
MANUAL

Release 09.2024

Cortex-M Debugger

Cortex-M Debugger

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents ..

 ICD In-Circuit Debugger ..

 Processor Architecture Manuals ..

 Arm/CORTEX/XSCALE ..

 Cortex-M Debugger .. 1

 History .. 6

 Warning .. 7

 Introduction ... 8

 Brief Overview of Documents for New Users 8

 Demo and Start-up Scripts 9

 Products for Debugging and Tracing Cortex-M Cores .. 10

 PowerDebug and Debug Cable 10

 µTrace (MicroTrace) (with MIPI20T-HS Whisker) 11

 PowerDebug and CombiProbe (with MIPI20T-HS Whisker) 12

 PowerDebug and CombiProbe (with CombiProbe MIPI34 Whisker) 13

 PowerDebug and PowerTrace (X-License) 14

 Quick Start of the JTAG Debugger .. 15

 Troubleshooting .. 17

 Communication between Debugger and Processor Cannot Be Established 17

 FAQ ... 18

 Trace Extensions ... 19

 Cortex-M Specific Implementations .. 20

 Breakpoints 20

 Software Breakpoints 20

 On-chip Breakpoints Cortex-M Armv6/v7 20

 On-chip Breakpoints Cortex-M Armv8 23

 Access Classes 25

 BenchMarkCounter 32

 Semihosting 34

 Virtual Terminal 35

 Runtime Measurement 35
Cortex-M Debugger | 2©1989-2024 Lauterbach

 Trigger 36

 Micro Trace Buffer (MTB) for Cortex-M0+ 36

 Cortex-M specific Onchip Commands .. 37

 Onchip.Mode.RAMPRIV SRAM privilege access 37

 Onchip.Mode.SFRWPRIV Special function register write access 37

 Onchip.Mode.TSTARTEN Enable TSTART signal 37

 Onchip.Mode.TSTOPEN Enable TSTOP signal 37

 Onchip.TBADDRESS Base address of the trace buffer 38

 Cortex-M specific SYStem Commands ... 39

 SYStem.CLOCK Inform debugger about core clock 39

 SYStem.CONFIG.state Display target configuration 39

 SYStem.CONFIG Configure debugger according to target topology 40

 <parameters> describing the “DebugPort” 52

 <parameters> describing the “JTAG” scan chain and signal behavior 57

 <parameters> describing a system level TAP “MultiTap” 61

 <parameters> configuring a CoreSight Debug Access Port “AP” 63

 <parameters> describing debug and trace “Components” 72

 <parameters> which are “Deprecated” 84

 SYStem.CONFIG.EXTWDTDIS Disable external watchdog 89

 SYStem.CPU Select the used CPU 89

 SYStem.JtagClock Define the frequency of the debug port 90

 SYStem.LOCK Tristate the JTAG port 92

 SYStem.MemAccess Select run-time memory access method 93

 SYStem.Mode Establish the communication with the target 96

 SYStem.Option Special setup 98

 SYStem.Option.BigEndian Define byte order (endianness) 98

 SYStem.Option.CFLUSHAFTERBREAK Flush data cache after break 98

 SYStem.Option.CLEARHARDFAULT Handle the HFSR[FORCED] bit 98

 SYStem.Option.CoreSightRESet Assert CPU reset via CTRL/STAT 99

 SYStem.Option.CORTEXMAHB AHB-AP type of the Cortex-M 99

 SYStem.Option.CypressACQuire Send acquire sequence 99

 SYStem.Option.DAPDBGPWRUPREQ Force debug power in DAP 100

 SYStem.Option.DAP2DBGPWRUPREQ Force debug power in DAP2 100

 SYStem.Option.DAPSYSPWRUPREQ Force system power in DAP 101

 SYStem.Option.DAP2SYSPWRUPREQ Force system power in DAP2 102

 SYStem.Option.DAPNOIRCHECK No DAP instruction register check 103

 SYStem.Option.DAPREMAP Rearrange DAP memory map 103

 SYStem.Option.DEBUGPORTOptions Options for debug port handling 103

 SYStem.Option.DIAG Activate more log messages 104

 SYStem.Option.DisMode Define disassembler mode 105

 SYStem.Option.DUALPORT Implicitly use run-time memory access 105

 SYStem.Option.EnReset Allow the debugger to drive nRESET (nSRST) 106

 SYStem.Option.FORCESECure Force secure memory access 106
Cortex-M Debugger | 3©1989-2024 Lauterbach

 SYStem.Option.IMASKASM Disable interrupts while single stepping 106

 SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 107

 SYStem.Option.INTDIS Disable all interrupts 107

 SYStem.Option.IntelSOC Slave core is part of Intel® SoC 107

 SYStem.Option.LOCKRES Go to 'Test-Logic Reset' when locked 108

 SYStem.Option.MDMAP Set debug option controlled by NXP MDM-AP 108

 SYStem.Option.MMUSPACES Enable space IDs 110

 SYStem.Option.NoRunCheck No check of the running state 111

 SYStem.Option.OVERLAY Enable overlay support 111

 SYStem.Option.PALLADIUM Extend debugger timeout 112

 SYStem.Option.PSOCswdACQuire Debug port acquire for PSOC5 112

 SYStem.Option.PWRDWNRecover Mode to handle special power recovery 112

 SYStem.Option.ResBreak Halt the core after reset 113

 SYStem.Option.RESetREGister Generic software reset 114

 SYStem.Option.RisingTDO Target outputs TDO on rising edge 114

 SYStem.Option.SELECTDAP Select Cortex-M DAP 115

 SYStem.Option.SOFTLONG Use 32-bit access to set breakpoint 115

 SYStem.Option.SOFTWORD Use 16-bit access to set breakpoint 115

 SYStem.Option.STEPSOFT Use software breakpoints for ASM stepping 115

 SYStem.Option.SYSPWRUPREQ Force system power 116

 SYStem.Option.SYSRESETREQ Allow system reset via the AIRC register 116

 SYStem.Option.TRST Allow debugger to drive TRST 116

 SYStem.Option.VECTRESET Allow local reset via the AIRC register 117

 SYStem.Option.WaitIDCODE IDCODE polling after deasserting reset 117

 SYStem.Option.WaitReset Wait with JTAG activities after deasserting reset 118

 SYStem.Option.WakeUpACKnowledge Set acknowledge after wake-up 119

 SYStem.RESetOut Performs a reset 119

 SYStem.state Display SYStem.state window 119

 ARM Specific Benchmarking Commands ... 120

 BMC.OFF Disable benchmark counters 120

 BMC.ON Enable benchmark counters 120

 BMC.SELect Select counter for statistic analysis 120

 BMC.Trace Activate BMC trace 121

 ARM specific TrOnchip Commands .. 122

 TrOnchip.state Display on-chip trigger window 122

 TrOnchip.MatchASID Extend on-chip breakpoint/trace filter by ASID 123

 TrOnchip.CONVert Allow extension of address range of breakpoint 124

 TrOnchip.RESERVE Reserve on-chip breakpoint comparators 125

 TrOnchip.RESet Reset on-chip trigger settings 125

 TrOnchip.Set Set bits in the vector catch register 126

 TrOnchip.StepVector Step into exception handler 127

 TrOnchip.StepVectorResume Catch exceptions and resume single step 127

 TrOnchip.VarCONVert Convert breakpoints on scalar variables 128
Cortex-M Debugger | 4©1989-2024 Lauterbach

 JTAG Connection .. 130
Cortex-M Debugger | 5©1989-2024 Lauterbach

Cortex-M Debugger

Version 05-Oct-2024

History

31-Jul-23 Chapter ‘Products for Debugging and Tracing Cortex-M Cores‘ updated for latest
configurations.

20-Jul-23 Chapter ‘Breakpoints‘ fully revised.

28-Nov-22 New command SYStem.Option.CLEARHARDFAULT.

14-Nov-22 New command SYStem.Option.CFLUSHAFTERBREAK.

05-Oct-22 New commands BMC.ON and BMC.OFF.

19-Aug-22 Link to manual XCP Debug Back-End added in chapter' Brief Overview of Documents for
New Users'.

06-Jul-22 New command SYStem.Option.FORCESECure.

15-Jun-22 New subchapter ‘XCP Specific Commands’, describes the XCP subcommands of
SYStem.CONFIG.

22-Apr-22 New command SYStem.Option.MDMAP.
Cortex-M Debugger | 6©1989-2024 Lauterbach

Warning

WARNING: To prevent debugger and target from damage it is recommended to connect or
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

1. Disconnect the Debug Cable from the target while the target power is
off.

2. Connect the host system, the TRACE32 hardware and the Debug
Cable.

3. Power ON the TRACE32 hardware.

4. Start the TRACE32 software to load the debugger firmware.

5. Connect the Debug Cable to the target.

6. Switch the target power ON.

7. Configure your debugger e.g. via a start-up script.

Power down:

1. Switch off the target power.

2. Disconnect the Debug Cable from the target.

3. Close the TRACE32 software.

4. Power OFF the TRACE32 hardware.
Cortex-M Debugger | 7©1989-2024 Lauterbach

Introduction

This document describes the processor-specific settings and features for the Cortex-M debugger.

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by
Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your
first choice.

Brief Overview of Documents for New Users

Architecture-independent information:

• “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.

• “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

• This manual does not cover the Cortex-A/R (ARMv7, 32-bit) cores. If you are using this
processor architecture, please refer to “Arm Debugger” (debugger_arm.pdf).

• This manual does not cover the Cortex-A/R (Armv8 and Armv9, 32/64-bit) cores. If you are using
these processor architectures, please refer to “Armv8 and Armv9 Debugger”
(debugger_armv8v9.pdf).

• “XCP Debug Back-End” (backend_xcp.pdf): This manual describes how to debug a target over a
3rd-party tool using the XCP protocol.

To get started with the most important manuals, use the Welcome to TRACE32! dialog (WELCOME.view):
Cortex-M Debugger | 8©1989-2024 Lauterbach

Demo and Start-up Scripts

Lauterbach provides ready-to-run PRACTICE start-up scripts for known Cortex-M-based hardware.

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:

• Type at the command line: WELCOME.SCRIPTS

• or choose File menu > Search for Script.

You can now search the demo folder and its subdirectories for PRACTICE start-up scripts
(*.cmm) and other demo software.

You can also manually navigate in the ~~/demo/arm/ subfolder of the system directory of TRACE32.
Cortex-M Debugger | 9©1989-2024 Lauterbach

Products for Debugging and Tracing Cortex-M Cores

Lauterbach offers different tool configurations for debugging and tracing of Cortex-M cores. This chapter
presents the individual configurations and their main applications briefly.

The following configurations are provided:

• PowerDebug and Debug Cable

• µTrace (with MIPI20T-HS Whisker)

• PowerDebug and CombiProbe (with MIPI20T-HS Whisker)

• PowerDebug and CombiProbe (with CombiProbe MIPI34 Whisker)

• Power Debug and PowerTrace

PowerDebug and Debug Cable

You have chosen a pure debug solution because your processor has no off-chip trace option or you have no
interest in off-chip tracing.

For all Cortex-M specific debug features, please refer to “Cortex-M Debugger” (debugger_cortexm.pdf).

��������	

POWER DEBUG E40

POWER DEBUG E40

PC or
Workstation

USB
Cable

Target

D
eb

ug
C

on
ne

ct
or

Debug Cable
Cortex-M Debugger | 10©1989-2024 Lauterbach

µTrace (MicroTrace) (with MIPI20T-HS Whisker)

You have chosen the all-in-one debug and off-chip trace solution developed by Lauterbach especially for
Cortex-M processors.

For all Cortex-M specific debug features, please refer to “Cortex-M Debugger” (debugger_cortexm.pdf).

For all Cortex-M specific trace features, please refer to “MicroTrace for Cortex-M User’s Guide”
(microtrace_cortexm.pdf).

Optionally, the TRACE32 Mixed-Signal Probe can be used with the µTrace for Cortex-M.

AU
X

PO
RT

 V
1

D
EB

U
G

/T
RA

CE
 W

H
IS

KE
R

μTRACE® FOR CORTEX®-M / USB 3

PC or
Workstation

USB
Cable

Target

M
IP

I2
0T

/M
IP

I1
0

C
on

ne
ct

or
Cortex-M Debugger | 11©1989-2024 Lauterbach

PowerDebug and CombiProbe (with MIPI20T-HS Whisker)

You have chosen a debug and off-chip trace solution for your processor which is tailor-made for the
Cortex-M, but provides you with greater flexibility than the all-in-one debug and trace solution µTrace
(MicroTrace). The combination of CombiProbe and MIPI20T-HS whisker supports:

• Debugging via JTAG (IEEE 1149.1), SWD (Serial Wire Debug) or cJTAG (IEEE 1149.7) at clock
rates up to 100 MHz

• Debug connectors MIPI20T and MIPI10 (without adapter), Arm-20 (with included adapter)

• Parallel trace using ETM/ITM in TPIU continuous mode with up to 4 data pins and bit rates of up
to 400 Mbit/s per pin

• SWV (Serial Wire Viewer) / SWO (Serial Wire Output) trace at port rates up to 200 Mbit/s

• Automatic configuration and advanced diagnostics of electrical parameters of the used trace port

• Optional logic analyzer extension TRACE32 Mixed-Signal Probe.

• Debugging of CPU types other than Cortex-M (e. g. Cortex-A/R)

• Debugging two chips with two separate debug connectors (using a second whisker cable)

This combination requires TRACE32 R.2018.09 or newer.

For all Cortex-M specific debug features, please refer to “Cortex-M Debugger” (debugger_cortexm.pdf).

For all Cortex-M specific trace features, please refer to “CombiProbe for Cortex-M User’s Guide”
(combiprobe_cortexm.pdf).

��������	

POWER DEBUG E40

POWER DEBUG E40

PC or
Workstation

USB
Cable

Target

CombiProbe

M
IP

I2
0T

/M
IP

I1
0

C
on

ne
ct

or
Cortex-M Debugger | 12©1989-2024 Lauterbach

PowerDebug and CombiProbe (with CombiProbe MIPI34 Whisker)

This solution is outdated.

You have chosen a debug and off-chip trace solution for your processor which is tailor-made for the
Cortex-M, but provides you with greater flexibility than the all-in-one debug and trace solution µTrace
(MicroTrace). The combination of CombiProbe and MIPI34 whisker supports:

• Debugging via JTAG (IEEE 1149.1), SWD (Serial Wire Debug) or cJTAG (IEEE 1149.7) at clock
rates up to 100 MHz

• Debug connectors MIPI34, MIPI20D, MIPI20T and MIPI10 (without adapter), Arm-20 (with
included adapter)

• Parallel trace using ETM/ITM/STM either in TPIU continuous mode or without a TPIU with up to 4
data pins and bit rates of up to 200 Mbit/s per pin

• SWV (Serial Wire Viewer) / SWO (Serial Wire Output) trace at port rates up to 100 Mbit/s

• Optional logic analyzer extension (PowerProbe or PowerIntegrator)

• Debugging of CPU types other than Cortex-M (e. g. Cortex-A/R)

• Debugging two chips with two separate debug connectors (using a second whisker cable)

For all Cortex-M specific debug features, please refer to “Cortex-M Debugger” (debugger_cortexm.pdf).

For all Cortex-M specific trace features, please refer to “CombiProbe for Cortex-M User’s Guide”
(combiprobe_cortexm.pdf).

��������	

POWER DEBUG USB INTERFACE / USB 3

POWER DEBUG INTERFACE / USB 3

PC or
Workstation

USB
Cable

Target

CombiProbe

M
IP

I3
4/

20
/1

0
C

on
ne

ct
or
Cortex-M Debugger | 13©1989-2024 Lauterbach

PowerDebug and PowerTrace (X-License)

You have the TRACE32 high-end debug and off-chip trace solution for your processor and it is likely that your
Cortex-M is part of a complex SoC.

For all Cortex-M specific debug features, please refer to “Cortex-M Debugger” (debugger_cortexm.pdf).

For all Cortex-M specific trace features, please refer to “Training Cortex-M Tracing”
(training_cortexm_etm.pdf).

POWER DEBUG X50

��������	

��������	

POWER TRACE III

1

POWER DEBUG X50
POWER TRACE III

SWITCH PC or
Workstation

1 GBit Ethernet

Ethernet
Cable

Target

D
eb

ug
C

on
ne

ct
or

Debug Cable

LA
U
TE
RB

AC
H

LA
U
TE
RB

AC
H

PR
EO

PR
O

CE
SS

O
R

AU
TO

FO
CU

S
II

C B A

CABLE

Tr
ac

e
C

on
ne

ct
or

Preprocessor
AUTOFOCUS II
Cortex-M Debugger | 14©1989-2024 Lauterbach

Quick Start of the JTAG Debugger

Starting up the debugger is done as follows:

1. Select the device prompt for the ICD Debugger and reset the system.

The device prompt B:: is normally already selected in the TRACE32 command line. If this is not the
case, enter B:: to set the correct device prompt. The RESet command is only necessary if you do
not start directly after booting the TRACE32 development tool.

2. Specify the core specific settings.

The default values of all other options are set in such a way that it should be possible to work without
modification. Please consider that this is probably not the best configuration for your target.

3. Inform the debugger about read-only address ranges (ROM, FLASH).

The B(reak)Onchip information is necessary to decide where on-chip breakpoints must be used. On-
chip breakpoints are necessary to set program breakpoints to FLASH/ROM.

4. Enter debug mode.

This command resets the core and enters debug mode. After this command is executed, it is possible
to access memory and registers.

5. Load stack pointer and program counter from the vector table.

B::

RESet

SYStem.CPU <cpu_type>

SYStem.Option.EnReset [ON|OFF]

MAP.BOnchip 0x100000++0x0fffff

SYStem.Up

Register.Init
Cortex-M Debugger | 15©1989-2024 Lauterbach

6. Load the program.

The format of the Data.LOAD command depends on the file format generated by the compiler.

A detailed description of the Data.LOAD command and all available options is given in the “General
Commands Reference”.

A typical start sequence is shown below. This sequence can be written to a PRACTICE script file
(*.cmm, ASCII format) and executed with the command DO <file>.

*) These commands open windows on the screen. The window position can be specified with the WinPOS
command.

Data.LOAD.AIF armf (aif specifies the format,
armf is the file name)

WinClear ;Clear all windows

SYStem.CPU CORTEXM3 ;Select the core type

MAP.BOnchip 0x100000++0xfffff ;Specify where FLASH/ROM is

SYStem.Up ;Reset the target and enter debug
;mode

Register.Init ;Load stack pointer and program
;counter

Data.LOAD.AXF armf ;Load the application

Register.Set PC main ;Set the PC to function main

Register.Set R13 0x8000 ;Set the stack pointer to address
;8000

List.Mix ;Open source code window *)

Register.view /SpotLight ;Open register window *)

Frame.view /Locals /Caller ;Open the stack frame with
;local variables *)

Break.Set 0x1000 /p ;Set software breakpoint to address
;1000 (address 1000 outside of
;BOnchip range)

Break.Set 0x101000 /p ;Set on-chip breakpoint to address
;101000 (address 101000 is within
;BOnchip range)
Cortex-M Debugger | 16©1989-2024 Lauterbach

Troubleshooting

Communication between Debugger and Processor Cannot Be Established

Typically the SYStem.Up command is the first command of a debug session where communication with the
target is required. If you receive error messages like “debug port fail” or “debug port timeout” while executing
this command, this may have the reasons below. “target processor in reset” is just a follow-up error
message. Open the AREA.view window to see all error messages.

• The target has no power or the debug cable is not connected to the target. This results in the
error message “target power fail”.

• You did not select the correct core type SYStem.CPU <type>.

• There is an issue with the JTAG interface. See “Arm Debug and Trace Interface Specification”
(app_arm_target_interface.pdf) and the manuals or schematic of your target to check the
physical and electrical interface. Maybe there is the need to set jumpers on the target to connect
the correct signals to the JTAG connector.

• There is the need to enable (jumper) the debug features on the target. It will e.g. not work if
nTRST signal is directly connected to ground on target side.

• The debug access port is in an unrecoverable state. Re-power your target and try again.

• The target can not communicate with the debugger while in reset. Try SYStem.Mode Attach
followed by Break instead of SYStem.Up or use SYStem.Option.EnReset OFF.

• The default frequency of the JTAG/SWD/cJTAG debug port is too high, especially if you emulate
your core or if you use an FPGA-based target. In this case try SYStem.JtagClock 50kHz and
optimize the speed when you got it working.

• The core is used in a multicore system and the appropriate multicore settings for the debugger
are missing. See for example SYStem.CONFIG.DAPIRPRE. This is the case if you get a value
IR_Width > 4 when you enter “DIAG 3400” and “AREA”. If you get IR_Width = 4, then you have
just the Cortex-M3 and you do not need to set these options. If the value can not be detected,
then you might have a JTAG interface issue.

• The core has no clock.

• The core is kept in reset.

• There is a watchdog which needs to be deactivated.

Your target needs special debugger settings. Check the directory \demo\arm if there is an suitable
PRACTICE script file (*.cmm) for your target.
Cortex-M Debugger | 17©1989-2024 Lauterbach

FAQ

Please refer to https://support.lauterbach.com/kb.
Cortex-M Debugger | 18©1989-2024 Lauterbach

https://support.lauterbach.com/kb

Trace Extensions

A Embedded Trace Macrocell (ETM) might be integrated into the core. The Embedded Trace Macrocell
provides program and data flow information plus trigger and filter features.

Please refer to the online help books “Arm ETM Trace” (trace_arm_etm.pdf) for detailed information about
the usage of ETM.

Please note that you need to inform the debugger in the start-up script about the location of the trace control
register and funnel configuration in case a trace bus is used. See SYStem.CONFIG.ETMBASE,
SYStem.CONFIG.FUNNELBASE, SYStem.CONFIG.TPIUBASE, SYStem.CONFIG.ETMFUNNELPORT.
In case a HTM or ITM module is available and shall be used you need also settings for that.
Cortex-M Debugger | 19©1989-2024 Lauterbach

Cortex-M Specific Implementations

Breakpoints

Software Breakpoints

Software breakpoints are set by replacing the opcode of an instruction in RAM with a breakpoint instruction.
Software breakpoints are used by TRACE32 by default to set breakpoints of the type Program. If TRACE32
detects that the opcode is not in RAM, it automatically sets a breakpoint of the method ONCHIP.

The number of software breakpoints is theoretically unlimited. However, a large number of software
breakpoints reduces the overall performance of TRACE32.

For special use cases, TRACE32 can also set software breakpoints into flash memory. For details refer to
“Software Breakpoints in FLASH” in Onchip/NOR FLASH Programming User’s Guide, page 32
(norflash.pdf).

On-chip Breakpoints Cortex-M Armv6/v7

Onchip breakpoints are multifunctional and, most importantly, non-intrusive. However, TRACE32 depends
on the breakpoint resources in the onchip debug logic.

Break.Set my_function /Program
Cortex-M Debugger | 20©1989-2024 Lauterbach

The following basic usage scenarios are possible:

• Program breakpoints: Onchip breakpoints can be used to set program breakpoints into
ROM/FLASH/EPROM. It is recommended to configure TRACE32 with the help of the command
MAP.BOnchip <flash_address_range> so that onchip breakpoints are automatically used for the
flash address range.

• Read/Write breakpoints: Onchip breakpoints can be used to stop the program execution when
a read or write access to an address occurs. In the Arm notation these breakpoints are called
watchpoints.

Since address ranges are realized via bit masks for the Cortex-M Armv6/v7, the address range of
the breakpoint (modified address column in the above screenshot) extends beyond the address
range of the variable (address column in the above screenshot). The program execution can thus
be stopped even at a write access to the address directly after the variable.

• Data value breakpoint: Onchip breakpoints can be used to stop the program execution when a
specific data value is written to an address or when a specific data value is read from an address.

The following onchip resources can be used for the implementation of onchip breakpoints, depending on the
Cortex-M core in use.

Var.Break.Set flags /Write

Var.Break.Set flags[3] /Read /DATA.auto 0.

BPU BreakPoint Unit

The BPU allows to set single address breakpoints into the program
address range 0x00000000 - 0x1fffffff.

DWU Data Watchpoint Unit

The DWU allows setting single address breakpoints and breakpoints
to address ranges using bitmaks.

Breakpoints implemented via the DWU are asynchronous, which
means that program execution is stopped with a delay of several
assembly instructions.
Cortex-M Debugger | 21©1989-2024 Lauterbach

Here is the list of the onchip breakpoints resources available for the individual Cortex-M cores.

The command Break.List /OnchipDetail provides details about the usage of the onchip breakpoint
resources.

DWT Data Watchpoint and Trace unit

The DWT allows setting single address breakpoints and breakpoints
to address ranges using bitmaks.

The DWT needs two breakpoint comparators to implement a data
value breakpoint, one for the data address (range) and one for the
data value.

Breakpoints implemented via the DWT are asynchronous, which
means that program execution is stopped with a delay of several
assembly instructions.

FPB Flash Patch and Breakpoint unit

The FPB allows to set single address breakpoints into the program
address range 0x00000000 - 0x1fffffff.

Onchip Break-
points in Total

Program
Breakpoints

Read/Write
Breakpoints

Data Value
Breakpoint

Cortex-
M0/M0+

1-4 by BU
1-2 by DW

1-4 by BU
1-2 by DW

1-2 by DW -

Cortex-M1 2/4 by BU
1/2 by DW

2/4 by BU
1/2 by DW

1/2 by DW -

Cortex-M3 6 by FPB
4 by DWT

6 by FPB
4 by DWT

4 by DWT 1 by DWT

Cortex-M4 2/6 by FPB
1/4 by DWT

2/6 by FPB
1/4 by DWT

1/4 by DWT 0/1 by DWT

Cortex-M7 4/8 by FPB
2/4 by DWT

4/8 by FPB
2/4 by DWT

2/4 by DWT 1 by DWT

SC000 1-4 by BU
1-2 by DW

1-4 by BU
1-2 by DW

1-2 by DW -

SC300 6 by FPB
4 by DWT

6 by FPB
4 by DWT

4 by DWT 1 by DWT
Cortex-M Debugger | 22©1989-2024 Lauterbach

On-chip Breakpoints Cortex-M Armv8

Onchip breakpoints are multifunctional and, most importantly, non-intrusive. However, TRACE32 depends
on the breakpoint resources in the onchip debug logic.

The following basic usage scenarios are possible:

• Program breakpoints: Onchip breakpoints can be used to set program breakpoints into
ROM/FLASH/EPROM. It is recommended to configure TRACE32 with the help of the command
MAP.BOnchip <flash_address_range> so that onchip breakpoints are automatically used for the
flash address range.

• Read/Write breakpoints: Onchip breakpoints can be used to stop the program execution when
a read or write access to an address occurs. In the Arm notation these breakpoints are called
watchpoints.

• Data value breakpoint: Onchip breakpoints can be used to stop the program execution when a
specific data value is written to an address or when a specific data value is read from an address.

The following onchip resources can be used for the implementation of onchip breakpoints, depending on the
Cortex-M core in use.

Var.Break.Set flags /Write

Var.Break.Set flags[3] /Read /DATA.auto 0.

BPU BreakPoint Unit

The BPU provides single address breakpoints for the complete
program address range.

DWT Data Watchpoint and Trace unit

The DWT allows setting single address breakpoints and breakpoints
to address ranges. An address range needs two breakpoint
comparators.

The DWT needs 2 breakpoint comparators to implement a data
value breakpoint, one for the data address and one for the data
value.

Breakpoints implemented via the DWT are asynchronous, which
means that program execution is stopped with a delay of several
assembly instructions.
Cortex-M Debugger | 23©1989-2024 Lauterbach

Here is the list of the onchip breakpoints resources available for the individual Cortex-M cores.

The command Break.List /OnchipDetail provides details about the usage of the onchip breakpoint
resources.

FPB Flash Patch and Breakpoint Unit

The FBB provides single address breakpoints for the complete
program address range.

On-chip
Breakpoints

Instruction
Breakpoints

Read/Write
Breakpoints

Data
Breakpoint

Cortex-M23 4 by FPB
4 by DWT

4 by FPB
4 by DWT

4 by DWT 1 by DWT

Cortex-M33 4/8 by BPU
4 by DWT

4 by FPB
4 by DWT

4 by DWT 1 by DWT

Cortex-M35P 4/8 by BPU
4 by DWT

4/8 by BPU
4 by DWT

4 by DWT 1 by DWT

Cortex-M55 4/8 by BPU
2/4/8 by DWT

4/8 by BPU
2/4/8 by DWT

2/4/8 by DWT 1 by DWT
2 for DWT
with 8

Cortex-M85 4/8 by BPU
4/8 by DWT

4/8 by BPU
4/8 by DWT

4/8 by DWT 1 by DWT
2 for DWT
with 8

STAR 4/8 by BPU
4 by DWT

4/8 by BPU
4 by DWT

4 by DWT 1 by DWT
Cortex-M Debugger | 24©1989-2024 Lauterbach

Access Classes

This section describes the available ARM access classes and provides background information on how to
create valid access class combinations in order to avoid syntax errors.

For background information about the term access class, see “TRACE32 Concepts”
(trace32_concepts.pdf).

In this section:

• Description of the Individual Access Classes

• Combinations of Access Classes

• How to Create Valid Access Class Combinations

• Access Class Expansion by TRACE32

Description of the Individual Access Classes

Access Class Description

A Absolute addressing (physical address)

AHB, AHB2 See DAP.

APB, APB2 See DAP.

AXI, AXI2 See DAP.

D Data Memory
Cortex-M Debugger | 25©1989-2024 Lauterbach

DAP, DAP2,
AHB, AHB2,
APB, APB2,
AXI, AXI2

Memory access via bus masters, so named Memory Access Ports (MEM-
AP), provided by a Debug Access Port (DAP). The DAP is a CoreSight
component mandatory on Cortex based devices.

Which bus master (MEM-AP) is used by which access class (e.g. AHB) is
defined by assigning a MEM-AP number to the access class:

SYStem.CONFIG DEBUGACCESSPORT <mem_ap#> -> “DAP”
SYStem.CONFIG AHBACCESSPORT <mem_ap#> -> “AHB”
SYStem.CONFIG APBACCESSPORT <mem_ap#> -> “APB”
SYStem.CONFIG AXIACCESSPORT <mem_ap#> -> “AXI”

You should assign the memory access port connected to an AHB (AHB
MEM-AP) to “AHB” access class, APB MEM-AP to “APB” access class
and AXI MEM-AP to “AXI” access class. “DAP” should get the memory
access port where the debug register can be found which typically is an
APB MEM-AP (AHB MEM-AP in case of a Cortex-M).

There is a second set of access classes (DAP2, AHB2, APB2, AXI2) and
configuration commands (e.g. SYStem.CONFIG
DAP2AHBACCESSPORT <mem_ap#>) available in case there are two
DAPs which needs to be controlled by the debugger.

E Run-time memory access
(see SYStem.CpuAccess and SYStem.MemAccess)

N EL0/1 Non-Secure Mode (TrustZone devices)

P Program Memory

R AArch32 ARM Code (A32, 32-bit instr. length)

S Supervisor Memory (privileged access)

T AArch32 Thumb Code (T32, 16-bit instr. length)

U User Memory (non-privileged access)
not yet implemented; privileged access will be performed.

USR Access to Special Memory via User-Defined Access Routines

JSEQ: Access data via JTAG sequences registered with
JTAG.SEQuence.MemAccess.ADD

VM Virtual Memory (memory on the debug system)

X
ARMv8-A only

AArch64 ARM64 Code (A64, 32-bit instr. length)

Z Secure Mode (TrustZone devices)

Access Class Description
Cortex-M Debugger | 26©1989-2024 Lauterbach

Combinations of Access Classes

Combinations of access classes are possible as shown in the example illustration below:

The access class “A” in the red path means “physical access”, i.e. it will only bypass the MMU but consider
the cache content. As generic Cortex-M based designs do not feature an MMU, it is equal to the standard
access class in such cases. The access class “NC” in the yellow path means “no cache”, so it will bypass the
cache.

If both access classes “A” and “NC” are combined to “ANC”, this means that the properties of both access
classes are summed up, i.e. both the MMU and the cache will be bypassed on a memory access. As
generic Cortex-M based designs do not feature an MMU, it is equal to access class “NC” in such cases.

The blue path is an example of an access which is done when no access class is specified. It is similar to the
memory view of the CPU core. The MPU is always bypassed when the debugger performs a memory
access.

The access classes “A” and “NC” are not the only two access classes that can be combined. An access
class combination can consist of up to five access class specifiers. But any of the five specifiers can also be
omitted.

CPU CacheMPU

Memory

DAP

NC

A

ANC

D

Cortex-M Debugger | 27©1989-2024 Lauterbach

Three specifiers: Let’s assume you want to view a secure memory region that contains Thumb code. To
ensure a secure access, use the access class specifier “Z”. And to make the debugger disassemble the
memory content as Thumb code use “T”. By combining both access class specifiers, we obtain the access
class combination “ZT”.

One specifier: Let’s imagine a physical access should be done. To accomplish that, start with the “A”
access class specifier right away and omit all other possible specifiers.

No specifiers: Let’s now consider what happens when you omit all five access class specifiers. In this case
the memory access by the debugger will be a virtual access using the current CPU context, i.e. the
debugger has the same view on memory as the CPU core.

Using no or just a single access class specifier is easy. Combining at least two access class specifiers is
slightly more challenging because access class specifiers cannot be combined in an arbitrary order. Instead
you have to take the syntax of the access class specifiers into account.

If we refer to the above example “ZT” again, it would not be possible to specify the access class combination
as “TZ”. You have to follow certain rules to make sure the syntax of the access class specifiers is correct.
This will be illustrated in the next section.

NOTE: This example refers to secure/non-secure memory available on TrustZone enabled
devices like Cortex-M23/M33.

List.Mix ZT:0x10000000 // View THUMB code in secure memory

Data.dump A:0x80000000 // Physical memory dump at address 0x80000000

Data.dump 0xFB080000 // Virtual memory dump at address 0xFB080000
Cortex-M Debugger | 28©1989-2024 Lauterbach

How to Create Valid Access Class Combinations

The illustrations below will show you how to combine access class specifiers for frequently-used access
class combinations.

Rules to create a valid access class combination:

• From each column of an illustration, select only one access class specifier.

• You may skip any column - but only if the column in question contains an empty square.

• Do not change the original column order. Recommendation: Put together a valid combination by
starting with the left-most column, proceeding to the right.

Memory Access through CPU (CPU View)

The debugger uses the CPU to access memory and peripherals like UART or DMA controllers. This means
the CPU will carry out the accesses requested by debugger. Examples would be virtual, physical, secure, or
non-secure memory accesses.

Example combinations:

AD View physical data (current CPU mode).

ED Access data at run-time.

ZSD View data in secure supervisor mode at virtual address location.

AX Disassemble code of ARMv8-A code section, e.g. of main application processor.

E A N

Z

U

S

D

P

X

R

T

Cortex-M Debugger | 29©1989-2024 Lauterbach

CoreSight Access

These accesses are typically used to access the CoreSight busses APB, AHB and AXI directly through the
DAP bypassing the CPU. For example, this could be used to view physical memory at run-time.

Example combinations:

Cache and Virtual Memory Access

These accesses are used to either access the TRACE32 virtual memory (VM:) or to access data and
instruction caches directly or to bypass them.

Example combinations:

EAXI Access memory location via AXI during run-time.

EZAXI Access secure memory location via AXI during run-time.

DAP Access debug access port (e.g. core debug registers).

VM Access virtual memory using current CPU context.

AVM Access virtual memory ignoring current CPU context.

NC Bypass all cache levels during memory access.

ANC Bypass MMU and all cache levels during memory access.

AHB

AHB2L

RME

O

E DAP

DAP2

APB

APB2

VM

X

R

T

A

N

Z

E A NC

N

Z

Cortex-M Debugger | 30©1989-2024 Lauterbach

Access Class Expansion by TRACE32

If you omit access class specifiers in an access class combination, then TRACE32 will make an educated
guess to fill in the blanks. The access class is expanded based on:

• The current CPU context (architecture specific)

• The used window type (e.g. Data.dump window for data or List.Mix window for code)

• Symbol information of the loaded application (e.g. combination of code and data)

• Segments that use different instruction sets

• Debugger specific settings (e.g. SYStem.Option.*)

Examples: Memory Access through CPU

Let’s assume the CPU is in non-secure supervisor mode, executing 32-bit code.

Your input, here List.Mix at the TRACE32 command line, remains unmodified. TRACE32 performs an
access class expansion and visualizes the result in the window you open, here in the List.Mix window.

User input at the
command line

Expansion
by TRACE32

These access classes are added because...

List.Mix

(see also illustration
below)

NST: N: … the CPU is in non-secure mode.
S: … the CPU is in supervisor mode.
R: … code is viewed (not data) and the CPU uses
Thumb instructions.

Data.dump A:0x0 ANSD:0x0 N: … the CPU is in non-secure mode.
S: … the CPU is in supervisor mode.
D: … data is viewed (not code).

Data.dump Z:0x0 ZSD:0x0 S: … the CPU is in supervisor mode.
D: … data is viewed (not code).

NOTE: ‘E’ and ‘A’ are not automatically added because the debugger cannot know if you intended a
run-time or physical access.

A TRACE32 makes an educated guess to expand your omitted access class to “NST”.

B Indicates that the CPU is in non-secure mode.

A B
Cortex-M Debugger | 31©1989-2024 Lauterbach

BenchMarkCounter

Benchmark counters are on-chip counters that count specific hardware events, e.g., the number of executed
instructions. This allows to calculate typical performance metrics like clocks per instruction (CPI).The
benchmark counters can be read at run-time.

The following counters are available on Cortex-M:

• CYC, Cycle Counter: This counter counts the total number of CPU clock cycles. The counter will
be used in conjunction with the CPU clock frequency to calculate the running times.

• CPI, This counter counts the total number of cycles per instruction after the first cycle. For
example: If an instruction takes 5 cycles, the CPI counter will be incremented by 4. The slower
this counter increases, the more instructions per cycle are executed.

• EXC, Exception Counter: This counter counts the number of cycles spent in interrupt processing
specific operations. The counter counts the overhead incurred because of interrupts (like entry
sequences which put registers onto the stack, exit sequences which restore registers from the
stack, etc.).

• SLP, Sleep Counter: This counter counts the number of FCLK cycles the CPU spent sleeping.

• LSU, Load and Store Unit Counter: This counter counts the number of cycles spent in load and
store instructions after the first cycle. For example: If a load instruction takes 4 cycles, the LSU
counter will be incremented by 4. The slower this counter increases, the more instructions per
cycle are executed.

• FLD, Fold Counter: In certain situations, the Cortex-M core is able to spent zero clock cycles for
an instruction. Such instructions are called folded instructions. The FLD counter counts the
number of folded instructions.

TRACE32 PowerView supports enabling and analyzing the BenchMark Counters graphically.

Example:

The following example computes the LSU counter rate (in Events/Second) for different sorting algorithms.
The results are displayed graphically for the different counter rates over the time and correlated to the
different defined sections.

; Enable the BMC counters with command
ITM.ProfilingTrace ON

; Provide code clock for cycle counter, e.g. here 48MHz
BMC.CLOCK 48MHz

; Group the program into interesting sections using the GROUP command
GROUP.Create ...

; display the results graphically and track with the trace results
BMC.PROfileChhart.GROUP /ZoomTrack
CAnalyzer.Chart.GROUP /Track
Cortex-M Debugger | 32©1989-2024 Lauterbach

In this example, the quicksort algorithm produces the highest rate for the LSU counter. This means that the
bottleneck for this algorithm is the access to memory where the data is stored; the CPU spends more cycles
waiting for memory than in all other algorithms.
This is a good sign; it means that the code is very optimized, so that the CPU itself does not have to execute
many non-load/store instructions.

Cortex-M Debugger | 33©1989-2024 Lauterbach

Semihosting

Semihosting is a technique for an application program running on an ARM processor to communicate with
the host computer of the debugger. This way the application can use the I/O facilities of the host computer
like keyboard input, screen output, and file I/O. This is especially useful if the target platform does not yet
provide these I/O facilities or in order to output additional debug information in printf() style.

Normally semihosting is invoked by code within the C library functions of the ARM RealView compiler like
printf() and scanf(). The application can also invoke the operations used for keyboard input, screen output,
and file I/O directly. The operations are described in the RealView Compilation Tools Developer Guide from
ARM in the chapter “Semihosting Operations”.

A semihosting call from the application causes a BKPT exception in the semihosting library function. The
immediate BKPT parameter 0xAB is indicating a semihosting request. The type of operation is passed in
R0. R1 points to the other parameters. The debugger handles the request while the application is stopped,
provides the required communication with the host, and restarts the application.

This mode is enabled by TERM.METHOD ARMSWI and by opening a TERM.GATE window for the
semihosting screen output. The handling of the semihosting requests is only active when the TERM.GATE
window is existing.

TERM.HEAPINFO defines the system stack and heap location. The C library reads these memory
parameters by a SYS_HEAPINFO semihosting call and uses them for initialization.

An code example can be found in ~~/demo/arm/etc/semihosting_arm_emulation.
Cortex-M Debugger | 34©1989-2024 Lauterbach

The Cortex-M does not have a Debug Communication Channel (DCC) like other Cortex cores. Therefore
this mode can not be used. Alternatively, to avoid stopping the application, the BufferE method can be used.
Then the semihosting requests are processed via a buffer located in the system memory which can be
accessed by the debugger without stopping the core. There is an example in
~~/demo/arm/etc/semihosting_trace32_dcc which uses the TRACE32 proprietary semihosting functions.
And there is an example in ~~/demo/arm/etc/semihosting_arm_syscalls which allow to use the ARM
semihosting library functions with BufferE method.

Virtual Terminal

The command TERM opens a terminal window in the debugger which allows to communicate with the
program running on the Cortex-M. All data received are displayed in this window and all data inputs to this
window are sent to the program running on the Cortex-M.

The TERM.METHOD command selects which method is used for the communication.

The Cortex-M does not have a Debug Communication Channel (DCC) as other Cortex cores but even better
it’s system memory can be accessed by the debugger during run time. Therefore you can e.g. reserve a
single memory byte for input data and one for output data somewhere in the system memory. The following
command tells the debugger the addresses of the reserved bytes which shall be used for the
communication. You can use address values or symbol names as command parameter:

A data value of 0 in the byte buffer indicates an empty byte buffer. This is the way the handshake works. After
data is read a 0 is placed in the buffer to indicate the data is taken and a new byte can be sent.

The TRACE32 ~~/demo/arm/etc/virtual_terminal/memory_based directory contains an example of this
method.

Alternatively BufferE method could be used which works quite similar but with a bigger buffer to transfer
more than one byte at once.

Runtime Measurement

The command RunTime allows run time measurement based on polling the core run status by software.
Therefore the result will be about few milliseconds higher than the real value.

If the signal DBGACK on the JTAG connector is available, the measurement will automatically be based on
this hardware signal which delivers very exact results.

TERM.METHOD SingleE E:<byte_address_to_debugger> E:<byte_address_from_debugger>
Cortex-M Debugger | 35©1989-2024 Lauterbach

Trigger

A bidirectional trigger system allows the following two events:

• trigger an external system (e.g. logic analyzer) if the program execution is stopped.

• stop the program execution if an external trigger is asserted.

For more information refer to the TrBus command.

Micro Trace Buffer (MTB) for Cortex-M0+

Take-off and landing addresses of all branches are recorded to the MTB. The Data.dump screenshot shows
the trace row data, the Trace.List screenshot shows the instruction execution sequence decoded by
TRACE32.
Cortex-M Debugger | 36©1989-2024 Lauterbach

Cortex-M specific Onchip Commands

Onchip.Mode.RAMPRIV SRAM privilege access

Enables SRAM privilege access.

Onchip.Mode.SFRWPRIV Special function register write access

Enables privilege write access to the Special Function Register.

Onchip.Mode.TSTARTEN Enable TSTART signal

Enables the external control of the trace by the TSTART signal. If set to ON and the TSTART signal is set
HIGH, then the trace gets starts recording.

Onchip.Mode.TSTOPEN Enable TSTOP signal

Enables the external control of the trace by the TSTOP signal. If set to ON and the TSTOP signal is set
HIGH, then the trace stops recording.

Format: Onchip.Mode.RAMPRIV [ON | OFF]

Format: Onchip.Mode.SFRWPRIV [ON | OFF]

Format: Onchip.Mode.TSTARTEN [ON | OFF]

Format: Onchip.Mode.TSTOPEN [ON | OFF]
Cortex-M Debugger | 37©1989-2024 Lauterbach

Onchip.TBADDRESS Base address of the trace buffer

Sets up the base address of the trace buffer inside the internal SRAM. The part of the SRAM must not be
used by the target application as long as the trace is used.

Format: Onchip.TBADDRESS <address>
Cortex-M Debugger | 38©1989-2024 Lauterbach

Cortex-M specific SYStem Commands

SYStem.CLOCK Inform debugger about core clock

Informs the debugger about the core clock frequency. This information is used for analysis functions
where the core frequency needs to be known. This command is only available if the debugger is used
as front-end for virtual prototyping.

SYStem.CONFIG.state Display target configuration

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target
configuration settings. The configuration settings tell the debugger how to communicate with the chip on
the target board and how to access the on-chip debug and trace facilities in order to accomplish the
debugger’s operations.

Alternatively, you can modify the target configuration settings via the TRACE32 command line with the
SYStem.CONFIG commands. Note that the command line provides additional SYStem.CONFIG
commands for settings that are not included in the SYStem.CONFIG.state window.

Format: SYStem.CLOCK <frequency>

Format: SYStem.CONFIG.state [/<tab>]

<tab>: DebugPort | Jtag | MultiTap | AP | COmponents

<tab> Opens the SYStem.CONFIG.state window on the specified tab. For tab
descriptions, see below.

DebugPort
(default)

The DebugPort tab informs the debugger about the debug connector
type and the communication protocol it shall use.

For descriptions of the commands on the DebugPort tab, see
DebugPort.
Cortex-M Debugger | 39©1989-2024 Lauterbach

SYStem.CONFIG Configure debugger according to target topology

Jtag The Jtag tab informs the debugger about the position of the Test Access
Ports (TAP) in the JTAG chain which the debugger needs to talk to in
order to access the debug and trace facilities on the chip.

For descriptions of the commands on the Jtag tab, see Jtag.

MultiTap Informs the debugger about the existence and type of a System/Chip
Level Test Access Port. The debugger might need to control it in order to
reconfigure the JTAG chain or to control power, clock, reset, and security
of different chip components.

For descriptions of the commands on the MultiTap tab, see MultiTap.

AP This tab informs the debugger about an Arm CoreSight Access Port (AP)
and about how to control the AP to access chip-internal memory busses
(AHB, APB, AXI) or chip-internal JTAG interfaces.

For a descriptions of a corresponding commands, refer to AP.

COmponents The COmponents tab informs the debugger (a) about the existence and
interconnection of on-chip CoreSight debug and trace modules and (b)
informs the debugger on which memory bus and at which base address
the debugger can find the control registers of the modules.

For descriptions of the commands on the COmponents tab, see
COmponents.

Format: SYStem.CONFIG <parameter>
SYStem.MultiCore <parameter> (deprecated)

<parameter>:
(DebugPort)

CJTAGFLAGS <flags>
CJTAGTCA <value>
CONNECTOR [MIPI34 | MIPI20T]
CORE <core> <chip>
CoreNumber <number>
DEBUGPORT [DebugCable0 | DebugCableA | DebugCableB]
DEBUGPORTTYPE [JTAG | SWD | CJTAG]
NIDNTTRSTTORST [ON | OFF]
NIDNTPSRISINGEDGE [ON | OFF]
NIDNTRSTPOLARITY [High | Low]
PortSHaRing [ON | OFF | Auto]
Cortex-M Debugger | 40©1989-2024 Lauterbach

<parameter>:
(DebugPort cont.)

Slave [ON | OFF]
SWDP [ON | OFF]
SWDPIDLEHIGH [ON | OFF]
SWDPTargetSel <value>
DAP2SWDPTargetSel <value>
TriState [ON | OFF]

<parameter>:
(JTAG)

CHIPDRLENGTH <bits>
CHIPDRPATTERN [Standard | Alternate <pattern>]
CHIPDRPOST <bits>
CHIPDRPRE <bits>
CHIPIRLENGTH <bits>
CHIPIRPATTERN [Standard | Alternate <pattern>]
CHIPIRPOST<bits>
CHIPIRPRE <bits>

DAP2DRPOST <bits>
DAP2DRPRE <bits>
DAP2IRPOST <bits>
DAP2IRPRE <bits>
DAPDRPOST <bits>
DAPDRPRE <bits>
DAPIRPOST <bits>
DAPIRPRE <bits>

DRPOST <bits>
DRPRE <bits>

ETBDRPOST <bits>
ETBDRPRE <bits>
ETBIRPOST <bits>
ETBIRPRE <bits>

IRPOST<bits>
IRPRE <bits>

NEXTDRPOST <bits>
NEXTDRPRE <bits>
NEXTIRPOST<bits>
NEXTIRPRE <bits>

RTPDRPOST <bits>
RTPDRPRE <bits>
RTPIRPOST <bits>
RTPIRPRE <bits>

Slave [ON | OFF]
TAPState <state>
TCKLevel <level>
TriState [ON | OFF]
Cortex-M Debugger | 41©1989-2024 Lauterbach

<parameter>:
(MultiTap)

CFGCONNECT <code>
DAP2TAP <tap>
DAPTAP <tap>
DEBUGTAP <tap>
ETBTAP <tap>
MULTITAP [NONE | IcepickA | IcepickB | IcepickC | IcepickD | IcepickBB |
 IcepickBC | IcepickCC | IcepickDD | STCLTAP1 | STCLTAP2 |
 STCLTAP3 |
 MSMTAP <irlength> <irvalue> <drlength> <drvalue>
 JtagSEQuence <sub_cmd>]
NJCR <tap>
RTPTAP <tap>
SLAVETAP <tap>

<parameter>:
(AccessPorts
)

AHBAPn.Base <address>
AHBAPn.HPROT [<value> | <name>]
AHBAPn.Port <port>
AHBAPn.RESet
AHBAPn.view
AHBAPn.XCPTRI <tri>
AHBAPn.XtorName <name>

APBAPn.Base <address>
APBAPn.HPROT [<value> | <name>]
APBAPn.Port <port>
APBAPn.RESet
APBAPn.view
APBAPn.XCPTRI <tri>
APBAPn.XtorName <name>

AXIAPn.ACEEnable [ON | OFF]
AXIAPn.Base <address>
AXIAPn.CacheFlags <value>
AXIAPn.HPROT [<value> | <name>]
AXIAPn.Port <port>
AXIAPn.RESet
AXIAPn.view
AXIAPn.XCPTRI <tri>
AXIAPn.XtorName <name>

DAP2JTAGPORT <port>
DAPNAME <name>
DAP2NAME <name>

DEBUGAPn.Port <port>
DEBUGAPn.RESet
DEBUGAPn.view
DEBUGAPn.XtorName <name>
Cortex-M Debugger | 42©1989-2024 Lauterbach

<parameter>:
(AccessPorts
cont.)

JTAGAPn.Base <address>
JTAGAPn.Port <port>
JTAGAPn.CorePort <port>
JTAGAPn.RESet
JTAGAPn.view
JTAGAPn.XtorName <name>

MEMORYAPn.HPROT [<value> | <name>]
MEMORYAPn.Port <port>
MEMORYAPn.RESet
MEMORYAPn.view
MEMORYAPn.XtorName <name>
Cortex-M Debugger | 43©1989-2024 Lauterbach

<parameter>:
(COmponents)

AMU.Base <address>
AMU.RESet
AMU.view

AHBBRIDGE.Base <address>
AHBBRIDGE.RESet
AHBBRIDGE.view

BMC.Base <address>
BMC.RESet
BMC.view

BPU.Base <address>
BPU.RESet
BPU.view

CMI.Base <address>
CMI.RESet
CMI.TraceID <id>

COREDEBUG.Base <address>
COREDEBUG.RESet
COREDEBUG.view

CTI.Base <address>
CTI.Config <interconnection>
CTI.RESet
CTI.view

DRM.Base <address>
DRM.RESet
DRM.view

DTM.RESet
DTM.Type [None | Generic]
DTM.view
Cortex-M Debugger | 44©1989-2024 Lauterbach

<parameter>:
(COmponents
cont.)

DWT.Base <address>
DWT.RESet
DWT.view

EPM.Base <address>
EPM.RESet
EPM.view

ETB2AXI.Base <address>
ETB2AXI.RESet
ETB2AXI.view

ETB.ATBSource <source>
ETB.Base <address>
ETB.Name <string>
ETB.NoFlush [ON | OFF]
ETB.RESet
ETB.Size <size>
ETB.STackMode [NotAvailbale | TRGETM | FULLTIDRM | NOTSET | FULL

STOP | FULLCTI]
ETB.view

ETF.ATBSource <source>
ETF.Base <address>
ETF.Name <string>
ETF.NoFlush [ON | OFF]
ETF.RESet
ETF.Size <size>
ETF.STackMode [NotAvailbale | TRGETM | FULLTIDRM | NOTSET | FULL

STOP | FULLCTI]
ETF.view

ETM.Base <address>
ETM.RESet
ETM.view

ETR.ATBSource <source>
ETR.CATUBase <address>
ETR.Base <address>
ETR.Name <string>
ETR.NoFlush [ON | OFF]
ETR.RESet
ETR.Size <size>
ETR.STackMode [NotAvailbale | TRGETM | FULLTIDRM | NOTSET | FULL

STOP | FULLCTI]
ETR.view
Cortex-M Debugger | 45©1989-2024 Lauterbach

<parameter>:
(COmponents
cont.)

ETS.ATBSource <source>
ETS.Base <address>
ETS.Name <string>
ETS.NoFlush [ON | OFF]
ETS.RESet
ETS.Size <size>
ETS.STackMode [NotAvailbale | TRGETM | FULLTIDRM | NOTSET | FULL

STOP | FULLCTI]
ETS.view

FPB.Base <address>
FPB.RESet
FPB.view

FUNNEL.ATBSource <sourcelist>
FUNNEL.Base <address>
FUNNEL.Name <string>
FUNNEL.PROGrammable [ON | OFF]
FUNNEL.RESet
FUNNEL.view

HSM.Base <address>
HSM.RESet
HSM.view

HTM.Base <address>
HTM.RESet
HTM.Type [CoreSight | WPT]
HTM.view

ICE.Base <address>
ICE.RESet
ICE.view

ITM.Base <address>
ITM.Name <string>
ITM.RESet
ITM.view

L2CACHE.Base <address>
L2CACHE.RESet
L2CACHE.Type [NONE | Generic | L210 | L220 | L2C-310 | AURORA |
 AURORA2]
L2CACHE.view

MPAM.Base <address>
MPAM.RESet
MPAM.view
Cortex-M Debugger | 46©1989-2024 Lauterbach

<parameter>:
(COmponents
cont.)

MTB.Base <address>
MTB.RESet
MTB.Size <size>
MTB.SRAMBase <address>
MTB.view

MTBDWT.Base <address>
MTBDWT.RESet
MTBDWT.view

OCP.Base <address>
OCP.RESet
OCP.TraceID <id>
OCP.Type <type>

PMI.Base <address>
PMI.RESet
PMI.TraceID <id>

RAS.Base <address>
RAS.RESet
RAS.view

REP.ATBSource <source>
REP.Base <address>
REB.Name <string>
REP.RESet
REP.view

RTP.Base <address>
RTP.PerBase <address>
RTP.RamBase <address>
RTP.RESet
RTP.view

SC.Base <address>
SC.RESet
SC.TraceID <id>

SDC.Base <address>
SDC.RESet

STM.Base <address>
STM.Mode [NONE | XTIv2 | SDTI | STP | STP64 | STPv2]
STM.RESet
STM.Type [None | GenericARM | SDTI | TI]

TBR.ATBSource <source>
TBR.Base <address>
TBR.Name <string>
TBR.NoFlush [ON | OFF]
TBR.RESet
Cortex-M Debugger | 47©1989-2024 Lauterbach

<parameter>:
(Components
cont.)

TBR.Size <size>
TBR.STackMode [NotAvailbale | TRGETM | FULLTIDRM | NOTSET | FULL

STOP | FULLCTI]
TBR.view

TISCTM.Base <address>
TISCTM.RESet
TISCTM.view

TPIU.ATBSource <source>
TPIU.Base <address>
TPIU.Name <string>
TPIU.RESet
TPIU.Type [CoreSight | Generic]
TPIU.view
Cortex-M Debugger | 48©1989-2024 Lauterbach

<parameter>:
(Deprecated)

AHBACCESSPORT <port>
APBACCESSPORT <port>
AXIACCESSPORT <port>
BMCBASE <address>
BYPASS <seq>
COREBASE <address>
COREJTAGPORT <port>
CTIBASE <address>
CTICONFIG [NONE | ARMV1 | ARMPostInit | OMAP3 | TMS570 | CortexV1 |
 QV1]
DAP2AHBACCESSPORT <port>
DAP2APBACCESSPORT <port>
DAP2AXIACCESSPORT <port>
DAP2COREJTAGPORT <port>
DAP2DEBUGACCESSPORT <port>
DEBUGACCESSPORT <port>
DEBUGBASE <address>
DTMCONFIG [ON | OFF]
DTMETBFUNNELPORT <port>
DTMFUNNEL2PORT <port>
DTMFUNNELPORT <port>
DTMTPIUFUNNELPORT <port>
DWTBASE <address>
ETB2AXIBASE <address>
ETBBASE <address>
ETBFUNNELBASE <address>
ETFBASE <address>
ETMBASE <address>
ETMETBFUNNELPORT <port>
ETMFUNNEL2PORT <port>
ETMFUNNELPORT <port>
ETMTPIUFUNNELPORT <port>
FILLDRZERO [ON | OFF]
FUNNEL2BASE <address>
FUNNELBASE <address>
HSMBASE <address>
HTMBASE <address>
HTMETBFUNNELPORT <port>
HTMFUNNEL2PORT <port>
HTMFUNNELPORT <port>
HTMTPIUFUNNELPORT <port>
ITMBASE <address>
ITMETBFUNNELPORT <port>
Cortex-M Debugger | 49©1989-2024 Lauterbach

The SYStem.CONFIG commands inform the debugger about the available on-chip debug and trace
components and how to access them.

In many cases, selecting the chip under debug with the SYStem.CPU command is sufficient. TRACE32
recognizes the available on-chip debug and trace components and can configure them accordingly.

If the components require configuration using the SYStem.CONFIG commands, you must first set the chip
under debug using the SYStem.CPU command. Then, configure the components with the
SYStem.CONFIG commands. Finally, start the debug session e.g. with the SYStem.Up command.

Syntax Remarks

The commands are not case-sensitive. Capital letters indicate how the command can be abbreviated.
Example: “SYStem.CONFIG.DWT.Base 0x1000” -> “SYS.CONFIG.DWT.B 0x1000”

The dots after “SYStem.CONFIG” can alternatively be replaced with a space.
Example: “SYStem.CONFIG.DWT.Base 0x1000” or “SYStem.CONFIG DWT Base 0x1000”.

More Information on the Deprecated Commands

General information on deprecated commands and command parameters can be found here.

The table Mapping Deprecated to New Commands provides a mapping of the deprecated command
parameters to the new command parameters.

<parameter>:
(Deprecated cont.)

ITMFUNNEL2PORT <port>
ITMFUNNELPORT <port>
ITMTPIUFUNNELPORT <port>
JTAGACCESSPORT <port>
MEMORYACCESSPORT <port>
PERBASE <address>
RAMBASE <address>
RTPBASE <address>
SDTIBASE <address>
STMBASE <address>
STMETBFUNNELPORT<port>
STMFUNNEL2PORT<port>
STMFUNNELPORT<port>
STMTPIUFUNNELPORT<port>
TIDRMBASE <address>
TIEPMBASE <address>
TIICEBASE <address>
TIOCPBASE <address>
TIOCPTYPE <type>
TIPMIBASE <address>
TISCBASE <address>
TISTMBASE <address>
TPIUBASE <address>
TPIUFUNNELBASE <address>
view
Cortex-M Debugger | 50©1989-2024 Lauterbach

A detailed description of the deprecated command parameters can be found in “<parameters> which are
“Deprecated””.
Cortex-M Debugger | 51©1989-2024 Lauterbach

<parameters> describing the “DebugPort”

CJTAGFLAGS <flags> Activates bug fixes for “cJTAG” implementations.
Bit 0: Disable scanning of cJTAG ID.
Bit 1: Target has no “keeper”.
Bit 2: Inverted meaning of SREDGE register.
Bit 3: Old command opcodes.
Bit 4: Unlock cJTAG via APFC register.

Default: 0.

CJTAGTCA <value> Selects the TCA (TAP Controller Address) to address a device in a
cJTAG Star-2 configuration. The Star-2 configuration requires a
unique TCA for each device on the debug port.

CONNECTOR
[MIPI34 | MIPI20T]

Specifies the connector “MIPI34” or “MIPI20T” on the target. This
is mainly needed in order to notify the trace pin location.

Default: MIPI34 if CombiProbe is used, MIPI20T if µTrace
(MicroTrace) is used.

CORE <core> <chip> The command helps to identify debug and trace resources which
are commonly used by different cores. The command might be
required in a multicore environment if you use multiple debugger
instances (multiple TRACE32 PowerView GUIs) to simultaneously
debug different cores on the same target system.

Because of the default setting of this command

debugger#1: <core>=1 <chip>=1
debugger#2: <core>=1 <chip>=2
...

each debugger instance assumes that all notified debug and trace
resources can exclusively be used.

But some target systems have shared resources for different
cores, for example a common trace port. The default setting
causes that each debugger instance controls the same trace port.
Sometimes it does not hurt if such a module is controlled twice.
But sometimes it is a must to tell the debugger that these cores
share resources on the same <chip>. Whereby the “chip” does not
need to be identical with the device on your target board:

debugger#1: <core>=1 <chip>=1
debugger#2: <core>=2 <chip>=1
Cortex-M Debugger | 52©1989-2024 Lauterbach

CORE <core> <chip>

(cont.)

For cores on the same <chip>, the debugger assumes that the
cores share the same resource if the control registers of the
resource have the same address.

Default:
<core> depends on CPU selection, usually 1.
<chip> If you start multiple debugger instances with
TargetSystem.NewInstance, you get ascending values (1, 2, 3,...).

CoreNumber <number> Number of cores to be considered in an SMP (symmetric
multiprocessing) debug session. There are core types like
ARM11MPCore, CortexA5MPCore, CortexA9MPCore and
Scorpion which can be used as a single core processor or as a
scalable multicore processor of the same type. If you intend to
debug more than one such core in an SMP debug session you
need to specify the number of cores you intend to debug.

Default: 1.

DEBUGPORT
[DebugCable0 | DebugCa-
bleA | DebugCableB]

It specifies which probe cable shall be used e.g. “DebugCableA” or
“DebugCableB”. At the moment only the CombiProbe allows to
connect more than one probe cable.

Default: depends on detection.

DEBUGPORTTYPE
[JTAG | SWD | CJTAG]

It specifies the used debug port type “JTAG”, “SWD”, “CJTAG”,
“CJTAG-SWD”. It assumes the selected type is supported by the
target.

Default: JTAG.

What is NIDnT?

NIDnT is an acronym for “Narrow Interface for Debug and Test”.
NIDnT is a standard from the MIPI Alliance, which defines how to
reuse the pins of an existing interface (like for example a microSD
card interface) as a debug and test interface.

To support the NIDnT standard in different implementations,
TRACE32 has several special options:
Cortex-M Debugger | 53©1989-2024 Lauterbach

NIDNTPSRISINGEDGE
[ON | OFF]

Send data on rising edge for NIDnT PS switching.

NIDnT specifies how to switch, for example, the microSD card
interface to a debug interface by sending in a special bit sequence
via two pins of the microSD card.

TRACE32 will send the bits of the sequence incident to the falling
edge of the clock, because TRACE32 expects that the target
samples the bits on the rising edge of the clock.

Some targets will sample the bits on the falling edge of the clock
instead. To support such targets, you can configure TRACE32 to
send bits on the rising edge of the clock by using
SYStem.CONFIG NIDNTPSRISINGEDGE ON

NOTE: Only enable this option right before you send the NIDnT
switching bit sequence.
Make sure to DISABLE this option, before you try to connect to the
target system with for example SYStem.Up.

NIDNTRSTPOLARITY
[High | Low]

Usually TRACE32 requires that the system reset line of a target
system is low active and has a pull-up on the target system.

When connecting via NIDnT to a target system, the reset line
might be a high-active signal.
To configure TRACE32 to use a high-active reset signal, use
SYStem.CONFIG NIDNTRSTPOLARITY High

This option must be used together with
SYStem.CONFIG NIDNTTRSTTORST ON
because you also have to use the TRST signal of an Arm debug
cable as reset signal for NIDnT in this case.

NIDNTTRSTTORST
[ON | OFF]

Usually TRACE32 requires that the system reset line of a target
system is low active and has a pull-up on the target system.
This is how the system reset line is usually implemented on regular
Arm-based targets.

When connecting via NIDnT (e.g. a microSD card slot) to the
target system, the reset line might not include a pull-up on the
target system.
To circumvent problems, TRACE32 allows to drive the target reset
line via the TRST signal of an Arm debug cable.

Enable this option if you want to use the TRST signal of an Arm
debug cable as reset signal for a NIDnT.
Cortex-M Debugger | 54©1989-2024 Lauterbach

PortSHaRing [ON | OFF |
Auto]

Configure if the debug port is shared with another tool, e.g. an
ETAS ETK.

OFF: Default. Communicate with the target without sending
requests.

ON: Request for access to the debug port and wait until the access
is granted before communicating with the target.

Auto: Automatically detect a connected tool on next
SYStem.Mode Up, SYStem.Mode Attach or SYStem.Mode Go. If
a tool is detected switch to mode ON else switch to mode OFF.

The current setting can be obtained by the PORTSHARING()
function, immediate detection can be performed using
SYStem.DETECT PortSHaRing.

Slave [ON | OFF] If several debugger instances share the same debug port, all
except one must have this option active.

JTAG: Only one debugger - the “master” - is allowed to control the
signals nTRST and nSRST (nRESET). The other debuggers need
to have the setting Slave ON.

Default: OFF for the first debugger instance.
Default: ON for all further debugger instances you open with
TargetSystem.NewInstance.

SWDP [ON | OFF] With this command you can change from the normal JTAG
interface to the serial wire debug mode. SWDP (Serial Wire Debug
Port) uses just two signals instead of five. It is required that the
target and the debugger hard- and software supports this
interface.

Default: OFF.

SWDPIdleHigh
[ON | OFF]

Keep SWDIO line high when idle. Only for Serialwire Debug mode.
Usually the debugger will pull the SWDIO data line low, when no
operation is in progress, so while the clock on the SWCLK line is
stopped (kept low).

You can configure the debugger to pull the SWDIO data line
high, when no operation is in progress by using
SYStem.CONFIG SWDPIdleHigh ON

Default: OFF.

SWDPTargetSel <value> Device address in case of a multidrop serial wire debug port.

Default: none set (any address accepted).
Cortex-M Debugger | 55©1989-2024 Lauterbach

DAP2SWDPTargetSel
<value>

Device address of the second CoreSight DAP (DAP2) in case of a
multidrop serial wire debug port (SWD).

Default: none set (any address accepted).

TriState [ON | OFF] TriState has to be used if several debug cables are connected to a
common JTAG port. TAPState and TCKLevel define the TAP state
and TCK level which is selected when the debugger switches to
tristate mode.
Please note:
• nTRST must have a pull-up resistor on the target.
• TCK can have a pull-up or pull-down resistor.
• Other trigger inputs need to be kept in inactive state.

Default: OFF.
Cortex-M Debugger | 56©1989-2024 Lauterbach

<parameters> describing the “JTAG” scan chain and signal behavior

With the JTAG interface you can access a Test Access Port controller (TAP) which has implemented a state
machine to provide a mechanism to read and write data to an Instruction Register (IR) and a Data Register
(DR) in the TAP. The JTAG interface will be controlled by 5 signals:

• nTRST (reset)

• TCK (clock)

• TMS (state machine control)

• TDI (data input)

• TDO (data output)

Multiple TAPs can be controlled by one JTAG interface by daisy-chaining the TAPs (serial connection). If you
want to talk to one TAP in the chain, you need to send a BYPASS pattern (all ones) to all other TAPs. For this
case the debugger needs to know the position of the TAP it wants to talk to. The TAP position can be defined
with the first four commands in the table below.

… DRPOST <bits> Defines the TAP position in a JTAG scan chain. Number of TAPs in the
JTAG chain between the TDI signal and the TAP you are describing. In
BYPASS mode, each TAP contributes one data register bit. See possible
TAP types and example below.

Default: 0.

… DRPRE <bits> Defines the TAP position in a JTAG scan chain. Number of TAPs in the
JTAG chain between the TAP you are describing and the TDO signal. In
BYPASS mode, each TAP contributes one data register bit. See possible
TAP types and example below.

Default: 0.

… IRPOST <bits> Defines the TAP position in a JTAG scan chain. Number of Instruction
Register (IR) bits of all TAPs in the JTAG chain between TDI signal and
the TAP you are describing. See possible TAP types and example below.

Default: 0.

… IRPRE <bits> Defines the TAP position in a JTAG scan chain. Number of Instruction
Register (IR) bits of all TAPs in the JTAG chain between the TAP you are
describing and the TDO signal. See possible TAP types and example
below.

Default: 0.

NOTE: If you are not sure about your settings concerning IRPRE, IRPOST, DRPRE,
and DRPOST, you can try to detect the settings automatically with the
SYStem.DETECT.DaisyChain command.
Cortex-M Debugger | 57©1989-2024 Lauterbach

NOTE: There are rarely implemented DAP (Debug Access Port) TAPs, having an 8-bit
wide instruction register (IR) instead of 4-bit. They can be identified with the
SYStem.DETECT.DaisyChain command. Their IDCODE is 0x?ba03477 or
0x?ba07477. They require you to set (or add) SYStem.CONFIG DAPIRPOST 4.

CHIPDRLENGTH
<bits>

Number of Data Register (DR) bits which needs to get a certain BYPASS
pattern.

CHIPDRPATTERN
[Standard | Alter-
nate <pattern>]

Data Register (DR) pattern which shall be used for BYPASS instead of
the standard (1...1) pattern.

CHIPIRLENGTH
<bits>

Number of Instruction Register (IR) bits which needs to get a certain
BYPASS pattern.

CHIPIRPATTERN
[Standard | Alter-
nate <pattern>]

Instruction Register (IR) pattern which shall be used for BYPASS instead
of the standard pattern.

Slave [ON | OFF] If several debuggers share the same debug port, all except one must
have this option active.

JTAG: Only one debugger - the “master” - is allowed to control the signals
nTRST and nSRST (nRESET). The other debuggers need to have the
setting Slave OFF.

Default: OFF for the first debugger instance.
Default: ON for all further debugger instances you open with
TargetSystem.NewInstance.
Cortex-M Debugger | 58©1989-2024 Lauterbach

TAP types:

Core TAP providing access to the debug register of the core you intend to debug.
-> DRPOST, DRPRE, IRPOST, IRPRE.

DAP (Debug Access Port) TAP providing access to the debug register of the core you intend to debug. It
might be needed additionally to a Core TAP if the DAP is only used to access memory and not to access the
core debug register.
-> DAPDRPOST, DAPDRPRE, DAPIRPOST, DAPIRPRE.

DAP2 (Debug Access Port) TAP in case you need to access a second DAP to reach other memory
locations.
-> DAP2DRPOST, DAP2DRPRE, DAP2IRPOST, DAP2IRPRE.

TAPState <state> This is the state of the TAP controller when the debugger switches to
tristate mode. All states of the JTAG TAP controller are selectable.

0 Exit2-DR
1 Exit1-DR
2 Shift-DR
3 Pause-DR
4 Select-IR-Scan
5 Update-DR
6 Capture-DR
7 Select-DR-Scan
8 Exit2-IR
9 Exit1-IR
10 Shift-IR
11 Pause-IR
12 Run-Test/Idle
13 Update-IR
14 Capture-IR
15 Test-Logic-Reset

Default: 7 = Select-DR-Scan.

TCKLevel <level> Level of TCK signal when all debuggers are tristated. Normally defined
by a pull-up or pull-down resistor on the target.

Default: 0.

TriState [ON | OFF] TriState has to be used if several debug cables are connected to a common
JTAG port. TAPState and TCKLevel define the TAP state and TCK level
which is selected when the debugger switches to tristate mode.
Please note:
• nTRST must have a pull-up resistor on the target.
• TCK can have a pull-up or pull-down resistor.
• Other trigger inputs need to be kept in inactive state.

Default: OFF.
Cortex-M Debugger | 59©1989-2024 Lauterbach

ETB (Embedded Trace Buffer) TAP if the ETB has its own TAP to access its control register (typical with
Arm11 cores).
-> ETBDRPOST, ETBDRPRE, ETBIRPOST, ETBIRPRE.

NEXT: If a memory access changes the JTAG chain and the core TAP position then you can specify the new
values with the NEXT... parameter. After the access for example the parameter NEXTIRPRE will replace the
IRPRE value and NEXTIRPRE becomes 0. Available only on ARM11 debugger.
-> NEXTDRPOST, NEXTDRPRE, NEXTIRPOST, NEXTIRPRE.

RTP (RAM Trace Port) TAP if the RTP has its own TAP to access its control register.
-> RTPDRPOST, RTPDRPRE, RTPIRPOST, RTPIRPRE.

CHIP: Definition of a TAP or TAP sequence in a scan chain that needs a different Instruction Register
(IR) and Data Register (DR) pattern than the default BYPASS (1...1) pattern.
-> CHIPDRPOST, CHIPDRPRE, CHIPIRPOST, CHIPIRPRE.

Example:

SYStem.CONFIG IRPRE 15.
SYStem.CONFIG DRPRE 3.
SYStem.CONFIG DAPIRPOST 16.
SYStem.CONFIG DAPDRPOST 3.
SYStem.CONFIG ETBIRPOST 5.
SYStem.CONFIG ETBDRPOST 1.
SYStem.CONFIG ETBIRPRE 11.
SYStem.CONFIG ETBDRPRE 2.

ARM11 TAP

IR: 5bit

ETB TAP

IR: 4bit

DAP TAP

IR: 4bit

TDI TDO
OfNoInterest TAP

IR: 7bit
Cortex-M Debugger | 60©1989-2024 Lauterbach

<parameters> describing a system level TAP “MultiTap”

A “Multitap” is a system level or chip level test access port (TAP) in a JTAG scan chain. It can for example
provide functions to re-configure the JTAG chain or view and control power, clock, reset and security of
different chip components.

At the moment the debugger supports three types and its different versions:
Icepickx, STCLTAPx, MSMTAP:

Example:

CFGCONNECT <code> The <code> is a hexadecimal number which defines the JTAG
scan chain configuration. You need the chip documentation to
figure out the suitable code. In most cases the chip specific
default value can be used for the debug session.

Used if MULTITAP=STCLTAPx.

DAPTAP <tap> Specifies the TAP number which needs to be activated to get the
DAP TAP in the JTAG chain.

Used if MULTITAP=Icepickx.

DAP2TAP <tap> Specifies the TAP number which needs to be activated to get a
2nd DAP TAP in the JTAG chain.

Used if MULTITAP=Icepickx.

 TDO

 TMS

 TCK

 nTRST

Arm11
TAP

DAP
TAP

ETB
TAP

MULTITAP IcepickC
DEBUGTAP
DAPTAP
ETBTAB

Multitap
“IcepickC”

JTAG

1
4
5

 TDI
Cortex-M Debugger | 61©1989-2024 Lauterbach

DEBUGTAP <tap> Specifies the TAP number which needs to be activated to get the
core TAP in the JTAG chain. E.g. ARM11 TAP if you intend to
debug an ARM11.

Used if MULTITAP=Icepickx.

ETBTAP <tap> Specifies the TAP number which needs to be activated to get the
ETB TAP in the JTAG chain.

Used if MULTITAP=Icepickx. ETB = Embedded Trace Buffer.

MULTITAP
[NONE | IcepickA | IcepickB
| IcepickC | IcepickD |
IcepickM |
IcepickBB | IcepickBC |
IcepickCC | IcepickDD |
STCLTAP1 | STCLTAP2 |
STCLTAP3 | MSMTAP
<irlength> <irvalue>
<drlength> <drvalue>
JtagSEQuence <sub_cmd>]

Selects the type and version of the MULTITAP.

In case of MSMTAP you need to add parameters which specify
which IR pattern and DR pattern needed to be shifted by the
debugger to initialize the MSMTAP. Please note some of these
parameters need a decimal input (dot at the end).

IcepickXY means that there is an Icepick version “X” which
includes a subsystem with an Icepick of version “Y”.

For a description of the JtagSEQuence subcommands, see
SYStem.CONFIG.MULTITAP JtagSEQuence.

NJCR <tap> Number of a Non-JTAG Control Register (NJCR) which shall be
used by the debugger.

Used if MULTITAP=Icepickx.

RTPTAP <tap> Specifies the TAP number which needs to be activated to get the
RTP TAP in the JTAG chain.

Used if MULTITAP=Icepickx. RTP = RAM Trace Port.

SLAVETAP <tap> Specifies the TAP number to get the Icepick of the sub-system in
the JTAG scan chain.

Used if MULTITAP=IcepickXY (two Icepicks).
Cortex-M Debugger | 62©1989-2024 Lauterbach

<parameters> configuring a CoreSight Debug Access Port “AP”

An Access Port (AP) is a CoreSight module from Arm which provides access via its debug link (JTAG,
cJTAG, SWD, USB, UDP/TCP-IP, GTL, PCIe...) to:

1. Different memory buses (AHB, APB, AXI). This is especially important if the on-chip debug
register needs to be accessed this way. You can access the memory buses by using certain
access classes with the debugger commands: “AHB:”, “APB:”, “AXI:”, “DP:”, “E:”. The interface to
these buses is called Memory Access Port (MEM-AP).

2. Other, chip-internal JTAG interfaces. This is especially important if the core you intend to debug
is connected to such an internal JTAG interface. The module controlling these JTAG interfaces is
called JTAG Access Port (JTAG-AP). Each JTAG-AP can control up to 8 internal JTAG interfaces.
A port number between 0 and 7 denotes the JTAG interfaces to be addressed.

3. A transactor name for virtual connections to AMBA bus level transactors can be configured by
the property SYStem.CONFIG.*APn.XtorName <name>. A JTAG or SWD transactor must be
configured for virtual connections to use the property “Port” or “Base” (with “DP:” access) in case
XtorName remains empty.

Example 1: SoC-400

SoC-400

Memory
Access Port
(MEM-AP)

Debug
Port
(DP)

Memory
Access Port
(MEM-AP)

JTAG
Access Port
(JTAG-AP)

CoreSight
Component

ROM table

ROM table

CoreSight
Component

DAP
Cortex-M Debugger | 63©1989-2024 Lauterbach

Example 2: SoC-600

SoC-600

Debug
link(s)

Memory System 3

ROM table

ROM table

CoreSight
Component

CoreSight
Component

Memory System 2

ROM table

CoreSight
Component

CoreSight
ComponentMEM-AP

Memory System 1

ROM table

CoreSight
Component

MEM-AP

MEM-AP

D
P (32/64-bit)

32/64-bit

32/64-bit

(expected)

(possible)
Cortex-M Debugger | 64©1989-2024 Lauterbach

Configuration examples for memory access ports and a CoreSight component

System
Memory

TRACE32
SYStem.CONFIG AHBAP1.Port 0.
SYStem.CONFIG APBAP1.Port 1.
SYStem.CONFIG <module>.Base APB:0x2000

JTAG or
cJTAG or

SWD

Arm

0

1

A
H

B

A
P

B

0x2000

Memory
Access Port
(MEM-AP)

Memory
Access Port
(MEM-AP)

-400

TRACE32
SYStem.CONFIG AXIAP1 .Base DP:0x1000
SYStem.CONFIG APBAP1.Base DP:0x3000
SYStem.CONFIG APBAP2.Base APB1:0xA000
SYStem.CONFIG <module>.Base APB2:0x8000

JTAG or
cJTAG or

SWD

D
P

A
P

B
1

Memory
Access

Port
(MEM-AP)

0x3000

0xA000

Memory
Access

Port
(MEM-AP)

A
P

B
2 0x8000

-600

Memory
Access

Port
(MEM-AP)

0x1000 A
X

I

Cortex-M Debugger | 65©1989-2024 Lauterbach

The below offered selection options are all non-bufferable. Alternatively you can enter a <value>, where
value[5:4] determines the Domain bits and value[3:0] the Cache bits.

AHBAPn.HPROT [<value> |
<name>]
SYStem.Option.AHBH-
PROT [<value> | <name>]
(deprecated)

Default: 0.
Selects the value used for the HPROT bits in the Control Status
Word (CSW) of a CoreSight AHB Access Port, when using the AHB:
memory class.

APBAPn.HPROT [<value> |
<name>]

Default: 0.
This option selects the value used for the HPROT bits in the Control
Status Word (CSW) of a CoreSight APB Access Port, when using
the APB: memory class.
The secure access bit HPROT[1] is not controlled by this option,
but via the access class prefixes “Z” and “N” as well as “L” and
“O” if the Access Port supports Realm Management Extension.

AXIAPn.HPROT [<value> |
<name>]
SYStem.Option.AXIHPROT
[<value> | <name>]
(deprecated)

Default: 0.
This option selects the value used for the HPROT bits in the Control
Status Word (CSW) of a CoreSight AXI Access Port, when using
the AXI: memory class.
The secure access bit HPROT[1] is not controlled by this option,
but via the access class prefixes “Z” and “N” as well as “L” and
“O” if the Access Port supports Realm Management Extension.

MEMORYAPn.HPROT
[<value> | <name>]
SYStem.Option.MEMO-
RYHPROT [<value> |
<name>] (deprecated)

Default: 0.
This option selects the value used for the HPROT bits in the Control
Status Word (CSW) of a CoreSight Memory Access Port, when
using the E: memory class.

AXIAPn.ACEEnable [ON |
OFF]
SYStem.Option.AXIACEEn-
able [ON | OFF] (deprecated)

Default: OFF.
Enables ACE transactions on the AXI-AP, including barriers. This
does only work if the debug logic of the target CPU implements
coherent accesses. Otherwise this option will be without effect.

AXIAPn.CacheFlags
<value>
SYStem.Option.AXI-
CACHEFLAGS <value>
(deprecated)

Default: DeviceSYStem (=0x30: Domain=0x3, Cache=0x0).
This option configures the value used for the Cache and Domain
bits in the Control Status Word (CSW[27:24]->Cache, CSW[14:13]-
>Domain) of an Access Port, when using the AXI: memory class.
Cortex-M Debugger | 66©1989-2024 Lauterbach

<name> Description

DeviceSYStem =0x30: Domain=0x3, Cache=0x0

NonCacheableSYStem =0x32: Domain=0x3, Cache=0x2

ReadAllocateNonShareable =0x06: Domain=0x0, Cache=0x6

ReadAllocateInnerShareable =0x16: Domain=0x1, Cache=0x6

ReadAllocateOuterShareable =0x26: Domain=0x2, Cache=0x6

WriteAllocateNonShareable =0x0A: Domain=0x0, Cache=0xA

WriteAllocateInnerShareable =0x1A: Domain=0x1, Cache=0xA

WriteAllocateOuterShareable =0x2A: Domain=0x2, Cache=0xA

ReadWriteAllocateNonShareable =0x0E: Domain=0x0, Cache=0xE

ReadWriteAllocateInnerShareable =0x1E: Domain=0x1, Cache=0xE

ReadWriteAllocateOuterShareable =0x2E: Domain=0x2, Cache=0xE
Cortex-M Debugger | 67©1989-2024 Lauterbach

AHBAPn.XtorName
<name>
AHBNAME <name>
(deprecated)
DAP2AHBNAME <name>
(deprecated)

AHB bus transactor name that shall be used for “AHBn:” access
class.

APBAPn.XtorName <name>
APBNAME <name>
(deprecated)
DAP2APBNAME <name>
(deprecated)

APB bus transactor name that shall be used for “APBn:” access
class.

AXIAPn.XtorName <name>
AXINAME <name>
(deprecated)
DAP2AXINAME <name>
(deprecated)

AXI bus transactor name that shall be used for “AXIn:” access
class.

DEBUGAPn.XtorName
<name>
DEBUGBUSNAME <name>
(deprecated)
DAP2DEBUGBUSNAME
<name> (deprecated)

APB bus transactor name identifying the bus where the debug
register can be found. Used for “DAP:” access class.

MEMORYAPn.XtorName
<name>
MEMORYBUSNAME
<name> (deprecated)
DAP2MEMORYBUSNAME
<name> (deprecated)

AHB bus transactor name identifying the bus where system
memory can be accessed even during runtime. Used for “E:”
access class while running, assuming “SYStem.MemAccess
DAP”.

DAPNAME <name> DAP transactor name that shall be used for DAP access ports.

DAP2NAME <name> DAP transactor name that shall be used for DAP access ports of
2nd order.

... .RESet Undo the configuration for this access port. This does not cause
a physical reset for the access port on the chip.

... .view Opens a window showing the current configuration of the access
port.
Cortex-M Debugger | 68©1989-2024 Lauterbach

SoC-400 Specific Commands

AHBAPn.Port <port>
AHBACCESSPORT <port>
(deprecated)
DAP2AHBACCESSPORT
<port> (deprecated)

Access Port Number (0-255) of a SoC-400 system which shall be
used for “AHBn:” access class. Default: <port>=0.

APBAPn.Port <port>
APBACCESSPORT <port>
(deprecated)
DAP2APBACCESSPORT
<port> (deprecated)

Access Port Number (0-255) of a SoC-400 system which shall be
used for “APBn:” access class. Default: <port>=1.

AXIAPn.Port <port>
AXIACCESSPORT <port>
(deprecated)
DAP2AXIACCESSPORT
<port> (deprecated)

Access Port Number (0-255) of a SoC-400 system which shall be
used for “AXIn:” access class. Default: port not available.

DAP2JTAGPORT <port> JTAG-AP port number (0-7) for an (other) DAP which is
connected to a JTAG-AP.

DEBUGAPn.Port <port>
DEBUGACCESSPORT
<port> (deprecated)
DAP2DEBUGACCESS-
PORT <port> (deprecated)

AP access port number (0-255) of a SoC-400 system where the
debug register can be found (typically on APB). Used for “DAP:”
access class. Default: <port>=1.

JTAGAPn.CorePort <port>
COREJTAGPORT <port>
(deprecated)
DAP2COREJTAGPORT
<port> (deprecated)

JTAG-AP port number (0-7) connected to the core which shall be
debugged.

JTAGAPn.Port <port>
JTAGACCESSPORT <port>
(deprecated)

Access port number (0-255) of a SoC-400 system of the JTAG
Access Port.

MEMORYAPn.Port <port>
MEMORYACCESSPORT
<port> (deprecated)
DAP2MEMORYACCESS-
PORT <port> (deprecated)

AP access port number (0-255) of a SoC-400 system where
system memory can be accessed even during runtime (typically
an AHB). Used for “E:” access class while running, assuming
“SYStem.MemAccess DAP”. Default: <port>=0.
Cortex-M Debugger | 69©1989-2024 Lauterbach

SoC-600 Specific Commands

AHBAPn.Base <address> This command informs the debugger about the start address of
the register block of the “AHBAPn:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.AHBAP1.Base DP:0x80002000
Meaning: The control register block of the AHB access ports
starts at address 0x80002000.

APBAPn.Base <address> This command informs the debugger about the start address of
the register block of the “APBAPn:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.APBAP1.Base DP:0x80003000
Meaning: The control register block of the APB access ports
starts at address 0x80003000.

AXIAPn.Base <address> This command informs the debugger about the start address of
the register block of the “AXIAPn:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.AXIAP1.Base DP:0x80004000
Meaning: The control register block of the AXI access ports
starts at address 0x80004000.

JTAGAPn.Base <address> This command informs the debugger about the start address of
the register block of the “JTAGAPn:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.JTAGAP1.Base DP:0x80005000
Meaning: The control register block of the JTAG access ports
starts at address 0x80005000.
Cortex-M Debugger | 70©1989-2024 Lauterbach

XCP Specific Commands

The following commands are used with the XCP backend to configure access to target resources via the
XCP slave. If the value is not set, the debugger will fall back to a method that might have less performance.

Normally, these values can be set automatically using SYStem.DETECT.XCPTRI. For Details, see “Target
Resources” in XCP Debug Back-End, page 7 (backend_xcp.pdf)

AHBAPn.XCPTRI <tri> Configures the debugger to use the target resource
identifier <tri> (0 to 255) for AHB accesses. Default: not set.

APBAPn.XCPTRI <tri> Configures the debugger to use the target resource
identifier <tri> (0 to 255) for APB accesses. Default: not set.

AXIAPn.XCPTRI <tri> Configures the debugger to use the target resource
identifier <tri> (0 to 255) for AXI accesses. Default: not set.
Cortex-M Debugger | 71©1989-2024 Lauterbach

<parameters> describing debug and trace “Components”

On the Components tab in the SYStem.CONFIG.state window, you can comfortably add the debug and
trace components your chip includes and which you intend to use with the debugger’s help.

Each configuration can be done by a command in a script file as well. Then you do not need to enter
everything again on the next debug session. If you press the button with the three dots you get the
corresponding command in the command line where you can view and maybe copy it into a script file.
Cortex-M Debugger | 72©1989-2024 Lauterbach

You can have several of the following components: CMI, ETB, ETF, ETR, FUNNEL, STM.
Example: FUNNEL1, FUNNEL2, FUNNEL3,...

The <address> parameter can be just an address (e.g. 0x80001000) or you can prepend the access class
(e.g. AHB:0x80001000). Without an access class, it gets the command-specific default access class, which
in most cases is “EDAP:”. For a configuration example using access classes, see Configuration examples
for memory access ports and a CoreSight component.

Example:

SYStem.CONFIG.COREDEBUG.Base 0x80010000 0x80012000
SYStem.CONFIG.BMC.Base 0x80011000 0x80013000
SYStem.CONFIG.ETM.Base 0x8001c000 0x8001d000
SYStem.CONFIG.STM1.Base EAHB:0x20008000
SYStem.CONFIG.STM1.Type ARM
SYStem.CONFIG.STM1.Mode STPv2
SYStem.CONFIG.FUNNEL1.Base 0x80004000
SYStem.CONFIG.FUNNEL2.Base 0x80005000
SYStem.CONFIG.TPIU.Base 0x80003000
SYStem.CONFIG.FUNNEL1.ATBSource ETM.0 0 ETM.1 1
SYStem.CONFIG.FUNNEL2.ATBSource FUNNEL1 0 STM1 7
SYStem.CONFIG.TPIU.ATBSource FUNNEL2

ETM

ETM

STM

Core

Core

FUNNEL

TPIUFUNNEL

0

1
0

7

Cortex-M Debugger | 73©1989-2024 Lauterbach

… .ATBSource <source> Specify for components collecting trace information from where the
trace data are coming from. This way you inform the debugger
about the interconnection of different trace components on a
common trace bus.

You need to specify the “... .Base <address>” or other attributes
that define the amount of existing peripheral modules before you
can describe the interconnection by “... .ATBSource <source>”.

A CoreSight trace FUNNEL has eight input ports (port 0-7) to
combine the data of various trace sources to a common trace
stream. Therefore you can enter instead of a single source a list
of sources and input port numbers.

Example:
SYStem.CONFIG FUNNEL.ATBSource ETM 0 HTM 1 STM 7

Meaning: The funnel gets trace data from ETM on port 0, from
HTM on port 1 and from STM on port 7.

In an SMP (Symmetric MultiProcessing) debug session where
you used a list of base addresses to specify one component per
core you need to indicate which component in the list is meant:
Cortex-M Debugger | 74©1989-2024 Lauterbach

Example: Four cores with ETM modules.
SYStem.CONFIG ETM.Base 0x1000 0x2000 0x3000 0x4000
SYStem.CONFIG FUNNEL1.ATBSource ETM.0 0 ETM.1 1
ETM.2 2 ETM.3 3
"...2" of "ETM.2" indicates it is the third ETM module which has
the base address 0x3000. The indices of a list are 0, 1, 2, 3,...
If the numbering is accelerating, starting from 0, without gaps,
like the example above then you can shorten it to
SYStem.CONFIG FUNNEL1.ATBSource ETM

Example: Four cores, each having an ETM module and an ETB
module.
SYStem.CONFIG ETM.Base 0x1000 0x2000 0x3000 0x4000
SYStem.CONFIG ETB.Base 0x5000 0x6000 0x7000 0x8000
SYStem.CONFIG ETB.ATBSource ETM.2 2
The third "ETM.2" module is connected to the third ETB. The last
"2" in the command above is the index for the ETB. It is not a port
number which exists only for FUNNELs.

For a list of possible components including a short description
see Components and Available Commands.

… .BASE <address> This command informs the debugger of the start address for the
component's register block, thereby notifying it of the
component's existence. An on-chip debug and trace component
typically includes a control register block that the debugger must
access to control the component.

Example: SYStem.CONFIG ETM.Base APB:0x8011c000

Meaning: The control register block of the Embedded Trace
Macrocell (ETM) starts at address 0x8011c000 and is accessible
via APB bus.

In an SMP (Symmetric MultiProcessing) debug session you can
enter for the components BMC, COREBEBUG, CTI, ETB, ETF,
ETM, ETR a list of base addresses to specify one component per
core.

Example assuming four cores: SYStem.CONFIG
COREDEBUG.Base 0x80001000 0x80003000 0x80005000
0x80007000

For a list of possible components including a short description
see Components and Available Commands.
Cortex-M Debugger | 75©1989-2024 Lauterbach

... .Name The name is a freely configurable identifier to describe how many
instances exists in a target systems chip. TRACE32 PowerView
GUI shares with other opened PowerView GUIs settings and the
state of components identified by the same name and component
type. Components using different names are not shared. Other
attributes as the address or the type are used when no name is
configured.

Example 1: Shared None-Programmable Funnel:
PowerView1:
SYStem.CONFIG.FUNNEL.PROGramable OFF
SYStem.CONFIG.FUNNEL.Name "shared-funnel-1"
PowerView2:
SYStem.CONFIG.FUNNEL.PROGramable OFF
SYStem.CONFIG.FUNNEL.Name "shared-funnel-1"
SYStem.CONFIG.Core 2. 1. ; merge configuration to describe a
target system with one chip containing a single none-
programmable FUNNEL.

Example 2: Cluster ETFs:
1. Configures the ETF base address and access for each core
SYStem.CONFIG.ETF.Base DAP:0x80001000 \

APB:0x80001000 DAP:0x80001000 APB:0x80001000

2. Tells the system the core 1 and 3 share cluster-etf-1 and core
2 and 4 share cluster-etf-2 despite using the same address for all
ETFs
SYStem.CONFIG.ETF.Name "cluster-etf-1" "cluster-etf-2" \

"cluster-etf-1" "cluster-etf-2"

... .NoFlush [ON | OFF] Deactivates a component flush request at the end of the trace
recording. This is a workaround for a bug on a certain chip. You
will loose trace data at the end of the recording. Don’t use it if not
needed. Default: OFF.

… .RESet Undo the configuration for this component. This does not cause a
physical reset for the component on the chip.

For a list of possible components including a short description
see Components and Available Commands.

… .Size <size> Specifies the size of the component. The component size can
normally be read out by the debugger. Therefore this command
is only needed if this can not be done for any reason.
Cortex-M Debugger | 76©1989-2024 Lauterbach

… .STackMode [NotAvailbale
| TRGETM | FULLTIDRM |
NOTSET | FULLSTOP |
FULLCTI]

Specifies the which method is used to implement the Stack mode
of the on-chip trace.
NotAvailable: stack mode is not available for this on-chip trace.
TRGETM: the trigger delay counter of the onchip-trace is used. It
starts by a trigger signal that must be provided by a trace source.
Usually those events are routed through one or more CTIs to the
on-chip trace.
FULLTIDRM: trigger mechanism for TI devices.
NOTSET: the method is derived by other GUIs or hardware.
detection.
FULLSTOP: on-chip trace stack mode by implementation.
FULLCTI: on-chip trace provides a trigger signal that is routed
back to on-chip trace over a CTI.

… .view Opens a window showing the current configuration of the
component.

For a list of possible components including a short description
see Components and Available Commands.

… .TraceID <id> Identifies from which component the trace packet is coming from.
Components which produce trace information (trace sources) for a
common trace stream have a selectable “.TraceID <id>”.

If you miss this SYStem.CONFIG command for a certain trace
source (e.g. ETM) then there is a dedicated command group for
this component where you can select the ID (ETM.TraceID <id>).

The default setting is typically fine because the debugger uses
different default trace IDs for different components.

For a list of possible components including a short description
see Components and Available Commands.
Cortex-M Debugger | 77©1989-2024 Lauterbach

CTI.Config <type> Informs about the interconnection of the core Cross Trigger
Interfaces (CTI). Certain ways of interconnection are common
and these are supported by the debugger e.g. to cause a
synchronous halt of multiple cores.

NONE: The CTI is not used by the debugger.
ARMV1: This mode is used for Arm7/9/11 cores which support
synchronous halt, only.
ARMPostInit: Like ARMV1 but the CTI connection differs from the
Arm recommendation.
OMAP3: This mode is not yet used.
TMS570: Used for a certain CTI connection used on a TMS570
derivative.
CortexV1: The CTI will be configured for synchronous start and
stop via CTI. It assumes the connection of DBGRQ, DBGACK,
DBGRESTART signals to CTI are done as recommended by
Arm. The CTIBASE must be notified. “CortexV1” is the default
value if a Cortex-A/R core is selected and the CTIBASE is
notified.
QV1: This mode is not yet used.

CTICH01: Channel 0 and 1 of the CTM are used to distribute
start/stop events from and to the CTIs. Armv8/Armv9 only.
CTICH23: Channel 2 and 3 of the CTM are used to distribute
start/stop events from and to the CTIs. Armv8/Armv9 only.
ARMV8V3: Channel 0, 1 and 2 of the CTM are used to distribute
start/stop events. Implemented on request. Armv8/Armv9 only.

DTM.Type [None | Generic] Informs the debugger that a customer proprietary Data Trace
Message (DTM) module is available. This causes the debugger
to consider this source when capturing common trace data.
Trace data from this module will be recorded and can be
accessed later but the unknown DTM module itself will not be
controlled by the debugger.

ETR.CATUBase <address> Base address of the CoreSight Address Translation Unit (CATU).

FUNNEL.Name <string> It is possible that different funnels have the same address for
their control register block. This assumes they are on different
buses and for different cores. In this case it is needed to give the
funnel different names to differentiate them.
Cortex-M Debugger | 78©1989-2024 Lauterbach

FUNNEL.PROGrammable
[ON | OFF]

Default is ON. If set to ON the peripheral is controlled by
TRACE32 in order to route ATB trace data through the ATB bus
network. If PROGrammable is configured to value OFF then
TRACE32 will not access the FUNNEL registers and the base
address doesn't need to be configured. This can be useful for
FUNNELs that don't have registers or when those registers are
read-only. TRACE32 need still be aware of the connected ATB
trace sources and sink in order to know the ATB topology. To
build a complete topology across multiple instances of
PowerView the property Name should be set at all instances to a
chip wide unique identifier.

HTM.Type [CoreSight | WPT] Selects the type of the AMBA AHB Trace Macrocell (HTM).
CoreSight is the type as described in the Arm CoreSight
manuals. WPT is a NXP proprietary trace module.

L2CACHE.Type [NONE |
Generic | L210 | L220 | L2C-
310 | AURORA | AURORA2]

Selects the type of the level2 cache controller. L210, L220, L2C-
310 are controller types provided by Arm. AURORAx are Marvell
types. The ‘Generic’ type does not need certain treatment by the
debugger.

MTB.SRAMBase Sets an alternate address for SRAMBASE. This is needed for
some chips where the value of the SRAMBASE register is wrong.

OCP.Type <type> Specifies the type of the OCP module. The <type> is just a
number which you need to figure out in the chip documentation.

RTP.PerBase <address> PERBASE specifies the base address of the core peripheral
registers which accesses shall be traced. PERBASE is needed
for the RAM Trace Port (RTP) which is available on some
derivatives from Texas Instruments. The trace packages include
only relative addresses to PERBASE and RAMBASE.

RTP.RamBase <address> RAMBASE is the start address of RAM which accesses shall be
traced. RAMBASE is needed for the RAM Trace Port (RTP)
which is available on some derivatives from Texas Instruments.
The trace packages include only relative addresses to PERBASE
and RAMBASE.

STM.Mode [NONE | XTIv2 |
SDTI | STP | STP64 | STPv2]

Selects the protocol type used by the System Trace Module (STM).
Cortex-M Debugger | 79©1989-2024 Lauterbach

Components and Available Commands

See the description of the commands above. Please note that there is a common description for
ATBSource,Base, ,RESet,TraceID.

AHBBRIDGE.Base <address>
AHBBRIDGE.RESet
Used in a SOC-400 debug infrastructure, if the AHB-AP of the Cortex-M is accessible via an additional
bridge on a AHB, AXI or APB bus and not directly as an Access Port. In a SOC-600 debug infrastructure it is
irrelevant.

BMC.Base <address>
BMC.RESet
Performance Monitor Unit (PMU) - Arm debug module, e.g. on Cortex-A/R
Bench-Mark-Counter (BMC) is the TRACE32 term for the same thing.
The module contains counter which can be programmed to count certain events (e.g. cache hits).

BPU.Base <address>
BPU.RESet
Specifies on some Cortex-M core types the Break Point Unit or the Flash Patch and Breakpoint unit. Each
kind of Cortex-M core has the one or the other, but not both. This component is already set by default and
usually doesn't need to be changed.

CMI.Base <address>
CMI.RESet
CMI.TraceID <id>
Clock Management Instrumentation (CMI) - Texas Instruments
Trace source delivering information about clock status and events to a system trace module.

COREDEBUG.Base <address>
COREDEBUG.RESet
Core Debug Register - Arm debug register, e.g. on Cortex-A/R
Some cores do not have a fix location for their debug register used to control the core. In this case it is
essential to specify its location before you can connect by e.g. SYStem.Up.

CTI.Base <address>
CTI.Config <interconnection>
Cross Trigger Interface (CTI) - Arm CoreSight module
If notified the debugger uses it to synchronously halt (and sometimes also to start) multiple cores.

STM.Type [None | Generic |
ARM | SDTI | TI]

Selects the type of the System Trace Module (STM). Some types
allow to work with different protocols (see STM.Mode).

TPIU.Type [CoreSight |
Generic]

Selects the type of the Trace Port Interface Unit (TPIU).

CoreSight: Default. CoreSight TPIU. TPIU control register
located at TPIU.Base <address> will be handled by the
debugger.

Generic: Proprietary TPIU. TPIU control register will not be
handled by the debugger.
Cortex-M Debugger | 80©1989-2024 Lauterbach

DRM.Base <address>
DRM.RESet
Debug Resource Manager (DRM) - Texas Instruments
It will be used to prepare chip pins for trace output.

DTM.RESet
DTM.Type [None | Generic]
Data Trace Module (DTM) - generic, CoreSight compliant trace source module
If specified it will be considered in trace recording and trace data can be accessed afterwards.
DTM module itself will not be controlled by the debugger.

DWT.Base <address>
DWT.RESet
Data Watchpoint and Trace unit (DWT) - Arm debug module on Cortex-M cores
Normally fix address at 0xE0001000 (default).

EPM.Base <address>
EPM.RESet
Emulation Pin Manager (EPM) - Texas Instruments
It will be used to prepare chip pins for trace output.

ETB2AXI.Base <address>
ETB2AXI.RESet
ETB to AXI module
Similar to an ETR.

ETB.ATBSource <source>
ETB.Base <address>
ETB.RESet
ETB.Size <size>
Embedded Trace Buffer (ETB) - Arm CoreSight module
Enables trace to be stored in a dedicated SRAM. The trace data will be read out through the debug port after
the capturing has finished.

ETF.ATBSource <source>
ETF.Base <address>
ETF.RESet
Embedded Trace FIFO (ETF) - Arm CoreSight module
On-chip trace buffer used to lower the trace bandwidth peaks.

ETM.Base <address>
ETM.RESet
Embedded Trace Macrocell (ETM) - Arm CoreSight module
Program Trace Macrocell (PTM) - Arm CoreSight module
Trace source providing information about program flow and data accesses of a core.
The ETM commands will be used even for PTM.

ETR.ATBSource <source>
ETR.CATUBase <address>
ETR.Base <address>
ETR.RESet
Embedded Trace Router (ETR) - Arm CoreSight module
Enables trace to be routed over an AXI bus to system memory or to any other AXI slave.
Cortex-M Debugger | 81©1989-2024 Lauterbach

ETS.ATBSource <source>
ETS.Base <address>
ETS.RESet
Embedded Trace Streamer (ETS) - Arm CoreSight module

FPB.Base <address>
FPB.RESet
Specifies on some Cortex-M core types the Break Point Unit or the Flash Patch and Breakpoint unit. Each
kind of Cortex-M core has the one or the other, but not both. This component is already set by default and
usually doesn't need to be changed.

FUNNEL.ATBSource <sourcelist>
FUNNEL.Base <address>
FUNNEL.Name <string>
FUNNEL.PROGrammable [ON | OFF]
FUNNEL.RESet
CoreSight Trace Funnel (CSTF) - Arm CoreSight module
Combines multiple trace sources onto a single trace bus (ATB = AMBA Trace Bus)

REP.ATBSource <sourcelist>
REP.Base <address>
REP.Name <string>
REP.RESet
CoreSight Replicator - Arm CoreSight module
This command group is used to configure Arm Coresight Replicators with programming interface. After the
Replicator(s) have been defined by the base address and optional names the ATB sources REPlicatorA and
REPlicatorB can be used from other ATB sinks to connect to output A or B to the Replicator.

HSM.Base <address>
HSM.RESet
Hardware Security Module (HSM) - Infineon

HTM.Base <address>
HTM.RESet
HTM.Type [CoreSight | WPT]
AMBA AHB Trace Macrocell (HTM) - Arm CoreSight module
Trace source delivering trace data of access to an AHB bus.

ICE.Base <address>
ICE.RESet
ICE-Crusher (ICE) - Texas Instruments

ITM.Base <address>
ITM.RESet
Instrumentation Trace Macrocell (ITM) - Arm CoreSight module
Trace source delivering system trace information e.g. sent by software in printf() style.

L2CACHE.Base <address>
L2CACHE.RESet
L2CACHE.Type [NONE | Generic | L210 | L220 | L2C-310 | AURORA | AURORA2]
Level 2 Cache Controller
The debugger might need to handle the controller to ensure cache coherency for debugger operation.
Cortex-M Debugger | 82©1989-2024 Lauterbach

MTBDWT.Base <address>
MTBDWT.RESet
Is a custom extension for the MTB (Micro Trace Buffer) to offer additional address comparators to trigger
events on the MTB. It has been implemented by some NXP Cortex-M controllers.

OCP.Base <address>
OCP.RESet
OCP.TraceID <id>
OCP.Type <type>
Open Core Protocol watchpoint unit (OCP) - Texas Instruments
Trace source module delivering bus trace information to a system trace module.

PMI.Base <address>
PMI.RESet
PMI.TraceID <id>
Power Management Instrumentation (PMI) - Texas Instruments
Trace source reporting power management events to a system trace module.

RTP.Base <address>
RTP.PerBase <address>
RTP.RamBase <address>
RTP.RESet
RAM Trace Port (RTP) - Texas Instruments
Trace source delivering trace data about memory interface usage.

SC.Base <address>
SC.RESet
SC.TraceID <id>
Statistic Collector (SC) - Texas Instruments
Trace source delivering statistic data about bus traffic to a system trace module.

SDC.Base <address>
SDC.RESet
Secure Debug Channel (SDC) - Arm CoreSight module
Communication module sdc600_apbcom_ext for debug authentication.

STM.Base <address>
STM.Mode [NONE | XTIv2 | SDTI | STP | STP64 | STPv2]
STM.RESet
STM.Type [None | Generic | ARM | SDTI | TI]
System Trace Macrocell (STM) - MIPI, Arm CoreSight, others
Trace source delivering system trace information e.g. sent by software in printf() style.

TPIU.ATBSource <source>
TPIU.Base <address>
TPIU.RESet
TPIU.Type [CoreSight | Generic]
Trace Port Interface Unit (TPIU) - Arm CoreSight module
Trace sink sending the trace off-chip on a parallel trace port (chip pins).
Cortex-M Debugger | 83©1989-2024 Lauterbach

<parameters> which are “Deprecated”

In recent years, chips and their debug and trace architectures have become much more complex. The
CoreSight trace components and their interconnection on a common trace bus, in particular, necessitated a
revision of our commands. The new commands can handle even the most complex structures.

… BASE <address> This command informs the debugger about the start address of
the register block of the component. And this way it notifies the
existence of the component. An on-chip debug and trace
component typically provides a control register block which
needs to be accessed by the debugger to control this
component.

Example: SYStem.CONFIG ETMBASE APB:0x8011c000

Meaning: The control register block of the Embedded Trace
Macrocell (ETM) starts at address 0x8011c000 and is accessible
via APB bus.

In an SMP (Symmetric MultiProcessing) debug session you can
enter for the components BMC, CORE, CTI, ETB, ETF, ETM, ETR a
list of base addresses to specify one component per core.

Example assuming four cores: “SYStem.CONFIG COREBASE
0x80001000 0x80003000 0x80005000 0x80007000”.

COREBASE (old syntax: DEBUGBASE): Some cores e.g. Cortex-
A or Cortex-R do not have a fix location for their debug register
which are used for example to halt and start the core. In this case it
is essential to specify its location before you can connect by e.g.
SYStem.Up.

PERBASE and RAMBASE are needed for the RAM Trace Port
(RTP) which is available on some derivatives from Texas
Instruments. PERBASE specifies the base address of the core
peripheral registers which accesses shall be traced, RAMBASE
is the start address of RAM which accesses shall be traced. The
trace packages include only relative addresses to PERBASE and
RAMBASE.

For a list of possible components including a short description
see Components and Available Commands.
Cortex-M Debugger | 84©1989-2024 Lauterbach

… PORT <port> Informs the debugger about which trace source is connected to
which input port of which funnel. A CoreSight trace funnel
provides 8 input ports (port 0-7) to combine the data of various
trace sources to a common trace stream.

Example: SYStem.CONFIG STMFUNNEL2PORT 3

Meaning: The System Trace Module (STM) is connected to input
port #3 on FUNNEL2.

On an SMP debug session some of these commands can have a
list of <port> parameter.

In case there are dedicated funnels for the ETB and the TPIU
their base addresses are specified by ETBFUNNELBASE,
TPIUFUNNELBASE respectively. And the funnel port number for
the ETM are declared by ETMETBFUNNELPORT,
ETMTPIUFUNNELPORT respectively.

For a list of possible components including a short description
see Components and Available Commands.

BYPASS <seq> With this option it is possible to change the JTAG bypass
instruction pattern for other TAPs. It works in a multi-TAP JTAG
chain for the IRPOST pattern, only, and is limited to 64 bit. The
specified pattern (hexadecimal) will be shifted least significant bit
first. If no BYPASS option is used, the default value is “1” for all
bits.

CTICONFIG <type> Informs about the interconnection of the core Cross Trigger
Interfaces (CTI). Certain ways of interconnection are common
and these are supported by the debugger e.g. to cause a
synchronous halt of multiple cores.

NONE: The CTI is not used by the debugger.
ARMV1: This mode is used for Arm7/9/11 cores which support
synchronous halt, only.
ARMPostInit: Like ARMV1 but the CTI connection differs from the
Arm recommendation.
OMAP3: This mode is not yet used.
TMS570: Used for a certain CTI connection used on a TMS570
derivative.
CortexV1: The CTI will be configured for synchronous start and
stop via CTI. It assumes the connection of DBGRQ, DBGACK,
DBGRESTART signals to CTI are done as recommended by
Arm. The CTIBASE must be notified. “CortexV1” is the default
value if a Cortex-A/R core is selected and the CTIBASE is
notified.
QV1: This mode is not yet used.
Cortex-M Debugger | 85©1989-2024 Lauterbach

Mapping Deprecated to New Commands

In the following you find the list of deprecated commands which can still be used for compatibility reasons
and the corresponding new command.

SYStem.CONFIG <parameter>

DTMCONFIG [ON | OFF] Informs the debugger that a customer proprietary Data Trace
Message (DTM) module is available. This causes the debugger
to consider this source when capturing common trace data.
Trace data from this module will be recorded and can be
accessed later but the unknown DTM module itself will not be
controlled by the debugger.

FILLDRZERO [ON | OFF] This changes the bypass data pattern for other TAPs in a multi-
TAP JTAG chain. It changes the pattern from all “1” to all “0”. This
is a workaround for a certain chip problem. It is available on the
Arm9 debugger, only.

TIOCPTYPE <type> Specifies the type of the OCP module from Texas Instruments
(TI).

view Opens a window showing most of the SYStem.CONFIG settings
and allows to modify them.

<parameter>:
(Deprecated)

<parameter>:
(New)

BMCBASE <address> BMC.Base <address>

BYPASS <seq> CHIPIRPRE <bits>
CHIPIRLENGTH <bits>
CHIPIRPATTERN.Alternate <pattern>

COREBASE <address> COREDEBUG.Base <address>

CTIBASE <address> CTI.Base <address>

CTICONFIG <type> CTI.Config <type>

DEBUGBASE <address> COREDEBUG.Base <address>

DTMCONFIG [ON | OFF] DTM.Type.Generic

DTMETBFUNNELPORT <port> FUNNEL4.ATBSource DTM <port> (1)

DTMFUNNEL2PORT <port> FUNNEL2.ATBSource DTM <port> (1)

DTMFUNNELPORT <port> FUNNEL1.ATBSource DTM <port> (1)

DTMTPIUFUNNELPORT <port> FUNNEL3.ATBSource DTM <port> (1)

DWTBASE <address> DWT.Base <address>

ETB2AXIBASE <address> ETB2AXI.Base <address>
Cortex-M Debugger | 86©1989-2024 Lauterbach

ETBBASE <address> ETB1.Base <address>

ETBFUNNELBASE <address> FUNNEL4.Base <address>

ETFBASE <address> ETF1.Base <address>

ETMBASE <address> ETM.Base <address>

ETMETBFUNNELPORT <port> FUNNEL4.ATBSource ETM <port> (1)

ETMFUNNEL2PORT <port> FUNNEL2.ATBSource ETM <port> (1)

ETMFUNNELPORT <port> FUNNEL1.ATBSource ETM <port> (1)

ETMTPIUFUNNELPORT <port> FUNNEL3.ATBSource ETM <port> (1)

FILLDRZERO [ON | OFF] CHIPDRPRE 0
CHIPDRPOST 0
CHIPDRLENGTH <bits_of_complete_dr_path>
CHIPDRPATTERN.Alternate 0

FUNNEL2BASE <address> FUNNEL2.Base <address>

FUNNELBASE <address> FUNNEL1.Base <address>

HSMBASE <address> HSM.Base <address>

HTMBASE <address> HTM.Base <address>

HTMETBFUNNELPORT <port> FUNNEL4.ATBSource HTM <port> (1)

HTMFUNNEL2PORT <port> FUNNEL2.ATBSource HTM <port> (1)

HTMFUNNELPORT <port> FUNNEL1.ATBSource HTM <port> (1)

HTMTPIUFUNNELPORT <port> FUNNEL3.ATBSource HTM <port> (1)

ITMBASE <address> ITM.Base <address>

ITMETBFUNNELPORT <port> FUNNEL4.ATBSource ITM <port> (1)

ITMFUNNEL2PORT <port> FUNNEL2.ATBSource ITM <port> (1)

ITMFUNNELPORT <port> FUNNEL1.ATBSource ITM <port> (1)

ITMTPIUFUNNELPORT <port> FUNNEL3.ATBSource ITM <port> (1)

PERBASE <address> RTP.PerBase <address>

RAMBASE <address> RTP.RamBase <address>

RTPBASE <address> RTP.Base <address>

SDTIBASE <address> STM1.Base <address>
STM1.Mode SDTI
STM1.Type SDTI

STMBASE <address> STM1.Base <address>
STM1.Mode STPV2
STM1.Type ARM

STMETBFUNNELPORT <port> FUNNEL4.ATBSource STM1 <port> (1)

STMFUNNEL2PORT <port> FUNNEL2.ATBSource STM1 <port> (1)

STMFUNNELPORT <port> FUNNEL1.ATBSource STM1 <port> (1)

STMTPIUFUNNELPORT <port> FUNNEL3.ATBSource STM1 <port> (1)
Cortex-M Debugger | 87©1989-2024 Lauterbach

(1) Further “<component>.ATBSource <source>” commands might be needed to describe the full trace data
path from trace source to trace sink.

TIDRMBASE <address> DRM.Base <address>

TIEPMBASE <address> EPM.Base <address>

TIICEBASE <address> ICE.Base <address>

TIOCPBASE <address> OCP.Base <address>

TIOCPTYPE <type> OCP.Type <type>

TIPMIBASE <address> PMI.Base <address>

TISCBASE <address> SC.Base <address>

TISTMBASE <address> STM1.Base <address>
STM1.Mode STP
STM1.Type TI

TPIUBASE <address> TPIU.Base <address>

TPIUFUNNELBASE <address> FUNNEL3.Base <address>

view state
Cortex-M Debugger | 88©1989-2024 Lauterbach

SYStem.CONFIG.EXTWDTDIS Disable external watchdog

Default for Automotive/Automotive PRO Debug Cable: High.
Default for XCP: OFF.

Controls the WDTDIS pin of the debug port. This configuration is only available for tools with an Automotive
Connector (e.g., Automotive Debug Cable, Automotive PRO Debug Cable) and XCP.

SYStem.CPU Select the used CPU

Default selection: CORTEXM3

Selects the processor type. If your ASIC is not listed, select the type of the integrated ARM core.

Format: SYStem.CONFIG.EXTWDTDIS <option>

<option>: OFF
High
Low
HighwhenStopped
LowwhenStopped

OFF The WDTDIS pin is not driven. (XCP only)

High The WDTDIS pin is permanently driven high.

Low The WDTDIS pin is permanently driven low.

HighwhenStopped The WDTDIS pin is driven high when program is stopped (not XCP).

LowwhenStopped The WDTDIS pin is driven low when program is stopped (not XCP).

Format: SYStem.CPU <cpu>

<cpu>: CORTEXM3
Cortex-M Debugger | 89©1989-2024 Lauterbach

SYStem.JtagClock Define the frequency of the debug port

Default frequency: 10 MHz.

Selects the frequency (TCK/SWCLK) used by the debugger to communicate with the processor in JTAG,
SWD or cJTAG mode. The frequency can affect e.g. the download speed. It could be required to reduce the
frequency if there are buffers, additional loads or high capacities on the debug port signals or if VTREF is
very low. A very high frequency will not work on all systems and will result in an erroneous data transfer.
Therefore we recommend to use the default setting if possible.

Format: SYStem.JtagClock [<frequency> | RTCK | ARTCK <frequency> |
 CTCK <frequency> | CRTCK <frequency>]

SYStem.BdmClock (deprecated)

<frequency>: 6 kHz … 80 MHz

<frequency> • The debugger cannot select all frequencies accurately. It chooses
the next possible frequency and displays the real value in the
SYStem.state window.

• Besides a decimal number like “100000.” short forms like “10kHz”
or “15MHz” can also be used. The short forms imply a decimal
value, although no “.” is used.

RTCK The debug clock is controlled by the RTCK signal (Returned TCK).
On some multicore systems there is the need to synchronize the
processor clock and the debug port clock. In this case RTCK shall be
selected. Synchronization is maintained, because the debugger does not
progress to the next TCK/SWCLK edge until after an RTCK edge is
received.

In case you have a processor derivative requiring a synchronization of
the processor clock and the debug clock, but your target does not provide
an RTCK signal, you need to select a fixed frequency below which is low
enough to be adequate to the speed you would reach if RTCK is
available.

When RTCK is selected, the frequency depends on the processor clock
and on the propagation delays. The maximum reachable frequency is
about 16 MHz.

SYStem.JtagClock RTCK
Cortex-M Debugger | 90©1989-2024 Lauterbach

ARTCK Accelerated method to control the debug clock by the RTCK signal
(Accelerated Returned TCK). This option is only relevant for JTAG debug
ports.
On some multicore systems, which need a synchronization of the
processor clock RTCK mode only allows theoretical frequencies up to 1/6
or 1/8 of the processor clock. For such designs using a very low
processor clock we offer a different mode (ARTCK) which does not work
as recommended by ARM and might not work on all target systems. In
ARTCK mode the debugger uses a fixed frequency for TCK, independent
of the RTCK signal. This frequency must be specified by the user and
has to be below 1/3 of the processor clock speed. TDI and TMS will be
delayed by 1/2 TCK clock cycle. TDO will be sampled with RTCK.

CTCK With this option higher debug port speeds can be reached. The
TDO/SWDIO signal will be sampled by a signal which derives from
TCK/SWCLK, but which is timely compensated regarding the debugger-
internal driver propagation delays (Compensation by TCK).

This feature can be used with a debug cable version 3 or newer. If it is
selected, although the debug cable is not suitable, a fixed frequency will
be selected instead (minimum of 10 MHz and selected clock).

CRTCK With this option higher debug port speeds can be reached. The
TDO/SWDIO signal will be sampled by the RTCK signal. This compensates
the debugger-internal driver propagation delays, the delays on the cable and
on the target (Compensation by RTCK). This feature requires that the target
provides an RTCK signal. In contrast to the RTCK option, the TCK/SWCLK
is always output with the selected, fixed frequency.
Cortex-M Debugger | 91©1989-2024 Lauterbach

SYStem.LOCK Tristate the JTAG port

Default: OFF.

If the system is locked, no access to the JTAG port will be performed by the debugger. While locked, the
JTAG connector of the debugger is tristated. The intention of the SYStem.LOCK command is, for example,
to give JTAG access to another tool. The process can also be automated, see SYStem.CONFIG TriState.

It must be ensured that the state of the Arm core JTAG state machine remains unchanged while the system
is locked. To ensure correct hand-over, the options SYStem.CONFIG TAPState and SYStem.CONFIG
TCKLevel must be set properly. They define the TAP state and TCK level which is selected when the
debugger switches to tristate mode. Please note: nTRST must have a pull-up resistor on the target,
EDBGRQ must have a pull-down resistor.

There is a single cable contact on the casing of the debug cable. This contact can be used to detect if the
JTAG connector is tristated. If tristated also this signal is tristated, it is pulled low otherwise.

Format: SYStem.LOCK [ON | OFF]
Cortex-M Debugger | 92©1989-2024 Lauterbach

SYStem.MemAccess Select run-time memory access method

Default: Denied.

If SYStem.MemAccess is not Denied, it is possible to read from memory, to write to memory and to set
software breakpoints while the core is executing the program. For more information, see
SYStem.CpuBreak and SYStem.CpuSpot.

Format: SYStem.MemAccess <mode>

<mode>: AHB | AXI | APB | … (SoC-600)
DAP (SoC-400)
Enable
RealMON
TrkMON
GdbMON
Denied
StopAndGo

AHB, AXI, APB, … Depending on which memory access ports are available on the chip, the
memory access is done through the specified bus.

DAP A run-time memory access is done through the MEM-AP AHB via DAP
(Debug Access Port). Since this is nearly non-intrusive and does not
require any monitor running on the target, it normally will be the best
selection for Cortex-M.

Denied No memory access is possible while the CPU is executing the program.

Enable
CPU (deprecated)

Used to activate the memory access while the CPU is running on the
TRACE32 Instruction Set Simulator and on debuggers which do not have
a fixed name for the memory access method.

GdbMON A run-time memory access is done via the GDB Server from Linux.

RealMON A run-time memory access is done via the Real Monitor from ARM.

StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.
For more information, see below.

TrkMON A run-time memory access is done via the TRKMON from Symbian.
Cortex-M Debugger | 93©1989-2024 Lauterbach

A run-time access can be done by using the access class prefix “E”. At first sight it is not clear, whether this
causes a read access through the CPU, the AHB/AXI bypassing the CPU, or no read access at all. The
following tables will summarize this effect. “E” can be combined with various access classes. The following
example uses the access class “A” (physical access) to illustrate the effect of “E”.

CPU stopped

CPU running

SYStem.CpuSpot Enabled

SYS.MA.
Access class

Denied DAP
(SoC-400 only)

[AHB | AXI]
(SoC-600 only)

StopAndGo

EA CPU* AHB/AXI AHB/AXI CPU*

A CPU* CPU* CPU* CPU*

AHB or AXI AHB/AXI AHB/AXI AHB/AXI AHB/AXI

EAHB or EAXI AHB/AXI AHB/AXI AHB/AXI AHB/AXI

SYStem.CpuSpot [Denied | Target | SINGLE]

SYS.MA.
Access class

Denied DAP
(SoC-400 only)

[AHB | AXI]
(SoC-600 only)

StopAndGo

EA CPU* AHB/AXI AHB/AXI not allowed

A CPU* CPU* CPU* not allowed

AHB or AXI AHB/AXI AHB/AXI AHB/AXI not allowed

EAHB or EAXI AHB/AXI AHB/AXI AHB/AXI not allowed

SYStem.CpuSpot Enabled

SYS.MA.
Access class

Denied DAP
(SoC-400 only)

[AHB | AXI]
(SoC-600 only)

StopAndGo

EA no access AHB/AXI AHB/AXI CPU* (spotted)

A no access no access no access no access

AHB or AXI no access no access no access no access

EAHB or EAXI AHB/AXI AHB/AXI AHB/AXI AHB/AXI

SYStem.CpuSpot [Denied | Target | SINGLE]

SYS.MA.
Access class

Denied DAP
(SoC-400 only)

[AHB | AXI]
(SoC-600 only)

StopAndGo

EA no access AHB/AXI AHB/AXI not allowed
Cortex-M Debugger | 94©1989-2024 Lauterbach

*) Cortex-M: The "CPU" access uses the AHB/AXI access path instead, due to the debug interface design.

If SYStem.MemAccess StopAndGo is set, it is possible to read from memory, to write to memory and to
set software breakpoints while the CPU is executing the program. To make this possible, the program
execution is shortly stopped by the debugger. Each stop takes some time depending on the speed of the
JTAG port and the operations that should be performed. A white S against a red background in the
TRACE32 state line warns you that the program is no longer running in real-time:

To update specific windows that display memory or variables while the program is running, select the
memory class E: or the format option %E.

If you want this for all your TRACE32 windows, then select SYStem.Option.DUALPORT ON.

A no access no access no access not allowed

AHB or AXI no access no access no access not allowed

EAHB or EAXI AHB/AXI AHB/AXI AHB/AXI not allowed

Data.dump E:0x100

Var.View %E first

SYStem.CpuSpot [Denied | Target | SINGLE]

SYS.MA.
Access class

Denied DAP
(SoC-400 only)

[AHB | AXI]
(SoC-600 only)

StopAndGo

No real-time
Cortex-M Debugger | 95©1989-2024 Lauterbach

SYStem.Mode Establish the communication with the target

Format: SYStem.Mode <mode>

SYStem.Attach (alias for SYStem.Mode Attach)
SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)

<mode>: Down
NoDebug
Go
Attach
StandBy
Up
Prepare

Down Disables the debugger (default). The state of the CPU remains
unchanged. The JTAG port is tristated.

NoDebug Disables the debugger. The state of the CPU remains unchanged. The
JTAG port is tristated.

Go Resets the target and enables the debugger and start the program
execution. The nSRST signal will be pulsed and a software reset will be
performed. Program execution can be stopped by the Break command or
an external trigger.

Attach The mode of the core (running or halted) does not change, but debugging
will be initialized. After this command, the user program can be stopped
with the Break command or if any break condition occurs.

StandBy Resets the target, waits until power is detected, restores the debug
registers (e.g. breakpoints, trace control), releases reset to start the
program execution. When power goes down again, it switches
automatically back to this state. This allows debugging of a power cycle,
because debug register will be restored on power up. Please note that
the debug register require a halt/go sequence to become active. It is not
sufficient to set breakpoints in Down mode and switch to StandBy mode.
Exception: On-chip breakpoints and vector catch register can be set
while the program is “running”. This mode is not yet available.
Cortex-M Debugger | 96©1989-2024 Lauterbach

Up Resets the target, sets the core to debug mode and stops the core. The
nSRST signal will be pulsed and a software reset will be performed. After
the execution of this command the core is stopped and all register are set
to the default level. You need to execute Register.Init to force the
debugger to read out the program counter and stack pointer address.

Prepare Resets the target, initializes the JTAG interface, but does not connect to
the ARM core. This debugger startup is used if no ARM core shall be
debugged. It can be used if a user program or proprietary debugger uses
the TRACE32 API (application programming interface) to access the
JTAG interface via the TRACE32 debugger hardware.
Cortex-M Debugger | 97©1989-2024 Lauterbach

SYStem.Option Special setup
[SYStem.state window > Option]

The SYStem.Option commands are used to control special features of the debugger or to configure the
target. It is recommended to execute the SYStem.Option commands before the emulation is activated by a
SYStem.Up or SYStem.Mode command.

SYStem.Option.BigEndian Define byte order (endianness)

This option is normally not needed because Cortex-M is always little endian. But there are special chip
designs where the debugger needs to handle the data as big endian.

SYStem.Option.CFLUSHAFTERBREAK Flush data cache after break
[build 153369 - DVD 02/2023]

Default: OFF.

This command is used to clean and invalidate the data cache each time after a break.

SYStem.Option.CLEARHARDFAULT Handle the HFSR[FORCED] bit
[build 154175 - DVD 02/2023]

Default: ON.

This command is used to clear or keep the HFSR[FORCED] bit set or cleared on each restart of the core.

The HFSR[FORCED] bit is set by the core to indicate a HARDFAULT exception entry. The debugger
evaluates it for displaying the status “stopped by hardfault”. By default, the debugger clears the bit by the
next restart of the core. To allow the target exception handler to evaluate this bit by itself the option can be
set to OFF. “stopped by hardfault” will then be displayed as break reason as long as the bit is not cleared by
the target application.

Format: SYStem.Option.BigEndian [ON | OFF]

Format: SYStem.Option.CFLUSHAFTERBREAK [ON | OFF]

Format: SYStem.Option.CLEARHARDFAULT [ON | OFF]
Cortex-M Debugger | 98©1989-2024 Lauterbach

SYStem.Option.CoreSightRESet Assert CPU reset via CTRL/STAT

Default: OFF.

The CPU is reset via the CTRL/STAT.CDBGRSTREQ bit. This feature is highly SoC specific and should only
be used if this reset method is really implemented.

SYStem.Option.CORTEXMAHB AHB-AP type of the Cortex-M

Default: ON.

This option needs to be turned off, if the Cortex-M core is accessed via a standard AHB Access Port
provided by the ARM CoreSight design kit that needs to be handled different than the Cortex-M AHB Access
Port.

SYStem.Option.CypressACQuire Send acquire sequence

Send an acquire sequence after reset to put the MCU into test mode. Prevents the execution of user code
from flash regions. This command is only available for certain Cypress chips.

Format: SYStem.Option.CoreSightRESet [ON | OFF]

Format: SYStem.Option.CORTEXMAHB [ON | OFF]

Format: SYStem.Option.CypressACQuire [ON | OFF]
Cortex-M Debugger | 99©1989-2024 Lauterbach

SYStem.Option.DAPDBGPWRUPREQ Force debug power in DAP

Default: ON.

This option controls the DBGPWRUPREQ bit of the CTRL/STAT register of the Debug Access Port (DAP)
before and after the debug session. Debug power will always be requested by the debugger on a debug
session start because debug power is mandatory for debugger operation.

Use case:

Imagine an AMP session consisting of at least of two TRACE32 PowerView GUIs, where one GUI is the
master and all other GUIs are slaves. If the master GUI is closed first, it releases the debug power. As a
result, a debug port fail error may be displayed in the remaining slave GUIs because they cannot access the
debug interface anymore.

To keep the debug interface active, it is recommended that SYStem.Option.DAPDBGPWRUPREQ is set to
AlwaysON.

SYStem.Option.DAP2DBGPWRUPREQ Force debug power in DAP2

Default: ON.

Format: SYStem.Option.DAPDBGPWRUPREQ [ON | AlwaysON | OFF]

ON Debug power is requested by the debugger on a debug session start, and
the control bit is set to 1.
The debug power is released at the end of the debug session, and the
control bit is set to 0.

AlwaysON Debug power is requested by the debugger on a debug session start, and
the control bit is set to 1.
The debug power is not released at the end of the debug session, and the
control bit is set to 0.

OFF Only for test purposes: Debug power is not requested and not checked by
the debugger. The control bit is set to 0.

Format: SYStem.Option.DAP2DBGPWRUPREQ [ON | AlwaysON]
Cortex-M Debugger | 100©1989-2024 Lauterbach

This option controls the DBGPWRUPREQ bit of the CTRL/STAT register of the Debug Access Port 2 (DAP2)
before and after the debug session. Debug power will always be requested by the debugger on a debug
session start.

Use case:

Imagine an AMP session consisting of at least of two TRACE32 PowerView GUIs, where one GUI is the
master and all other GUIs are slaves. If the master GUI is closed first, it releases the debug power. As a
result, a debug port fail error may be displayed in the remaining slave GUIs because they cannot access the
debug interface anymore.

To keep the debug interface active, it is recommended that SYStem.Option.DAP2DBGPWRUPREQ is set
to AlwaysON.

SYStem.Option.DAPSYSPWRUPREQ Force system power in DAP

Default: ON.

ON Debug power is requested by the debugger on a debug session start, and
the control bit is set to 1.
The debug power is released at the end of the debug session, and the
control bit is set to 0.

AlwaysON Debug power is requested by the debugger on a debug session start, and
the control bit is set to 1.
The debug power is not released at the end of the debug session, and the
control bit is set to 0.

OFF Debug power is not requested and not checked by the debugger.
The control bit is set to 0.

Format: SYStem.Option.DAPSYSPWRUPREQ [AlwaysON | ON | OFF]
Cortex-M Debugger | 101©1989-2024 Lauterbach

This option controls the SYSPWRUPREQ bit of the CTRL/STAT register of the Debug Access Port (DAP)
during and after the debug session

This option is for target processors having a Debug Access Port (DAP) e.g., Cortex-A or Cortex-R.

SYStem.Option.DAP2SYSPWRUPREQ Force system power in DAP2

Default: ON.

This option controls the SYSPWRUPREQ bit of the CTRL/STAT register of the Debug Access Port 2 (DAP2)
during and after the debug session

AlwaysON System power is requested by the debugger on a debug session start, and
the control bit is set to 1.
The system power is not released at the end of the debug session, and the
control bit remains at 1.

ON System power is requested by the debugger on a debug session start, and
the control bit is set to 1.
The system power is released at the end of the debug session, and the
control bit is set to 0.

OFF System power is not requested by the debugger on a debug session start,
and the control bit is set to 0.

Format: SYStem.Option.DAP2SYSPWRUPREQ [AlwaysON | ON | OFF]

AlwaysON System power is requested by the debugger on a debug session start, and
the control bit is set to 1.
The system power is not released at the end of the debug session, and the
control bit remains at 1.

ON System power is requested by the debugger on a debug session start, and
the control bit is set to 1.
The system power is released at the end of the debug session, and the
control bit is set to 0.

OFF System power is not requested by the debugger on a debug session start,
and the control bit is set to 0.
Cortex-M Debugger | 102©1989-2024 Lauterbach

SYStem.Option.DAPNOIRCHECK No DAP instruction register check

Default: OFF.

Bug fix for derivatives which do not return the correct pattern on a DAP (Arm CoreSight Debug Access Port)
instruction register (IR) scan. When activated, the returned pattern will not be checked by the debugger.

SYStem.Option.DAPREMAP Rearrange DAP memory map

The Debug Access Port (DAP) can be used for memory access during runtime. If the mapping on the DAP is
different than the processor view, then this re-mapping command can be used

SYStem.Option.DEBUGPORTOptions Options for debug port handling

Default: SWITCHTOSWD.TryAll, SWDTRSTKEEP.DEFault.

See Arm CoreSight manuals to understand the used terms and abbreviations and what is going on here.

Format: SYStem.Option.DAPNOIRCHECK [ON | OFF]

Format: SYStem.Option.DAPREMAP {<address_range> <address>}

NOTE: Up to 16 <address_range>/<address> pairs are possible. Each pair has to contain
an address range followed by a single address.

Format: SYStem.Option.DEBUGPORTOptions <option>

<option>: SWITCHTOSWD.[TryAll | None | JtagToSwd | LuminaryJtagToSwd | Dor-
mantToSwd | JtagToDormantToSwd]
SWDTRSTKEEP.[DEFault | LOW | HIGH]
Cortex-M Debugger | 103©1989-2024 Lauterbach

SWITCHTOSWD tells the debugger what to do in order to switch the debug port to serial wire mode:

SWDTRSTKEEP tells the debugger what to do with the nTRST signal on the debug connector during serial
wire operation. This signal is not required for the serial wire mode but might have effect on some target
boards, so that it needs to have a certain signal level.

SYStem.Option.DIAG Activate more log messages

Default: OFF.

Adds more information to the report in the SYStem.LOG.List window.

TryAll Try all switching methods in the order they are listed below. This is
the default. Normally it does not hurt to try improper switching
sequences. Therefore this succeeds in most cases.

None There is no switching sequence required. The SW-DP is ready
after power-up. The debug port of this device can only be used as
SW-DP.

JtagToSwd Switching procedure as it is required on SWJ-DP without a
dormant state. The device is in JTAG mode after power-up.

LuminaryJtagToSwd Switching procedure as it is required on devices from
LuminaryMicro. The device is in JTAG mode after power-up.

DormantToSwd Switching procedure which is required if the device starts up in
dormant state. The device has a dormant state but does not
support JTAG.

JtagToDormantToSwd Switching procedure as it is required on SWJ-DP with a dormant
state. The device is in JTAG mode after power-up.

DEFault Use nTRST the same way as in JTAG mode which is typically a low-pulse
on debugger start-up followed by keeping it high.

LOW Keep nTRST low during serial wire operation.

HIGH Keep nTRST high during serial wire operation

Format: SYStem.Option.DIAG [ON | OFF]
Cortex-M Debugger | 104©1989-2024 Lauterbach

SYStem.Option.DisMode Define disassembler mode

Specifies the selected disassembler.

SYStem.Option.DUALPORT Implicitly use run-time memory access

All TRACE32 windows that display memory are updated while the processor is executing code (e.g.
Data.dump, List.auto, PER.view, Var.View). This setting has no effect if SYStem.MemAccess is disabled.

If only selected memory windows should update their content during runtime, leave
SYStem.Option.DUALPORT OFF and use the access class prefix E or the format option %E for the
specific windows.

Format: SYStem.Option.DisMode <option>

<option>: AUTO
ACCESS
ARM
THUMB
THUMBEE

AUTO
(default)

The information provided by the compiler output file is used for the
disassembler selection. If no information is available it has the same
behavior as the option ACCESS.

ACCESS The selected disassembler depends on the T bit in the CPSR or on the
selected access class. (e.g. Data.List SR:0 for ARM mode or
Data.List ST:0 for THUMB mode).

ARM Only the ARM disassembler is used (highest priority).

THUMB Only the THUMB disassembler is used (highest priority).

THUMBEE Only the THUMB disassembler is used which supports the Thumb-2
Execution Environment extension (highest priority).

Format: SYStem.Option.DUALPORT [ON | OFF]
Cortex-M Debugger | 105©1989-2024 Lauterbach

SYStem.Option.EnReset Allow the debugger to drive nRESET (nSRST)
[SYStem.state window> EnReset]

Default: ON.

If this option is disabled the debugger will never drive the nRESET (nSRST) line on the JTAG connector. This
is necessary if nRESET (nSRST) is no open collector or tristate signal.

From the view of the core, it is not necessary that nRESET (nSRST) becomes active at the start of a debug
session (SYStem.Up), but there may be other logic on the target which requires a reset.

SYStem.Option.FORCESECure Force secure memory access
[build 149151 - DVD 09/2022]

Default: OFF.

Forces default secure memory access for cores without TrustZone support. This option is only supported for
cores with generic AHB-AP.

SYStem.Option.IMASKASM Disable interrupts while single stepping
[SYStem.state window > IMASKASM]

Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during assembler single-step operations. The
interrupt routine is not executed during single-step operations. After a single step, the interrupt mask bits are
restored to the value before the step.

Format: SYStem.Option.EnReset [ON | OFF]

Format: SYStem.Option.FORCESECure [ON | OFF]

Format: SYStem.Option.IMASKASM [ON | OFF]
Cortex-M Debugger | 106©1989-2024 Lauterbach

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
[SYStem.state window > IMASKHLL]

Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during HLL single-step operations. The interrupt
routine is not executed during single-step operations. After a single step, the interrupt mask bits are restored
to the value before the step.

SYStem.Option.INTDIS Disable all interrupts

Default: OFF.

If this option is ON, all interrupts on the Arm core are disabled.

SYStem.Option.IntelSOC Slave core is part of Intel® SoC

Default: OFF.

Informs the debugger that the core is part of an Intel® SoC. When enabled, all IR and DR pre/post settings
are handled automatically, no manual configuration is necessary.

Requires that the debugger for this core is slave in a multicore setup with x86 as the master debugger and
that SYStem.Option.CLTAPOnly is enabled in the x86 debugger.

Format: SYStem.Option.IMASKHLL [ON | OFF]

Format: SYStem.Option.INTDIS [ON | OFF]

Format: SYStem.Option.IntelSOC [ON | OFF]
Cortex-M Debugger | 107©1989-2024 Lauterbach

SYStem.Option.LOCKRES Go to "Test-Logic Reset" when locked

This command is only available on obsolete ICD hardware. The state machine of the JTAG TAP controller is
switched to Test-Logic Reset state (ON) or to Run-Test/Idle state (OFF) before a SYStem.LOCK ON is
executed.

SYStem.Option.MDMAP Set debug option controlled by NXP MDM-AP
[build 121894 - DVD 09/2022]

Allows to set different debug option controlled by the NXP MDM-AP inside devices, where it is implemented.

Format: SYStem.Option.LOCKRES [ON | OFF]

Format: SYStem.Option.MDMAP <option>

<option>: DestructiveReset [ON | OFF]
FunctionalReset [ON | OFF]
HaltAfterPoWeRUP [ON | OFF]
DBGRSTFASTPAD [ON | OFF]
DBGRSTSLOWPAD [ON | OFF]
PORWDGDIS [ON | OFF]
WFIFIX [ON | OFF]

DestructiveReset
[ON | OFF]

Default: OFF.

Generates a destructive reset during SYSem.Up or SYStem.Mode.Go.

FunctionalReset
[ON | OFF]

Default: OFF.

Generates a functional (warm) reset during SYSem.Up or
SYStem.Mode.Go.

HaltAfterPoWeRUP
[ON | OFF]

Default: OFF.

Can be used to stop the master core on the first instruction after reset
from a power-up transition using SYStem.Mode.StandBy. This ensures,
that no code has been executed on the target, when first powering on the
target board.

DBGRSTFASTPAD
[ON | OFF]

Default: OFF.

Turning on the fast IO pins using for tracing.
Cortex-M Debugger | 108©1989-2024 Lauterbach

DBGRSTSLOWPAD
[ON | OFF]

Default: OFF.

Turning on the slow IO pins using for tracing.

PORWDGDIS [ON |
OFF]

Default: OFF.

Disabling the power watchdog inside the device.

WFIFIX [ON | OFF] Default: ON.

Workaround for WFI/WFE entrance of Cortex-M7 cores in some NXP
S32 devices. In case the debugger is disconnected from the target using
SYStem.Down, the set WFIFIX option ensures, that the Cortex-M7 still
can wake-up correctly from WFI/WFE state.
Cortex-M Debugger | 109©1989-2024 Lauterbach

SYStem.Option.MMUSPACES Enable space IDs
Only available for CPUs with MMUs

Default: OFF.

Enables the use of space IDs for logical addresses to support multiple address spaces.

For an explanation of the TRACE32 concept of address spaces (zone spaces, MMU spaces, and machine
spaces), see “TRACE32 Concepts” (trace32_concepts.pdf).

Examples:

Format: SYStem.Option.MMUSPACES [ON | OFF]
SYStem.Option.MMUspaces [ON | OFF] (deprecated)
SYStem.Option.MMU [ON | OFF] (deprecated)

NOTE: SYStem.Option.MMUSPACES should not be set to ON if only one translation
table is used on the target.

If a debug session requires space IDs, you must observe the following
sequence of steps:

1. Activate SYStem.Option.MMUSPACES.

2. Load the symbols with Data.LOAD.

Otherwise, the internal symbol database of TRACE32 may become
inconsistent.

;Dump logical address 0xC00208A belonging to memory space with
;space ID 0x012A:
Data.dump D:0x012A:0xC00208A

;Dump logical address 0xC00208A belonging to memory space with
;space ID 0x0203:
Data.dump D:0x0203:0xC00208A
Cortex-M Debugger | 110©1989-2024 Lauterbach

SYStem.Option.NoRunCheck No check of the running state

Default: OFF.

If this option is ON, it advises the debugger not to do any running check. In this case the debugger does not
even recognize that there will be no response from the processor. Therefore there always is the message
“running”, independent of whether the core is in power down or not. This can be used to overcome power
saving modes in case users know when a power saving mode happens and that they can manually de-
activate and re-activate the running check.

SYStem.Option.OVERLAY Enable overlay support

Default: OFF.

Example:

Format: SYStem.Option.NoRunCheck [ON | OFF]

NOTE: This command will affect the setting of SYStem.POLLING <stopped_mode>.

Format: SYStem.Option.OVERLAY [ON | OFF | WithOVS]

ON Activates the overlay extension and extends the address scheme of the
debugger with a 16 bit virtual overlay ID. Addresses therefore have the
format <overlay_id>:<address>. This enables the debugger to handle
overlaid program memory.

OFF Disables support for code overlays.

WithOVS Like option ON, but also enables support for software breakpoints. This
means that TRACE32 writes software breakpoint opcodes to both, the
execution area (for active overlays) and the storage area. This way, it is
possible to set breakpoints into inactive overlays. Upon activation of the
overlay, the target’s runtime mechanisms copies the breakpoint opcodes to
the execution area. For using this option, the storage area must be readable
and writable for the debugger.

SYStem.Option.OVERLAY ON
List.auto 0x2:0x11c4 ; List.auto <overlay_id>:<address>
Cortex-M Debugger | 111©1989-2024 Lauterbach

SYStem.Option.PALLADIUM Extend debugger timeout

Default: OFF.

The debugger uses longer timeouts as might be needed when used on a chip emulation system like the
Palladium from Cadence.

This option will only extend some timeouts by a fixed factor. It is recommended to extend all timeouts. This
can be done with SYStem.CONFIG.DEBUGTIMESCALE.

SYStem.Option.PSOCswdACQuire Debug port acquire for PSOC5

Default: OFF.

Allows switching USB pins into SWD mode using a Debug Port Acquire key on some Cypress PSOC5
devices during SYStem.Mode Up/Go/Prepare. This command is only available if it is supported by the
selected CPU.

SYStem.Option.PWRDWNRecover Mode to handle special power recovery

Some power saving states of Cortex-M controller additionally turn off the debug interface. The debugger
usually would go into SYStem.Down state with a “emulation debug port fail” error message. Turning on this
option the debugger assumes that the target has entered a power saving state and permanently tries to
reconnect to the device, so that the debug session will not go lost. Additionally the debugger tries to restore
all debug and trace registers, if possible.

Attention: This option will turn off basic debug connectivity checks. If there are problems with the debug
port, then they might not be detected. Instead of this false power down messages will be displayed.

Format: SYStem.Option.PALLADIUM [ON | OFF] (deprecated)
Use SYStem.CONFIG.DEBUGTIMESCALE instead.

Format: SYStem.Option.PSOCswdACQuire [ON | OFF]

Format: SYStem.Option.PWRDWNRecover [ON | OFF]
Cortex-M Debugger | 112©1989-2024 Lauterbach

SYStem.Option.ResBreak Halt the core after reset

Default: ON.

This option has to be disabled if the nTRST line is connected to the nRESET / nSRST line on the target. In
this case the CPU executes some cycles while the SYStem.Up command is executed. The reason for this
behavior is the fact that it is necessary to halt the core (enter debug mode) by a JTAG sequence. This
sequence is only possible while nTRST is inactive. In the following figure the marked time between the
deassertion of reset and the entry into debug mode is the time of this JTAG sequence plus a time delay
selectable by SYStem.Option.WaitReset (default = 3 msec).

If nTRST is available and not connected to nRESET/nSRST it is possible to force the CPU directly after
reset (without cycles) into debug mode. This is also possible by pulling nTRST fixed to VCC (inactive), but
then there is the problem that it is normally not ensured that the JTAG port is reset in normal operation. If the
ResBreak option is enabled the debugger first deasserts nTRST, then it executes a JTAG sequence to set
the DBGRQ bit in the ICE breaker control register and then it deasserts nRESET/nSRST.

Format: SYStem.Option.ResBreak [ON | OFF]

nSRST

nTRST

CPU State reset running debugconfig

JTAG
OK

Power
OK

Register
OK

CTI

CTI
OK

JTAG ID DAP register

reset debug

nSRST

nTRST

CPU State config

JTAG
OK

Power
OK

Register
OK

CTI

CTI
OK

DAP registerJTAG ID
Cortex-M Debugger | 113©1989-2024 Lauterbach

SYStem.Option.RESetREGister Generic software reset

Specifies a register on the target side, which allows the debugger to assert a software reset, in case no
nReset line is present on the JTAG header. The reset is asserted on SYStem.Up, SYStem.Mode.Go,
SYStem.Mode Prepare and SYStem.RESetOut. The specified address needs to be accessible during
runtime (for example E, DAP, AXI, AHB, APB).

SYStem.Option.RisingTDO Target outputs TDO on rising edge

Default: OFF.

Bug fix for chips which output the TDO on the rising edge instead of on the falling.

Format: SYStem.Option.RESetRegister NONE
SYStem.Option.RESetRegister <address>
 <mask>
 <assert_value>
 <deassert_value>
 [/<width>]

<width>: Byte | Word | Long | Quad

<address> Specifies the address of the target reset register.

<mask> The <assert_value> and <deassert_value> are written in a read-modify-
write operation. The mask specifies which bits are changed by the
debugger. Bits of the mask value which are ‘1’ are not changed inside the
reset register.

<assert_value> Value that is written to assert reset.

<deassert_value> Value that is written to deassert reset.

<width> Width used for register access. See also “Keywords for <width>”
(general_ref_d.pdf).

Format: SYStem.Option.RisingTDO [ON | OFF]
Cortex-M Debugger | 114©1989-2024 Lauterbach

SYStem.Option.SELECTDAP Select Cortex-M DAP

Selects if the Cortex-M core is debugged via the DAP (default) or DAP2. For debugging via DAP2 a second
DAP need to be present in the chip and need to be configured by SYStem.CONFIG.

SYStem.Option.SOFTLONG Use 32-bit access to set breakpoint

Default: OFF.

Instructs the debugger to use 32-bit accesses to patch the software breakpoint code.

SYStem.Option.SOFTWORD Use 16-bit access to set breakpoint

Default: OFF.

Instructs the debugger to use 16-bit accesses to patch the software breakpoint code.

SYStem.Option.STEPSOFT Use software breakpoints for ASM stepping

Default: OFF.

If set to ON, software breakpoints are used for single stepping on assembler level (advanced users only).

Format: SYStem.Option SELECTDAP [DAP | DAP2]

Format: SYStem.Option.SOFTLONG [ON | OFF]

Format: SYStem.Option.SOFTWORD [ON | OFF]

Format: SYStem.Option.STEPSOFT [ON | OFF]
Cortex-M Debugger | 115©1989-2024 Lauterbach

SYStem.Option.SYSPWRUPREQ Force system power

Default: ON.

This option controls the SYSPWRUPREQ bit of the CTRL/STAT register of the Debug Access Port (DAP). If
the option is ON, system power will be requested by the debugger on a debug session start.

This option is for target processors having a Debug Access Port (DAP).

SYStem.Option.SYSRESETREQ Allow system reset via the AIRC register

Default: depends on the selected CPU.

This option allows the debugger to assert a software reset using the SYSRESETREQ flag inside the
Application Interrupt and Reset Control Register (AIRCR) of the Cortex-M core. Its effect depends on the
implementation inside the microcontroller or SOC.

SYStem.Option.TRST Allow debugger to drive TRST
[SYStem.state window > TRST]

Default: ON.

If this option is disabled, the nTRST line is never driven by the debugger (permanent high). Instead five
consecutive TCK pulses with TMS high are asserted to reset the TAP controller which have the same effect.

Format: SYStem.Option.SYSPWRUPREQ [ON | OFF] (deprecated)
Use SYStem.Option.DAPSYSPWRUPREQ instead.

Format: SYStem.Option.SYSRESETREQ [ON | OFF]

Format: SYStem.Option.TRST [ON | OFF]
Cortex-M Debugger | 116©1989-2024 Lauterbach

SYStem.Option.VECTRESET Allow local reset via the AIRC register

Default: OFF.

Allows the debugger to assert a local software reset using the VECTRESET flag inside the Application
Interrupt and Reset Control Register (AIRCR) of the Cortex-M core. Its system wide effect depends on the
implementation inside the microcontroller or SOC.

This option is not available for ARMv6-M core.

SYStem.Option.WaitIDCODE IDCODE polling after deasserting reset
[

Default: OFF = disabled.

Allows to add additional busy time after reset. The command is limited to systems that use an Arm DAP.

If SYStem.Option.WaitIDCODE is enabled and SYStem.Option.ResBreak is disabled, the debugger
starts to busy poll the JTAG/SWD IDCODE until it is readable. For systems where JTAG/SWD is disabled
after RESET and e.g. enabled by the BootROM, this allows an automatic adjustment of the connection delay
by busy polling the IDCODE.

After deasserting nSRST and nTRST the debugger waits the time configured by
SYStem.Option.WaitReset till it starts to busy poll the JTAG/SWD IDCODE. As soon as the IDCODE is
readable, the regular connection sequence continues.

Example: The following figure shows a scenario with SYStem.Option.ResBreak disabled and
SYStem.Option.WaitIDCODE enabled. The polling mechanism tries to minimize the delay between the
JTAG/SWD disabled and debug state.

Format: SYStem.Option.VECTRESET [ON | OFF]

Format: SYStem.Option.WaitIDCODE [ON | OFF | <time>]

ON 1 second busy polling

OFF Disabled

<time> Configurable polling time, max. 30 sec, use ’us’, ’ms, ’s’ as units.
Cortex-M Debugger | 117©1989-2024 Lauterbach

SYStem.Option.WaitReset Wait with JTAG activities after deasserting reset
[SYStem.state window > WaitReset]

Default: OFF = 3 msec.

Allows to add additional wait time after reset.

If SYStem.Option.ResBreak is enabled, SYStem.Option.WaitReset should be set to OFF.

If SYStem.Option.ResBreak is disabled, SYStem.Option.WaitReset can be used to specify a waiting time
between the deassertion of nSRST and nTRST and the first JTAG activity. During this time the core may
execute some code, e.g to enable the JTAG port.

If SYStem.Option.WaitReset is disabled (OFF) and SYStem.Option.ResBreak is disabled, the debugger
waits 3 ms after the deassertion of nSRST and nTRST before the first JTAG/SWD activity.

If SYStem.Option.WaitReset <time> is specified and SYStem.Option.ResBreak is disabled, the debugger
waits the specified <time> after the deassertion of nSRST and nTRST before the first JTAG/SWD activity.

If SYStem.Option.WaitReset is enabled (ON) and SYStem.Option.ResBreak is disabled, the debugger
waits for at least 1 s, then it waits until nSRST is released from target side; the max. wait time is 35 s (see
picture below).

Format: SYStem.Option.WaitReset [ON | OFF | <time>]

ON 1 sec delay

OFF 3 msec delay

<time> Selectable time delay, min. 50 usec, max. 30 sec, use ’us’, ’ms, ’s’ as units.

nSRST

nTRST

CPU State

JTAG/SWD State disabled enabled

reset running wait for JTAG ID config debug

Polling Polling Power
OK

Register
OK

CTI

CTI
OK

DAP register
Cortex-M Debugger | 118©1989-2024 Lauterbach

If the chip additionally supports soft reset methods then the wait time can happen more than once.

SYStem.Option.WakeUpACKnowledge Set acknowledge after wake-up

Some targets additionally need an acknowledge by the debugger after a wake-up to be sure that debug and
trace are working correctly after leaving a deep sleep or power off state. Additionally to get this option to take
effect is, to set SYStem.Option.PWRDWNRecover ON.

Attention: Depending on the target setting this option may have an impact to the clock and power
management of the chip. The target software might behave differently, when this option is set.

SYStem.RESetOut Performs a reset

This command asserts the nSRST line on the JTAG connector and performs a software reset. This
command can be used independent if the core is running or halted.

SYStem.state Display SYStem.state window

Displays the SYStem.state window for Cortex-M.

Format: SYStem.Option.WakeUpACKnowledge [ON | OFF]

Format: SYStem.RESetOut

Format: SYStem.state

nTRST

nRESET (nSRST)

CPU State reset running debug

>1 s (ON)
Cortex-M Debugger | 119©1989-2024 Lauterbach

ARM Specific Benchmarking Commands

The BMC (BenchMark Counter) commands provide control of counters in the data watchpoint and trace unit
(DWT). The DWT can generate statistics on the operation of the processor and the memory system.

The counters of the DWT can be read at run-time, but the limited counter size (8-bit) leads to quick counter
overflows. A meaningful benchmarking analysis is possible if you let the ITM emit a trace packet each time
the counter overflows.

For information about architecture-independent BMC commands, refer to “BMC” (general_ref_b.pdf).

For information about architecture-specific BMC commands, see command descriptions below.

BMC.OFF Disable benchmark counters
[build 151054 - DVD 02/2023]

Disables TRACE32 BMC functionality.

BMC.ON Enable benchmark counters
[build 151054 - DVD 02/2023]

Enables TRACE32 BMC functionality.

BMC.SELect Select counter for statistic analysis

The exported event counter values can be combined with the exported instruction flow in order to get a
clearer understanding of the program behavior. The command BMC.SELect allows to specify which counter
is combined with the instruction flow to get a statistical evaluation.

Please refer to “BenchMarkCounter”, page 32 for information about the different counters.

Format: BMC.OFF

Format: BMC.ON

Format: BMC.SELect <counter>

<counter>: CPI | EXC | SLP | LSU | FLD | CYC
Cortex-M Debugger | 120©1989-2024 Lauterbach

BMC.Trace Activate BMC trace

Default: OFF.

Switches the ITM on in order to output the benchmark counter values through the instrumentation trace.

Format: BMC.Trace [ON | OFF]
Cortex-M Debugger | 121©1989-2024 Lauterbach

ARM specific TrOnchip Commands

Deprecated vs. New Commands

For information about architecture-specific TrOnchip commands, refer to the command descriptions in this
chapter.

TrOnchip.state Display on-chip trigger window

Opens the TrOnchip.state window.

NOTE: A number of commands from the TrOnchip command group have been
renamed to Break.CONFIG.<sub_cmd>.

In addition, these Break.CONFIG commands are now architecture-independent
commands, and as such they have been moved to general_ref_b.pdf.

Previously in this manual: Now in general_ref_b.pdf:

TrOnchip.CONVert (deprecated) Break.CONFIG.InexactAddress

TrOnchip.MatchASID (deprecated) Break.CONFIG.MatchASID

TrOnchip.VarCONVert (deprecated) Break.CONFIG.VarConvert

Format: TrOnchip.state
Cortex-M Debugger | 122©1989-2024 Lauterbach

TrOnchip.MatchASID Extend on-chip breakpoint/trace filter by ASID

Format: TrOnchip.MatchASID [ON | OFF] (deprecated)
TrOnchip.ASID [ON | OFF] (deprecated)
Use Break.CONFIG.MatchASID instead

OFF
(default)

Stop the program execution at on-chip breakpoint if the address matches.
Trace filters and triggers become active if the address matches.

ON Stop the program execution at on-chip breakpoint if both the address and
the ASID match.
Trace filters and triggers become active if both the address and the ASID
match.
Cortex-M Debugger | 123©1989-2024 Lauterbach

TrOnchip.CONVert Allow extension of address range of breakpoint

Controls for all on-chip read/write breakpoints whether the debugger is allowed to change the user-defined
address range of a breakpoint (see Break.Set <address_range> in the figure below).

The debug logic of a processor may be implemented in one of the following three ways:

1. The debug logic does not allow to set range breakpoints, but only single address breakpoints.
Consequently the debugger cannot set range breakpoints and returns an error message.

2. The debugger can set any user-defined range breakpoint because the debug logic accepts this
range breakpoint.

3. The debug logic accepts only certain range breakpoints. The debugger calculates the range that
comes closest to the user-defined breakpoint range (see “modified range” in the figure above).

Format: TrOnchip.CONVert [ON | OFF] (deprecated)
Use Break.CONFIG.InexactAddress instead

Range fits
to debug

logic?
No

Break.Set <addr_range>

Program
debug logic

Yes

Yes unmodified range

TrOnchip.
CONVert

OFF

ON
modified range

No

Error
Cortex-M Debugger | 124©1989-2024 Lauterbach

The TrOnchip.CONVert command covers case 3. For case 3) the user may decide whether the debugger is
allowed to change the user-defined address range of a breakpoint or not by setting TrOnchip.CONVert to
ON or OFF.

In the Break.List window, you can view the requested address range for all breakpoints, whereas in the
Break.List /Onchip window you can view the actual address range used for the on-chip breakpoints.

TrOnchip.RESERVE Reserve on-chip breakpoint comparators

Reserve on-chip breakpoint comparators to be used by the target application.

TrOnchip.RESet Reset on-chip trigger settings

Resets all TrOnchip settings.

ON
(default)

If TrOnchip.Convert is set to ON and a breakpoint is set to a range which
cannot be exactly implemented, this range is automatically extended to
the next possible range. In most cases, the breakpoint now marks a wider
address range (see “modified range” in the figure above).

OFF If TrOnchip.Convert is set to OFF, the debugger will only accept
breakpoints which exactly fit to the debug logic (see “unmodified range”
in the figure above).
If the user enters an address range that does not fit to the debug logic, an
error will be returned by the debugger.

Format: TrOnchip.RESERVE FP<x> [ON | OFF]

ON The on-chip breakpoint is used by the target application.

OFF
(default)

The on-chip breakpoint can be used by the debugger.

Format: TrOnchip.RESet
Cortex-M Debugger | 125©1989-2024 Lauterbach

TrOnchip.Set Set bits in the vector catch register

Default: ON.

Sets/resets the corresponding bits for vector catching. The bit causes a debug entry when the specified
vector is committed for execution. The availability of the vector catch type depends on the core type.

Format: TrOnchip.Set <exception> [ON | OFF]

<exception>: SFERR
HARDERR
INTERR
BUSERR
STATERR
CHKERR
NOCPERR
MMERR
CORERESET

SFERR Debug trap on secure fault.

HARDERR Debug trap on hard fault.

INTERR Debug trap on interrupt/exception service errors. These are a subset of
other faults and catches before BUSERR or HARDERR.

BUSERR Debug trap on normal bus error.

STATERR Debug trap on usage fault state errors.

CHKERR Debug trap on usage fault enabled checking errors.

NOCPERR Debug trap on usage fault access to coprocessor which is not present or
marked as not present in CAR register.

MMERR Debug trap on memory management faults.

CORERESET Reset vector catch. Halt running system if core reset occurs.
Cortex-M Debugger | 126©1989-2024 Lauterbach

TrOnchip.StepVector Step into exception handler

Default: OFF.

TrOnchip.StepVectorResume Catch exceptions and resume single step

Default: OFF.

When this command is set to ON, the debugger will catch exceptions and resume the single step.

Format: TrOnchip.StepVector [ON | OFF]

ON Step into exception handler.

OFF Step over exception handler.

Format: TrOnchip.StepVector [ON | OFF]
Cortex-M Debugger | 127©1989-2024 Lauterbach

TrOnchip.VarCONVert Convert breakpoints on scalar variables
f

Controls for all scalar variables whether the debugger sets an HLL breakpoint with Var.Break.Set only on
the start address of the scalar variable or on the entire address range covered by this scalar variable.

Format: TrOnchip.VarCONVert [ON | OFF] (deprecated)
Use Break.CONFIG.VarConvert instead

Program
debug logicYes

Yes unmodified range

Range fits
to debug

logic?

TrOnchip.
VarCONVert

ON
single address

TrOnchip.
CONVert

Var.Break.Set <scalar>

ON
modified range

O
F

F

No

OFF

ad
dr

ra
ng

e

No

OFF

Error
Cortex-M Debugger | 128©1989-2024 Lauterbach

In the Break.List window, you can view the requested address range for all breakpoints, whereas in the
Break.List /Onchip window you can view the actual address range used for the on-chip breakpoints.

ON If TrOnchip.VarCONVert is set to ON and a breakpoint is set to a scalar
variable (int, float, double), then the breakpoint is set only to the start
address of the scalar variable.
• Allocates only one single on-chip breakpoint resource.
• Program will not stop on accesses to the variable’s address space.

OFF
(default)

If TrOnchip.VarCONVert is set to OFF and a breakpoint is set to a scalar
variable (int, float, double), then the breakpoint is set to the entire address
range that stores the scalar variable value.
• The program execution stops also on any unintentional accesses

to the variable’s address space.
• Allocates up to two on-chip breakpoint resources for a single

range breakpoint.
NOTE: The address range of the scalar variable may not fit to the debug
logic and has to be converted by the debugger, see TrOnchip.CONVert.
Cortex-M Debugger | 129©1989-2024 Lauterbach

JTAG Connection

Pinout of the 20-pin Debug Cable:

For details on logical functionality, physical connector, alternative connectors, electrical characteristics,
timing behavior and printing circuit design hints refer to “Arm Debug and Trace Interface Specification”
(app_arm_target_interface.pdf).

Signal Pin Pin Signal
VREF-DEBUG 1 2 VSUPPLY (not used)

TRST- 3 4 GND
TDI 5 6 GND

TMS|TMSC|SWDIO 7 8 GND
TCK|TCKC|SWCLK 9 10 GND

RTCK 11 12 GND
TDO|-|SWO 13 14 GND

RESET- 15 16 GND
DBGRQ 17 18 GND

DBGACK 19 20 GND
Cortex-M Debugger | 130©1989-2024 Lauterbach

	Cortex-M Debugger
	History
	Warning
	Introduction
	Brief Overview of Documents for New Users
	Demo and Start-up Scripts

	Products for Debugging and Tracing Cortex-M Cores
	PowerDebug and Debug Cable
	µTrace (MicroTrace) (with MIPI20T-HS Whisker)
	PowerDebug and CombiProbe (with MIPI20T-HS Whisker)
	PowerDebug and CombiProbe (with CombiProbe MIPI34 Whisker)
	PowerDebug and PowerTrace (X-License)

	Quick Start of the JTAG Debugger
	Troubleshooting
	Communication between Debugger and Processor Cannot Be Established

	FAQ
	Trace Extensions
	Cortex-M Specific Implementations
	Breakpoints
	Software Breakpoints
	On-chip Breakpoints Cortex-M Armv6/v7
	On-chip Breakpoints Cortex-M Armv8

	Access Classes
	BenchMarkCounter
	Semihosting
	Virtual Terminal
	Runtime Measurement
	Trigger
	Micro Trace Buffer (MTB) for Cortex-M0+

	Cortex-M specific Onchip Commands
	Onchip.Mode.RAMPRIV SRAM privilege access
	Onchip.Mode.SFRWPRIV Special function register write access
	Onchip.Mode.TSTARTEN Enable TSTART signal
	Onchip.Mode.TSTOPEN Enable TSTOP signal
	Onchip.TBADDRESS Base address of the trace buffer

	Cortex-M specific SYStem Commands
	SYStem.CLOCK Inform debugger about core clock
	SYStem.CONFIG.state Display target configuration
	SYStem.CONFIG Configure debugger according to target topology
	<parameters> describing the “DebugPort”
	<parameters> describing the “JTAG” scan chain and signal behavior
	<parameters> describing a system level TAP “MultiTap”
	<parameters> configuring a CoreSight Debug Access Port “AP”
	<parameters> describing debug and trace “Components”
	<parameters> which are “Deprecated”

	SYStem.CONFIG.EXTWDTDIS Disable external watchdog
	SYStem.CPU Select the used CPU
	SYStem.JtagClock Define the frequency of the debug port
	SYStem.LOCK Tristate the JTAG port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Establish the communication with the target
	SYStem.Option Special setup
	SYStem.Option.BigEndian Define byte order (endianness)
	SYStem.Option.CFLUSHAFTERBREAK Flush data cache after break
	SYStem.Option.CLEARHARDFAULT Handle the HFSR[FORCED] bit
	SYStem.Option.CoreSightRESet Assert CPU reset via CTRL/STAT
	SYStem.Option.CORTEXMAHB AHB-AP type of the Cortex-M
	SYStem.Option.CypressACQuire Send acquire sequence
	SYStem.Option.DAPDBGPWRUPREQ Force debug power in DAP
	SYStem.Option.DAP2DBGPWRUPREQ Force debug power in DAP2
	SYStem.Option.DAPSYSPWRUPREQ Force system power in DAP
	SYStem.Option.DAP2SYSPWRUPREQ Force system power in DAP2
	SYStem.Option.DAPNOIRCHECK No DAP instruction register check
	SYStem.Option.DAPREMAP Rearrange DAP memory map
	SYStem.Option.DEBUGPORTOptions Options for debug port handling
	SYStem.Option.DIAG Activate more log messages
	SYStem.Option.DisMode Define disassembler mode
	SYStem.Option.DUALPORT Implicitly use run-time memory access
	SYStem.Option.EnReset Allow the debugger to drive nRESET (nSRST)
	SYStem.Option.FORCESECure Force secure memory access
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.Option.INTDIS Disable all interrupts
	SYStem.Option.IntelSOC Slave core is part of Intel® SoC
	SYStem.Option.LOCKRES Go to "Test-Logic Reset" when locked
	SYStem.Option.MDMAP Set debug option controlled by NXP MDM-AP
	SYStem.Option.MMUSPACES Enable space IDs
	SYStem.Option.NoRunCheck No check of the running state
	SYStem.Option.OVERLAY Enable overlay support
	SYStem.Option.PALLADIUM Extend debugger timeout
	SYStem.Option.PSOCswdACQuire Debug port acquire for PSOC5
	SYStem.Option.PWRDWNRecover Mode to handle special power recovery
	SYStem.Option.ResBreak Halt the core after reset
	SYStem.Option.RESetREGister Generic software reset
	SYStem.Option.RisingTDO Target outputs TDO on rising edge
	SYStem.Option.SELECTDAP Select Cortex-M DAP
	SYStem.Option.SOFTLONG Use 32-bit access to set breakpoint
	SYStem.Option.SOFTWORD Use 16-bit access to set breakpoint
	SYStem.Option.STEPSOFT Use software breakpoints for ASM stepping
	SYStem.Option.SYSPWRUPREQ Force system power
	SYStem.Option.SYSRESETREQ Allow system reset via the AIRC register
	SYStem.Option.TRST Allow debugger to drive TRST
	SYStem.Option.VECTRESET Allow local reset via the AIRC register
	SYStem.Option.WaitIDCODE IDCODE polling after deasserting reset
	SYStem.Option.WaitReset Wait with JTAG activities after deasserting reset
	SYStem.Option.WakeUpACKnowledge Set acknowledge after wake-up
	SYStem.RESetOut Performs a reset
	SYStem.state Display SYStem.state window

	ARM Specific Benchmarking Commands
	BMC.OFF Disable benchmark counters
	BMC.ON Enable benchmark counters
	BMC.SELect Select counter for statistic analysis
	BMC.Trace Activate BMC trace

	ARM specific TrOnchip Commands
	TrOnchip.state Display on-chip trigger window
	TrOnchip.MatchASID Extend on-chip breakpoint/trace filter by ASID
	TrOnchip.CONVert Allow extension of address range of breakpoint
	TrOnchip.RESERVE Reserve on-chip breakpoint comparators
	TrOnchip.RESet Reset on-chip trigger settings
	TrOnchip.Set Set bits in the vector catch register
	TrOnchip.StepVector Step into exception handler
	TrOnchip.StepVectorResume Catch exceptions and resume single step
	TrOnchip.VarCONVert Convert breakpoints on scalar variables

	JTAG Connection

