
MANUAL

Release 09.2024

MCS08 Debugger

MCS08 Debugger

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 ICD In-Circuit Debugger .. 

 Processor Architecture Manuals .. 

 MCS08 .. 

 MCS08 Debugger .. 1

 Brief Overview of Documents for New Users ... 5

 Warning .. 6

 Troubleshooting .. 7

 SYStem.Up Errors 7

 FAQ ... 7

 CPU Specific Implementations .. 8

 Breakpoints 8

 Software Breakpoints 8

 On-chip Breakpoints 8

 Quick Start of the ICD Debugger for HC9S08 ... 9

 1. Prepare the Start 9

 2. Select the Clock for the BDM Communication 10

 3. Configure the Debugger According to the Needs of the Application 10

 4. Map the EPROM Simulator if Available (optional) 10

 5. Tell the Debugger Where it should use On-chip Breakpoints (optional) 10

 6. Enter Debug Mode 11

 7. Load the Program 11

 8. Initialize Program Counter and Stackpointer 12

 9. View the Source Code 12

 CPU specific SYStem Settings and Restrictions ... 14

 Restrictions 14

 SYStem.BdmClock Select clock for BDM communication 14

 Special Functions 15

 SYStem.CONFIG Configure debugger according to target topology 15

 SYStem.CPU Select CPU type 16

 SYStem.LOCK Lock and tristate the debug port 16

 SYStem.MemAccess Select run-time memory access method 17
MCS08 Debugger | 2©1989-2024 Lauterbach

 SYStem.Mode Select target reset mode 17

 SYStem.Option.IMASKASM Disable interrupts while single stepping 19

 SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 19

 Hardware Breakpoints .. 20

 Program Breakpoints 20

 Read and Write Breakpoints 20

 Data Breakpoints 21

 Onchip Commands ... 22

 Onchip.Mode.EventTrace Start recording after trigger event 22

 Onchip.Mode.FlowTrace Flow trace mode 22

 Onchip.Mode.LoopTrace Inhibit redundant entries 22

 TrOnchip Commands .. 23

 TrOnchip.Mode Select trace and trigger mode 23

 TrOnchip.state Open the control window for the on-chip trigger resources 24

 TrOnchip.RESet Reset the on-chip trigger resources 24

 Memory Classes .. 25

 FLASH EEPROM Management ... 26

 Secure and Unsecure .. 27

 BDM Connector ICD-MCS08 ... 28
MCS08 Debugger | 3©1989-2024 Lauterbach

MCS08 Debugger

Version 05-Oct-2024
MCS08 Debugger | 4©1989-2024 Lauterbach

Brief Overview of Documents for New Users

Architecture-independent information:

• “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.

• “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your debug cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.
MCS08 Debugger | 5©1989-2024 Lauterbach

Warning

WARNING: To prevent debugger and target from damage it is recommended to connect or
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

1. Disconnect the Debug Cable from the target while the target power is
off.

2. Connect the host system, the TRACE32 hardware and the Debug
Cable.

3. Power ON the TRACE32 hardware.

4. Start the TRACE32 software to load the debugger firmware.

5. Connect the Debug Cable to the target.

6. Switch the target power ON.

7. Configure your debugger e.g. via a start-up script.

Power down:

1. Switch off the target power.

2. Disconnect the Debug Cable from the target.

3. Close the TRACE32 software.

4. Power OFF the TRACE32 hardware.
MCS08 Debugger | 6©1989-2024 Lauterbach

Troubleshooting

SYStem.Up Errors

The SYStem.Up command is the first command of a debug session where communication with the target is
required. If you receive error messages while executing this command this may have the following reasons.

• The target has no power.

• The target is in reset - another device may hold the reset line active.

• There is a short circuit on at least one of the output lines of the core.

• There is a problem with the electrical connection between ICD08 and the target - check if the
BDM connector is plugged correctly and if the target is built corresponding to the definition of the
used BDM connector.

• The MC9S08 has no Clock - check the frequency on the EXTAL pin with a scope.

FAQ

Please refer to https://support.lauterbach.com/kb.
MCS08 Debugger | 7©1989-2024 Lauterbach

https://support.lauterbach.com/kb

CPU Specific Implementations

Breakpoints

There are two types of breakpoints available: Software breakpoints and on-chip breakpoints.

Software Breakpoints

Software breakpoints are the default breakpoints for program breakpoints. A software breakpoint is
implemented by patching a break code into the memory.

There is no restriction in the number of software breakpoints.

On-chip Breakpoints

The resources for the on-chip breakpoints are provided by the CPU.

The following list gives an overview of the supported on-chip breakpoints:

• On-chip breakpoints: Total amount of available on-chip breakpoints.

• Instruction breakpoints: Number of on-chip breakpoints that can be used to set Program
breakpoints into ROM/FLASH/EEPROM.

• Read/Write breakpoints: Number of on-chip breakpoints that can be used as Read or Write
breakpoints.

• Data breakpoint: Number of on-chip data breakpoints that can be used to stop the program
when a specific data value is written to an address or when a specific data value is read from an
address.

Onchip
Breakpoints

Program
Breakpoints

Read/Write
Breakpoints

Data Value
Breakpoints

MCS8 2 up to 2 single
address

up to 2 single
address
(reduced to 1 if com-
bined with data)

1

MCS08 Debugger | 8©1989-2024 Lauterbach

Quick Start of the ICD Debugger for HC9S08

This chapter should help you to prepare your Debugger for HC9S08. Depending on your application not all
steps might be necessary.

For some applications additional steps might be necessary, that are not described in this Quick Start section.

1. Prepare the Start

Connect the Debug Cable to your target. Check the orientation of the connector. Pin 1 of the debug cable is
marked with a small triangle next to the nose of the target connector.

It is not necessary to connect the Clock Cable for the first start.

Power up your TRACE32 system (This is not necessary on PODPC).

Start the TRACE32 Debugger Software.

Power up your Target!

To prevent damage please take care on this sequence all the time you
are preparing a start.
MCS08 Debugger | 9©1989-2024 Lauterbach

2. Select the Clock for the BDM Communication

The MC9S08 has the capability to do a automatic synchronization between CPU and debugger. This
synchronization is done when you switch the SYStem.Mode to Up, Attach or Go.The resulting
communication clock is shown in the area called BdmClock within the SYStem window.

The selection box for SYStem.BdmClock can remain on the default setting. This option may be helpful to
increase download rate, but this is not important for the first debug session.

3. Configure the Debugger According to the Needs of the Application

Most of the configuration can be done with the SYStem Window which provides all CPU specific settings.
Use System Settings… in the CPU menu to open this window.

The debugger will select t the CPU type automatically if the pull down menu in the field CPU shows AUTO. If
this does not work, please refer to the command: SYStem.CPU <cpu_type>.

Set the SYStem Options in the option field corresponding to your target configuration and application
program. Generally the SYStem Options can remain at the default values for the first start.

4. Map the EPROM Simulator if Available (optional)

This command maps a standard 8 bit wide 27x010 EPROM.

5. Tell the Debugger Where it should use On-chip Breakpoints (optional)

By default the In Circuit Debugger for 68HC12 (ICD12) modifies the code to realize a program breakpoint.
This will not work for ROM or FLASH memory locations. To provide breakpoints in ROM/FLASH areas the
CPU’ s on-chip breakpoints can be used. With the command MAP.BOnchip <range> you can specify where
the debugger has to use the on-chip breakpoints.

SYStem.CPU AUTO

MAP.ROM 0x0--0x1FFFF

MAP.BOnchip 0x1000--0x0ffff ; activates the on-chip breakpoints
; within the range from 0x1000 to 0xffff
MCS08 Debugger | 10©1989-2024 Lauterbach

6. Enter Debug Mode

This command triggers a reset for the CPU and drives the line BKGD to GND. So the CPU will enter the
“special” variant of operating mode defined by the pins MODA and MODB, which have to be configured by
the target.

LAUTERBACH recommends to use Single Chip Mode for starting from reset. In this case the CPU will enter
Special Single Chip Mode without executing any code. So all registers will contain reset values. In all other
cases the CPU will try to execute code after reset, until the debugger gets control on it. So some registers
may already be in use.

Some derivatives need a Power On Reset to enter debug mode out of reset without executing code.
Dependent from their actual memory contents these derivatives might stuck in a reset loop. When you enter
SYStem.Up the debugger tries to get the CPU out of such a loop, but if the time between two resets is too
small this attempt might fail. Use SYStem.Mode StandBy in this case, remove power from the target and
switch it on again.

7. Load the Program

Generally HC9S08 code will be located to internal FLASH memory. With help of the CPU specific menu
“FLASH” you can erase the CPU’s FLASH memory and prepare it for code loading. For details please refer
to the chapter FLASH EEPROM Management.

When the CPU is prepared the code can be loaded. This can be done with the command
Data.Load.<file_format> <file>. Applications can be loaded by various file formats. The format depends
from the compiler. Here are some typical load commands for HC9S08 applications:

SYStem.Up

Data.Load.COSMIC <file>.cos12 ; load application file generated
; with a COSMIC compiler

Data.Load.Elf <file>.abs /verify ; load application file generated
; with a Metrowerks compiler and
; verify if it is written correct to
; memory
MCS08 Debugger | 11©1989-2024 Lauterbach

8. Initialize Program Counter and Stackpointer

Many compilers add these settings in the start-up code to the user program automatically. In this case no
action is necessary. You can check the contents of Program Counter and Stack Pointer in the Register
Window which provides the contents of all CPU Registers. Use CPU Registers in the CPU menu to open
this window.

The Program Counter and the Stackpointer and all other registers can be set with the commands
Register.Set PC <value> and Register.Set SP <value>. Here is an example of how to use these
commands:

9. View the Source Code

Use the command List.auto to view the source code at the location of the Program Counter.

Now the quick start is done. If you were successful you can start to debug. Lauterbach recommends to
prepare a PRACTICE script file (*.cmm, ASCII format) to be able to do all the necessary actions with only
one command. Here is a typical start sequence:

Register.Set PC 0c000 ; Set the Program Counter to address
; $C000

Register.Set SP 0bff ; Set the Stack Pointer to address
; $bff

Register.Set PC main ; Set the PC to a label (here: function
; main)

B:: ; Select the ICD device prompt

WinClear ; Clear all windows

SYStem.Reset ; Bring all settings in the SYStem window
; to default value

MAP.BOnchip 0x01080--0x0ffff ; Select on-chip breakpoints for the
; FLASH EEPROM area

SYStem.Up ; Reset the target and enter special mode

Data.LOAD.Elf hic.abs ; Load the application - here an absolute
; file in ELF/DWARF format

Register.Set PC main ; Set the PC to function main

Register.Set SP 0xFFF ; Set the stack pointer to address $0xFFF

List.Mix ; Open disassembly window *)

Register.view ; Open register window *)
MCS08 Debugger | 12©1989-2024 Lauterbach

*) These commands open windows on the screen. The window position can be specified with the WinPOS
command.

You can find suggestions for such PRACTICE script files (*.cmm) in the TRACE32 demo folder
~~/demo/m68hc08/compiler.

For information about how to create a PRACTICE script file (*.cmm file), refer to “Training Basic
Debugging” (training_debugger.pdf). There you can also find some information on basic actions with the
debugger.

Please keep in mind that only the Processor Architecture Manual (the document you are reading in at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs. So if there are
questions related to the CPU, the Processor Architecture Manual should be your first choice.

Frame.view /Locals /Caller ; Open the stack frame with
; local variables *)

Break.Set 0x400 /p ; Set software breakpoint to address 100
; (address 0x400 is outside the range,
; where on-chip breakpoints are used)

Break.0xSet 0x8024 /p ; Set on-chip program breakpoint to
; address 0x8024 (address 0x8024 is
; within the range, where on-chip
; breakpoints are used)
MCS08 Debugger | 13©1989-2024 Lauterbach

CPU specific SYStem Settings and Restrictions

Restrictions

SYStem.BdmClock Select clock for BDM communication

The MC9S08 offers two clock sources for the communication between debugger an CPU: BusClock and
Fixed.

This command tells the debugger how to configure the CPU when you start your debug session. In general
“Fixed” is the selection of choice. If you have to download big files you can use “BusClock” and activate the
CPU’s PLL to get the highest available bus frequency and as a result the highest download performance.
LAUTERBACH recommends to drive the debugger to reset again after download and to start the following
debug session with the selection “Fixed”.

External watchdog With the debugger in break mode an external watchdog will not be
triggered and so it will do its job and drive the system to reset. External
watchdogs must be disabled.

Format: SYStem.BdmClock BusClock | Fixed

BusClock Time base for BDM communication is the bus frequency of the CPU. This
allows a faster download if the data rate is increased by activating the
PLL. On the other hand moving the communication frequency can cause
problems, because the debugger has to synchronize again after each
change of frequency.

Fixed The fixed internal clock of the CPU is time base for BDM communication.
The bus frequency can be modified without impact to the BDM. This
selection requires no resynchronization on bus clock changes.
MCS08 Debugger | 14©1989-2024 Lauterbach

Special Functions

TRIMS08FLL(<frequency_in_KHz>)

TRIMS08FLL() sets the registers ICSSC and ICSTRM (ICS_C3 and ICS_C4) to achieve the requested
frequency and returns the reached frequency in KHz. The debugger does this job using the SYNC
command of the background debug controller (BDC). So the frequency you request is compared to
ICSBDCCLK (BdmClock) while CLKSW is set to zero (use alternate BDC clock source).

SYStem.CONFIG Configure debugger according to target topology

The SYSTem.CONFIG command group is not supported.

NOTE: The alternate BDC clock is often connected to the FLL through a divider by two.
So if you use the following commands, as shown in the PRACTICE code
snippet below, you will trim the FLL to 20 MHz:

LOCAL &freq
&freq=trims08fll(10000.)
MCS08 Debugger | 15©1989-2024 Lauterbach

SYStem.CPU Select CPU type

With this command the processor type is selected. The MC9S08 has internal device and mask specific
registers which allow the debugger to select the CPU type automatically. This is done for all known versions
if the pull down menu in the field CPU shows AUTO. For new mask revisions or devices you can select the
CPU manually with this command.

SYStem.LOCK Lock and tristate the debug port

Default: OFF.

If the system is locked, no access to the debug port will be performed by the debugger. While locked, the
debug connector of the debugger is tristated. The main intention of the SYStem.LOCK command is to give
debug access to another tool.

Format: SYStem.CPU <type>

<type>: AUTO
MC9S08GB32 | MC9S08GB60 | MC9S08GT32 | MC9S08GT60

NOTE: If you type SYStem.CPU to the command line followed by blank, the softkeys
(below the TRACE32 command line) provide you with all supported derivatives.

Format: SYStem.LOCK [ON | OFF]
MCS08 Debugger | 16©1989-2024 Lauterbach

SYStem.MemAccess Select run-time memory access method

SYStem.Mode Select target reset mode

Format: SYStem.MemAccess Enable | StopAndGo | Denied
SYStem.ACCESS (deprecated)

Enable
CPU (deprecated)

Memory access during program execution to target is enabled.

Denied (default) Memory access during program execution to target is disabled.

StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.

Format: SYStem.Mode <mode>

SYStem.Down (alias for SYStem.Mode Down)
SYStem.Attach (alias for SYStem.Mode Attach)
SYStem.Up (alias for SYStem.Mode Up)

<mode>: Down
NoDebug
Go
Attach
StandBy
Up

Down Drives a pulse to the reset line and disables the Debugger.

NoDebug Disables the Debugger. The state of the CPU remains unchanged.

Go Resets the target with debug mode enabled and prepares the CPU for
debug mode entry. After this command the CPU is in the system.up
mode and running. Now, the processor can be stopped with the break
command or until any break condition occurs.
MCS08 Debugger | 17©1989-2024 Lauterbach

Attach This command works similar to the SYStem.Mode Up command. The
difference is that the target CPU is not reset. The BDM/JTAG/COP
interface will be synchronized and the CPU state will be read out. After
this command the CPU is in the system.up mode and can be stopped
and debugged.

StandBy The debugger drives the BKGD line to GND and waits for power up. The
debugger connects to the CPU when target voltage is sensed and reset
is released. This sequence is repeated again if power returns after a
power fail.

Different to other debuggers SYStem.Mode StandBy is used here to have
a save way to get control on the CPU before it can execute any code.

Up Resets the target and sets the CPU to debug mode. After execution of
this command the CPU is stopped and prepared for debugging. All
register are set to the default value.
MCS08 Debugger | 18©1989-2024 Lauterbach

SYStem.Option.IMASKASM Disable interrupts while single stepping

Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during assembler single-step operations. The
interrupt routine is not executed during single-step operations. After single step the interrupt mask bits are
restored to the value before the step.

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping

Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during HLL single-step operations. The interrupt
routine is not executed during single-step operations. After single step the interrupt mask bits are restored to
the value before the step.

Format: SYStem.Option.IMASKASM [ON | OFF]

Format: SYStem.Option.IMASKHLL [ON | OFF]
MCS08 Debugger | 19©1989-2024 Lauterbach

Hardware Breakpoints

Most MC9S08 derivatives have three Hardware breakpoints, one in the BDM module (only address
compare) and two in the debug module. Refer to the Technical Summary of your derivative to check if
Hardware Breakpoints are available.

Program Breakpoints

Generally the In Circuit Debugger for MC9S08 uses Software Breakpoints to realize Program Breakpoints.
Software Breakpoint means that the code at the desired memory location is modified by the debugger to
make the CPU break when the program counter meets this address. After this the original contents of this
memory location is restored.

This mechanism can not work in Read Only Memory. To provide breakpoints in ROM areas the CPU’ s
Hardware Breakpoints can be used. The memory ranges. where Hardware Breakpoints should be used
must be defined with the command MAP.BOnchip.

With the command Break.List the actual breakpoint configuration can be checked.

Read and Write Breakpoints

Read and Write Breakpoints always use the CPU’ s Hardware Breakpoints regardless off the ranges defined
with MAP.BOnchip.

Read and Write Breakpoints can be set with the command Break.Set…

MAP.BOnchip0x1080--0x0ffff

Break.Set 0x4738 /w ; The CPU will be stopped if there is a
; write access to address $4738

b.s 0x0b223 /r ; The CPU will be stopped if there is a
; read access to address $B223
MCS08 Debugger | 20©1989-2024 Lauterbach

Data Breakpoints

Data Breakpoints always use the CPU’ s Hardware Breakpoints regardless off the ranges defined with
MAP.BOnchip. To provide a Breakpoint on address, data and cycle type match and data match two 16 bit
registers are needed. So there is only one breakpoint of this type available. Use the command Break.Set or
the “Set…” entry in the Break menu to open the control window for the Breakpoints.

Break.Set 0x421 /READ /Data.Byte
0y11x10001

Emulation will be stopped if the
CPU does a read access to
address $421, while this memory
location contains the value 0xD1
or 0xF1.
MCS08 Debugger | 21©1989-2024 Lauterbach

Onchip Commands

Onchip.Mode.EventTrace Start recording after trigger event

Recording starts after trigger event.

Onchip.Mode.FlowTrace Flow trace mode

Flow trace mode.

Onchip.Mode.LoopTrace Inhibit redundant entries

Flow trace inhibiting redundant entries to capture memory.

Format: Onchip.Mode.EventTrace

Format: Onchip.Mode.FlowTrace

Format: Onchip.Mode.LoopTrace
MCS08 Debugger | 22©1989-2024 Lauterbach

TrOnchip Commands

TrOnchip.Mode Select trace and trigger mode

The 9S08 has an on-chip debug module which offers some complex trigger features and a small on-chip
trace. Please refer to your CPU’ s manual for details. These debug features are based on two address
comparators which can be specified in the following way:

Note that it is a must to specify whether the access is read or write.

Format: TrOnchio.Mode <mode>

<mode>: BreakAORB
BreakATHENB
TraceAORB
TraceATHENB
OFF

BreakAORB Real-time execution is stopped if one of the two Comparators A or B
matches.

BreakATHENB Real-time execution is stopped if as a first step the comparators A
matzohs and then as a second step the comparator B matches.

TraceAORB Recording cycles to the on-chip trace is stopped if one of the two
Comparators A or B matches.

TraceATHENB Recording cycles to the on-chip trace is stopped if as a first step the
comparators A matzohs and then as a second step the comparator B
matches.

OFF Complex on-chip debug features are disabled.

Break.Set 0x8000 /Alpha /Read ; Set the Debug Comparator A to match on
; a read access from the address 0x8000.

Break.Set 0x8010 /Beta /Write ; Set the Debug Comparator B to match on
; a write access from the address
; 0x8100.
MCS08 Debugger | 23©1989-2024 Lauterbach

TrOnchip.state Open the control window for the on-chip trigger resources

Opens the control window for the on-chip trigger resources.

TrOnchip.RESet Reset the on-chip trigger resources

Sets all controls in the trigger on-chip window to default settings.

Format: TrOnchip.state

Format: TrOnchip.RESet
MCS08 Debugger | 24©1989-2024 Lauterbach

Memory Classes

The 9S1208 does not separate program and data memory, so “P:” and “D:” share the same memory. “E:” is
used to access any memory access, even internal special function registers, while the CPU is executing
user’s program.

Memory Description

P: Program

D: Data

E: Hidden access to CPU memory while foreground emulation is active
(“Emulation memory access” is the original of this name)
MCS08 Debugger | 25©1989-2024 Lauterbach

FLASH EEPROM Management

Flash programming on the HC9S08 is based on a mechanism called “Target Controlled Flash
Programming”. The file ~~/demo/m68hc08/flash/byte/mcs08.bin contains the programming code. It is
loaded and executed within the internal RAM of the CPU when you enter FLASH commands. Several
settings are necessary to do the link between TRACE32 software and mcs08.bin.

For convenience all this is can be done with the PRACTICE script file
~~/demo/m68hc08/flash/flashs08.cmm. This PRACTICE script file can be called with several parameters:

With help of the menu FLASH you can call flashs08.cmm with each of these parameters by mouse. If you
can not find the menu FLASH, check for the file mens08.men in your TRACE32 directory. If it is there use
menu.rp mens08.men to add it.

LAUTERBACH recommends to call flashs08.cmm with the needed parameters if you want to do FLASH
programming from your own PRACTICE file. The benefit of doing so is that you can keep your script file
when changes relating the flash programming have to be done, because these changes will be done by
updating flashs08.cmm. The file ~~/demo/m68hc08/flash/flashexamples08.cmm is an example for FLASH
programming by means of a PRACTICE script file (*.cmm).

To be able to debug within FLASH EEPROM areas the CPU’ s Hardware Breakpoints must be activated.
Refer to chapter Using Hardware Breakpoints.

Parameter Description

prepare Creates all entries to make the FLASH commands deal with mcs08.bin.

erase Prepare FLASH and erase all FLASH cells.

prog Prepare FLASH, activate FLASH programming, open a window to select
a file and load it down to the CPU.

eraprog Prepare FLASH, erase all FLASH cells, activate FLASH programming,
open a window to select a file and load it down to the CPU.

secure Open a dialog to specify security level and secure the CPU.

unsecure Erase all FLASH cells and unsecure CPU. Before the erase a warning
has to be accepted.
MCS08 Debugger | 26©1989-2024 Lauterbach

Secure and Unsecure

To avoid illegal copies of code he MC9S08 offers a security feature. Please refer to the CPU’s technical
summary for the technical background. There are three cases where this feature is important at debug
sessions.

1. Development reached a level where a prototype is given out. In this case you can secure the chip
with help of the item Secure CPU in the FLASH menu. Follow the dialog to do the necessary
configuration. You can specify a back door key to get access to the secured chip. To use this back
door key your application code has to contain code to open the chip. This can not be done by the
debugger. However you can use the debugger to make your code opening the chip. An idea is to
specify a variable for the key and another one to start the opening routine. Enter the key to this
variable by the debugger, set the start variable and execute your code.

2. You receive a secured chip and want to start debugging with this. If the code on the chip does not
support back door key, you have to erase all FLASH cells and to reprogram the chip. Use the
item Unsecure CPU in the FLASH menu.

It is not possible to unsecure a chip without erasing the whole FLASH
with help of the debugger.
MCS08 Debugger | 27©1989-2024 Lauterbach

BDM Connector ICD-MCS08

This image shows the top view to the male connector on the target board.

BKGD 1  GND

N/C   /RESET

N/C   VCC
MCS08 Debugger | 28©1989-2024 Lauterbach

	MCS08 Debugger
	Brief Overview of Documents for New Users
	Warning
	Troubleshooting
	SYStem.Up Errors

	FAQ
	CPU Specific Implementations
	Breakpoints
	Software Breakpoints
	On-chip Breakpoints

	Quick Start of the ICD Debugger for HC9S08
	1. Prepare the Start
	2. Select the Clock for the BDM Communication
	3. Configure the Debugger According to the Needs of the Application
	4. Map the EPROM Simulator if Available (optional)
	5. Tell the Debugger Where it should use On-chip Breakpoints (optional)
	6. Enter Debug Mode
	7. Load the Program
	8. Initialize Program Counter and Stackpointer
	9. View the Source Code

	CPU specific SYStem Settings and Restrictions
	Restrictions
	SYStem.BdmClock Select clock for BDM communication
	Special Functions
	SYStem.CONFIG Configure debugger according to target topology
	SYStem.CPU Select CPU type
	SYStem.LOCK Lock and tristate the debug port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Select target reset mode
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping

	Hardware Breakpoints
	Program Breakpoints
	Read and Write Breakpoints
	Data Breakpoints

	Onchip Commands
	Onchip.Mode.EventTrace Start recording after trigger event
	Onchip.Mode.FlowTrace Flow trace mode
	Onchip.Mode.LoopTrace Inhibit redundant entries

	TrOnchip Commands
	TrOnchip.Mode Select trace and trigger mode
	TrOnchip.state Open the control window for the on-chip trigger resources
	TrOnchip.RESet Reset the on-chip trigger resources

	Memory Classes
	FLASH EEPROM Management
	Secure and Unsecure
	BDM Connector ICD-MCS08

