-

m

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in

changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the

PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide

P” (general_ref_p.pdf).

£ B:PERF ListTASK =N Eoh(
(& <etup.) (28 Qorfio..)[Y Goto... | (] Detaied [@, View ([[Profie] [@ Inic.][€ Disabe|[@ Arm

ratio 1% 2% 5% 10% 208 508 100 |

name
main
idle
test
testl
testz

J 4 2

o
]
o
E
-

©1989-2024 Lauterbach

OS Awareness Manual ChibiOS/RT

10

Task Runtime Statistics

NOTE:

36 (trace32_concepts.pdf).

This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” in TRACE32 Concepts, page

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spentin

a task and display it statistically and graphically.

To evaluate the contents of the trace buffer, use these commands:

Trace.List List. TASK DEFault
Trace.STATistic.TASK
Trace.Chart.TASK
Trace.PROfileSTATistic.TASK

Trace.PROfileChart.TASK

Trace.FindAll Address TASK.CONFIG(magic)

Trace.FindAll CYcle owner OR CYcle context

Display trace buffer and task switches
Display task runtime statistic evaluation
Display task runtime timechart

Display task runtime within fixed time intervals
statistically

Display task runtime within fixed time intervals as
colored graph

Display all data access records to the “magic”
location

Display all context ID records

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as

“(unknown)”.

©1989-2024 Lauterbach

OS Awareness Manual ChibiOS/RT | 11

= B:Trace STATistic. TASK o -E =]

[& setup... || 71 Groups... || 22 Gonfig... |[= | Detaiied | [Nesting][v{Chart || BProfie |
tasks: 8. total: 19.997ms

range total min max avr count ratio® [|1% 2% |
Cunknown) 3.212ms 3.212ms 3.212ms 3.212ms 16.062%
test4 32.500us 32.500us 32.500us 32.500us 0.162%
test3 32.500us 32.500us 32.500us 32.500us .162%
test2 32.500us 32.500us 32.500us 32.500us
testl 32.500us 32.500us 32.500us 32.500us
test 44, 300us 44, 300us 44, 300us 44, 300us

main 1.196ms 1.158ms 1.158ms | 597.850us

idle| 15.415ms | 15.415ms | 15.415ms | 15.415ms

]

0.162%
0.162%
0.221%
5.979%
7.086%

Fora e e Ol

‘ +++++‘

7

4 T

#i] B:Trace. CHART.TASK == 5

[& stup.. || i Gougs... || B8 @nfig... (% Goto... | #3Find... |[4» In | p40ut|[MMFull

-17.000ms -16.500ms -16.000ms -15.500ms
rangeix
unknown) «x

1 1 1 I
testd iy

test3hy
test2iy
testlhy
testh)
main &y
idlegy

4 (o4 1 2

Function Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” in TRACE32 Concepts, page
36 (trace32_concepts.pdf).

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG (magic) /TraceData

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

©1989-2024 Lauterbach OS Awareness Manual ChibiOS/RT | 12

To evaluate the contents of the trace buffer, use these commands:

Trace.ListNesting Display function nesting
Trace.STATistic.Func Display function runtime statistic
Trace.STATistic.TREE Display functions as call tree
Trace.STATistic.sYmbol /SplitTASK Display flat runtime analysis
Trace.Chart.Func Display function timechart
Trace.Chart.sYmbol /SplitTASK Display flat runtime timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

£ | B:Trace.STATistic. TASKTREE tree task total min max avr count internalratio internalbar EI@
[& setup... || 751 Groups... || 28 Gonfig... [Goto... [= [Detziked | E{Nesting][S chart
funcs: 159. total: 19.997ms 7 problems
taszk total min max avr count intern% 1% |
(root) Cunknown) 3.212ms - 3.212ms 3.212ms - 0. 00 L
root) testd 32.500us - 32.500us 32.500us - 0.011% |+
root) test3 32.500us - 32.500us 32.500us - 0.011% |+
(root) test2 32.500us - 32.500us 32.500us - 0.011% |+
= (root) testl 32.500us - 32.500us 32.500us - 0.011% |+ i
dbg_trace testl 6.300us 6.300us 6.300us 6.300us 1 0.031% |+ 3
_port_switch testl 3. 000us 3. 000us 3. 000us 3. 000us 1. 0.015% |+
_port_thread_start testl 21. 000us - 21. 000us 21.000us 1.(0/1) 0.004% |+
_port_unlock testl 0.500us 0.500us 0.500us 0.500us 1. 0.002% |+
= thread testl 5.700us 5.700us 5.700us 5.700us 1 0.009% |+
[test_emit_token testl 3.900us 3.900us 3.900us 3.900us 1. 0.014% |+
|: _port_lock testl 0.500us 0.500us 0.500us 0.500us 1. 0.002% |+
_port_unlock testl 0.500us 0.500us 0.500us 0.500us 1. 0.002% |+
= chThdExit testl 14.000us - 14.000us 14.000us 1.(0/1) 0.005% |+
L— _port_lock testl 0.500us 0.500us 0.500us 0.500us 1. 0.002% |+
= chThdExits testl 12.400us - 12.400us 12.400us 1.(0/1) 0.030% |+
= ch5chGosleeps testl 6.400us - 6.400us 6.400us 1.(0/1) 0.017% |+
L— fifo_remove testl 3.000us 3.000us 3.000us 3.000us 1 0.015% |+
(root) test 44, 300us - 44,300us | 44.300us 0.011% |+
= (root) main 1.196ms - 1.196ms 1.196ms 0.052% |+
= execute_test main 127.200us - 113.700us 63. 600us 2.(1,/1) 0.069% |+
= thdl_execute main 101. 600us - 101.600us | 101.600us 1.(1,/0) 0.005% |+
[test_wait_threads main 78.900us - 78.900us 78.900us 1.(1,/0) 0.087% |+
= chThdwait main 61.500us 10. 300us 20.300us 12.300us 5.(1,/0) 0.071% |+
= ch5chGoSleeps |main 11. 8300us - 11. 8300us 11. 800us 1.(1,/0) 0.012% |+
J |— dba_trace main 6.300us 6.300us 6.300us 6.300us 1. 0.031% |+ v
'l 1 +

=] B:Trace CHART.TASKFUNC EI@
[& stup.. || i Gougs... || B8 @nfig... (% Goto... | #3Find... |[4» In | p40ut|[MMFull

-16.770ms -16.760ms -16.750ms -16.740ms -16.730ms -16.720ms -16.710ms|
range | | | | | | | |
_port_unTock < B
thread WM
test_emit_token WM
_port_lock L -
chThdExit L I
chThdExits L I
ch5chGosTeeps] I
fifo_remove BEL
(root) L
dbg_trace Bl
_port_switch BRL . U
port_thread_start
—port_unlock BR .
thread L I
test_emit_token o]]
—port_Tock | O R
chThdExit BBl
chThdExits L O T
ch5chGoSTeeps B
fifo_remove BB
(root) B -—
dbg_trace B
_port_switch HH
port_thread_start 4

it

©1989-2024 Lauterbach OS Awareness Manual ChibiOS/RT | 13

ChibiOS specific Menu

The menu file “chibios.men” contains a menu with ChibiOS specific menu items. Load this menu with the
MENU.ReProgram command.

You will find a new menu called ChibiOS/RT.

/A Simulator e =]
File Edit View Var Break Run CPU Misc Trace Perf Cov STM32F10x | ChibiOS/RT | Window Help
|"*|¢Q’¢|'"|;ﬂ:{|@k‘?| ||§Eﬂ'|@@@|l Display Threads
Display Semaphore i
&% B:TASK Thread IEREERIE Display Mutex
name state prio I Display CendVar
test3 wtsem B8, ~ X :
test2 wksem 67. Display Mailbox
testl wtsem 65. Display Event
fest Wt isplay Even
. 1mg:|I: ES o B:TASK.SEMaphore s...[= || & |[s23] Display Heap
magic count waiting [symbol | Display Pool
= 20000830 |-4. [3. [seml b)
Display Queue
naiting tasks Display Timer

20020E70 test

Z00ZOFAD testl
20021000 test2 Stack Coverage 4
20021200 test3

4 T b

B:: TASK.

[Thread | [SEMaphore| [MuTex | [conDvar | [MaiBox |[EvenT |[Heap || other |[previows
STOBNIEAEC || pestsem| sem]_senute+ I main stopped HLL |UP

. The Display menu items launch the appropriate kernel resource display windows.

. The Stack Coverage submenu starts and resets the ChibiOS specific stack coverage, and
provide an easy way to add or remove threads from the stack coverage window.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

. The Trace menu is extended. In the List submenu, you can choose if you want a trace list window
to show only thread switches (if any) or thread switches together with the default display.

. The Perf menu contains additional submenus for thread runtime statistics, thread related function
runtime statistics or statistics on task states.

©1989-2024 Lauterbach OS Awareness Manual ChibiOS/RT | 14

ChibiOS Commands

TASK.CONDvar Display condition variables

Format: TASK.CONDvar <cond_var>

Displays detailed information about a condition variable. Specify a variable or address that contains the
condition variable.

o BiTASK.CONDvardl [= |[& |[=23]

magic waiting [symbol |
2000085C [4. [l

-
Waiting tasks

20021200 tests

20021000 test2

Z00ZOFAD testl

Z00Z0E7D test

4 1 2

The field “magic” and other fields are mouse sensitive, double clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

TASK.EVenT Display events

Format: TASK.EVenT <event>

Displays detailed information about an event. Specify a variable or address that contains the event.
o BTASK.EVenT esl [= |[& |[w23]

magic Tisteners [symbol |
2000088C |2. Jes1

r
00000002 200009A8 main
00000001 200009A8 main

4 1 2

The field “magic” and other fields are mouse sensitive, double clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

©1989-2024 Lauterbach OS Awareness Manual ChibiOS/RT | 15

TASK.Heap Display heaps

Format: TASK.Heap <heap>

Displays detailed information about a heap. Specify a variable or address that contains the heap.

% B:TASK.Heap test_heap EI@

magic free frags [provider [symbol |
20021490 [00000588 1. | - [test_heap =
]

1 }

The field “magic” and other fields are mouse sensitive, double clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

TASK.MailBox Display mailboxes

Format: TASK.MailBox <mailbox>

Displays detailed information about a mailbox. Specify a variable or address that contains the mailbox.

o B:TASK.MailBox mbl =n| Wl <
magic =1ze |count waiting symbo | |
20000864 [5. 4. [mbL P
buffer read write

20020E70 20020E7O0 Z0020ES0

messages

00000042

TR
00000043 “HNC
00000044 “HND
00000045 “HNE

Waiting tasks

4 T b

The field “magic” and other fields are mouse sensitive, double clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

©1989-2024 Lauterbach OS Awareness Manual ChibiOS/RT | 16

TASK.MuTeX

Display mutexes

Format: TASK.MuTeX <mutex>

Displays detailed information about a mutex. Specify a variable or address that contains the mutex.

oo BETASK.MuTeX ml ===

magic owner waiting [symbol
3. [m1

[-
waiting tasks

20021000 test2

Z00ZOFAD testl

Z00Z0E7D test

4 i 3

The field “magic” and other fields are mouse sensitive, double clicking on them opens appropriate windows.

Right clicking on them will show a local menu.

TASK.Pool

Display memory pools

Format: TASK.Pool <pook

Displays detailed information about a memory pool. Specify a variable or address that contains the pool.
o B:TASK.Pool mpl =N Eoh(

magic ob] s1ze |num free [provider [symbol
20000894 |00000130 (4. [- [mp1 -
4 m 3

The field “magic” and other fields are mouse sensitive, double clicking on them opens appropriate windows.

Right clicking on them will show a local menu.

©1989-2024 Lauterbach OS Awareness Manual ChibiOS/RT |

17

TASK.Queue Display queues

Format: TASK.Queue <queue>

Displays detailed information about a queue. Specify a variable or address that contains the queue.

5?. BuTASK.Queueig EI@

e e L]

2002070 20020E70 20020E73

callback

08006601 notity

DYLTES N_queue

1nput: 41 42 43

IABC

output: 41

LY

Walting Tasks

none

4 m 3

The field “magic” and other fields are mouse sensitive, double clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

TASK.SEMaphore Display semaphores

Format: TASK.SEMaphore <semaphore>

Displays detailed information about a semaphore. Specify a variable or address that contains the
semaphore.

% B:TASK.SEMaphore seml EI@

magic count waiting [symbol |
20000830 |-5. 5. [seml P
waiting tasks

20020E70 test

Z00ZOFAD testl
20021000 test2
20021200 test3
20021330 testd

4 T b

The field “magic” and other fields are mouse sensitive, double clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

©1989-2024 Lauterbach OS Awareness Manual ChibiOS/RT | 18

TASK.Thread Display threads

Format: TASK.Thread [<thread>]

Displays the thread table of ChibiOS or detailed information about one specific thread.

Without any arguments, a table with all created threads will be shown.
Specify a thread name or magic number to display detailed information on that thread.

o B:TASK. Thread =n| Wl < o B:TASK Thread 0:20020FAD =n| Wl <
g name state prio | magic name state prio |
test2 ready 61. ~ 2Z0020FAD [testl [wtsem [65. ~
test3 ready 62.
* |testd current 63. waiting for:
test ready 59. sem 20000830 seml
testl ready 60.
idle ready 1. owned mut
1 |main whex1t 64. none
m b tasks to send msgs:
non
events pendin
non
task waiting fo t
none
4 1 3

“magic” is a unique ID, used by the OS Awareness to identify a specific threads (address of the thread
structure).

The field “magic” and other fields are mouse sensitive, double clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

TASK.VTimer Display virtual timers

Format: TASK.VTimer

Displays a list of all created virtual timers.

o B:TASKVTimer =n| Wl <
magic time function

2002147C |202. 08003011 tmr (00000000)
4 n 3

The field “magic” and other fields are mouse sensitive, double clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

©1989-2024 Lauterbach OS Awareness Manual ChibiOS/RT | 19

ChibiOS PRACTICE Functions

There are special definitions for ChibiOS specific PRACTICE functions.

TASK.CONFIG() OS Awareness configuration information

Syntax: TASK.CONFIG(magic | magicsize)

Parameter and Description:

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual ChibiOS/RT | 20

	OS Awareness Manual ChibiOS/RT
	Overview
	Terminology
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Quick Configuration Guide
	Hooks & Internals in ChibiOS

	Features
	Display of Kernel Resources
	Task Stack Coverage
	Task-Related Breakpoints
	Task Context Display
	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Function Runtime Statistics
	ChibiOS specific Menu

	ChibiOS Commands
	TASK.CONDvar Display condition variables
	TASK.EVenT Display events
	TASK.Heap Display heaps
	TASK.MailBox Display mailboxes
	TASK.MuTeX Display mutexes
	TASK.Pool Display memory pools
	TASK.Queue Display queues
	TASK.SEMaphore Display semaphores
	TASK.Thread Display threads
	TASK.VTimer Display virtual timers

	ChibiOS PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information

