LAUTERBACH A

V850 Debugger and Trace

Release 02.2025

V850 Debugger and Trace

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
ICD IN-Circuit DEDUQGQETcccieciiiiiimririnsmms s sissssmss s ssms s ssms s s s smms s s mms s s e mms e s ea s smmne s ensnmmnns r—~
Processor Architecture Manuals ... r~
T 1 r—
V850 Debugger and Traceciciiiiiiiiisssmmmmrsrnrirssssssssssssss s s sns s s ssssmmss s s s s s s s nesnnssnsnnnnns 1

L £ oo LU T o) o 6

Brief Overview of Documents for New Users 6

Demo and Start-up Scripts 6
L= T 1 ' 8

/Y o] o1 Lo 1o o T 1 e | (- 9
Location of Debug Connector 9

Reset Line 9
FLMDO Line 10
Mask-Options of V850/Fx3, Cargate 11

L@ T T Q3 - T AR I - Y C 12
TroubleShOOtINGcccccciiiiicr s 15
SYStem.Up Errors 15

O 15
ConfiguIration ... e 16
System Overview 16

CPU specific SYStem Settingsccccuvvimmimiiimmimninsnnnnssss s s s ssmssssnas 17
SYStem.CONFIG.state Display target configuration 17
SYStem.CONFIG Configure debugger according to target topology 18
Daisy-Chain Example 20
TapStates 21
SYStem.CONFIG.CORE Assign core to TRACE32 instance 22
SYStem.CONFIG.EXTWDTDIS Disable external watchdog 23
SYStem.CONFIG.DEBUGPORTTYPE Select debug port type 24
SYStem.CONFIG.PortSHaRing Control sharing of debug port with other tool 24
SYStem.CPU CPU type selection 25
SYStem.JtagClock JTAG clock selection 25
SYStem.LOCK Lock and tristate the debug port 25
©1989-2025 Lauterbach V850 Debugger and Trace 2

SYStem.MemAccess Select run-time memory access method 26
SYStem.Mode System mode selection 27
SYStem.Option.IMASKASM Interrupt disable 27
SYStem.Option.IMASKHLL Interrupt disable 28
SYStem.Option.PERSTOP Disable CPU peripherals if stopped 28
SYStem.RESetOut Reset target without reset of debug port 28
Exception Lines Enable ... 29
SYStem.Option.RESET Reset line enable 29
SYStem.Option.STOP Stop line enable 29
SYStem.Option.WAIT Wait line enable 29
SYStem.Option.REQest Request line enable 30
SYStem.Option.NMIO NMIO line enable 30
SYStem.Option.NMI1 NMI1 line enable 30
SYStem.Option.NMI2 NMI2 line enable 30
SYStem.Option.CPINT CPINT line enable 31
Trace System Settingsccccciiiiiicsininii s —————— 32
SYStem.Option.BTM Branch trace message 32
SYStem.Option.DTM Data trace message 33
SYStem.Option.KEYCODE Keycode 33
SYStem.Option.OPWIDTH Trace interface width 34
SYStem.Option.STALL Trace STALL mode 35
SYStem.Option. TCMODE Trace clock mode 35
2 = 14 o Lo 1 1 | SN 36
Software Breakpoints 36
On-chip Breakpoints 36
Breakpoint in ROM 37
Example for Breakpoints 37
QIO e TT o B 00T 1 1 F- T4 o £ 38
TrOnchip.CONVert Adjust range breakpoint in on-chip resource 38
TrOnchip.RCU ROM-Correction breakpoints 39
TrOnchip.RESet Set on-chip trigger to default state 39
TrOnchip.Set.Alignment Alignment error breakpoints 39
TrOnchip.Set.MissAlign Alignment error breakpoints 40
TrOnchip.SIZE Trigger on byte, word, long memory accesses 40
TrOnchip.state Display on-chip trigger window 40
TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource 40
CPU specific FUNCLIONScoviiiiieiiiiiieinr s sssss s s s e e smms s e ssmmnn s 41
CPU.BASEFAMILY() CPU family 41
CPU.SUBFAMILY() CPU subfamily 41
1 1=T 5 g o] A 03 T L= 42
DataFlash: Memory Class 42
©1989-2025 Lauterbach V850 Debugger and Trace 3

1127 20 [1 (=Y = L - 43

RUNTIME MEASUIEMENTccuiiieeeiireeeirressirssssserenssissnssrsnssssrassssrensssrsssssssnnsssssnssssanssssnnsssnnnnns 44
8 X = T T 1= o3 (oY 45
Connector 20 pin 100mil /NWire 45
= L= 0 T 1= o (oY 46
Connector MICTOR/N-Wire and Trace 46
Connector KEL/N-Wire and Trace 47
1127 20 5 7= o3 (o 48

©1989-2025 Lauterbach V850 Debugger and Trace | 4

V850 Debugger and Trace

Version 13-Feb-2025

©1989-2025 Lauterbach V850 Debugger and Trace | 5

Introduction

This document describes the processor specific settings and features for NEC V850E(S). TRACE32-ICD
supports all V850 devices which are equipped with the N-wire debug interface.

Please note that only the Processor Architecture Manual (the document you are currently reading) is
specific to the core architecture. All other parts of the online help are general and independent of any core
architecture. Therefore, if you have questions related to the core architecture, the Processor Architecture
Manual should be your primary reference.

If some of the described functions, options, signals or connections in this Processor Architecture Manual are
only valid for a single CPU or for specific family lines, the name(s) of the family/families is/are added in
brackets.

Brief Overview of Documents for New Users

Architecture-independent information:

J “Debugger Tutorial” (debugger_tutorial.pdf): Get familiar with the basic features of a TRACE32
debugger.

J “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

. “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating

system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Architecture-specific information:

J “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

Demo and Start-up Scripts

Lauterbach provides ready-to-run start-up scripts for known V850 based hardware.

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:
. Type at the command line: WELCOME.SCRIPTS

J or choose File menu > Search for Script.

You can now search the demo folder and its subdirectories for PRACTICE start-up scripts
(*.cmm) and other demo software.

©1989-2025 Lauterbach V850 Debuggerand Trace | 6

You can also manually navigate in the ~~/demo/v850/ subfolder of the system directory of TRACES32.

©1989-2025 Lauterbach V850 Debugger and Trace | 7

Warning

Signal Level

The debugger output voltage follows the target voltage level. It supports a voltage range of 0.4 ... 5.2 V.

ESD Protection

1.

N o oo A W

—

P 0D

WARNING: To prevent debugger and target from damage it is recommended to connect or
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

Disconnect the Debug Cable from the target while the target power is
off.

Connect the host system, the TRACE32 hardware and the Debug
Cable.

Power ON the TRACE32 hardware.

Start the TRACES32 software to load the debugger firmware.
Connect the Debug Cable to the target.

Switch the target power ON.

Configure your debugger e.g. via a start-up script.

Power down:

Switch off the target power.

Disconnect the Debug Cable from the target.
Close the TRACE32 software.

Power OFF the TRACES32 hardware.

©1989-2025 Lauterbach

V850 Debugger and Trace |

Application Note

Location of Debug Connector

Locate the debug connector as close as possible to the processor to minimize the capacitive influence of the
trace length and cross coupling of noise onto the JTAG signals.

Reset Line

Ensure that the debugger signal RESET is connected directly to the RESET of the processor. This will
provide the ability for the debugger to drive and sense the status of RESET.

Debugger

VCC

- Reset-Sense

Target

» CPU Reset

-

Force-Reset

©1989-2025 Lauterbach

V850 Debugger and Trace | 9

FLMDO Line

The debugger forces this line to VDD to enable flash programming.

Target

» CPU FLMDO

Debugger
VDD
VDD————
Force-FLMDO 1K
GND

]_

Z

i

— - CPU PortOut

©1989-2025 Lauterbach

V850 Debugger and Trace

10

Mask-Options of V850/Fx3, Cargate

The mask options require a special handling. In normal operation mode the mask option values are located
in flash memory at address 0x7A, 0x7B. In emulation mode these values have to be copied to a certain
debug register EMUMO at address OxFFFFFOFA.

. the value of address 0x7A has to be copied to the low byte of EMUMO
. the value of address 0x7B has to be copied to the high byte of EMUMO

The new options become active at the next SYStem.UP.

Add following startup sequence to your script:

SYStem.Up ; initial startup
disable RomSecurityUnit ; see demo scripts

; set MaskOptions to EMUMO register
Data.Set OxXFFFFFI9FA $%$Word 0x0800

SYStem.Up ; now the MaskOption settings are active
disable RomSecurityUnit ; see demo scripts

©1989-2025 Lauterbach V850 Debugger and Trace | 11

Quick Start JTAG

Starting up the Debugger is done as follows:

1.

Select the device prompt B: for the ICD Debugger, if the device prompt is not active after the
TRACERS2 software was started.

B:
Select the CPU type to load the CPU specific settings.

SYStem.CPU 70F3281

If the TRACE32-ICD hardware is installed properly, the following CPU is the default setting:

JTAG Debugger for V850 V850SA

Tell the debugger where’s FLASH/ROM on the target.

MAP.BOnchip 0x00000000++0x7FFFF

This command is necessary for the use of on-chip breakpoints.

Enter debug mode

SYStem.Up

This command resets the CPU and enters debug mode. After this command is executed, it is possible
to access the registers. Set the chip selects to get access to the target memory.

Data.Set..

Following command sequence is required for CPU types which are equipped with a ROM Security
Unit (RSU). As long as the ROM Security is active the debugger gets no access to CPU memory.

©1989-2025 Lauterbach V850 Debugger and Trace | 12

This example estimates Oxff as memory content at address 0x70 ... 0x79.

; BROM switching

Data.Set Oxfffff8d0 %Byte 0xab
Data.Set Oxfffff8d4d %Byte 0x08
Data.Set Oxfffff8d4 %Byte O0xf7
Data.Set Oxfffff8d4d %Byte 0x08

; KeyCode setting
; data at 0x70 .. x79 is estimated as Oxff

Data.Set Oxfffff9c0 %$Word Oxffff Oxffff
Print DATA.LONG (D:0x70)

Data.Set Oxfffff9c0 %Word Oxffff Oxffff
Print DATA.LONG (D:0x74)

Data.Set Oxfffff9c0 %Word 0x0000 Oxffff
Print DATA.LONG (D:0x78)

Print DATA.LONG (D:0xfffff9c4)

6. Load the program.

Data.LOAD.ubrof sieve.d85 ; (ubrof specifies the format,
; slieve.d85 1s the file name)

The option of the Data.LOAD command depends on the file format generated by the compiler. A
detailed description of the Data.LOAD command is given in the “General Commands Reference”.

©1989-2025 Lauterbach V850 Debugger and Trace | 13

The start-up can be automated using the programming language PRACTICE. A typical start sequence is
shown below. This sequence can be written to a PRACTICE script file (*.cmm, ASCII format) and executed

with the command DO <file>.

EEN:

WinCLEAR

MAP.BOnchip 0x000000++0x0Q07ffff
SYStem.CPU 70F3281

SYStem.Up

Data.Load.ubrof sieve.d85
Register.Set PC main
Data.List

Register.view /SpotLight

Frame.view /Locals /Caller

Var.Watch %Spotlight flags ast

PER.view

Break.Set sieve

Break.Set 0x1000 /Program

Break.Set 0x3FFB100 /Program

Select the ICD device prompt
Delete all windows

Specify where’s FLASH/ROM
Select the processor type

Reset the target and enter debug
mode

Load the application

Set the PC to function main

Open disassembly window 2
Open register window 2

Open the stack frame with
local variables @)

Open watch window for variables *)

Open window with peripheral
register *)

Set breakpoint to function sieve

Set on-chip breakpoint to address
1000 (address 1000 is in FLASH)
(Refer to the restrictions in
On-chip Breakpoints.)

Set software breakpoint to address
3FFB100 (address 3FFB100 is in RAM)

*) These commands open windows on the screen. The window position can be specified with the WinPOS

command.

©1989-2025 Lauterbach

V850 Debugger and Trace | 14

Troubleshooting

SYStem.Up Errors

The SYStem.Up command is the first command of a debug session where communication with the target is
required. If you receive error messages while executing this command this may have the following reasons.

All The target has no power.

All The target is in reset:
The debugger controls the processor reset and use the RESET line to reset the
CPU on every SYStem.Up.

All There are additional loads or capacities on the JTAG lines.

All The JTAG clock is too fast.

FAQ

Please refer to https://support.lauterbach.com/kb.

©1989-2025 Lauterbach V850 Debugger and Trace | 15

https://support.lauterbach.com/kb

Configuration

System Overview

PC or
Workstation

Target
I —1
I POWER DEBUG USB INTERFACE / USB 3 = Debug Cable
. LAUTERBACH. -
USBE |lom tEE f 1
Cable |[] H s
§ g H =
ém é | |] gg
T 3
1N I8 K
3
[oo —

POWER DEBUG INTERFACE / USB 3

Wall Mount
—0
Power Supply

©1989-2025 Lauterbach V850 Debugger and Trace | 16

CPU specific SYStem Settings

SYStem.CONFIG.state Display target configuration
Format: SYStem.CONFIG.state [/<tab>]
<tab>: DebugPort | Jtag

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target
configuration settings. The configuration settings tell the debugger how to communicate with the chip on
the target board and how to access the on-chip debug and trace facilities in order to accomplish the
debugger’s operations.

Alternatively, you can modify the target configuration settings via the TRACE32 command line with the
SYStem.CONFIG commands. Note that the command line provides additional SYStem.CONFIG
commands for settings that are notincluded in the SYStem.CONFIG.state window.

<tab> Opens the SYStem.CONFIG.state window on the specified tab. For tab
descriptions, see below.

DebugPort Informs the debugger about the debug connector type and the
communication protocol it shall use.

Jtag Informs the debugger about the position of the Test Access Ports (TAP) in
the JTAG chain which the debugger needs to talk to in order to access the
debug and trace facilities on the chip.

©1989-2025 Lauterbach V850 Debugger and Trace | 17

SYStem.CONFIG Configure debugger according to target topology

Format: SYStem.CONFIG <parameter> <number_or_address>
SYStem.MultiCore <parameter> <number_or_address> (deprecated)

<parameter>: CORE <core>
<parameter>: DRPRE <bits>
(JTAG): DRPOST <bits>

IRPRE <bits>
IRPOST <bits>
TAPState <state>
TCKLevel </evel>
TriState [ON | OFF]
Slave [ON | OFF]

The four parameters IRPRE, IRPOST, DRPRE, DRPOST are required to inform the debugger about the
TAP controller position in the JTAG chain, if there is more than one core in the JTAG chain (e.g. Arm + DSP).
The information is required before the debugger can be activated e.g. by a SYStem.Up. See Daisy-chain
Example.

For some CPU selections (SYStem.CPU) the above setting might be automatically included, since the
required system configuration of these CPUs is known.

TriState has to be used if several debuggers (“via separate cables”) are connected to a common JTAG port
at the same time in order to ensure that always only one debugger drives the signal lines. TAPState and
TCKLevel define the TAP state and TCK level which is selected when the debugger switches to tristate
mode. Please note: nTRST must have a pull-up resistor on the target, TCK can have a pull-up or pull-down
resistor, other trigger inputs need to be kept in inactive state.

Multicore debugging is not supported for the DEBUG INTERFACE (LA-7701).

g
CORE For multicore debugging one TRACE32 PowerView GUI has to be started
per core. To bundle several cores in one processor as required by the
system this command has to be used to define core and processor
coordinates within the system topology.
Further information can be found in SYStem.CONFIG.CORE.
DRPRE (default: 0) <number> of TAPs in the JTAG chain between the core of

interest and the TDO signal of the debugger. If each core in the system
contributes only one TAP to the JTAG chain, DRPRE is the number of
cores between the core of interest and the TDO signal of the debugger.

©1989-2025 Lauterbach V850 Debugger and Trace | 18

DRPOST (default: 0) <number> of TAPs in the JTAG chain between the TDI signal
of the debugger and the core of interest. If each core in the system
contributes only one TAP to the JTAG chain, DRPOST is the number of
cores between the TDI signal of the debugger and the core of interest.

IRPRE (default: 0) <number> of instruction register bits in the JTAG chain
between the core of interest and the TDO signal of the debugger. This is
the sum of the instruction register length of all TAPs between the core of
interest and the TDO signal of the debugger.

IRPOST (default: 0) <number> of instruction register bits in the JTAG chain
between the TDI signal and the core of interest. This is the sum of the
instruction register lengths of all TAPs between the TDI signal of the
debugger and the core of interest.

TAPState (default: 7 = Select-DR-Scan) This is the state of the TAP controller when
the debugger switches to tristate mode. All states of the JTAG TAP
controller are selectable.

TCKLevel (default: 0) Level of TCK signal when all debuggers are tristated.

TriState (default: OFF) If several debuggers share the same debug port, this
option is required. The debugger switches to tristate mode after each
debug port access. Then other debuggers can access the port. JTAG:
This option must be used, if the JTAG line of multiple debug boxes are
connected by a JTAG joiner adapter to access a single JTAG chain.

Slave (default: OFF) If more than one debugger share the same debug port, all
except one must have this option active.
JTAG: Only one debugger - the “master” - is allowed to control the signals
nTRST and nSRST (nNRESET).

©1989-2025 Lauterbach V850 Debugger and Trace | 19

Daisy-Chain Example

TDl——-® Core A —Core B p Core C—» Core D +—» TDO

Chip 0 Chip 1

Below, configuration for core C.

Instruction register length of
. Core A: 3 bit
. Core B: 5 bit
. Core D: 6 bit

SYStem.CONFIG.IRPRE 6. ; IR Core D

SYStem.CONFIG.IRPOST 8. ; IR Core A + B
SYStem.CONFIG.DRPRE 1. ; DR Core D

SYStem.CONFIG.DRPOST 2. ; DR Core A + B

SYStem.CONFIG.CORE 0. 1. ; Target Core C i1s Core 0 in Chip 1

©1989-2025 Lauterbach V850 Debugger and Trace | 20

TapStates

0 Exit2-DR
Exit1-DR
Shift-DR
Pause-DR
Select-IR-Scan
Update-DR
Capture-DR
Select-DR-Scan
Exit2-IR
Exit1-IR
Shift-IR
Pause-IR
Run-Test/Idle
Update-IR
Capture-IR

© 00 N o 0o~ W N =

—_ - e e —d
a A~ WO N = O

Test-Logic-Reset

©1989-2025 Lauterbach V850 Debugger and Trace | 21

SYStem.CONFIG.CORE Assign core to TRACE32 instance

Format: SYStem.CONFIG.CORE <core_index> <chip_index>
SYStem.MultiCore.CORE <core_index> <chip_index> (deprecated)

<chip_index>: 1.0

<core_index>: 1...k

Default core_index: depends on the CPU, usually 1. for generic chips

Default chip_index: derived from CORE= parameter of the configuration file (config.t32). The CORE
parameter is defined according to the start order of the GUI in T32Start with ascending values.

To provide proper interaction between different parts of the debugger, the systems topology must be
mapped to the debugger’s topology model. The debugger model abstracts chips and sub cores of these
chips. Every GUI must be connect to one unused core entry in the debugger topology model. Once the
SYStem.CPU is selected, a generic chip or non-generic chip is created at the default chip_index.

Non-generic Chips
Non-generic chips have a fixed number of sub cores, each with a fixed CPU type.

Initially, all GUIs are configured with different chip_index values. Therefore, you have to assign the
core_index and the chip_index for every core. Usually, the debugger does not need further information to
access cores in non-generic chips, once the setup is correct.

Generic Chips

Generic chips can accommodate an arbitrary amount of sub-cores. The debugger still needs information
how to connect to the individual cores e.g. by setting the JTAG chain coordinates.

Start-up Process

The debug system must not have an invalid state where a GUI is connected to a wrong core type of a non-
generic chip, two GUIs are connected to the same coordinate or a GUI is not connected to a core. The initial
state of the system is valid since every new GUI uses a new chip_index according to its CORE= parameter
of the configuration file (config.t32). If the system contains fewer chips than initially assumed, the chips must
be merged by calling SYStem.CONFIG.CORE.

©1989-2025 Lauterbach V850 Debugger and Trace | 22

SYStem.CONFIG.EXTWDTDIS Disable external watchdog

Format: SYStem.CONFIG.EXTWDTDIS <option>

<option>: OFF
High
Low
HighwhenStopped
LowwhenStopped

Default for Automotive/Automotive PRO Debug Cable: High.
Default for XCP: OFF.

Controls the WDTDIS pin of the debug port. This configuration is only available for tools with an Automotive
Connector (e.g., Automotive Debug Cable, Automotive PRO Debug Cable) and XCP.

OFF The WDTDIS pin is not driven. (XCP only)
High The WDTDIS pin is permanently driven high.
Low The WDTDIS pin is permanently driven low.

HighwhenStopped The WDTDIS pin is driven high when program is stopped (not XCP).

LowwhenStopped The WDTDIS pin is driven low when program is stopped (not XCP).

©1989-2025 Lauterbach V850 Debugger and Trace | 23

SYStem.CONFIG.DEBUGPORTTYPE Select debug port type

Format: SYStem.CONFIG.DEBUGPORTTYPE JTAG

<port_type>: JTAG

It specifies the used debug port type. It assumes the selected type is supported by the target.

SYStem.CONFIG.PortSHaRing Control sharing of debug port with other tool

Format: SYStem.CONFIG.PortSHaRing [ON | OFF | DownState <downmode> |
CPUACccEvVt <number>]

<downmode>: RESET | TRISTATE

<number>: 0..8

Configures if the debug port is shared with another tool, e.g., an ETAS ETK or ETKX. This option is only
available if an motive Debug Cable is connected to the PowerDebug module..

ON Request for access to the debug port and wait until the access is granted
before communicating with the target.

OFF Communicate with the target without sending requests.

DownMode Select the mode of the reset signal when TRACE32 is in SYStem.Down
mode.

CPUACccCEvt Defines the maximum number of TriggerEventBreakpoints reserved for

TRACE32 usage.
Default = 8. Only relevant for data-access breakpoints.

Reduce the number if the chip internal TriggerEventUnit has to be shared
with other tools.

The current setting can be obtained by the PORTSHARING() function, immediate detection can be
performed using SYStem.DETECT.PortSHaRing.

©1989-2025 Lauterbach V850 Debugger and Trace | 24

SYStem.CPU CPU type selection

Format: SYStem.CPU <cpu>

<cpu>: 70F3143 | 70F3186 ...

Default selection: VB50SA. Selects the CPU type.

SYStem.JtagClock JTAG clock selection

Format: SYStem.JtagClock [<frequency>]
SYStem.BdmClock [<frequency>] (deprecated)

Default frequency: 1 MHz.

Selects the JTAG port frequency (TCK). Any frequency up to 25 MHz can be entered, it will be generated by
the debuggers internal PLL.

For CPUs which come up with very low clock speeds it might be necessary to slow down the JTAG
frequency. After initialization of the CPUs PLL the JTAG clock can be increased.

If there are buffers, additional loads or high capacities on the JTAG/COP lines,
reduce the debug speed.

SYStem.LOCK Lock and tristate the debug port

Format: SYStem.LOCK [ON | OFF]

Default: OFF.

If the system is locked, no access to the debug port will be performed by the debugger. While locked, the
debug connector of the debugger is tristated. The main intention of the SYStem.LOCK command is to give

debug access to another tool.

©1989-2025 Lauterbach V850 Debugger and Trace | 25

SYStem.MemAccess

Select run-time memory access method

Format:

<mode>:

SYStem.MemAccess <mode>

QUICK

Denied
StopAndGo

Selects the method for memory access while the core is running.

All debugger windows which are opened with the option /E will use the selected Non-intrusive memory

access.

QUICK

NBD

Denied

StopAndGo

Does a pseudo real-time access. For each single memory access the
application is interrupted for about 50 CPU clocks (10 MHz --> 5 us
interruption). This method can only be used if NO breakpoints are set. The
JTAG clock speed should be as fast as possible to get good performance.

Requires extra debugger hardware to handle the CPUs NBD-interface.
This interface allows a Non-intrusive memory access while the core is
running.

Disables any memory access while core is running.
Temporarily halts the core(s) to perform the memory access. Each stop

takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.

©1989-2025 Lauterbach

V850 Debugger and Trace | 26

SYStem.Mode System mode selection

Format: SYStem.Mode <mode>

SYStem.Down (alias for SYStem.Mode Down)

SYStem.Up (alias for SYStem.Mode Up)
<mode>: Down

NoDebug

Go

Up

Down Disables the Debugger.

NoDebug Disables the Debugger. The debug interface is forced to high impedance
mode.

Go Resets the target with debug mode enabled and prepares the CPU for
debug mode entry. After this command the CPU is in the SYStem.Up
mode and running. Now, the processor can be stopped with the break
command or until any break condition occurs.

Up Resets the target and sets the CPU to debug mode. After execution of
this command the CPU is stopped and prepared for debugging. All
register are set to the default value.

Attach Not supported.

StandBy Not supported.

SYStem.Option.IMASKASM Interrupt disable

Format: SYStem.Option.IMASKASM [ON | OFF]

Mask interrupts during assembler single steps. Useful to prevent interrupt disturbance during assembler

single stepping.

©1989-2025 Lauterbach

V850 Debugger and Trace | 27

SYStem.Option.IMASKHLL Interrupt disable

Format: SYStem.Option.IMASKHLL [ON | OFF]

Mask interrupts during HLL single steps. Useful to prevent interrupt disturbance during HLL single stepping.

SYStem.Option.PERSTOP Disable CPU peripherals if stopped

Format: SYStem.Option.PERSTOP [ON | OFF]

Stop CPU peripherals if program is stopped. Useful to prevent timer exceptions.
Only supported for V850/E2 cores.

SYStem.RESetOut Reset target without reset of debug port

Format: SYStem.RESetOut

If possible (NnRESET is open collector), this command asserts the nRESET line on the debug connector.
This will reset the target including the CPU but not the debug port. The function only works when the system
is in SYStem.Mode.Up.

©1989-2025 Lauterbach V850 Debugger and Trace | 28

Exception Lines Enable

The V850 supports disabling of several CPU pins. This can be very useful to prevent watchdog resets or

external NMI sources.

SYStem.Option.RESET

Reset line enable

Format: SYStem.Option.RESET [ON | OFF]

Enable/Disable Reset line.

Default: ON
SYStem.Option.STOP Stop line enable
Format: SYStem.Option.STOP [ON | OFF]

Enable/Disable Stop line.

Default: ON
SYStem.Option.WAIT Wait line enable
Format: SYStem.Option.WAIT [ON | OFF]

Enable/Disable Wait line.

Default: ON

©1989-2025 Lauterbach

V850 Debugger and Trace

29

SYStem.Option.REQest

Request line enable

Format: SYStem.Option.REQ [ON | OFF]

Enable/Disable Request line.

Default: ON

SYStem.Option.NMIO

NMIO line enable

Format: SYStem.Option.NMIO [ON | OFF]

Enable/Disable NMIO line.

Default: ON

SYStem.Option.NMI1

NMI1 line enable

Format: SYStem.Option.NMI1 [ON | OFF]

Enable/Disable NMI1 line.

Default: ON

SYStem.Option.NMI2

NMI2 line enable

Format: SYStem.Option.NMI2 [ON | OFF]

Enable/Disable NMI2 line.

Default: ON

©1989-2025 Lauterbach

V850 Debugger and Trace | 30

SYStem.Option.CPINT CPINT line enable

Format: SYStem.Option.CPINT [ON | OFF]

Enable/Disable CPINT line.

Default: ON

©1989-2025 Lauterbach V850 Debugger and Trace | 31

Trace System Settings

SYStem.Option.BTM Branch trace message
Format: SYStem.Option.BDM <mode>
<mode>: ON
OFF
MIN
MAX

Select type of recorded branch trace messages:

OFF Program flow trace is disabled.
MAX Trace any branch-type, except “non-taken-conditional-branches”.
ON (Default) like MAX but for "taken-direct-branches” only the branch-

source-address is recorded.

MIN Like ON but “unconditional-branches” are not recorded.

©1989-2025 Lauterbach V850 Debugger and Trace | 32

SYStem.Option.DTM Data trace message

Format: SYStem.Option.DTM <mode>
<mode>: OFF

Read

Write

ReadWrite

Select type of recorded data trace messages:

OFF Data trace is disabled.

Read Read-cycles are recorded’.

Write Write-cycles are recorded’.

readWrite Read- and Write-cycles are recorded’.
SYStem.Option.KEYCODE Keycode

Format: SYStem.Option.KEYCODE [<72x_8bit_values>]

Has to be the same value as present in CPUs ID-code input registers ID_IN[O0..2].

This command is only relevant for devices with V850E2 CPU core.

The KEYCODE is sent to the CPU during system up to unlock the ID-Code-Protection unit. A matching
KEYCODE is a must to get debug control. If bit-95 of the target KEYCODE is programmed to “0” then debug
control can not be enabled even if the KEYCODE values match. More details on ID-Code-Protection can be

found in the CPU-Users-Manual.

Attention: TRACE32 uses a different byte-order of the KEYCODE values than used by the Renesas Flash
Programmer (RFP).

RFP order: 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 Ox0A 0x0B 0x0C

TRACES32 order: 0x04 0x03 0x02 0x01 0x08 0x07 0x06 0x05 0x0C 0x0B 0x0A 0x09

©1989-2025 Lauterbach V850 Debugger and Trace | 33

SYStem.Option.OPWIDTH Trace interface width

Format: SYStem.Option.OPWIDTH <mode>

<mode>:

- 00

Selects the number of data channels of the trace interface.

©1989-2025 Lauterbach V850 Debugger and Trace | 34

SYStem.Option.STALL Trace STALL mode

Format: SYStem.Option. TCMODE <mode>
<mode>: ON | OFF
Selects Trace STALL mode.
ON Program execution might be stalled to prevent overrun of trace interface.
OFF Program execution is done in real-time. The trace interface might loose

trace messages.

SYStem.Option.TCMODE Trace clock mode
Format: SYStem.Option.TCMODE <mode>
<mode>: 11
1/2
1/2DDR

Selects Trace clockspeed.

M Trace clock is equal to CPU system clock.
12 Trace clock is equal to CPU system clock / 2.
1/2DDR Not supported.

©1989-2025 Lauterbach V850 Debugger and Trace | 35

Breakpoints

There are two types of breakpoints available: Software breakpoints (SW-BP) and on-chip breakpoints (HW-
BP).

Software Breakpoints

Software breakpoints are the default breakpoints. A special breakcode is patched to memory so it only can
be used in RAM or FLASH areas.There is no restriction in the number of software breakpoints.

On-chip Breakpoints

The following list gives an overview of the usage of the on-chip breakpoints by TRACE32-ICD:

CPU Family Address Breakpoints Data Breakpoints Sequential
Breakpoints
VB850E(S) all 2 ranges 2 ranges A->B
devices - include or exclude - include or exclude
Qualifier for:
- Instruction-Fetch
- Data-Read
- Data-Write
- Size ANY/8/16/32
V850E(S) devices 4 or 8 additional
with ROM breakpoints on
Correction Unit - Instruction-Fetch
(RCU)

Only in Flash area
- requires onchip
break mapping
MAP.BOnchip
<range>

- can be disabled
with command
TO.RCU OFF

©1989-2025 Lauterbach V850 Debugger and Trace | 36

Breakpoint in ROM

With the command MAP.BOnchip <range> it is possible to inform the debugger about ROM
(FLASH,EPROM) address ranges in target. If a breakpoint is set within the specified address range the
debugger uses automatically the available on-chip breakpoints.

Example for Breakpoints

Assume you have a target with FLASH from 0 to 0xFFFFF and RAM from 0x100000 to 0x11FFFF. The
command to configure TRACES32 correctly for this configuration is:

Map .BOnchip 0x0--0xOFFFFF

The following breakpoint combinations are possible.

Software breakpoints:

Break.Set 0x100000 /Program ; Software Breakpoint 1
Break.Set 0x101000 /Program ; Software Breakpoint 2
Break.Set 0xx /Program ; Software Breakpoint 3

On-chip breakpoints:

Break.Set 0x100 /Program ; On-chip Breakpoint 1

Break.Set 0x0ff00 /Program ; On-chip Breakpoint 2

©1989-2025 Lauterbach V850 Debugger and Trace | 37

TrOnchip Commands

TrOnchip.CONVert

Adjust range breakpoint in on-chip resource

Format: TrOnchip.CONVert [ON | OFF] (deprecated)
Use Break.CONFIG.InexactAddress instead

The on-chip breakpoints can only cover specific ranges. If a range cannot be programmed into the
breakpoint, it will automatically be converted into a single address breakpoint when this option is active. This

is the default. Otherwise an error message is generated.

TrOnchip.CONVert ON
Break.Set 0x1000--0x17ff
Break.Set 0x1001--0x17ff

TrOnchip.CONVert OFF
Break.Set 0x1000--0x17ff
Break.Set 0x1001--0x17ff

/Write
/Write

/Write
/Write

sets breakpoint at range
1000--17ff sets single breakpoint
at address 1001

sets breakpoint at range
1000--17ff
gives an error message

©1989-2025 Lauterbach

V850 Debugger and Trace | 38

TrOnchip.RCU ROM-Correction breakpoints

Format: TrOnchip.RCU [ON | OFF]

When enabled (default) the CPU’s Rom-Correction-Unit is used to extend the number of Onchip
Breakpoints. RCU breakpoints can only be used for program breaks in the FLASH area.

NOTE: A DBTRAP instruction code is visible at the break address. It is visible for program
and data accesses, which causes trouble if the application does memory checking
like CRC.

TrOnchip.RESet Set on-chip trigger to default state

Format: TrOnchip.RESet

Sets the TrOnchip settings and trigger module to the default settings.

TrOnchip.Set.Alignment Alignment error breakpoints

Format: TrOnchip.Set.Alignment [ON | OFF]

When enabled (default) the CPU stops program execution on any miss-aligned memory access.

NOTE: Miss-aligned memory accesses are supported by the V850-ES core. The
TrOnchip.Set.Alignment should be set to OFF.

©1989-2025 Lauterbach V850 Debugger and Trace | 39

TrOnchip.Set.MissAlign Alignment error breakpoints

Format: TrOnchip.Set.MissAlign [ON | OFF]

When enabled (default) the CPU stops program execution on miss-align stack operations and on miss-align
accesses in “miss-align access disable mode”.

NOTE: Miss-aligned memory accesses are supported by the V850-ES core. The
TrOnchip.Set MissAlign should be set to OFF.

TrOnchip.SIZE Trigger on byte, word, long memory accesses

Format: TrOnchip.SIZE [ON | OFF]

If ON, breakpoints on single-byte, two-byte or four-byte addressranges only hit if the CPU accesses this
ranges with a byte, word or long buscycle. Default: OFF

TrOnchip.state Display on-chip trigger window

Format: TrOnchip.state

Opens the TrOnchip.state window.

TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource

Format: TrOnchip.VarCONVert [ON | OFF] (deprecated)
Use Break.CONFIG.VarConvert instead

The on-chip breakpoints can only cover specific ranges. If you want to set a marker or breakpoint to a
complex variable, the on-chip break resources of the CPU may be not powerful enough to cover the whole
structure. If the option TrOnchip.VarCONVert is set to ON, the breakpoint will automatically be converted
into a single address breakpoint. This is the default setting. Otherwise an error message is generated.

©1989-2025 Lauterbach V850 Debugger and Trace | 40

CPU specific Functions

CPU.BASEFAMILY() CPU family

[build 70426 - DVD 02/2016]

Syntax: CPU.BASEFAMILY()

Returns the CPU family name “V850”.

Return Value Type: String.

CPU.SUBFAMILY/() CPU subfamily

[build 68566- DVD 02/2016]

Syntax: CPU.SUBFAMILY()

Returns the CPU subfamily name.

Return Value Type: String.

©1989-2025 Lauterbach V850 Debugger and Trace | 41

Memory Classes

The following memory classes are available:

Memory Class Description

P Program

D Data (also DataFlash without ID tag)

DF DataFlash with ID-Tag: Memory contents are presented as 64bit value
Data: bit[31..0]
ID tag: bit [32]

DataFlash: Memory Class

By default the DataFlash is handled like a normal 32bit flash memory, the ID-Tag is ignored. The contents
are presented as 32bit values with addresses counting up 0x0, 0x4, 0x8, 0xC ... (use the command:
Data.dump D:<address> /Long).

The presentation of the additional ID tag bit require slight changes in the display.

By using the DF: memory class the ID tag is handled like an additional databit, so the Data.dump window
shows 64bit values, whereas the address counting is still 0x0, 0x4, 0x8, 0xC ... (use the command
Data.dump DF:<address> /Quad).

Because of the 64bit presentation, a Data.Save <file> DF:<addressrange> command will save double of
data than defined by the address range. Also the download of data flash contents with ID tag requires double
of data than defined by the address range (Data.Load <file> DF:<address>).

©1989-2025 Lauterbach V850 Debugger and Trace | 42

NBD Interface

The usage of NBD (Non Break Debug Interface) requires extra debug hardware to get access to the CPUs
NBD interface. This extra hardware is plugged in between the debug box and the debug dongle. Connection
to the CPUs NBD interface is done by a 16pin flat cable.

The interface allows real-time access to target memory while the application program is running.
Furthermore it allows the access to certain debug configuration registers to:

. Replace CPU internal FLASH by RAM in blocks of 4 KByte
. Activate the NBD_TRIGGER signal on access to certain memory locations

o Readout the CPUs ID-code

The NBD configuration registers are accessible in the CPUs peripheral window.

©1989-2025 Lauterbach V850 Debugger and Trace | 43

Runtime Measurement

Runtime measurement is done with about 5 s resolution.

The debuggers RUNTIME window gives detailed information about the complete run-time of the application
code and the run-time since the last GO/STEP/STEP-OVER command.

©1989-2025 Lauterbach V850 Debugger and Trace | 44

JTAG Connector

Connector 20 pin 100mil /NWire

Signal Pin Pin Signal
GND 1 2 DCK
GND 3 4 DMS
GND 5 6 DDI
GND 7 8 DRST-
GND 9 10 PORTOIN
GND 11 12 RESET-
GND 13 14 FLMDO
GND 15 16 PORT1IN/RDYZ
GND 17 18 DDO
GND 19 20 VDD

JTAG Connector Signal Description CPU Signal
DMS JTAG-TMS, output of debugger TMS
DDI JTAG-TDI, output of debugger TDI
DCK JTAG-TCK, output of debugger TCK
TRST JTAG-TRST, output of debugger TRST
DDO JTAG-TDO, input for debugger TDO
RESET RESET RESET
input/output of debugger
- Force target Reset
- Sense target Reset
(see application note)
FLMDO FLASH ModeO signal FLMDO
- enable flash programming (see application note)
PortIn0 Input Port for Debugger, currently unused not connected
PortInl/RDYZ READY- input of debugger, only used for E2 core RDYZ
CPUs like Px4

©1989-2025 Lauterbach

V850 Debugger and Trace | 45

Trace Connector

The default connection for trace support is MICTOR. With additional adaptors also KEL and GlenAir is

supported.

Connector MICTOR/N-Wire and Trace

Signal
GND

DCK

DMS

DDI

DDO

N/C

N/C

N/C
TRCCLK
TRCEND
TRCDATAO
TRCDATA1
TRCDATA2
TRCDATAS
TRCDATA4
TRCDATA5
TRCDATAG
TRCDATA7
GND

Pin Pin
1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30
31 32
33 34
35 36
37 38

Signal

GND

VDD

DRST-
RESET-
FLMDO
RESERVED
RESERVED
PORT1IN
PORT2IN
TRCCE
TRCDATA8
TRCDATA9
TRCDATA10
TRCDATA11
TRCDATA12
TRCDATA13
TRCDATA14
TRCDATA15
GND

©1989-2025 Lauterbach

V850 Debugger and Trace

46

Connector KEL/N-Wire and Trace

A13A‘]2 Al1 A3

A1

%do RS

O

Top View

;D (P OOOOOOO Oci
\
B13B12 B11 B3 B2B1
Pin Number Signal Name Input/Output Treatment (User Side)
(User Side)
A1 CLKOUT Output 22 ... 33 Q) series resistor (recommended)
A2 TRCDATAO Output 22 ... 33 Q) series resistor (recommended)
A3 TRCDATAL Output 22 ... 33 Q) series resistor (recommended)
A4 TRCDATA2 Output 22 ... 33 Q) series resistor (recommended)
A5 TRCDATA3 Output 22 ... 33 Q) series resistor (recommended)
A6 TRCEND Output 22 ... 33 Q) series resistor (recommended)
A7 DDI Input 10 kQ pull-up
A8 DCK Input 10 kQ pull-up
A9 DMS Input 10 kQ pull-up
A10 DDO Output 22 ... 33 Q) series resistor (recommended)
A1 DRST Input 10 kQ pull-up
A12 RESET Input 10 kQ pull-up
A13 FLMDO Input open
B1...B10 GND - Connection to the power GND
B11 Port0O_In - Open
B12 Portl_IN - Open
B13 + 3.3V - Connection to the power

©1989-2025 Lauterbach

V850 Debugger and Trace | 47

NBD Connector

Signal Pin Pin Signal
TRIG- 1 2 VCC
OuUT- 3 4 GND
CLK 5 6 GND
SYNC 7 8 GND
DATAO 9 10 GND
DATA1 11 12 GND
DATA2 13 14 DATA3
MODE 15 16 RESETO-

NBD Connector Signal Description CPU Signal

TRIG NBD_Trigger signal, TRIG_DBG
debugger input

OUT NBD_DataDirection signal, usually not used
debugger output
A LOW indicates direction Interface --> CPU

CLK NBD_Clock, CLK_DBG
debugger output

SYNC NBD_SYNC signal, SYNC_DBG#
debugger output

DATA[3 .. 0] NBD_DATA[3 ... O], AD[3 ... 0] _DBG
debugger input/output

MODE NBD_Mode enable, MODE_NBD
debugger output

RESETO NBD_ResetOut signal, RESETO_DBG
debugger input
Indicates any kind of Reset forced to the CPU

vCC Reference Voltage for NBD Interface PowerSupply of user
(2 ... 5 V) debugger input system

©1989-2025 Lauterbach

V850 Debugger and Trace | 48

	V850 Debugger and Trace
	Introduction
	Brief Overview of Documents for New Users
	Demo and Start-up Scripts

	Warning
	Application Note
	Location of Debug Connector
	Reset Line
	FLMD0 Line
	Mask-Options of V850/Fx3, Cargate

	Quick Start JTAG
	Troubleshooting
	SYStem.Up Errors

	FAQ
	Configuration
	System Overview

	CPU specific SYStem Settings
	SYStem.CONFIG.state Display target configuration
	SYStem.CONFIG Configure debugger according to target topology
	Daisy-Chain Example
	TapStates

	SYStem.CONFIG.CORE Assign core to TRACE32 instance
	SYStem.CONFIG.EXTWDTDIS Disable external watchdog
	SYStem.CONFIG.DEBUGPORTTYPE Select debug port type
	SYStem.CONFIG.PortSHaRing Control sharing of debug port with other tool
	SYStem.CPU CPU type selection
	SYStem.JtagClock JTAG clock selection
	SYStem.LOCK Lock and tristate the debug port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode System mode selection
	SYStem.Option.IMASKASM Interrupt disable
	SYStem.Option.IMASKHLL Interrupt disable
	SYStem.Option.PERSTOP Disable CPU peripherals if stopped
	SYStem.RESetOut Reset target without reset of debug port

	Exception Lines Enable
	SYStem.Option.RESET Reset line enable
	SYStem.Option.STOP Stop line enable
	SYStem.Option.WAIT Wait line enable
	SYStem.Option.REQest Request line enable
	SYStem.Option.NMI0 NMI0 line enable
	SYStem.Option.NMI1 NMI1 line enable
	SYStem.Option.NMI2 NMI2 line enable
	SYStem.Option.CPINT CPINT line enable

	Trace System Settings
	SYStem.Option.BTM Branch trace message
	SYStem.Option.DTM Data trace message
	SYStem.Option.KEYCODE Keycode
	SYStem.Option.OPWIDTH Trace interface width
	SYStem.Option.STALL Trace STALL mode
	SYStem.Option.TCMODE Trace clock mode

	Breakpoints
	Software Breakpoints
	On-chip Breakpoints
	Breakpoint in ROM
	Example for Breakpoints

	TrOnchip Commands
	TrOnchip.CONVert Adjust range breakpoint in on-chip resource
	TrOnchip.RCU ROM-Correction breakpoints
	TrOnchip.RESet Set on-chip trigger to default state
	TrOnchip.Set.Alignment Alignment error breakpoints
	TrOnchip.Set.MissAlign Alignment error breakpoints
	TrOnchip.SIZE Trigger on byte, word, long memory accesses
	TrOnchip.state Display on-chip trigger window
	TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource

	CPU specific Functions
	CPU.BASEFAMILY() CPU family
	CPU.SUBFAMILY() CPU subfamily

	Memory Classes
	DataFlash: Memory Class

	NBD Interface
	Runtime Measurement
	JTAG Connector
	Connector 20 pin 100mil /NWire

	Trace Connector
	Connector MICTOR/N-Wire and Trace
	Connector KEL/N-Wire and Trace

	NBD Connector

