
MANUAL                                                       

Release 09.2024

SH2, SH3 and SH4 Debugger



SH2, SH3 and SH4 Debugger

TRACE32 Online Help  

TRACE32 Directory  

TRACE32 Index  

TRACE32 Documents  ...................................................................................................................... 

   ICD In-Circuit Debugger  ................................................................................................................ 

      Processor Architecture Manuals  .............................................................................................. 

         SuperH  ...................................................................................................................................... 

            SH2, SH3 and SH4 Debugger  .............................................................................................. 1

               History  ................................................................................................................................ 5

               Introduction  ....................................................................................................................... 5

                  Brief Overview of Documents for New Users 6

                  Demo and Start-up Scripts 6

               Warning  .............................................................................................................................. 7

               Application Note  ................................................................................................................ 8

                  Location of Debug Connector 8

                  Reset Line 8

                  Enable JTAG Mode SH2 9

                  Enable JTAG Mode SH3 9

                  SH7710/12 Solution Engine 9

                  Enable AUD Trace lines of SH7760 9

                  Memory Mapping of SH7615/ SH7616 BusControlRegisters 9

                  Enable 8-bit AUD Trace Interface of SH4-202 10

               Quick Start JTAG  ............................................................................................................... 11

               Troubleshooting  ................................................................................................................ 13

                  SYStem.Up Errors 13

                  Trace Errors 14

               FAQ  ..................................................................................................................................... 14

               Configuration  ..................................................................................................................... 15

                  System Overview 15

               CPU specific SYStem Settings  ......................................................................................... 16

                  SYStem.CONFIG.state Display target configuration 16

                  SYStem.CONFIG Configure debugger according to target topology 17

                     Daisy-Chain Example 19

                     TapStates 20
SH2, SH3 and SH4 Debugger     |    2©1989-2024   Lauterbach                                                        



                  SYStem.CONFIG.CORE Assign core to TRACE32 instance 21

                  SYStem.CPU CPU type selection 22

                  SYStem.JtagClock JTAG clock selection 22

                  SYStem.LOCK JTAG lock 23

                  SYStem.MemAccess Select run-time memory access method 24

                  SYStem.Mode System mode selection 24

                  SYStem.Option.EnReset Allow the debugger to drive nRESET 25

                  SYStem.Option.HOOK Compare PC to hook address 25

                  SYStem.Option.IMASKASM Interrupt disable 26

                  SYStem.Option.IMASKHLL Interrupt disable 26

                  SYStem.Option.JtagWait JTAG wait enable 26

                  SYStem.Option.KEYCODE Keycode SH7144/45 26

                  SYStem.Option.MMUSPACES Separate address spaces by space IDs 27

                  SYStem.Option.NoRunCheck No check of the running state 28

                  SYStem.Option.SLOWRESET Slow reset enable 28

                  SYStem.Option.SOFTLONG Use LONG access for softbreak patching 28

                  SYStem.Option.SOFTSLOT Prevent softbreak in slot-instruction 29

                  SYStem.Option.STEPSOFT Use software breakpoints for ASM stepping 29

                  SYStem.Option.LittleEnd Selection of little endian mode 29

                  SYStem.RESetOut Reset target without reset of debug port 29

                  SYStem.Option.VBR Vector base address (SH3/4 only) 30

                  Multicore Debugging 30

               Breakpoints  ........................................................................................................................ 31

                  Software Breakpoints 31

                  On-chip Breakpoints 31

                  On-chip Breakpoints SH7047, SH7144, SH7145 32

                  On-chip Breakpoints SH72513 32

                  Breakpoint in ROM 33

                  Example for Breakpoints 33

               CPU specific BenchMarkCounter Commands  ................................................................ 34

                  BMC.<counter>.ATOB Advise counter to count within AB-range 34

               CPU specific TrOnchip Commands  ................................................................................. 35

                  TrOnchip.CONVert Adjust range breakpoint in on-chip resource 35

                  TrOnchip.IOB I/O breakpoints (SH4, ST40) 35

                  TrOnchip.LDTLB LDTLB breakpoints 35

                  TrOnchip.A.IBUS I-bus breakpoints (SH2A) 36

                  TrOnchip.RESet Set on-chip trigger to default state 36

                  TrOnchip.RPE Reset sequential trigger on reset point 36

                  TrOnchip.SEQ Sequential breakpoints (SH4, ST40) 37

                  TrOnchip.SIZE Trigger on byte, word, long memory accesses 37

                  TrOnchip.state Display on-chip trigger window 37

               CPU specific MMU Commands  ........................................................................................ 38
SH2, SH3 and SH4 Debugger     |    3©1989-2024   Lauterbach                                                        



                  MMU.DUMP Page wise display of MMU translation table 38

                  MMU.List Compact display of MMU translation table 40

                  MMU.SCAN Load MMU table from CPU 42

               Memory Classes and Cache Handling  ............................................................................ 44

                  Memory Classes (SH2) 44

                  Memory Classes (SH3, SH4, ST40) 44

                  Cache Handling(SH3, SH4, ST40) 45

                     Memory Coherency 45

               SYStem Commands  .......................................................................................................... 46

                  SYStem.Option.ICFLUSH Cache invalidation option 46

                  SYStem.Option.DCFREEZE Freeze data cache contents 46

                  SYStem.Option.DCCOPYBACK Cache copy back 46

                  SYStem.Option.ICREAD Cache read option 46

                  SYStem.Option.DCREAD Cache read option 47

               Trace  ................................................................................................................................... 48

                  FIFO Trace (SH2A, SH3, SH4, ST40) 48

                  SYStem.Option.FIFO FIFO trace configuration 48

                  LOGGER Trace (SH4, ST40, SH7705) 49

                  AUD-Trace (SH2A, SH4, ST40) 50

                     Selection of Branch and Data Trace Recording 50

                  SYStem.Option.AUDBT AUD branch trace enable 51

                  SYStem.Option.AUDDT AUD data trace enable 51

                  SYStem.Option.AUDRTT AUD real time trace enable 51

                  SYStem.Option.AUDClock AUD clock select 51

                  SYStem.Option.AUD8 AUD 8-bit enable 52

                  AUD-Trace (SH3) 53

                  SYStem.Option.AUDRTT AUD real time trace enable 53

                  SYStem.Option.AUDClock AUD clock select 53

                  On-chip Trace SH2A 54

                  Onchip.Mode.MBusTrace Mbus trace enable 54

                  Onchip.Mode.IBusTrace Ibus trace enable 55

                  Onchip.Mode.ProgramTrace Program flow trace enable 55

                  Onchip.Mode.DataReadTrace Data read trace enable 55

                  Onchip.Mode.DataWriteTrace Data write trace enable 56

               On-chip Performance Analysis (SH4, ST40)  ................................................................... 57

                  TrOnchip.PMCTRx Performance counter configuration 57

               Runtime Measurement  ...................................................................................................... 59

               JTAG Connector  ................................................................................................................ 60
SH2, SH3 and SH4 Debugger     |    4©1989-2024   Lauterbach                                                        



SH2, SH3 and SH4 Debugger

Version 05-Oct-2024

History

20-Jul-22 For the MMU.SCAN ALL command, CLEAR is now possible as an optional second 
parameter.

Introduction

This document describes the processor specific settings and features for TRACE32-ICD for the following 
CPU families:

• SH4A

• SH4 (7750, 7751)

• SH3 (7709A, 7729)

• SH2A

• SH2 (7047F, 7058FCC, 7144/45)

• ST40 (ST40STB1, ST40RA166, ST40GX1, ST40NGX1, SH4-202)

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the 
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by 
Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your 
first choice. 

If some of the described functions, options, signals or connections in this Processor Architecture Manual are 
only valid for a single CPU or for specific families, the name(s) of the family(ies) is added in brackets. 
SH2, SH3 and SH4 Debugger     |    5©1989-2024   Lauterbach                                                        



Brief Overview of Documents for New Users

Architecture-independent information:

• “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a 
TRACE32 debugger.

• “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances 
for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the 
processor architecture supported by your Debug Cable. To access the manual for your processor 
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating 
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the 
OS-aware debugging. 

Demo and Start-up Scripts

Lauterbach provides ready-to-run start-up scripts for known SuperH based hardware.

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:

• Type at the command line: WELCOME.SCRIPTS

• or choose File menu > Search for Script.

You can now search the demo folder and its subdirectories for PRACTICE start-up scripts 
(*.cmm) and other demo software.

You can also manually navigate in the ~~/demo/sh/ subfolder of the system directory of TRACE32.
SH2, SH3 and SH4 Debugger     |    6©1989-2024   Lauterbach                                                        



Warning

Signal Level

The debugger drives the output pins of the JTAG connector with 3.3 V always.

ESD Protection

WARNING: To prevent debugger and target from damage it is recommended to connect or 
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

1. Disconnect the Debug Cable from the target while the target power is 
off.

2. Connect the host system, the TRACE32 hardware and the Debug 
Cable.

3. Power ON the TRACE32 hardware.

4. Start the TRACE32 software to load the debugger firmware.

5. Connect the Debug Cable to the target.

6. Switch the target power ON.

7. Configure your debugger e.g. via a start-up script.

Power down:

1. Switch off the target power.

2. Disconnect the Debug Cable from the target.

3. Close the TRACE32 software.

4. Power OFF the TRACE32 hardware.
SH2, SH3 and SH4 Debugger     |    7©1989-2024   Lauterbach                                                        



Application Note

Location of Debug Connector

Locate the JTAG connector as close as possible to the processor to minimize the capacitive influence of 
the trace length and cross coupling of noise onto the BDM signals.

Reset Line

Ensure that the debugger signal RESET is connected directly to the RESET of the processor. This will 
provide the ability for the debugger to drive and sense the status of RESET.

VCC

10 k

Force Reset

Reset Sense SH2_RES#

Reset circuit of debugger

SH3_RESETP#
SH4_RESET#

ST40_RST#
SH2, SH3 and SH4 Debugger     |    8©1989-2024   Lauterbach                                                        



Enable JTAG Mode SH2

SH7047:

•  Signal /DBGMD has to be forced to GND (debug mode enable)

SH7144/45: 

• Signal DBGMD has to be forced to VCC (debug mode enable)

• Signal FWE has to be forced to GND (FLASH write enable)

Enable JTAG Mode SH3

Signal ASEMD0 has to be forced to GND

SH7710/12 Solution Engine

The debug connector of the SH7710 Solution Engine requires a modification to support AUD trace. Please 
connect pin 1 (NC) with pin 35 (AUDCK).

Enable AUD Trace lines of SH7760

The CPUs AUD trace lines are shared with port lines. Trace functionality has to be enabled in CPU register 
IPSELR (set bit 12 and 13).

Use command: DATA.SET 0xFE400034 %Word 3003

Memory Mapping of SH7615/ SH7616 BusControlRegisters

As long as emulation is stopped the peripheral registers of addressrange

 0xFFFFFFC0--0xFFFFFFFF are mapped to address range 0xFFFFFDC0--0xFFFFFDFF.

This address range covers the BusControlRegisters. During program execution they can be accessed at 
their original address. When emulation is stopped they have to be accessed in the range 0xFFFFFDC0--
0xFFFFFDFF.
SH2, SH3 and SH4 Debugger     |    9©1989-2024   Lauterbach                                                        



Enable 8-bit AUD Trace Interface of SH4-202 

The CPUs AUD trace lines AUD[7..4] are shared with other CPU peripherals. For 8-bit AUD trace usage, 
these trace lines have to be enabled by setting bit-4 of CPU register SYS_CONF_REG (0xb9ee0004).

Attention: The access to SYS_CONF_REG only works if clocking of PLL2 is already initialized!

Find here a setup example:. 

Add this lines to your TRACE32 setup file.

For 4-bit AUD trace mode no setup is required (default setting).

; inform TRACE32 software about 8-bit AUD trace usage 
System.Option.AUD8 ON

; PLL2 init
Data.Set 0xb8800038 %Long 0x3000560e
; PLL2 enable (read-modify-write action)
Data.Set 0xb8800004 %Long DATA.LONG(d:0xb8800004)|0x1

; AUD8 bit enable (SYS_CONF_REG) bit-4
Data.Set 0xb9ee0004 %Long DATA.LONG(d:0xb9ee0004)|0x10
SH2, SH3 and SH4 Debugger     |    10©1989-2024   Lauterbach                                                        



Quick Start JTAG

Starting up the Debugger is done as follows:

1. Select the device prompt B: for the ICD Debugger, if the device prompt is not active after the 
TRACE32 software was started.

2. Select the CPU type to load the CPU specific settings.

3. If the TRACE32-ICD hardware is installed properly, the following CPU is the default setting:

SH7750

4. Tell the debugger where’s FLASH/ROM on the target. 

This command is necessary for the use of on-chip breakpoints.

5. Enter debug mode

This command resets the CPU and enters debug mode. After this command is executed, it is possible 
to access the registers. Set the chip selects to get access to the target memory.

6. Load the program.

The option of the Data.LOAD command depends on the file format generated by the compiler. A 
detailed description of the Data.LOAD command is given in the “General Commands Reference”.

b:

SYStem.CPU SH7750

MAP.BOnchip 0xFF000000++0xFFFFFFFF

SYStem.Up

Data.Set …

Data.LOAD.ELF diabc.elf ; elf specifies the format, diabc.elf
; is the file name
SH2, SH3 and SH4 Debugger     |    11©1989-2024   Lauterbach                                                        



The start-up can be automated using the programming language PRACTICE. A typical start sequence is 
shown below:

*) These commands open windows on the screen. The window position can be specified with the WinPOS 
command.

b:: ; Select the ICD device prompt

WinCLEAR ; Delete all windows

MAP.BOnchip 0x100000++0x0fffff ; Specify where’s FLASH/ROM

SYStem.CPU SH7750 ; Select the processor type

SYStem.Up ; Reset the target and enter debug
; mode

Data.LOAD.COFF GNUSH7.X ; Load the application

Register.Set PC main ; Set the PC to function main

List.auto ; Open disassembly window *)

Register.view /SpotLight ; Open register window *)

Frame.view /Locals /Caller ; Open the stack frame with 
; local variables *)

Var.Watch %Spotlight flags ast ; Open watch window for variables *)

PER.view ; Open window with peripheral register
; *)

Break.Set sieve ; Set breakpoint to function sieve

Break.Set 0x1000 /Program ; Set software breakpoint to address
; 1000 (address 1000 is in RAM)

Break.Set 0x101000 /Program ; Set on-chip breakpoint to address
; 101000 (address 101000 is in ROM)
; (Refer to the restrictions in
; On-chip Breakpoints.)
SH2, SH3 and SH4 Debugger     |    12©1989-2024   Lauterbach                                                        



Troubleshooting

SYStem.Up Errors

The SYStem.Up command is the first command of a debug session where communication with the target is 
required. If you receive error messages while executing this command this may have the following reasons.

Monitor Download Error

At System.Up the debugger loads a monitor program into the target CPU and checks if communication with 
the monitor works well. 

Each CPU type has it’s own monitor program, so it is a must to inform the debugger about the CPU in use 
and the endianness. Use commands:

• System.CPU

• System.Option.LittleEnd

All The target has no power.

All The target is in reset:
The debugger controls the processor reset and use the RESET line to reset the 
CPU on every SYStem.Up.

All There is logic added to the JTAG state machine:
By default the debugger supports only one processor on one JTAG chain.
If the processor is member of a JTAG chain the debugger has to be informed 
about the target JTAG chain configuration. See Multicore Debugging. 

All There are additional loads or capacities on the JTAG lines.
SH2, SH3 and SH4 Debugger     |    13©1989-2024   Lauterbach                                                        



Trace Errors

There are several reasons for Trace Errors.

1. Hardware problems with AUD trace interface:

The TRACE32 AUD trace is designed for up to 200 MHz AUDCLK. Take care about the layout of your 
target especially the routing of AUDCLK. In case of Trace Errors try lower AUDCLK speeds with 
command SYStem.Option.AUDCLK 1/1, 1/2, 1/4 1/8.

2. AUD protocol errors

In case of RealTimeTrace mode (SYSTEM.Option.AUDRTT ON) it might happen the CPU executes 
program quicker than the AUD interface can transfer its information. In this case the current AUD 
transfer is skipped, trace information gets lost and as a result it is not possible to calculate the correct 
program flow. To prevents this kind of error the AUD clock should be as high as possible. If this does 
not solve the problem you have to switch OFF the RealTimeTrace mode (SYSTEM.Option.AUDRTT 
OFF)

3. Calculation Error

The trace listing is calculated in conjunction of the trace records plus the memory contents. If the 
memory content has changed (self modified code, different chipselect setting, MMU …) in between 
run time and calculation time there will be mismatches of the trace records compared to the current 
program in memory.

FAQ

Please refer to https://support.lauterbach.com/kb.
SH2, SH3 and SH4 Debugger     |    14©1989-2024   Lauterbach                                                        

https://support.lauterbach.com/kb


Configuration

System Overview

PODBUS Cable
PODPC
PODPAR Debug EPROM
PODETH Interface Simulator ...

(optional)

Debug Cable


CPU CLK  RESET

 INT
Target Connector

EPROM

Target  

Basic configuration for the BDM Interface
SH2, SH3 and SH4 Debugger     |    15©1989-2024   Lauterbach                                                        



CPU specific SYStem Settings

SYStem.CONFIG.state     Display target configuration

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target 
configuration settings. The configuration settings tell the debugger how to communicate with the chip on 
the target board and how to access the on-chip debug and trace facilities in order to accomplish the 
debugger’s operations.

Alternatively, you can modify the target configuration settings via the TRACE32 command line with the 
SYStem.CONFIG commands. Note that the command line provides additional SYStem.CONFIG 
commands for settings that are not included in the SYStem.CONFIG.state window.
   

Format: SYStem.CONFIG.state [/<tab>] 

<tab>: DebugPort | Jtag 

<tab> Opens the SYStem.CONFIG.state window on the specified tab. For tab 
descriptions, see below.

DebugPort Informs the debugger about the debug connector type and the 
communication protocol it shall use.

Jtag Informs the debugger about the position of the Test Access Ports (TAP) in 
the JTAG chain which the debugger needs to talk to in order to access the 
debug and trace facilities on the chip.
SH2, SH3 and SH4 Debugger     |    16©1989-2024   Lauterbach                                                        



SYStem.CONFIG     Configure debugger according to target topology

The four parameters IRPRE, IRPOST, DRPRE, DRPOST are required to inform the debugger about the 
TAP controller position in the JTAG chain, if there is more than one core in the JTAG chain (e.g. Arm + DSP). 
The information is required before the debugger can be activated e.g. by a SYStem.Up. See Daisy-chain 
Example.
For some CPU selections (SYStem.CPU) the above setting might be automatically included, since the 
required system configuration of these CPUs is known. 

TriState has to be used if several debuggers (“via separate cables”) are connected to a common JTAG port 
at the same time in order to ensure that always only one debugger drives the signal lines. TAPState and 
TCKLevel define the TAP state and TCK level which is selected when the debugger switches to tristate 
mode. Please note: nTRST must have a pull-up resistor on the target, TCK can have a pull-up or pull-down 
resistor, other trigger inputs need to be kept in inactive state.

  

Format: SYStem.CONFIG   <parameter> <number_or_address>
SYStem.MultiCore <parameter> <number_or_address> (deprecated)

<parameter>: CORE       <core>

<parameter>:
(JTAG):

DRPRE     <bits>
DRPOST   <bits>
IRPRE      <bits>
IRPOST    <bits>
TAPState  <state>
TCKLevel <level>
TriState     [ON | OFF]
Slave        [ON | OFF]

Multicore debugging is not supported for the DEBUG INTERFACE (LA-7701).

CORE For multicore debugging one TRACE32 PowerView GUI has to be started 
per core. To bundle several cores in one processor as required by the 
system this command has to be used to define core and processor 
coordinates within the system topology.
Further information can be found in SYStem.CONFIG.CORE.

DRPRE (default: 0) <number> of TAPs in the JTAG chain between the core of 
interest and the TDO signal of the debugger. If each core in the system 
contributes only one TAP to the JTAG chain, DRPRE is the number of 
cores between the core of interest and the TDO signal of the debugger.
SH2, SH3 and SH4 Debugger     |    17©1989-2024   Lauterbach                                                        



DRPOST (default: 0) <number> of TAPs in the JTAG chain between the TDI signal 
of the debugger and the core of interest. If each core in the system 
contributes only one TAP to the JTAG chain, DRPOST is the number of 
cores between the TDI signal of the debugger and the core of interest. 

IRPRE (default: 0) <number> of instruction register bits in the JTAG chain 
between the core of interest and the TDO signal of the debugger. This is 
the sum of the instruction register length of all TAPs between the core of 
interest and the TDO signal of the debugger. 

IRPOST (default: 0) <number> of instruction register bits in the JTAG chain 
between the TDI signal and the core of interest. This is the sum of the 
instruction register lengths of all TAPs between the TDI signal of the 
debugger and the core of interest. 

TAPState (default: 7 = Select-DR-Scan) This is the state of the TAP controller when 
the debugger switches to tristate mode. All states of the JTAG TAP 
controller are selectable.

TCKLevel (default: 0) Level of TCK signal when all debuggers are tristated.

TriState (default: OFF) If several debuggers share the same debug port, this 
option is required. The debugger switches to tristate mode after each 
debug port access. Then other debuggers can access the port. JTAG: 
This option must be used, if the JTAG line of multiple debug boxes are 
connected by a JTAG joiner adapter to access a single JTAG chain.

Slave (default: OFF) If more than one debugger share the same debug port, all 
except one must have this option active.
JTAG: Only one debugger - the “master” - is allowed to control the signals 
nTRST and nSRST (nRESET).
SH2, SH3 and SH4 Debugger     |    18©1989-2024   Lauterbach                                                        



Daisy-Chain Example

Below, configuration for core C.

Instruction register length of 

• Core A: 3 bit

• Core B: 5 bit

• Core D: 6 bit

SYStem.CONFIG.IRPRE  6. ; IR Core D

SYStem.CONFIG.IRPOST 8. ; IR Core A + B

SYStem.CONFIG.DRPRE  1. ; DR Core D

SYStem.CONFIG.DRPOST 2. ; DR Core A + B

SYStem.CONFIG.CORE 0. 1. ; Target Core C is Core 0 in Chip 1

Core A Core B Core C Core D TDOTDI

Chip 0 Chip 1
SH2, SH3 and SH4 Debugger     |    19©1989-2024   Lauterbach                                                        



TapStates

0 Exit2-DR

1 Exit1-DR

2 Shift-DR

3 Pause-DR

4 Select-IR-Scan

5 Update-DR

6 Capture-DR

7 Select-DR-Scan

8 Exit2-IR

9 Exit1-IR

10 Shift-IR

11 Pause-IR

12 Run-Test/Idle

13 Update-IR

14 Capture-IR

15 Test-Logic-Reset
SH2, SH3 and SH4 Debugger     |    20©1989-2024   Lauterbach                                                        



SYStem.CONFIG.CORE     Assign core to TRACE32 instance

Default core_index: depends on the CPU, usually 1. for generic chips

Default chip_index: derived from CORE= parameter of the configuration file (config.t32). The CORE 
parameter is defined according to the start order of the GUI in T32Start with ascending values.

To provide proper interaction between different parts of the debugger, the systems topology must be 
mapped to the debugger’s topology model. The debugger model abstracts chips and sub cores of these 
chips. Every GUI must be connect to one unused core entry in the debugger topology model. Once the 
SYStem.CPU is selected, a generic chip or non-generic chip is created at the default chip_index.

Non-generic Chips

Non-generic chips have a fixed number of sub cores, each with a fixed CPU type.

Initially, all GUIs are configured with different chip_index values. Therefore, you have to assign the 
core_index and the chip_index for every core. Usually, the debugger does not need further information to 
access cores in non-generic chips, once the setup is correct.

Generic Chips

Generic chips can accommodate an arbitrary amount of sub-cores. The debugger still needs information 
how to connect to the individual cores e.g. by setting the JTAG chain coordinates.

Start-up Process

The debug system must not have an invalid state where a GUI is connected to a wrong core type of a non-
generic chip, two GUIs are connected to the same coordinate or a GUI is not connected to a core. The initial 
state of the system is valid since every new GUI uses a new chip_index according to its CORE= parameter 
of the configuration file (config.t32). If the system contains fewer chips than initially assumed, the chips must 
be merged by calling SYStem.CONFIG.CORE.

Format: SYStem.CONFIG.CORE <core_index> <chip_index>
SYStem.MultiCore.CORE <core_index> <chip_index> (deprecated)

<chip_index>: 1 … i

<core_index>: 1 … k
SH2, SH3 and SH4 Debugger     |    21©1989-2024   Lauterbach                                                        



SYStem.CPU     CPU type selection

Default selection: SH7750.

Selects the CPU type. 

SYStem.JtagClock     JTAG clock selection

Default frequency: 20 MHz.

Selects the JTAG port frequency (TCK). The SH3/4-Core is designed for a maximum TCK clockspeed of 
20 MHz!

Any frequency can be entered, it will be generated by the debuggers internal PLL.

There is an additional plug on the debug cable on the debugger side. This plug can be used as an external 
clock input. With setting EXT/x the external clock input (divided by x) is used as JTAG port frequency.

Format: SYStem.CPU <cpu>

<cpu>: AUTO | SH7750 | SH7751 …

AUTO Automatic CPU detection during SYStem.UP. The JTAG clock has to be 
less/equal 5 MHz. The detected CPU type can be checked with the function 
CPU(). 

Format: SYStem.JtagClock [<frequency> | EXT/x]
SYStem.BdmClock [<frequency> | EXT/x] (deprecated)

If there are buffers, additional loads or high capacities on the JTAG/COP lines, 
reduce the debug speed.
SH2, SH3 and SH4 Debugger     |    22©1989-2024   Lauterbach                                                        



SYStem.LOCK     JTAG lock

Default: OFF. 

If the system is locked (ON) no access to the JTAG port will be performed by the debugger. All JTAG 
connector signals of the debugger are tristated. 

This command is useful if there are additional CPUs (Cores) on the target which have to use the same JTAG 
lines for debugging. By locking the T32 debugger lines, a different debugger can own mastership of the 
JTAG interface.

It must be ensured that the state of the SHx/ST40 core JTAG state machine remains unchanged while the 
system is locked. To ensure correct hand-over between two debuggers, a pull-down resistor on TCK and a 
pull-up resistor on /TRST is required.

Format: SYStem.LOCK [ON | OFF]
SH2, SH3 and SH4 Debugger     |    23©1989-2024   Lauterbach                                                        



SYStem.MemAccess     Select run-time memory access method

If MemAccess is set to Enable, setting breakpoints and memory accesses (access class “E”) is possible 
even if the core is running.

SYStem.Mode     System mode selection

Format: SYStem.MemAccess Enable | StopAndGo | Denied
SYStem.ACCESS (deprecated)

Enable
CPU (deprecated)

Memory access during program execution to target is enabled.

Denied (default) Memory access during program execution to target is disabled.

StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop 
takes some time depending on the speed of the JTAG port, the number of 
the assigned cores, and the operations that should be performed.

NOTE: • Memory Access while core is running is only supported by SH2A and 
SH4A cores.

• Memory Access does not support the access to cache contents! To fol-
low up variable changes in cached memory areas, the cache has to be 
switched OFF or set to WriteTrough mode. Write accesses only modify 
system- or target-memory no cache content!

Format: SYStem.Mode <mode> 

SYStem.Attach (alias for SYStem.Mode Attach)
SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)

<mode>: Down
Go
Up
Attach
SH2, SH3 and SH4 Debugger     |    24©1989-2024   Lauterbach                                                        



SYStem.Option.EnReset     Allow the debugger to drive nRESET

Default: ON.

If this option is disabled the debugger will never drive the nRESET line of the JTAG connector. This is 
necessary if nRESET is no open collector or tristate signal.

From the view of the SH core it is not necessary that nRESET becomes active at the start of a debug 
session (SYStem.Up), but there may be other logic on the target which requires a reset.

SYStem.Option.HOOK     Compare PC to hook address

The command defines the hook address. After program break the hook address is compared against the 
program counter value.

If the values are equal, it is supposed that a hook function was executed. This information is used to 
determine the right break address by the debugger. 

Command is valid for SH2 only. Hook address for on-chip breakpoints. See also Onchip Break SH7047.

Down Disables the Debugger.

Go Resets the target with debug mode enabled and prepares the CPU for 
debug mode entry. After this command the CPU is in the system.up 
mode and running. Now, the processor can be stopped with the break 
command or until any break condition occurs.

Up Resets the target and sets the CPU to debug mode. After execution of 
this command the CPU is stopped and prepared for debugging. All 
register are set to the default value.

Attach Attach to cpu without entering debug mode. There is no debug control 
but memory contents can be accessed. Only supported for SH4A cores.

NoDebug Not supported.

StandBy Not supported.

Format: SYStem.Option.EnReset [ON | OFF]

Format: SYStem.Option.HOOK <address> | <address_range>
SH2, SH3 and SH4 Debugger     |    25©1989-2024   Lauterbach                                                        



SYStem.Option.IMASKASM     Interrupt disable

Mask interrupts during assembler single steps. Useful to prevent interrupt disturbance during assembler 
single stepping.

SYStem.Option.IMASKHLL     Interrupt disable

Mask interrupts during HLL single steps. Useful to prevent interrupt disturbance during HLL single stepping.

SYStem.Option.JtagWait     JTAG wait enable

Has to be switched “ON” for SH7705, SH7709A till revision “S” and SH7729 till revision “R”.

This option enables a special bugfix for the CPUs Jtag interface. Jtag communication becomes slower!

SYStem.Option.KEYCODE     Keycode SH7144/45

Has to be the same value as present in CPU Flash at address 0x20--0x23

The KEYCODE is sent to the CPU during system up. If the KEYCODE does not fit then the CPU 
automatically erases its FLASH before the debug monitor can be downloaded. This is a special security 
feature of the SH7144/45.

Format: SYStem.Option.IMASKASM [ON | OFF]

Format: SYStem.Option.IMASKHLL [ON | OFF]

Format: SYStem.Option.JtagWait [ON | OFF]

Format: SYStem.Option.KEYCODE [<32bit_value>]
SH2, SH3 and SH4 Debugger     |    26©1989-2024   Lauterbach                                                        



SYStem.Option.MMUSPACES     Separate address spaces by space IDs

Default: OFF.

Enables the use of space IDs for logical addresses to support multiple address spaces. 

For an explanation of the TRACE32 concept of address spaces (zone spaces, MMU spaces, and machine 
spaces), see “TRACE32 Concepts” (trace32_concepts.pdf). 

Examples:   

Format: SYStem.Option.MMUSPACES [ON | OFF]
SYStem.Option.MMUspaces [ON | OFF] (deprecated)
SYStem.Option.MMU [ON | OFF] (deprecated)

NOTE: SYStem.Option.MMUSPACES should not be set to ON if only one translation 
table is used on the target.

If a debug session requires space IDs, you must observe the following 
sequence of steps:

1. Activate SYStem.Option.MMUSPACES. 

2. Load the symbols with Data.LOAD. 

Otherwise, the internal symbol database of TRACE32 may become 
inconsistent. 

;Dump logical address 0xC00208A belonging to memory space with 
;space ID 0x012A:
Data.dump D:0x012A:0xC00208A

;Dump logical address 0xC00208A belonging to memory space with 
;space ID 0x0203:
Data.dump D:0x0203:0xC00208A
SH2, SH3 and SH4 Debugger     |    27©1989-2024   Lauterbach                                                        



SYStem.Option.NoRunCheck     No check of the running state

Default: OFF.

This option advises the debugger not to do any running check. In this case the debugger does not even 
recognize that there will be no response from the processor. Therefore there is always the message 
“running” independent if the core is in power down or not. This can be used to overcome power saving 
modes in case the user knows when this happens and that he can manually de-activate and re-activate the 
running check.

SYStem.Option.SLOWRESET     Slow reset enable

Has to be switched “ON” if the reset line of the debug connector is not(!) connected direct to the CPU reset 
pin.

Problem: At system-up the debugger has to enable the CPUs debug mode first. This is done by a certain 
sequence of the debug signals. This sequence becomes faulty if the target includes a reset-circuit which 
hold the reset line for a unknown period.

If SlowReset is switched “ON” the debugger accepts a reset-hold period of up to 1 s. A system up needs 
about 3 s then!

SYStem.Option.SOFTLONG     Use LONG access for softbreak patching

Default: OFF.

A software breakpoint is a certain 16bit CPU instruction which is patched to the code. For applications which 
support 32bit write cycles only this option has to be switched ON. This way the break patching will not 
corrupt the instruction before/after the break address. 

Format: SYStem.Option.NoRunCheck [ON | OFF]

Format: SYStem.Option.SlowReset [ON | OFF]

Format: SYStem.Option.SOFTLONG [ON | OFF]
SH2, SH3 and SH4 Debugger     |    28©1989-2024   Lauterbach                                                        



SYStem.Option.SOFTSLOT     Prevent softbreak in slot-instruction

Default: OFF.

If set to ON, TRACE32 gives an error message if a software breakpoint should be set to a slot-instruction. It 
is a CPU restriction which does not allow to set software breakpoints to slot-instructions. 

SYStem.Option.STEPSOFT     Use software breakpoints for ASM stepping

Default: OFF.

If this option is ON software breakpoints are used for single stepping on assembler level (advanced users 
only).

SYStem.Option.LittleEnd     Selection of little endian mode

With this option data is displayed little endian style.

SYStem.RESetOut     Reset target without reset of debug port

If possible (nRESET is open collector), this command asserts the nRESET line on the debug connector. 
This will reset the target including the CPU but not the debug port. The function only works when the system 
is in SYStem.Mode.Up.

Format: SYStem.Option.SOFTSLOT [ON | OFF]

Format: SYStem.Option.STEPSOFT [ON | OFF]

Format: SYStem.Option.LittleEnd [ON | OFF]

Format: SYStem.RESetOut
SH2, SH3 and SH4 Debugger     |    29©1989-2024   Lauterbach                                                        



SYStem.Option.VBR     Vector base address (SH3/4 only)

Enter Vector-Base-Address here.

This value is used to detect and display exception table accesses in the trace listing. In case the application 
dynamically changes the VBR register settings the trace.list algorithm can use this value instead of the VBR 
register content. 

Multicore Debugging

If your SHx/ST40 device is the only one connected to the JTAG connector then the following system setting 
should be left in their default position.

If your SHx/ST40 CPU is lined up in a target JTAG chain then the debugger has to be informed about the 
“position” of the device inside the JTAG chain. Following system settings have to be done according to your 
target configuration.

Format: SYStem.Option.VBR [<32bit_value>]
SH2, SH3 and SH4 Debugger     |    30©1989-2024   Lauterbach                                                        



Breakpoints

There are two types of breakpoints available: Software breakpoints (SW-BP) and on-chip breakpoints (HW-
BP).

Software Breakpoints

Software breakpoints are the default breakpoints. A special breakcode is patched to memory so it only can 
be used in RAM or FLASH areas.There is no restriction in the number of software breakpoints. 

On-chip Breakpoints 

The following list gives an overview of the usage of the on-chip breakpoints by 
TRACE32-ICD:.

CPU Family Number of
Address Breakpoints

Number of
 Data Breakpoints

Sequential
Breakpoints

SH2A
ST4A

10 2 C->D
B->C->D
A->B->C->D

SH4
ST40

6 2 C->D
B->C->D
A->B->C->D

SH3 2 1 ---

SH7047
SH7144/45

1 --- ---

SH7058 12 12 A->B->C->D
SH2, SH3 and SH4 Debugger     |    31©1989-2024   Lauterbach                                                        



On-chip Breakpoints SH7047, SH7144, SH7145 

The SH2 debugger uses the CPU internal UserBreakControl unit. This break unit generates an user 
exception, so some special settings and software changes are needed.

1.  Define the UBC exception vector-12 (address 0x30++3)

2. The first instruction of the UBC exception handler must be a BRK (0x0000)

3. UBC exceptions are only accepted if the interrupt mask of SR register is less than 15. This 
means the application should not set the interrupt mask to 15!

4. The debugger has to be informed about the start address of the UBC exception. Use command 
SYStem.Option.HOOK <ubc_exception_address> 

Example: Patch a 0x00000030 to address 0x30. This way the exception vector points to UBC-exception 
handler at address 0x30. There the first instruction is a BRK (0x0000). 

On-chip Breakpoints SH72513 

For SH2A production devices the debugger uses the CPU internal UserBreakControl unit. This break unit 
generates an user exception, so some special settings and software changes are needed.

1. Define the UBC exception vector-12 (address 0x30++3)

2. The first instruction of the UBC exception handler must be a BRK (0x003B)

3. UBC exceptions are only accepted if the interrupt mask of SR register is less than 15. This 
means the application should not set the interrupt mask to 15!

4. The debugger has to be informed about the start address of the UBC exception. Use command 
SYStem.Option.HOOK <ubc_exception_address> 

Example: Patch a 0x00000008 value to address 0x30. This way the UBC-exception vector points to the 
exception handler at address 0x08. 

There the first instruction is a BRK instruction (0x003B). 

SYSTEM.Option.HOOK 0x30
Register.Set SR 0xE0

SYSTEM.Option.HOOK 0x08
Register.Set SR 0xE0
SH2, SH3 and SH4 Debugger     |    32©1989-2024   Lauterbach                                                        



Breakpoint in ROM

With the command MAP.BOnchip <range> it is possible to inform the debugger about ROM 
(FLASH,EPROM) address ranges in target. If a breakpoint is set within the specified address range the 
debugger uses automatically the available on-chip breakpoints.

Example for Breakpoints

Assume you have a target with FLASH from 0 to 0xFFFFF and RAM from 0x100000 to 0x11FFFF. The 
command to configure TRACE32 correctly for this configuration is: 

The following breakpoint combinations are possible.

Software breakpoints: 

On-chip breakpoints:

Map.BOnchip 0x0--0x0FFFFF

Break.Set 0x100000 /Program ; Software Breakpoint 1

Break.Set 0x101000 /Program ; Software Breakpoint 2

Break.Set 0xx /Program ; Software Breakpoint 3

Break.Set 0x100 /Program ; On-chip Breakpoint 1

Break.Set 0x0ff00 /Program ; On-chip Breakpoint 2
SH2, SH3 and SH4 Debugger     |    33©1989-2024   Lauterbach                                                        



CPU specific BenchMarkCounter Commands

The benchmark counters can be read at run-time. Events can be assigned to BMC.<counter>.EVENT 
<event>. For a list of supported events, refer to TrOnchip.PMCTRx.

For information about architecture-independent BMC commands, refer to “BMC” (general_ref_b.pdf). 

For information about architecture-specific BMC command(s), see command description(s) below.

BMC.<counter>.ATOB     Advise counter to count within AB-range

Advise the counter to count the specified event only in AB-range. Alpha and Beta markers are used to 
specify the AB-range.

Example to measure the time used by the function sieve:

Format: BMC.<counter>.ATOB [ON | OFF]

BMC.<counter> ClockCylces ; <counter> counts clock cycles

BMC.CLOCK 450.Mhz ; core is running at 450.MHz

Break.Set sieve /Alpha ; set a marker Alpha to the entry 
; of the function sieve

Break.Set V.END(sieve)-1 /Beta ; set a marker Beta to the exit 
; of the function sieve

BMC.<counter>.ATOB ON ; advise <counter> to count only 
; in AB-range
SH2, SH3 and SH4 Debugger     |    34©1989-2024   Lauterbach                                                        



CPU specific TrOnchip Commands

TrOnchip.CONVert     Adjust range breakpoint in on-chip resource

The on-chip breakpoints can only cover specific ranges. If a range cannot be programmed into the 
breakpoint, it will automatically be converted into a single address breakpoint when this option is active. This 
is the default. Otherwise an error message is generated.   

TrOnchip.IOB     I/O breakpoints (SH4, ST40)

Enable break on I/O access.

TrOnchip.LDTLB     LDTLB breakpoints

Enable break on LDTLB instruction.

Format: TrOnchip.CONVert [ON | OFF] (deprecated)
Use Break.CONFIG.InexactAddress instead

TrOnchip.CONVert ON
Break.Set 0x1000--0x17ff /Write
Break.Set 0x1001--0x17ff /Write
…

TrOnchip.CONVert OFF
Break.Set 0x1000--0x17ff /Write
Break.Set 0x1001--0x17ff /Write

; sets breakpoint at range
; 1000--17ff sets single breakpoint
; at address 1001

; sets breakpoint at range
; 1000--17ff
; gives an error message

Format: TrOnchip.IOB [ON | OFF]

Format: TrOnchip.LDTLB [ON | OFF]
SH2, SH3 and SH4 Debugger     |    35©1989-2024   Lauterbach                                                        



TrOnchip.A.IBUS     I-bus breakpoints (SH2A)

Defines a trigger or trace action for I-Bus activity.

Selects onchip break action for /Alpha, /Beta, /Charly and /Delta breaks. The selected action becomes active 
for breakpoints which are set with option /Alpha, /Beta, /Charly or /Delta.

Actions can be defined for any I-Bus master (CPU, DMA, ADMA):

• Break: Stop program execution 

• TraceEnable: Do selective trace 

• TraceOff: Stop trace recording 

TrOnchip.RESet     Set on-chip trigger to default state

Sets the TrOnchip settings and trigger module to the default settings.

TrOnchip.RPE     Reset sequential trigger on reset point

If ON:   If the break reset point register (BRPR) setting matches the instruction fetch address, the sequential 
state and execution count break register value are initialized. Default: OFF

Format: TrOnchip.ABCD.IBUS <action>

Format: TrOnchip.RESet

Format: TrOnchip.RPE [ON | OFF]
SH2, SH3 and SH4 Debugger     |    36©1989-2024   Lauterbach                                                        



TrOnchip.SEQ     Sequential breakpoints (SH4, ST40)

This trigger-on-chip command selects sequential breakpoints.

TrOnchip.SIZE     Trigger on byte, word, long memory accesses

If ON, breakpoints on single-byte, two-byte or four-byte address ranges only hit if the CPU accesses this 
ranges with a byte, word or long bus cycle. Default: OFF 

TrOnchip.state     Display on-chip trigger window

Opens the TrOnchip.state window.

Format: TrOnchip.SEQ <mode>

<mode>: OFF
CD
BCD
ABCD

OFF Sequential break off.

BA, CD Sequential break, first condition, then second condition.

BCD, CBA Sequential break, first condition, then second condition, then third 
condition.

ABCD, DCBA Sequential break, first condition, then second condition, then third 
condition and the fourth condition.

Break.Set sieve /Charly /Program

Var.Break.Set flags[3] /Delta /Write

TrOnchip.SEQ CD

Format: TrOnchip.SIZE [ON | OFF]

Format: TrOnchip.state
SH2, SH3 and SH4 Debugger     |    37©1989-2024   Lauterbach                                                        



CPU specific MMU Commands

MMU.DUMP     Page wise display of MMU translation table

Displays the contents of the CPU specific MMU translation table. 

• If called without parameters, the complete table will be displayed. 

• If the command is called with either an address range or an explicit address, table entries will 
only be displayed if their logical address matches with the given parameter. 

Format: MMU.DUMP <table> [<range> | <address> | <range> <root> | 
                                                                                              <address> <root>] 
MMU.<table>.dump (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
<cpu_specific_tables>

<root> The <root> argument can be used to specify a page table base address 
deviating from the default page table base address. This allows to display a 
page table located anywhere in memory.

<range>
<address>

Limit the address range displayed to either an address range
or to addresses larger or equal to <address>.

For most table types, the arguments <range> or <address> can also be 
used to select the translation table of a specific process if a space ID is 
given.

PageTable Displays the entries of an MMU translation table.
• if <range> or <address> have a space ID: displays the translation 

table of the specified process
• else, this command displays the table the CPU currently uses for 

MMU translation.
SH2, SH3 and SH4 Debugger     |    38©1989-2024   Lauterbach                                                        



KernelPageTable Displays the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the 
MMU translation table of the kernel and displays its table entries.

TaskPageTable 
<task_magic> | 
<task_id> | 
<task_name> | 
<space_id>:0x0

Displays the MMU translation table entries of the given process. Specify 
one of the TaskPageTable arguments to choose the process you want.
In MMU-based operating systems, each process uses its own MMU 
translation table. This command reads the table of the specified process, 
and displays its table entries.
• For information about the first three parameters, see “What to 

know about the Task Parameters” (general_ref_t.pdf).
• See also the appropriate OS Awareness Manuals.
SH2, SH3 and SH4 Debugger     |    39©1989-2024   Lauterbach                                                        



CPU specific Tables in MMU.DUMP <table>  

MMU.List     Compact display of MMU translation table

Lists the address translation of the CPU-specific MMU table. 

• If called without address or range parameters, the complete table will be displayed. 

• If called without a table specifier, this command shows the debugger-internal translation table. 
See TRANSlation.List.

• If the command is called with either an address range or an explicit address, table entries will 
only be displayed if their logical address matches with the given parameter.

ITLB Displays the contents of the ITLB translation table.
Deprecated command syntax: MMU.ITLB.

UTLB Displays the contents of the UTLB translation table.
Deprecated command syntax: MMU.UTLB.

Format: MMU.List <table> [<range> | <address> | <range> <root> | <address> <root>] 
MMU.<table>.List (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0

<root> The <root> argument can be used to specify a page table base address 
deviating from the default page table base address. This allows to display a 
page table located anywhere in memory.

<range>
<address>

Limit the address range displayed to either an address range
or to addresses larger or equal to <address>.

For most table types, the arguments <range> or <address> can also be 
used to select the translation table of a specific process if a space ID is 
given.

PageTable Lists the entries of an MMU translation table.
• if <range> or <address> have a space ID: list the translation table 

of the specified process
• else, this command lists the table the CPU currently uses for MMU 

translation.
SH2, SH3 and SH4 Debugger     |    40©1989-2024   Lauterbach                                                        



KernelPageTable Lists the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the 
MMU translation table of the kernel and lists its address translation.

TaskPageTable 
<task_magic> | 
<task_id> | 
<task_name> | 
<space_id>:0x0

Lists the MMU translation of the given process. Specify one of the 
TaskPageTable arguments to choose the process you want.
In MMU-based operating systems, each process uses its own MMU 
translation table. This command reads the table of the specified process, 
and lists its address translation.
• For information about the first three parameters, see “What to 

know about the Task Parameters” (general_ref_t.pdf).
• See also the appropriate OS Awareness Manuals.
SH2, SH3 and SH4 Debugger     |    41©1989-2024   Lauterbach                                                        



MMU.SCAN     Load MMU table from CPU

Loads the CPU-specific MMU translation table from the CPU to the debugger-internal static translation table.

• If called without parameters, the complete page table will be loaded. The list of static address 
translations can be viewed with TRANSlation.List.

• If the command is called with either an address range or an explicit address, page table entries 
will only be loaded if their logical address matches with the given parameter.

Use this command to make the translation information available for the debugger even when the program 
execution is running and the debugger has no access to the page tables and TLBs. This is required for the 
real-time memory access. Use the command TRANSlation.ON to enable the debugger-internal MMU table.

Format: MMU.SCAN <table> [<range> <address>]
MMU.<table>.SCAN (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
ALL [Clear]
<cpu_specific_tables> 

PageTable Loads the entries of an MMU translation table and copies the address 
translation into the debugger-internal static translation table.
• if <range> or <address> have a space ID: loads the translation table 

of the specified process
• else, this command loads the table the CPU currently uses for MMU 

translation.
SH2, SH3 and SH4 Debugger     |    42©1989-2024   Lauterbach                                                        



CPU specific tables in MMU.SCAN <table>   

KernelPageTable Loads the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the table 
of the kernel and copies its address translation into the debugger-internal 
static translation table.

TaskPageTable 
<task_magic> | 
<task_id> | 
<task_name> | 
<space_id>:0x0

Loads the MMU address translation of the given process. Specify one of 
the TaskPageTable arguments to choose the process you want.
In MMU-based operating systems, each process uses its own MMU 
translation table. This command reads the table of the specified process, 
and copies its address translation into the debugger-internal static translation 
table.
• For information about the first three parameters, see “What to know 

about the Task Parameters” (general_ref_t.pdf).
• See also the appropriate OS Awareness Manual.

ALL [Clear] Loads all known MMU address translations. 
This command reads the OS kernel MMU table and the MMU tables of all 
processes and copies the complete address translation into the debugger-
internal static translation table. 
See also the appropriate OS Awareness Manual.
Clear: This option allows to clear the static translations list before reading 
it from all page translation tables.

ITLB Loads the ITLB translation table from the CPU to the debugger-internal 
translation table.

UTLB Loads the UTLB translation table from the CPU to the debugger-internal 
translation table.
SH2, SH3 and SH4 Debugger     |    43©1989-2024   Lauterbach                                                        



Memory Classes and Cache Handling

Memory Classes (SH2)

The following memory classes are available:

Memory Classes (SH3, SH4, ST40)

The following memory classes are available:

If caching is disabled via the appropriate hardware registers, memory accesses to the memory classes IC or 
DC are realized by TRACE32-ICD as reads and writes to physical memory. 

Memory Class Description

P Program

D Data

Memory Class Description

P Program

D Data

IC Instruction Cache 

DC Data Cache

NC No Cache (only physically memory)
SH2, SH3 and SH4 Debugger     |    44©1989-2024   Lauterbach                                                        



Cache Handling(SH3, SH4, ST40)

Memory Coherency

If data will be set to DC, IC, NC, D or P memory class, the Data-Cache, Instruction-Cache or physical 
memory will be updated.

Data Cache Instruction Cache Physical Memory

write to DC: updated -- updated if write 
through mode

write to IC: -- -- updated

write to NC: -- -- updated

write to D: updated -- updated if write 
through mode

write to P: -- -- updated
SH2, SH3 and SH4 Debugger     |    45©1989-2024   Lauterbach                                                        



SYStem Commands

SYStem.Option.ICFLUSH     Cache invalidation option

Default: ON. Invalidates the instruction cache before starting the target program (Step or Go). This is 
required if the CACHEs are enabled and software breakpoints are set to a cached location.

SYStem.Option.DCFREEZE     Freeze data cache contents

not supported

SYStem.Option.DCCOPYBACK     Cache copy back

forces a Cache Copy Back action in case of physical memory access (memory class A:).

This option should be switched ON if the data cache is configured for copyback mode. Before accessing 
physical memory the cache contents are copied back to target memory.

SYStem.Option.ICREAD     Cache read option

List.auto window and Data.dump window for memory class P: displays the memory value of the I-cache if 
valid. If I-cache is disabled or not valid the physical memory will be read.

Format: SYStem.Option.ICFLUSH [ON | OFF]

Format: SYStem.Option.DCCOPYBACK [ON | OFF]

Format: SYStem.Option.ICREAD [ON | OFF]
SH2, SH3 and SH4 Debugger     |    46©1989-2024   Lauterbach                                                        



SYStem.Option.DCREAD     Cache read option

Data.dump windows for memory class D: displays the memory value of the d-cache if valid. If d-cache 
is disabled or not valid the physical memory will be read.

The following table describes how DCREAD and ICREAD influence the behavior of the debugger 
commands that are used to display memory.

Format: SYStem.Option.DCREAD [ON | OFF]

DC: IC: NC: D: P:

ICREAD off
DCREAD off

D-Cache I-Cache phys. mem. phys. mem. phys. mem.

ICREAD on
DCREAD off

D-Cache I-Cache phys. mem. phys. mem. I-Cache

ICREAD off
DCREAD on

D-Cache I-Cache phys. mem. D-Cache phys. mem.

ICREAD on
DCREAD on

D-Cache I-Cache phys. mem. D-Cache I-Cache
SH2, SH3 and SH4 Debugger     |    47©1989-2024   Lauterbach                                                        



Trace

Analysis of the program history is supported in different ways.

FIFO Trace (SH2A, SH3, SH4, ST40)

This CPUs includes a 8-stage branch trace. This trace holds the source and destination address of the last 
eight program flow changes. 

The ICD command “FIFO” opens a window which displays the content of the branch trace.

This trace method does not slow down program execution!

Analysis of the program history is supported in different ways.

SYStem.Option.FIFO     FIFO trace configuration
SH4, ST40, SH7705, SH7294

Selects the kind of program-flow-change which should be traced in FIFO trace mode.

Format: SYStem.Option.FIFO <mode>

<mode>: OFF
eXception
Subroutine
ALL

OFF FIFO disabled

eXception trace on exceptions, interrupts and RTE instructions

Subroutine trace on exceptions, interrupts and on RTE, BSR, BSRF, JSR, RTS 
instructions

ALL trace any change in program flow
SH2, SH3 and SH4 Debugger     |    48©1989-2024   Lauterbach                                                        



LOGGER Trace (SH4, ST40, SH7705)

This method offers a much deeper trace than the FIFO method with the disadvantage of being time and 
target memory intrusive. 

The SH4 branch trace is configured to generate a TRACE-exception after one/six valid branch trace entries. 
Program is stopped then, the branch trace contents are copied to a predefined area in user memory and 
finally the program is restarted. 

The following script should be used to initialize the LOGGER-Trace. For further details please refer to the 
LOGGER online help or training manuals.

Run this script after(!) initialization of target memory.

The influence on runtime depends on the target program. With fewer changes in program flow the runtime 
relation between target-program to logger-trace-program becomes better. With estimated program-flow-
changes every five instructions the complete runtime will increase about x5. 

NOTE: CPU internal WatchDogTimer are stopped during logger-trace-program execution!

The required target memory size can be calculated this way:

Logger-Memory-Size = 32 Byte + (Logger.Size x 16 Byte)

logger.mode create on ; enable automatic Logger-Structure
; generation

logger.mode flowtrace all ; define the kind of program-flow-changes
; to be traced

logger.address 0ac020000 ; define startaddress of trace in user
; memory

logger.size 512. ; define trace depth (number of records)

logger.timestamp.up ; define count direction of timestamp

logger.timestamp.rate 
100000000.

; define frequency of timestamp counter

logger.init ; enable Logger
SH2, SH3 and SH4 Debugger     |    49©1989-2024   Lauterbach                                                        



AUD-Trace (SH2A, SH4, ST40)

The AUD trace interface supports the branch trace function and the window data trace function. 

Each change in program flow caused by execution or interruption of branch instructions are detected and 
branch destination and branch source address are output.

The data trace function is for outputting memory access information. Two data-addresses (ranges) are 
supported.

Selection of Branch and Data Trace Recording

Trace recording is defined by four debugger settings.

• SYStem.Option.AUDBT (Branch Trace enable)

• SYStem.Option.AUDDT (Data Trace enable)

• Break Action setting “TRaceEnable”

• Break Action setting “TRaceData”

The BreakAction “TRaceEnable” has highes priority to get selectiv DataTrace recording only.

The BreakAction “TTraceData” comes next to enable selective DataTrace. Depending on 
SYStem.Option.AUDBT also the program flow will be traced.

TRaceEna TRaceData AUDBT AUDDT ProgTrace DataTrace

0 0 0 0

0 0 0 1 all data

0 0 1 0 all program

0 0 1 1 all program all data

0 1 0 X selective

0 1 1 X all program selective

1 X X X selective
SH2, SH3 and SH4 Debugger     |    50©1989-2024   Lauterbach                                                        



SYStem.Option.AUDBT     AUD branch trace enable

If ON all changes in program flow are output on the AUD trace port. By default this option is enabled.

SYStem.Option.AUDDT     AUD data trace enable

If ON all accesses to data range A and/or range B are output on the AUD trace port. By default this option is 
OFF.

SYStem.Option.AUDRTT     AUD real time trace enable

AUD full-trace / real-time-trace selection.

If OFF all trace information is output on the AUD trace port. In case of overrun of the AUD interface the CPU 
is stopped till overrun condition is no more present. This way all trace records contain valid data. 

If ON application runtime is not influenced by the AUD interface. In case of overrun of the AUD interface 
there might be missing or not valid trace cycles which cause a buggy trace listing.

Default setting is OFF.

SYStem.Option.AUDClock     AUD clock select

Selects the clockspeed of the AUD interface. CPU system clock divided by 1,2,4 or 8.

The AUD clock should be as fast as possible to prevent AUD overrun condition. 

Format: SYStem.Option.AUDBT [ON | OFF]

Format: SYStem.Option.AUDDT [ON | OFF]

Format: SYStem.Option.AUDRTT [ON | OFF]

Format: SYStem.Option.AUDClock [1/1 | 1/2 | 1/4 | 1/8]
SH2, SH3 and SH4 Debugger     |    51©1989-2024   Lauterbach                                                        



SYStem.Option.AUD8     AUD 8-bit enable

This option informs the TRACE32 software to use the AUD 8bit algorithm to reconstruct the program flow.

Default setting is OFF (4-bit mode).

See also application note: Enable 8-bit AUD Trace Interface of SH4-202

Format: SYStem.Option.AUD8 [ON | OFF]
SH2, SH3 and SH4 Debugger     |    52©1989-2024   Lauterbach                                                        



AUD-Trace (SH3)

The AUD trace interface of the SH3 family supports the branch trace function. 

Each change in program flow caused by execution or interruption of branch instructions are detected and 
branch destination and branch source address are output.

SYStem.Option.AUDRTT     AUD real time trace enable

AUD full-trace / real-time-trace selection.

If OFF all trace information is output on the AUD trace port. In case of overrun of the AUD interface the CPU 
is stopped till overrun condition is no more present. This way all trace records contain valid data. 

If ON application runtime is not influenced by the AUD interface. In case of overrun of the AUD interface 
there might be missing or not valid trace cycles which cause a buggy trace listing.

Default setting is OFF.

SYStem.Option.AUDClock     AUD clock select

Selects the clockspeed of the AUD interface. Frequency of clock generator divided by 1,2,4 or 8.

The preprocessor of the SH-AUD trace contains a clock generator circuit which easily can be changed to fit 
for your application.

The maximum frequency of AUDCK is that of the CPU clock or less. Furthermore it must be less then 
100 MHz!

The AUD clock should be as fast as possible to prevent AUD overrun condition.

Format: SYStem.Option.AUDRTT [ON | OFF]

Format: SYStem.Option.AUDClock [1/1 | 1/2 | 1/4 | 1/8]
SH2, SH3 and SH4 Debugger     |    53©1989-2024   Lauterbach                                                        



On-chip Trace SH2A

Some of the SH2A core devices are equipped with an onchip trace buffer. Depending on the device in use it 
can cover up to 1024  branch and/or data records.

The trace functionality is equal to an AUD trace. It requires no extra pins and has no influence on the 
performance of program execution.

See also: AUD-Trace (SH2A, SH4, ST40)

The onchip trace supports tracing of the M-Bus and/or I-Bus activity. The I-Bus-Master flags can be 
displayed in the Trace.List window with command: 

Onchip.List IADMA IDMA ICPU def

Trigger and trace control on I-Bus activity is enabled by setting a breakpoint with option /Alpha, /Beta, 
/Charly or /Delta. The /Alpha, /Beta, /Charly or /Delty activity has to be defined in the Trigger Onchip 
window (TrOnchip.A.IBUS). Two onchip breakpoints can be used for I-Bus trigger and trace control. There 
is only one I-Bus breakpoint available if I-Bus and M-Bus tracing is enabled.

Onchip.Mode.MBusTrace     Mbus trace enable

Default: ON

Enables tracing of the MBus activity (ProgramTrace, DataReadTrace and DataWriteTrace).

Format: Onchip.Mode.MBusTrace [ON | OFF]
SH2, SH3 and SH4 Debugger     |    54©1989-2024   Lauterbach                                                        



Onchip.Mode.IBusTrace     Ibus trace enable

Default: OFF

Enables tracing of the I-Bus activity (CPU-, DMA-, ADMA-busmaster).

Onchip.Mode.ProgramTrace     Program flow trace enable

Default: ON

Enables tracing of program flow activity of the M-Bus.

Onchip.Mode.DataReadTrace     Data read trace enable

Default: OFF

Enables read-cycle tracing of the enabled busses (M-Bus and/or I-Bus). This setting is ignored if selective 
trace (TraceEnable) is active.

Format: Onchip.Mode.IBusCpuTrace [ON | OFF]

Format: Onchip.Mode.IBusDmaTrace [ON | OFF]

Format: Onchip.Mode.IBusAdmaTrace [ON | OFF]

NOTE: If tracing of M-Bus and I-Bus activity is enabled, the onchip trace buffer is 
split. Each bus can be traced with a maximum of TraceBufferSize/2 records. 

Format: Onchip.Mode.ProgramTrace [ON | OFF]

Format: Onchip.Mode.DataReadTrace [ON | OFF]
SH2, SH3 and SH4 Debugger     |    55©1989-2024   Lauterbach                                                        



Onchip.Mode.DataWriteTrace     Data write trace enable

Default: OFF

Enables write-cycle tracing of the enabled busses (M-Bus and/or I-Bus). This setting is ignored if selective 
trace (TraceEnable) is active.

Format: Onchip.Mode.DataWriteTrace [ON | OFF]
SH2, SH3 and SH4 Debugger     |    56©1989-2024   Lauterbach                                                        



On-chip Performance Analysis (SH4, ST40)

The SH4/ST40-Core supports two performance counters. This counters can be configured to count a wide 
range of different events.

TrOnchip.PMCTRx     Performance counter configuration

Format: TrOnchip.PMCTRx <mode>

<mode> function count/time measurement

Init Clear performance counter

OARC Operand Access Read with Cache count

OAWC Operand Access Write with Cache count

UTLBM UTLB Miss count

OCRM Operand Cache Read Miss count

OCWM Operand Cache Write Miss count

IFC Instruction Fetch with Cache (*2) count

ITLBM Instruction TLB Miss count

ICM Instruction Cache Miss count

AOA All Operand Access count

AIF All Instruction Fetch (*2) count

OROA On-chip RAM Operand Access count

OIOA On-chip I/O Access count

OA Operand Access with Cache count

OCM Operand Cache Miss count

BI Branch Instruction Issued count

BT Branch Instruction Taken count
SH2, SH3 and SH4 Debugger     |    57©1989-2024   Lauterbach                                                        



SRI Subroutine Instruction Issued count

II Instruction Issued count

2II Two Instructions Issued count

FPUI FPU Instruction Issued count

INT Interrupt Normal count

NMI Interrupt NMI count

TRAPA TRAPA Instruction count

UBCA UBC A Match count

UBCB UBC B Match count

ICF Instruction Cache Fill time

OCF Operand Cache Fill time

TIME Elapsed Time time

PFCMI Pipeline Freeze by Cache Miss 
Instruction

time

PFCMD Pipeline Freeze by Cache Miss 
Data

time

PFBI Pipeline Freeze by Branch 
Instruction

time

PFCPU Pipeline Freeze by CPU Register time

PFFPU Pipeline Freeze by FPU time
SH2, SH3 and SH4 Debugger     |    58©1989-2024   Lauterbach                                                        



Runtime Measurement

The SH debug interface includes one signal which gives information about the program-run-status 
(application code running). This status line is sensed by the ICD debugger with a resolution of 100ns.

The debuggers RUNTIME window gives detailed information about the complete run-time of the application 
code and the run-time since the last GO/STEP/STEP-OVER command. 
SH2, SH3 and SH4 Debugger     |    59©1989-2024   Lauterbach                                                        



JTAG Connector

  

Signal Pin Pin Signal
TCK 1 2 GND

TRST- 3 4 GND
TDO 5 6 GND

ASEBRK- 7 8 N/C
TMS 9 10 GND
TDI 11 12 GND

RESET- 13 14 GND

JTAG Connector Signal Description CPU Signal

TMS Jtag-TMS,
output of debugger

TMS

TDI Jtag-TDI,
output of debugger

TDI

TCK Jtag-TCK,
output of debugger

SHx: TCK
ST40: DCLK

/TRST Jtag-TRST,
output of debugger

TRST#

TDO Jtag-TDO,
input for debugger

TDO

/ASEBRK Break Acknowledge,
input/output for debugger

SH4: ASEBRK,BRKACK
SH3: /ASEBRKAK
SH2: /ASEBRKAK
ST40: /ASEBRK,BRKACK 

/RESET RESET
input/output for debugger

SH4: /RESET
SH3: /RESETP
SH2: /RES
ST40: /RST

/DebugMode CPU debug mode enable
GND-output of debugger

SH4: GND (not used)
SH3: /ASEMD0
SH7047: /DBGMD
ST40: GND (not used)
SH2, SH3 and SH4 Debugger     |    60©1989-2024   Lauterbach                                                        


	SH2, SH3 and SH4 Debugger
	History
	Introduction
	Brief Overview of Documents for New Users
	Demo and Start-up Scripts

	Warning
	Application Note
	Location of Debug Connector
	Reset Line
	Enable JTAG Mode SH2
	Enable JTAG Mode SH3
	SH7710/12 Solution Engine
	Enable AUD Trace lines of SH7760
	Memory Mapping of SH7615/ SH7616 BusControlRegisters
	Enable 8-bit AUD Trace Interface of SH4-202

	Quick Start JTAG
	Troubleshooting
	SYStem.Up Errors
	Trace Errors

	FAQ
	Configuration
	System Overview

	CPU specific SYStem Settings
	SYStem.CONFIG.state      Display target configuration
	SYStem.CONFIG      Configure debugger according to target topology
	Daisy-Chain Example
	TapStates

	SYStem.CONFIG.CORE      Assign core to TRACE32 instance
	SYStem.CPU      CPU type selection
	SYStem.JtagClock      JTAG clock selection
	SYStem.LOCK      JTAG lock
	SYStem.MemAccess      Select run-time memory access method
	SYStem.Mode      System mode selection
	SYStem.Option.EnReset      Allow the debugger to drive nRESET
	SYStem.Option.HOOK      Compare PC to hook address
	SYStem.Option.IMASKASM      Interrupt disable
	SYStem.Option.IMASKHLL      Interrupt disable
	SYStem.Option.JtagWait      JTAG wait enable
	SYStem.Option.KEYCODE      Keycode SH7144/45
	SYStem.Option.MMUSPACES      Separate address spaces by space IDs
	SYStem.Option.NoRunCheck      No check of the running state
	SYStem.Option.SLOWRESET      Slow reset enable
	SYStem.Option.SOFTLONG      Use LONG access for softbreak patching
	SYStem.Option.SOFTSLOT      Prevent softbreak in slot-instruction
	SYStem.Option.STEPSOFT      Use software breakpoints for ASM stepping
	SYStem.Option.LittleEnd      Selection of little endian mode
	SYStem.RESetOut      Reset target without reset of debug port
	SYStem.Option.VBR      Vector base address (SH3/4 only)
	Multicore Debugging

	Breakpoints
	Software Breakpoints
	On-chip Breakpoints
	On-chip Breakpoints SH7047, SH7144, SH7145
	On-chip Breakpoints SH72513
	Breakpoint in ROM
	Example for Breakpoints

	CPU specific BenchMarkCounter Commands
	BMC.<counter>.ATOB      Advise counter to count within AB-range

	CPU specific TrOnchip Commands
	TrOnchip.CONVert      Adjust range breakpoint in on-chip resource
	TrOnchip.IOB      I/O breakpoints (SH4, ST40)
	TrOnchip.LDTLB      LDTLB breakpoints
	TrOnchip.A.IBUS      I-bus breakpoints (SH2A)
	TrOnchip.RESet      Set on-chip trigger to default state
	TrOnchip.RPE      Reset sequential trigger on reset point
	TrOnchip.SEQ      Sequential breakpoints (SH4, ST40)
	TrOnchip.SIZE      Trigger on byte, word, long memory accesses
	TrOnchip.state      Display on-chip trigger window

	CPU specific MMU Commands
	MMU.DUMP      Page wise display of MMU translation table
	MMU.List      Compact display of MMU translation table
	MMU.SCAN      Load MMU table from CPU

	Memory Classes and Cache Handling
	Memory Classes (SH2)
	Memory Classes (SH3, SH4, ST40)
	Cache Handling(SH3, SH4, ST40)
	Memory Coherency


	SYStem Commands
	SYStem.Option.ICFLUSH      Cache invalidation option
	SYStem.Option.DCFREEZE      Freeze data cache contents
	SYStem.Option.DCCOPYBACK      Cache copy back
	SYStem.Option.ICREAD      Cache read option
	SYStem.Option.DCREAD      Cache read option

	Trace
	FIFO Trace (SH2A, SH3, SH4, ST40)
	SYStem.Option.FIFO      FIFO trace configuration
	LOGGER Trace (SH4, ST40, SH7705)
	AUD-Trace (SH2A, SH4, ST40)
	Selection of Branch and Data Trace Recording

	SYStem.Option.AUDBT      AUD branch trace enable
	SYStem.Option.AUDDT      AUD data trace enable
	SYStem.Option.AUDRTT      AUD real time trace enable
	SYStem.Option.AUDClock      AUD clock select
	SYStem.Option.AUD8      AUD 8-bit enable
	AUD-Trace (SH3)
	SYStem.Option.AUDRTT      AUD real time trace enable
	SYStem.Option.AUDClock      AUD clock select
	On-chip Trace SH2A
	Onchip.Mode.MBusTrace      Mbus trace enable
	Onchip.Mode.IBusTrace      Ibus trace enable
	Onchip.Mode.ProgramTrace      Program flow trace enable
	Onchip.Mode.DataReadTrace      Data read trace enable
	Onchip.Mode.DataWriteTrace      Data write trace enable

	On-chip Performance Analysis (SH4, ST40)
	TrOnchip.PMCTRx      Performance counter configuration

	Runtime Measurement
	JTAG Connector


