
MANUAL

Release 09.2024

C5000 Debugger

C5000 Debugger

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents ..

 ICD In-Circuit Debugger ..

 Processor Architecture Manuals ..

 TI DSPs ...

 C5000 Debugger ... 1

 Introduction ... 6

 Brief Overview of Documents for New Users 6

 Demo and Start-up Scripts 6

 Converter from GEL to PRACTICE .. 7

 Warning .. 7

 DSP specific Implementations ... 8

 Trigger 8

 Breakpoints 8

 Software Breakpoints 8

 On-chip Breakpoints for Instructions 8

 On-chip Breakpoints for Data 8

 Memory Classes 9

 DSP specific SYStem Commands ... 10

 SYStem.Option.IMASKASM Disable interrupts while single stepping 10

 SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 10

 SYStem.CPU Select the used CPU 10

 SYStem.JtagClock Define JTAG frequency 11

 SYStem.MemAccess Select run-time memory access method 12

 SYStem.Mode Establish the communication with the target 13

 SYStem.CONFIG.state Display target configuration 14

 SYStem.CONFIG Configure debugger according to target topology 16

 <parameters> describing the “DebugPort” 21

 <parameters> describing the “JTAG” scan chain and signal behavior 24

 <parameters> describing a system level TAP “MultiTap” 28

 <parameters> configuring a CoreSight Debug Access Port “AP” 30

 <parameters> describing debug and trace “Components” 36

 <parameters> which are “Deprecated” 45

 SYStem.Option.AHBHPROT Select AHB-AP HPROT bits 49
C5000 Debugger | 2©1989-2024 Lauterbach

 SYStem.Option.AXIACEEnable ACE enable flag of the AXI-AP 49

 SYStem.Option.AXICACHEFLAGS Configure AXI-AP cache bits 49

 SYStem.Option.AXIHPROT Select AXI-AP HPROT bits 50

 SYStem.Option.ByteMode Define byte mode 50

 SYStem.Option.DAPDBGPWRUPREQ Force debug power in DAP 51

 SYStem.Option.DAPSYSPWRUPREQ Force system power in DAP 51

 SYStem.Option.DAPREMAP Rearrange DAP memory map 52

 SYStem.Option.DEBUGPORTOptions Options for debug port handling 52

 SYStem.Option.DAPNOIRCHECK No DAP instruction register check 53

 SYStem.Option.DUALPORT Implicitly use run-time memory access 54

 SYStem.Option.EnReset Allow the debugger to drive nRESET (nSRST) 54

 SYStem.LOCK Tristate the JTAG port 54

 SYStem.Option.EnTRST Control TAP reset 55

 SYStem.Option.INTDIS Disable all interrupts 55

 SYStem.Option.MUHP High-priority memory access 55

 SYStem.Option.OVERLAY Enable overlay support 56

 SYStem.Option.PWRDWN Allow power-down mode 56

 SYStem.Option.TargetServer Use target server from TI 57

 SYStem.Option.TURBO Use DMA for write accesses 57

 SYStem.RESetOut Reset the DSP 57

 SYStem.Option.CToolsDecoder Use TI’s trace decoder software 58

 SYStem.Option.CtoolsNoSync CToolsNoSync 58

 CPU specific BenchMarkCounter Commands .. 59

 BMC.<counter>.ATOB Advise counter to count within AB-range 59

 BMC.<counter>.EVENT Assign event to counter 60

 TrOnchip Commands .. 61

 TrOnchip.state Display on-chip trigger window 61

 TrOnchip.CONVert Adjust range breakpoint in on-chip resource 61

 C55X specific TrOnchip Commands ... 62

 TrOnchip.ATOB Activate on-chip breakpoints in AB-range 62

 TrOnchip.BMCTR Configure the benchmark counter 62

 TrOnchip.CLOCK Set the clock for the benchmark counter 66

 TrOnchip.CoefficientAccess AET trigger optimization 66

 TrOnchip.DualAccess AET trigger optimization 66

 TrOnchip.PROfile Display the benchmark data 66

 TrOnchip.RESet Set on-chip trigger to default state 67

 Tracing ... 68

 Controlling the Trace Capture 68

 Trace Breakpoints 68

 JTAG Connection .. 69

 Mechanical Description of the 20-pin Debug Cable 69

 Electrical Description of the 20-pin Debug Cable 70
C5000 Debugger | 3©1989-2024 Lauterbach

 Mechanical Description of the 14-pin Debug Cable 71

 Electrical Description of the 14-pin Debug Cable 71

 Mechanical Description of the TI Connector 72

 FAQ ... 72

 Operation Voltage ... 73
C5000 Debugger | 4©1989-2024 Lauterbach

C5000 Debugger

Version 05-Oct-2024
C5000 Debugger | 5©1989-2024 Lauterbach

Introduction

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by
Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your
first choice.

Brief Overview of Documents for New Users

Architecture-independent information:

• “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.

• “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Demo and Start-up Scripts

Lauterbach provides ready-to-run start-up scripts for known C5000 based hardware.

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:

• Type at the command line: WELCOME.SCRIPTS

• or choose File menu > Search for Script.

You can now search the demo folder and its subdirectories for PRACTICE start-up scripts
(*.cmm) and other demo software.

You can also manually navigate in the ~~/demo/c5000/ subfolder of the system directory of TRACE32.
C5000 Debugger | 6©1989-2024 Lauterbach

Converter from GEL to PRACTICE

The General Extension Language (GEL) is an interpretive language similar to C that lets you create
functions to extend Code Composer Studio’s usefulness. The converter allows you to convert GEL language
into PRACTICE scripts (*.cmm), which can be used directly in TRACE32.

For more detailed information on that converter please refer to “Converter from GEL to PRACTICE”
(converter_gel.pdf).

Warning

WARNING: To prevent debugger and target from damage it is recommended to connect or
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

1. Disconnect the Debug Cable from the target while the target power is
off.

2. Connect the host system, the TRACE32 hardware and the Debug
Cable.

3. Power ON the TRACE32 hardware.

4. Start the TRACE32 software to load the debugger firmware.

5. Connect the Debug Cable to the target.

6. Switch the target power ON.

7. Configure your debugger e.g. via a start-up script.

Power down:

1. Switch off the target power.

2. Disconnect the Debug Cable from the target.

3. Close the TRACE32 software.

4. Power OFF the TRACE32 hardware.
C5000 Debugger | 7©1989-2024 Lauterbach

DSP specific Implementations

Trigger

A bidirectional trigger system allows the following two events:

• Trigger an external system (e.g. logic analyzer) if the program execution is stopped.

• Stop the program execution if an external trigger is asserted.

For more information refer to the TrBus command.

Breakpoints

Software Breakpoints

If a software breakpoint is used, the original code at the breakpoint location is temporarily patched by a
breakpoint code. There is no restriction in the number of software breakpoints.

On-chip Breakpoints for Instructions

If on-chip breakpoints are used, the resources to set the breakpoints are provided by the CPU. Those CPU
resources only allow to set single address instruction breakpoints.

On-chip Breakpoints for Data

To stop the CPU after a read or write access to a memory location on-chip breakpoints are required. In the
DSP notation these breakpoints are called watch points (WP).

Overview

• On-chip breakpoints: Total amount of available on-chip breakpoints.

• Instruction breakpoints: Number of on-chip breakpoints that can be used to set program
breakpoints into ROM/FLASH/EPROM.

• Read/Write breakpoints: Number of on-chip breakpoints that can be used as Read or Write
breakpoints.

• Data Value breakpoint: Number of on-chip data breakpoints that can be used to stop the
program when a specific data value is written to an address or when a specific data value is read
from an address.
C5000 Debugger | 8©1989-2024 Lauterbach

Memory Classes

The following DSP specific memory classes are available.

To access a memory class, write the class in front of the address.

Example:

Core
On-chip
breakpoints

Instruction
breakpoints

Read/Write
breakpoint

Data Value
breakpoints

C54x 2 2 single address — —

C55x 4 up to 4 single
address

up to 3 data,
1 breakpoint
range and 2 bit
masks

up to 3

Memory Class Description

P Program Memory

D Data Memory

IO Input/Output Area

VM Virtual Memory (memory on the debug system)

E Emulation Memory, Pseudo Dualport Access to Memory
(see SYStem.CpuAccess)

Data.dump IO:0- -3
C5000 Debugger | 9©1989-2024 Lauterbach

DSP specific SYStem Commands

SYStem.Option.IMASKASM Disable interrupts while single stepping

Default: OFF.

Interrupts are disabled during an assembler single-step operations, if this option is "ON".

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping

Default: OFF.

Interrupts are disabled during HLL single-step operations, if this option is "ON".

SYStem.CPU Select the used CPU

Default selection: C55XX. Selects the processor type. If your ASIC is not listed, select the type of the
integrated DSP core.

Format: SYStem.Option.IMASKASM [ON | OFF]

Format: SYStem.Option.IMASKHLL [ON | OFF]

Format: SYStem.CPU <cpu>

<cpu>: C55XX | C5510 | OMAP1510 | OMAP1610 | LEAD3PH2 | LEAD3PH3 | …
C5000 Debugger | 10©1989-2024 Lauterbach

SYStem.JtagClock Define JTAG frequency

Default frequency: 10 MHz.

Selects the JTAG port frequency (TCK) used by the debugger to communicate with the processor. The
frequency affects e.g. the download speed. It could be required to reduce the JTAG frequency if there are
buffers, additional loads or high capacities on the JTAG lines or if VTREF is very low. A very high frequency
will not work on all systems and will result in an erroneous data transfer. Therefore we recommend to use
the default setting if possible.

Format: SYStem.JtagClock [<frequency> | RTCK | RTCK <frequency>] |
 ARTCK <frequency>]

<frequency>: 10000. … 80000000.

<frequency> The debugger cannot select all frequencies accurately. It chooses the
next possible frequency and displays the real value in the "System
Settings" window.
Besides a decimal number like "100000." short forms like "10kHz" or
"15MHz" can also be used. The short forms imply a decimal value,
although no"." is used.

RTCK The JTAG clock is controlled by the RTCK signal (Returned TCK).
On some processor derivatives including an ARM core (e.g. OMAP)
there is the need to synchronize the processor clock and the JTAG clock.
In this case RTCK shall be selected. Synchronization is maintained,
because the debugger does not progress to the next TCK edge until after
an RTCK edge is received.

When RTCK is selected, the maximum reachable frequency is limited to
10 MHz. This limit can be changed by adding the frequency parameter. A
limitation is required that the JTAG clock speed can not become higher
than the physical interface can manage.

Example: SYStem.JtagClock RTCK 20MHz

ARTCK Accelerated method to control the JTAG clock by the RTCK signal
(Accelerated Returned TCK).

RTCK mode allows theoretical frequencies up to 1/6 of the processor
clock. For designs using a very low processor clock we offer a different
mode (ARTCK) which does not work as recommended by ARM and
might not work on all target systems. In ARTCK mode the debugger uses
a fixed JTAG frequency for TCK, independent of the RTCK signal. This
frequency must be specified by the user and has to be below 1/2 of the
processor clock speed. The signal RTCK clocks TDI and TMS and
controls the sampling of TDO.
C5000 Debugger | 11©1989-2024 Lauterbach

SYStem.MemAccess Select run-time memory access method

Default: Denied.

CTCK With this option higher debug port speeds can be reached. The
TDO/SWDIO signal will be sampled by a signal which derives from
TCK/SWCLK, but which is timely compensated regarding the debugger-
internal driver propagation delays (Compensation by TCK). This feature
can be used with a debug cable version 3 or newer. If it is selected,
although the debug cable is not suitable, a fixed frequency will be
selected instead (minimum of 10 MHz and selected clock).

CRTCK With this option higher debug port speeds can be reached. The
TDO/SWDIO signal will be sampled by the RTCK signal. This compensates
the debugger-internal driver propagation delays, the delays on the cable and
on the target (Compensation by RTCK). This feature requires that the target
provides an RTCK signal. In contrast to the RTCK option, the TCK/SWCLK
is always output with the selected, fixed frequency.

Format: SYStem.MemAccess <mode>

<mode>: Enable
Denied
StopAndGo

Enable
CPU (deprecated)

Access is made without CPU intervention. This is only possible on the
instruction set simulator.

StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed. For
more information, see below.

Denied No memory access is possible without stopping the CPU.
C5000 Debugger | 12©1989-2024 Lauterbach

SYStem.Mode Establish the communication with the target

Default: Down.

Configures how the debugger connects to the target and how the target is handled.

Format: SYStem.Mode <mode>

SYStem.Attach (alias for SYStem.Mode Attach)
SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)

<mode>: Down
NoDebug
Prepare
Go
Attach
StandBy
Up

Down Disables the debugger. The state of the CPU remains unchanged. The
JTAG port is tristated.

NoDebug Disables the debugger. The state of the CPU remains unchanged. The
JTAG port is tristated.

Prepare The debugger initializes the debug port (JTAG, SWD, cJTAG) and
CoreSight DAP interface, but does not connect to the CPU.
This debug mode is used if the CPU shall not be debugged or bypassed,
i.e. the debugger can access the memory busses, such as AXI, AHB and
APB, directly through the memory access ports of the CoreSight DAP.

Typical use cases:
• The debugger accesses (physical) memory and bypasses the CPU

if a mapping exists. Memory might require initialization before it can
be accessed.

• The debugger accesses peripherals, e.g. for configuring registers
prior to stopping the CPU in debug mode. Peripherals might need to
be clocked and powered before they can be accessed.

• Third-party software or proprietary debuggers use the TRACE32
API (application programming interface) to access the debug port
and DAP via the TRACE32 debugger hardware.

Go Resets the target via the reset line, initializes the debug port (JTAG, SWD,
cJTAG), and starts the program execution. For a reset, the reset line has to
be connected to the debug connector.
Program execution can, for example, be stopped by the Break command.
C5000 Debugger | 13©1989-2024 Lauterbach

SYStem.CONFIG.state Display target configuration

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target
configuration settings. The configuration settings tell the debugger how to communicate with the chip on
the target board and how to access the on-chip debug and trace facilities in order to accomplish the
debugger’s operations.

Alternatively, you can modify the target configuration settings via the TRACE32 command line with the
SYStem.CONFIG commands. Note that the command line provides additional SYStem.CONFIG
commands for settings that are not included in the SYStem.CONFIG.state window.

Attach No reset happens, the mode of the core (running or halted) does not
change. The debug port (JTAG, SWD, cJTAG) will be initialized.
After this command has been executed, the user program can, for
example, be stopped with the Break command.

StandBy Keeps the target in reset via the reset line and waits until power is
detected. For a reset, the reset line has to be connected to the debug
connector.

Once power has been detected, the debugger restores as many debug
registers as possible (e.g. on-chip breakpoints, vector catch events, trace
control) and releases the CPU from reset to start the program execution.

When a CPU power-down is detected, the debugger switches
automatically back to the StandBy mode. This allows debugging of a
power cycle because debug registers will be restored on power-up.

NOTE: Usually only on-chip breakpoints and vector catch events can be
set while the CPU is running. To set a software breakpoint, the CPU has to
be stopped.

Up Resets the target via the reset line, initializes the debug port (JTAG, SWD,
cJTAG), stops the CPU, and enters debug mode.
For a reset, the reset line has to be connected to the debug connector.
The current state of all registers is read from the CPU.

Format: SYStem.CONFIG.state [/<tab>]

<tab>: DebugPort | Jtag | MultiTap | AccessPorts | COmponents
C5000 Debugger | 14©1989-2024 Lauterbach

<tab> Opens the SYStem.CONFIG.state window on the specified tab. For tab
descriptions, see below.

DebugPort
(default)

The DebugPort tab informs the debugger about the debug connector
type and the communication protocol it shall use.

For descriptions of the commands on the DebugPort tab, see
DebugPort.

Jtag The Jtag tab informs the debugger about the position of the Test Access
Ports (TAP) in the JTAG chain which the debugger needs to talk to in
order to access the debug and trace facilities on the chip.

For descriptions of the commands on the Jtag tab, see Jtag.

MultiTap Informs the debugger about the existence and type of a System/Chip
Level Test Access Port. The debugger might need to control it in order to
reconfigure the JTAG chain or to control power, clock, reset, and security
of different chip components.

For descriptions of the commands on the MultiTap tab, see MultiTap.

AccessPorts This tab informs the debugger about an Arm CoreSight Access Port (AP)
and about how to control the AP to access chip-internal memory busses
(AHB, APB, AXI) or chip-internal JTAG interfaces.

For a descriptions of a corresponding commands, refer to AP.

COmponents The COmponents tab informs the debugger (a) about the existence and
interconnection of on-chip CoreSight debug and trace modules and (b)
informs the debugger on which memory bus and at which base address
the debugger can find the control registers of the modules.

For descriptions of the commands on the COmponents tab, see
COmponents.
C5000 Debugger | 15©1989-2024 Lauterbach

SYStem.CONFIG Configure debugger according to target topology

Format: SYStem.CONFIG <parameter>
SYStem.MultiCore <parameter> (deprecated)

<parameter>:
(DebugPort)

CJTAGFLAGS <flags> (C7000 only)
CONNECTOR [MIPI34 | MIPI20T] (C7000 only)
CORE <core> <chip>
CoreNumber <number>
DEBUGPORT [DebugCable0 | DebugCableA | DebugCableB]
DEBUGPORTTYPE [JTAG | SWD | CJTAG]
Slave [ON | OFF]
SWDP [ON | OFF] (C7000 only)
SWDPIdleHigh [ON | OFF]
SWDPTargetSel <value>
TriState [ON | OFF]

<parameter>:
(JTAG cont.)

DAPDRPOST <bits>
DAPDRPRE <bits>
DAPIRPOST <bits>
DAPIRPRE <bits>

DRPOST <bits>
DRPRE <bits>

ETBDRPOST <bits> (C5000 only)
ETBDRPRE <bits> (C5000 only)
ETBIRPOST<bits> (C5000 only)
ETBIRPRE <bits> (C5000 only)

<parameter>:
(JTAG cont.)

IRPOST<bits>
IRPRE <bits>

Slave [ON | OFF]
TAPState <state>
TCKLevel <level>
TriState [ON | OFF]

<parameter>:
(MultiTap)

DAPTAP <tap>
DEBUGTAP <tap>
ETBTAP <tap> (C5000 only)
MULTITAP [NONE | IcepickA | IcepickB | IcepickC | IcepickD | IcepickBB |
 IcepickBC | IcepickCC | IcepickDD |
 JtagSEQuence <sub_cmd>]
NJCR <tap>
SLAVETAP <tap>
C5000 Debugger | 16©1989-2024 Lauterbach

<parameter>:
(AccessPorts
)

AHBAPn.Base <address>
AHBAPn.HPROT [<value> | <name>]
AHBAPn.Port <port>
AHBAPn.RESet
AHBAPn.view
AHBAPn.XtorName <name>

APBAPn.Base <address>
APBAPn.HPROT [<value> | <name>]
APBAPn.Port <port>
APBAPn.RESet
APBAPn.view
APBAPn.XtorName <name>

AXIAPn.ACEEnable [ON | OFF]
AXIAPn.Base <address>
AXIAPn.CacheFlags <value>
AXIAPn.HPROT [<value> | <name>]
AXIAPn.Port <port>
AXIAPn.RESet
AXIAPn.view
AXIAPn.XtorName <name>

DEBUGAPn.Port <port>
DEBUGAPn.RESet
DEBUGAPn.view
DEBUGAPn.XtorName <name>

JTAGAPn.Base <address>
JTAGAPn.Port <port>
JTAGAPn.CorePort <port>
JTAGAPn.RESet
JTAGAPn.view
JTAGAPn.XtorName <name>

<parameter>:
(AccessPorts
cont.)

MEMORYAPn.HPROT [<value> | <name>]
MEMORYAPn.Port <port>
MEMORYAPn.RESet
MEMORYAPn.view
MEMORYAPn.XtorName <name>

<parameter>:
(COmponents)

ADTF.Base <address>
ADTF.RESet
ADTF.Type [NONE | ADTF | ADTF2 | GEM]
ADTF.view

AET.Base <address> (C5000, C6000, C7000 only)
AET.RESet (C5000, C6000, C7000 only)
AET.view (C5000, C6000, C7000 only)
C5000 Debugger | 17©1989-2024 Lauterbach

<parameter>:
(COmponents
cont.)

CMI.Base <address>
CMI.RESet
CMI.TraceID <id>
CMI.view

COREDEBUG.Base <address> (C7000 only)
COREDEBUG.RESet (C7000 only)
COREDEBUG.view (C7000 only)

CTI.Base <address>
CTI.Config [NONE | ARMV1 | ARMPostInit | OMAP3 | TMS570 | CortexV1 |

 QV1]
CTI.RESet
CTI.view

DRM.Base <address>
DRM.RESet
DRM.view

EPM.Base <address>
EPM.RESet
EPM.view

ETB.ATBSource <source>
ETB.Base <address>
ETB.Name <string>
ETB.NoFlush [ON | OFF]
ETB.RESet
ETB.Size <size>
ETB.STackMode [NotAvailbale | TRGETM | FULLTIDRM | NOTSET | FULL-

STOP | FULLCTI]
ETB.view

<parameter>:
(COmponents
cont.)

FUNNEL.ATBSource <sourcelist>
FUNNEL.Base <address>
FUNNEL.Name <string>
FUNNEL.PROGrammable [ON | OFF]
FUNNEL.RESet
FUNNEL.view

OCP.Base <address>
OCP.RESet
OCP.TraceID <id>
OCP.view

PMI.Base <address>
PMI.RESet
PMI.TraceID <id>
PMI.view
C5000 Debugger | 18©1989-2024 Lauterbach

<parameter>:
(Components
cont.)

REP.ATBSource <source>
REP.Base <address>
REP.Name <string>
REP.RESet
REP.view

SC.Base <address>
SC.RESet
SC.TraceID <id>
SC.view

STM.Base <address>
STM.Mode [None | SDTI | STP | STP64 | STPv2 | STPv2LE]
STM.Name <string>
STM.RESet
STM.Type [None | GenericARM | SDTI | TI]
STM.view

TBR.ATBSource <source>
TBR.Base <address>
TBR.Name <string>
TBR.NoFlush [ON | OFF]
TBR.RESet
TBR.STackMode [NotAvailbale | TRGETM | FULLTIDRM | NOTSET | FULL-
STOP | FULLCTI]
TBR.view

TPIU.ATBSource <source>
TPIU.Base <address>
TPIU.Name <string>
TPIU.RESet
TPIU.Type [CoreSight | Generic]
TPIU.view

<parameter>:
(Components
cont.)

TRACEPORT.Name
TRACEPORT.RESet
TRACEPORT.TraceSource
TRACEPORT.Type
TRACEPORT.view

TRC.Base <address> (C7000 only)
TRC.RESet (C7000 only)
TRC.view (C7000 only)

<parameter>:
(Deprecated)

COREBASE <address>
CTIBASE <address>
DEBUGBASE <address>
ETBBASE <address>
ETBFUNNELBASE <address>
ETFBASE <address>
ETMBASE <address>
C5000 Debugger | 19©1989-2024 Lauterbach

The SYStem.CONFIG commands inform the debugger about the available on-chip debug and trace
components and how to access them.

This is a common description of the SYStem.CONFIG command group for the TI C2000, C5000, C6000
and C7000 DSPs. Each debugger will provide only a subset of these commands. Some commands need a
certain CPU type selection (SYStem.CPU <type>) to become active and it might additionally depend on
further settings.

Ideally you can select with SYStem.CPU the chip you are using which causes all setup you need and you do
not need any further SYStem.CONFIG command.

The SYStem.CONFIG command information shall be provided after the SYStem.CPU command, which
might be a precondition to enter certain SYStem.CONFIG commands, and before you start up the debug
session e.g. by SYStem.Up.

<parameter>:
(Deprecated cont.)

FUNNEL2BASE <address>
FUNNELBASE <address>
HTMBASE <address>
ITMBASE <address>
RTPBASE <address>
SDTIBASE <address>
STMBASE <address>
TIADTFBASE <address>
TIDRMBASE <address>
TIEPMBASE <address>
TIOCPBASE <address>
TIOCPTYPE <type>
TIPMIBASE <address>
TISCBASE <address>
TISTMBASE <address>
TPIUBASE <address>
TPIUFUNNELBASE <address>
TRACEETBFUNNELPORT <port>
TRACEFUNNELPORT<port>
TRACETPIUFUNNELPORT <port>
view

AHBACCESSPORT <port>
APBACCESSPORT <port>
AXIACCESSPORT <port>
COREJTAGPORT <port>
DEBUGACCESSPORT <port>
JTAGACCESSPORT <port>
MEMORYACCESSPORT <port>
C5000 Debugger | 20©1989-2024 Lauterbach

<parameters> describing the “DebugPort”

CJTAGFLAGS <flags> Activates bug fixes for “cJTAG” implementations.
Bit 0: Disable scanning of cJTAG ID.
Bit 1: Target has no “keeper”.
Bit 2: Inverted meaning of SREDGE register.
Bit 3: Old command opcodes.
Bit 4: Unlock cJTAG via APFC register.

Default: 0

CONNECTOR
[MIPI34 | MIPI20T]

Specifies the connector “MIPI34” or “MIPI20T” on the target. This
is mainly needed in order to notify the trace pin location.

Default: MIPI34 if CombiProbe is used, MIPI20T if µTrace
(MicroTrace) is used.

CORE <core> <chip> The command helps to identify debug and trace resources which
are commonly used by different cores. The command might be
required in a multicore environment if you use multiple debugger
instances (multiple TRACE32 PowerView GUIs) to simultaneously
debug different cores on the same target system.

Because of the default setting of this command

debugger#1: <core>=1 <chip>=1
debugger#2: <core>=1 <chip>=2
...

each debugger instance assumes that all notified debug and trace
resources can exclusively be used.

But some target systems have shared resources for different
cores, for example a common trace port. The default setting
causes that each debugger instance controls the same trace port.
Sometimes it does not hurt if such a module is controlled twice.
But sometimes it is a must to tell the debugger that these cores
share resources on the same <chip>. Whereby the “chip” does not
need to be identical with the device on your target board:

debugger#1: <core>=1 <chip>=1
debugger#2: <core>=2 <chip>=1
C5000 Debugger | 21©1989-2024 Lauterbach

CORE <core> <chip>

(cont.)

For cores on the same <chip>, the debugger assumes that the
cores share the same resource if the control registers of the
resource have the same address.

Default:
<core> depends on CPU selection, usually 1.
<chip> derived from CORE= parameter in the configuration file
(config.t32), usually 1. If you start multiple debugger instances with
the help of t32start.exe, you will get ascending values (1, 2, 3,...).

CoreNumber <number> Number of cores to be considered in an SMP (symmetric
multiprocessing) debug session. There are core types which can
be used as a single core processor or as a scalable multicore
processor of the same type. If you intend to debug more than one
such core in an SMP debug session you need to specify the
number of cores you intend to debug.

Default: 1.

DEBUGPORT
[DebugCable0 | DebugCa-
bleA | DebugCableB]

It specifies which probe cable shall be used e.g. “DebugCableA” or
“DebugCableB”. At the moment only the CombiProbe allows to
connect more than one probe cable.

Default: depends on detection.

DEBUGPORTTYPE
[JTAG | SWD | CJTAG]

It specifies the used debug port type “JTAG”, “SWD”, “CJTAG”,
“CJTAG-SWD”. It assumes the selected type is supported by the
target.

Default: JTAG.

What is NIDnT?

NIDnT is an acronym for “Narrow Interface for Debug and Test”.
NIDnT is a standard from the MIPI Alliance, which defines how to
reuse the pins of an existing interface (like for example a microSD
card interface) as a debug and test interface.

To support the NIDnT standard in different implementations,
TRACE32 has several special options:

Slave [ON | OFF] If several debuggers share the same debug port, all except one
must have this option active.

JTAG: Only one debugger - the “master” - is allowed to control the
signals nTRST and nSRST (nRESET). The other debuggers need
to have the setting Slave ON.

Default: OFF.
Default: ON if CORE=... >1 in the configuration file (e.g. config.t32).
C5000 Debugger | 22©1989-2024 Lauterbach

SWDP [ON | OFF] With this command you can change from the normal JTAG
interface to the serial wire debug mode. SWDP (Serial Wire Debug
Port) uses just two signals instead of five. It is required that the
target and the debugger hard- and software supports this
interface.

Default: OFF.

SWDPIdleHigh
[ON | OFF]

Keep SWDIO line high when idle. Only for Serialwire Debug mode.
Usually the debugger will pull the SWDIO data line low, when no
operation is in progress, so while the clock on the SWCLK line is
stopped (kept low).

You can configure the debugger to pull the SWDIO data line
high, when no operation is in progress by using
SYStem.CONFIG SWDPIdleHigh ON

Default: OFF.

SWDPTargetSel <value> Device address in case of a multidrop serial wire debug port.

Default: none set (any address accepted).

TriState [ON | OFF] TriState has to be used if several debug cables are connected to a
common JTAG port. TAPState and TCKLevel define the TAP state
and TCK level which is selected when the debugger switches to
tristate mode.
Please note:
• nTRST must have a pull-up resistor on the target.
• TCK can have a pull-up or pull-down resistor.
• Other trigger inputs need to be kept in inactive state.

Default: OFF.
C5000 Debugger | 23©1989-2024 Lauterbach

<parameters> describing the “JTAG” scan chain and signal behavior

With the JTAG interface you can access a Test Access Port controller (TAP) which has implemented a state
machine to provide a mechanism to read and write data to an Instruction Register (IR) and a Data Register
(DR) in the TAP. The JTAG interface will be controlled by 5 signals:

• nTRST (reset)

• TCK (clock)

• TMS (state machine control)

• TDI (data input)

• TDO (data output)

Multiple TAPs can be controlled by one JTAG interface by daisy-chaining the TAPs (serial connection). If you
want to talk to one TAP in the chain, you need to send a BYPASS pattern (all ones) to all other TAPs. For this
case the debugger needs to know the position of the TAP it wants to talk to. The TAP position can be defined
with the first four commands in the table below.

… DRPOST <bits> Defines the TAP position in a JTAG scan chain. Number of TAPs in the
JTAG chain between the TDI signal and the TAP you are describing. In
BYPASS mode, each TAP contributes one data register bit. See possible
TAP types and example below.

Default: 0.

… DRPRE <bits> Defines the TAP position in a JTAG scan chain. Number of TAPs in the
JTAG chain between the TAP you are describing and the TDO signal. In
BYPASS mode, each TAP contributes one data register bit. See possible
TAP types and example below.

Default: 0.

… IRPOST <bits> Defines the TAP position in a JTAG scan chain. Number of Instruction
Register (IR) bits of all TAPs in the JTAG chain between TDI signal and
the TAP you are describing. See possible TAP types and example below.

Default: 0.

… IRPRE <bits> Defines the TAP position in a JTAG scan chain. Number of Instruction
Register (IR) bits of all TAPs in the JTAG chain between the TAP you are
describing and the TDO signal. See possible TAP types and example
below.

Default: 0.

NOTE: If you are not sure about your settings concerning IRPRE, IRPOST, DRPRE,
and DRPOST, you can try to detect the settings automatically with the
SYStem.DETECT.DaisyChain command.
C5000 Debugger | 24©1989-2024 Lauterbach

Slave [ON | OFF] If several debuggers share the same debug port, all except one must
have this option active.

JTAG: Only one debugger - the “master” - is allowed to control the signals
nTRST and nSRST (nRESET). The other debuggers need to have the
setting Slave OFF.

Default: OFF.
Default: ON if CORE=... >1 in the configuration file (e.g. config.t32).
For CortexM: Please check also
SYStem.Option.DISableSOFTRES [ON | OFF]

TAPState <state> This is the state of the TAP controller when the debugger switches to
tristate mode. All states of the JTAG TAP controller are selectable.

0 Exit2-DR
1 Exit1-DR
2 Shift-DR
3 Pause-DR
4 Select-IR-Scan
5 Update-DR
6 Capture-DR
7 Select-DR-Scan
8 Exit2-IR
9 Exit1-IR
10 Shift-IR
11 Pause-IR
12 Run-Test/Idle
13 Update-IR
14 Capture-IR
15 Test-Logic-Reset

Default: 7 = Select-DR-Scan.

TCKLevel <level> Level of TCK signal when all debuggers are tristated. Normally defined
by a pull-up or pull-down resistor on the target.

Default: 0.

TriState [ON | OFF] TriState has to be used if several debug cables are connected to a common
JTAG port. TAPState and TCKLevel define the TAP state and TCK level
which is selected when the debugger switches to tristate mode.
Please note:
• nTRST must have a pull-up resistor on the target.
• TCK can have a pull-up or pull-down resistor.
• Other trigger inputs need to be kept in inactive state.

Default: OFF.
C5000 Debugger | 25©1989-2024 Lauterbach

TAP types:

Core TAP providing access to the debug register of the core you intend to debug.
-> DRPOST, DRPRE, IRPOST, IRPRE.

DAP (Debug Access Port) TAP providing access to the debug register of the core you intend to debug. It
might be needed additionally to a Core TAP if the DAP is only used to access memory and not to access the
core debug register.
-> DAPDRPOST, DAPDRPRE, DAPIRPOST, DAPIRPRE.

DAP2 (Debug Access Port) TAP in case you need to access a second DAP to reach other memory
locations.
-> DAP2DRPOST, DAP2DRPRE, DAP2IRPOST, DAP2IRPRE.

ETB (Embedded Trace Buffer) TAP if the ETB has its own TAP to access its control register (typical with
ARM11 cores).
-> ETBDRPOST, ETBDRPRE, ETBIRPOST, ETBIRPRE.

NEXT: If a memory access changes the JTAG chain and the core TAP position then you can specify the new
values with the NEXT... parameter. After the access for example the parameter NEXTIRPRE will replace the
IRPRE value and NEXTIRPRE becomes 0. Available only on ARM11 debugger.
-> NEXTDRPOST, NEXTDRPRE, NEXTIRPOST, NEXTIRPRE.

RTP (RAM Trace Port) TAP if the RTP has its own TAP to access its control register.
-> RTPDRPOST, RTPDRPRE, RTPIRPOST, RTPIRPRE.

CHIP: Definition of a TAP or TAP sequence in a scan chain that needs a different Instruction Register
(IR) and Data Register (DR) pattern than the default BYPASS (1...1) pattern.
-> CHIPDRPOST, CHIPDRPRE, CHIPIRPOST, CHIPIRPRE.

Example:

SYStem.CONFIG IRPRE 15.
SYStem.CONFIG DRPRE 3.
SYStem.CONFIG DAPIRPOST 16.
SYStem.CONFIG DAPDRPOST 3.
SYStem.CONFIG ETBIRPOST 5.
SYStem.CONFIG ETBDRPOST 1.
SYStem.CONFIG ETBIRPRE 11.
SYStem.CONFIG ETBDRPRE 2.

ARM11 TAP

IR: 5bit

ETB TAP

IR: 4bit

DAP TAP

IR: 4bit

TDI TDO
OfNoInterest TAP

IR: 7bit
C5000 Debugger | 26©1989-2024 Lauterbach

C5000 Debugger | 27©1989-2024 Lauterbach

<parameters> describing a system level TAP “MultiTap”

A “Multitap” is a system level or chip level test access port (TAP) in a JTAG scan chain. It can for example
provide functions to re-configure the JTAG chain or view and control power, clock, reset and security of
different chip components.

At the moment the debugger supports three types and its different versions:
Icepickx, STCLTAPx, MSMTAP:

Example:

DAPTAP <tap> Specifies the TAP number which needs to be activated to get the
DAP TAP in the JTAG chain.

Used if MULTITAP=Icepickx.

DEBUGTAP <tap> Specifies the TAP number which needs to be activated to get the
core TAP in the JTAG chain. E.g. ARM11 TAP if you intend to
debug an ARM11.

Used if MULTITAP=Icepickx.

ETBTAP <tap> Specifies the TAP number which needs to be activated to get the
ETB TAP in the JTAG chain.

 TDO

 TMS

 TCK

 nTRST

ARM11
TAP

DAP
TAP

ETB
TAP

MULTITAP IcepickC
DEBUGTAP
DAPTAP
ETBTAB

Multitap
“IcepickC”

JTAG

1
4
5

 TDI
C5000 Debugger | 28©1989-2024 Lauterbach

MULTITAP
[NONE | IcepickA | IcepickB
| IcepickC | IcepickD |
IcepickM |
IcepickBB | IcepickBC |
IcepickCC | IcepickDD |
JtagSEQuence <sub_cmd>]

Selects the type and version of the MULTITAP.

In case of MSMTAP you need to add parameters which specify
which IR pattern and DR pattern needed to be shifted by the
debugger to initialize the MSMTAP. Please note some of these
parameters need a decimal input (dot at the end).

IcepickXY means that there is an Icepick version “X” which
includes a subsystem with an Icepick of version “Y”.

For a description of the JtagSEQuence subcommands, see
SYStem.CONFIG.MULTITAP JtagSEQuence.

NJCR <tap> Number of a Non-JTAG Control Register (NJCR) which shall be
used by the debugger.

Used if MULTITAP=Icepickx.

SLAVETAP <tap> Specifies the TAP number to get the Icepick of the sub-system in
the JTAG scan chain.

Used if MULTITAP=IcepickXY (two Icepicks).
C5000 Debugger | 29©1989-2024 Lauterbach

<parameters> configuring a CoreSight Debug Access Port “AP”

An Access Port (AP) is a CoreSight module from Arm which provides access via its debug link (JTAG,
cJTAG, SWD, SWD, USB, UDP/TCP-IP, GTL, PCIe...) to:

1. Different memory busses (AHB, APB, AXI). This is especially important if the on-chip debug
register needs to be accessed this way. You can access the memory buses by using certain
access classes with the debugger commands: “AHB:”, “APB:”, “AXI:, “DAP”, “E:”. The interface to
these buses is called Memory Access Port (MEM-AP).

2. Other, chip-internal JTAG interfaces. This is especially important if the core you intend to debug
is connected to such an internal JTAG interface. The module controlling these JTAG interfaces is
called JTAG Access Port (JTAG-AP). Each JTAG-AP can control up to 8 internal JTAG interfaces.
A port number between 0 and 7 denotes the JTAG interfaces to be addressed.

3. A transactor name for virtual connections to AMBA bus level transactors can be configured by
the property SYStem.CONFIG.*APn.XtorName <name>. A JTAG or SWD transactor must be
configured for virtual connections to use the property “Port” or “Base” (with “DP:” access) in case
XtorName remains empty.

Example 1: SoC-400

SoC-400

Memory
Access Port
(MEM-AP)

Debug
Port
(DP)

Memory
Access Port
(MEM-AP)

JTAG
Access Port
(JTAG-AP)

CoreSight
Component

ROM table

ROM table

CoreSight
Component

DAP
C5000 Debugger | 30©1989-2024 Lauterbach

Example 2: SoC-600

AHBAPn.HPROT [<value> |
<name>]
SYStem.Option.AHBH-
PROT [<value> | <name>]
(deprecated)

Default: 0.
Selects the value used for the HPROT bits in the Control Status
Word (CSW) of a CoreSight AHB Access Port, when using the AHB:
memory class.

APBAPn.HPROT [<value> |
<name>]

Default: 0.
This option selects the value used for the HPROT bits in the Control
Status Word (CSW) of a CoreSight APB Access Port, when using
the APB: memory class.
The secure access bit HPROT[1] is not controlled by this option,
but via the access class prefixes “Z” and “N” as well as “L” and
“O” if the Access Port supports Realm Management Extension.

SoC-600

Debug
link(s)

Memory System 3

ROM table

ROM table

CoreSight
Component

CoreSight
Component

Memory System 2

ROM table

CoreSight
Component

CoreSight
ComponentMEM-AP

Memory System 1

ROM table

CoreSight
Component

MEM-AP

MEM-AP

D
P (32/64-bit)

32/64-bit

32/64-bit

(expected)

(possible)
C5000 Debugger | 31©1989-2024 Lauterbach

The below offered selection options are all non-bufferable. Alternatively you can enter a <value>, where
value[5:4] determines the Domain bits and value[3:0] the Cache bits.

AXIAPn.HPROT [<value> |
<name>]
SYStem.Option.AXIHPROT
[<value> | <name>]
(deprecated)

Default: 0.
This option selects the value used for the HPROT bits in the Control
Status Word (CSW) of a CoreSight AXI Access Port, when using
the AXI: memory class.
The secure access bit HPROT[1] is not controlled by this option,
but via the access class prefixes “Z” and “N” as well as “L” and
“O” if the Access Port supports Realm Management Extension.

MEMORYAPn.HPROT
[<value> | <name>]

Default: 0.
This option selects the value used for the HPROT bits in the Control
Status Word (CSW) of a CoreSight Memory Access Port, when
using the E: memory class.

AXIAPn.ACEEnable [ON |
OFF]
SYStem.Option.AXIACEEn-
able [ON | OFF]
(deprecated)

Default: OFF.
Enables ACE transactions on the AXI-AP, including barriers. This
does only work if the debug logic of the target CPU implements
coherent accesses. Otherwise this option will be without effect.

AXIAPn.CacheFlags
<value>
SYStem.Option.AXI-
CACHEFLAGS <value>
(deprecated)

Default: DeviceSYStem (=0x30: Domain=0x3, Cache=0x0).
This option configures the value used for the Cache and Domain
bits in the Control Status Word (CSW[27:24]->Cache, CSW[14:13]-
>Domain) of an Access Port, when using the AXI: memory class.

<name> Description

DeviceSYStem =0x30: Domain=0x3, Cache=0x0

NonCacheableSYStem =0x32: Domain=0x3, Cache=0x2

ReadAllocateNonShareable =0x06: Domain=0x0, Cache=0x6

ReadAllocateInnerShareable =0x16: Domain=0x1, Cache=0x6

ReadAllocateOuterShareable =0x26: Domain=0x2, Cache=0x6

WriteAllocateNonShareable =0x0A: Domain=0x0, Cache=0xA

WriteAllocateInnerShareable =0x1A: Domain=0x1, Cache=0xA

WriteAllocateOuterShareable =0x2A: Domain=0x2, Cache=0xA
C5000 Debugger | 32©1989-2024 Lauterbach

ReadWriteAllocateNonShareable =0x0E: Domain=0x0, Cache=0xE

ReadWriteAllocateInnerShareable =0x1E: Domain=0x1, Cache=0xE

ReadWriteAllocateOuterShareable =0x2E: Domain=0x2, Cache=0xE

AHBAPn.XtorName
<name>

AHB bus transactor name that shall be used for “AHBn:” access
class.

APBAPn.XtorName <name> APB bus transactor name that shall be used for “APBn:” access
class.

AXIAPn.XtorName <name> AXI bus transactor name that shall be used for “AXIn:” access
class.

DEBUGAPn.XtorName
<name>

APB bus transactor name identifying the bus where the debug
register can be found. Used for “DAP:” access class.

MEMORYAPn.XtorName
<name>

AHB bus transactor name identifying the bus where system
memory can be accessed even during runtime. Used for “E:”
access class while running, assuming “SYStem.MemAccess
DAP”.

... .RESet Undo the configuration for this access port. This does not cause
a physical reset for the access port on the chip.

... .view Opens a window showing the current configuration of the access
port.
C5000 Debugger | 33©1989-2024 Lauterbach

SoC-400 Specific Commands

SoC-600 Specific Commands

AHBAPn.Port <port>
AHBACCESSPORT <port>
(deprecated)

Access Port Number (0-255) of a SoC-400 system which shall be
used for “AHBn:” access class. Default: <port>=0.

APBAPn.Port <port>
APBACCESSPORT <port>
(deprecated)

Access Port Number (0-255) of a SoC-400 system which shall be
used for “APBn:” access class. Default: <port>=1.

AXIAPn.Port <port>
AXIACCESSPORT <port>
(deprecated)

Access Port Number (0-255) of a SoC-400 system which shall be
used for “AXIn:” access class. Default: port not available.

DEBUGAPn.Port <port>
DEBUGACCESSPORT
<port> (deprecated)

AP access port number (0-255) of a SoC-400 system where the
debug register can be found (typically on APB). Used for “DAP:”
access class. Default: <port>=1.

JTAGAPn.CorePort <port>
COREJTAGPORT <port>
(deprecated)

JTAG-AP port number (0-7) connected to the core which shall be
debugged.

JTAGAPn.Port <port>
JTAGACCESSPORT <port>
(deprecated)

Access port number (0-255) of a SoC-400 system of the JTAG
Access Port.

MEMORYAPn.Port <port>
MEMORYACCESSPORT
<port> (deprecated)

AP access port number (0-255) of a SoC-400 system where
system memory can be accessed even during runtime (typically
an AHB). Used for “E:” access class while running, assuming
“SYStem.MemAccess DAP”. Default: <port>=0.
C5000 Debugger | 34©1989-2024 Lauterbach

AHBAPn.Base <address> This command informs the debugger about the start address of
the register block of the “AHBAPn:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.AHBAP1.Base DP:0x80002000
Meaning: The control register block of the AHB access ports
starts at address 0x80002000.

APBAPn.Base <address> This command informs the debugger about the start address of
the register block of the “APBAPn:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.APBAP1.Base DP:0x80003000
Meaning: The control register block of the APB access ports
starts at address 0x80003000.

AXIAPn.Base <address> This command informs the debugger about the start address of
the register block of the “AXIAPn:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.AXIAP1.Base DP:0x80004000
Meaning: The control register block of the AXI access ports
starts at address 0x80004000.

JTAGAPn.Base <address> This command informs the debugger about the start address of
the register block of the “JTAGAPn:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.JTAGAP1.Base DP:0x80005000
Meaning: The control register block of the JTAG access ports
starts at address 0x80005000.
C5000 Debugger | 35©1989-2024 Lauterbach

<parameters> describing debug and trace “Components”

On the Components tab in the SYStem.CONFIG.state window, you can comfortably add the debug and
trace components your chip includes and which you intend to use with the debugger’s help.

Each configuration can be done by a command in a script file as well. Then you do not need to enter
everything again on the next debug session. If you press the button with the three dots you get the
corresponding command in the command line where you can view and maybe copy it into a script file.
C5000 Debugger | 36©1989-2024 Lauterbach

You can have several of the following components: CMI, ETB, ETF, ETR, FUNNEL, STM.
Example: FUNNEL1, FUNNEL2, FUNNEL3,...

The <address> parameter can be just an address (e.g. 0x80001000) or you can add the access class in
front (e.g. AHB:0x80001000). Without access class it gets the command specific default access class which
is “EDAP:” in most cases.

Example:

SYStem.CONFIG.COREDEBUG.Base 0x80010000 0x80012000
SYStem.CONFIG.BMC.Base 0x80011000 0x80013000
SYStem.CONFIG.ETM.Base 0x8001c000 0x8001d000
SYStem.CONFIG.STM1.Base EAHB:0x20008000
SYStem.CONFIG.STM1.Type ARM
SYStem.CONFIG.STM1.Mode STPv2
SYStem.CONFIG.FUNNEL1.Base 0x80004000
SYStem.CONFIG.FUNNEL2.Base 0x80005000
SYStem.CONFIG.TPIU.Base 0x80003000
SYStem.CONFIG.FUNNEL1.ATBSource ETM.0 0 ETM.1 1
SYStem.CONFIG.FUNNEL2.ATBSource FUNNEL1 0 STM1 7
SYStem.CONFIG.TPIU.ATBSource FUNNEL2

ETM

ETM

STM

Core

Core

FUNNEL

TPIUFUNNEL

0

1
0

7

C5000 Debugger | 37©1989-2024 Lauterbach

… .ATBSource <source> Specify for components collecting trace information from where the
trace data are coming from. This way you inform the debugger
about the interconnection of different trace components on a
common trace bus.

You need to specify the “... .Base <address>” or other attributes
that define the amount of existing peripheral modules before you
can describe the interconnection by “... .ATBSource <source>”.

A CoreSight trace FUNNEL has eight input ports (port 0-7) to
combine the data of various trace sources to a common trace
stream. Therefore you can enter instead of a single source a list
of sources and input port numbers.

Example:
SYStem.CONFIG FUNNEL.ATBSource ETM 0 HTM 1 STM 7

Meaning: The funnel gets trace data from ETM on port 0, from
HTM on port 1 and from STM on port 7.

In an SMP (Symmetric MultiProcessing) debug session where
you used a list of base addresses to specify one component per
core you need to indicate which component in the list is meant:
C5000 Debugger | 38©1989-2024 Lauterbach

Example: Four cores with ETM modules.
SYStem.CONFIG ETM.Base 0x1000 0x2000 0x3000 0x4000
SYStem.CONFIG FUNNEL1.ATBSource ETM.0 0 ETM.1 1
ETM.2 2 ETM.3 3
"...2" of "ETM.2" indicates it is the third ETM module which has
the base address 0x3000. The indices of a list are 0, 1, 2, 3,...
If the numbering is accelerating, starting from 0, without gaps,
like the example above then you can shorten it to
SYStem.CONFIG FUNNEL1.ATBSource ETM

Example: Four cores, each having an ETM module and an ETB
module.
SYStem.CONFIG ETM.Base 0x1000 0x2000 0x3000 0x4000
SYStem.CONFIG ETB.Base 0x5000 0x6000 0x7000 0x8000
SYStem.CONFIG ETB.ATBSource ETM.2 2
The third "ETM.2" module is connected to the third ETB. The last
"2" in the command above is the index for the ETB. It is not a port
number which exists only for FUNNELs.

For a list of possible components including a short description
see Components and Available Commands.

… .BASE <address> This command informs the debugger about the start address of
the register block of the component. And this way it notifies the
existence of the component. An on-chip debug and trace
component typically provides a control register block which
needs to be accessed by the debugger to control this
component.

Example: SYStem.CONFIG ETMBASE APB:0x8011c000

Meaning: The control register block of the Embedded Trace
Macrocell (ETM) starts at address 0x8011c000 and is accessible
via APB bus.

In an SMP (Symmetric MultiProcessing) debug session you can
enter for the components BMC, COREBEBUG, CTI, ETB, ETF,
ETM, ETR a list of base addresses to specify one component per
core.

Example assuming four cores: SYStem.CONFIG
COREDEBUG.Base 0x80001000 0x80003000 0x80005000
0x80007000

For a list of possible components including a short description
see Components and Available Commands.
C5000 Debugger | 39©1989-2024 Lauterbach

... .Name The name is a freely configurable identifier to describe how many
instances exists in a target systems chip. TRACE32 PowerView
GUI shares with other opened PowerView GUIs settings and the
state of components identified by the same name and component
type. Components using different names are not shared. Other
attributes as the address or the type are used when no name is
configured.

Example: Shared None-Programmable Funnel:
PowerView1:
SYStem.CONFIG.FUNNEL.PROGramable OFF
SYStem.CONFIG.FUNNEL.Name "shared-funnel-1"
PowerView2:
SYStem.CONFIG.FUNNEL.PROGramable OFF
SYStem.CONFIG.FUNNEL.Name "shared-funnel-1"
SYStem.CONFIG.Core 2. 1. ; merge configuration to describe a
target system with one chip containing a single none-
programmable FUNNEL.

... .NoFlush [ON | OFF] Deactivates an ETB flush request at the end of the trace
recording. This is a workaround for a bug on a certain chip. You
will loose trace data at the end of the recording. Don’t use it if not
needed. Default: OFF.

… .RESet Undo the configuration for this component. This does not cause a
physical reset for the component on the chip.

For a list of possible components including a short description
see Components and Available Commands.

… .view Opens a window showing the current configuration of the
component.

For a list of possible components including a short description
see Components and Available Commands.

… .TraceID <id> Identifies from which component the trace packet is coming from.
Components which produce trace information (trace sources) for a
common trace stream have a selectable “.TraceID <id>”.

If you miss this SYStem.CONFIG command for a certain trace
source (e.g. ETM) then there is a dedicated command group for
this component where you can select the ID (ETM.TraceID <id>).

The default setting is typically fine because the debugger uses
different default trace IDs for different components.

For a list of possible components including a short description
see Components and Available Commands.
C5000 Debugger | 40©1989-2024 Lauterbach

CTI.Config <type> Informs about the interconnection of the core Cross Trigger
Interfaces (CTI). Certain ways of interconnection are common
and these are supported by the debugger e.g. to cause a
synchronous halt of multiple cores.

NONE: The CTI is not used by the debugger.
ARMV1: This mode is used for ARM7/9/11 cores which support
synchronous halt, only.
ARMPostInit: Like ARMV1 but the CTI connection differs from the
ARM recommendation.
OMAP3: This mode is not yet used.
TMS570: Used for a certain CTI connection used on a TMS570
derivative.
CortexV1: The CTI will be configured for synchronous start and
stop via CTI. It assumes the connection of DBGRQ, DBGACK,
DBGRESTART signals to CTI are done as recommended by
ARM. The CTIBASE must be notified. “CortexV1” is the default
value if a Cortex-A/R core is selected and the CTIBASE is
notified.
QV1: This mode is not yet used.

ARMV8V1: Channel 0 and 1 of the CTM are used to distribute
start/stop events from and to the CTIs. ARMv8 only.
ARMV8V2: Channel 2 and 3 of the CTM are used to distribute
start/stop events from and to the CTIs. ARMv8 only.
ARMV8V3: Channel 0, 1 and 2 of the CTM are used to distribute
start/stop events. Implemented on request. ARMv8 only.

ETB.Size <size> Specifies the size of the Embedded Trace Buffer. The ETB size
can normally be read out by the debugger. Therefore this
command is only needed if this can not be done for any reason.

ETB.STackMode [NotAvail-
bale | TRGETM | FULLTIDRM
| NOTSET | FULLSTOP |
FULLCTI]

Specifies the which method is used to implement the Stack mode
of the on-chip trace.
NotAvailable: stack mode is not available for this on-chip trace.
TRGETM: the trigger delay counter of the onchip-trace is used. It
starts by a trigger signal that must be provided by a trace source.
Usually those events are routed through one or more CTIs to the
on-chip trace.
FULLTIDRM: trigger mechanism for TI devices.
NOTSET: the method is derived by other GUIs or hardware.
detection.
FULLSTOP: on-chip trace stack mode by implementation.
FULLCTI: on-chip trace provides a trigger signal that is routed
back to on-chip trace over a CTI.

FUNNEL.Name <string> It is possible that different funnels have the same address for
their control register block. This assumes they are on different
buses and for different cores. In this case it is needed to give the
funnel different names to differentiate them.
C5000 Debugger | 41©1989-2024 Lauterbach

Components and Available Commands

See the description of the commands above. Please note that there is a common description for
ATBSource,Base, ,RESet,TraceID.

ADTF.Base <address>
ADTF.RESet
ADTF.Type [None | ADTF | ADTF2 | GEM]

FUNNEL.PROGrammable
[ON | OFF]

Default is ON. If set to ON the peripheral is controlled by
TRACE32 in order to route ATB trace data through the ATB bus
network. If PROGrammable is configured to value OFF then
TRACE32 will not access the FUNNEL registers and the base
address doesn't need to be configured. This can be useful for
FUNNELs that don't have registers or when those registers are
read-only. TRACE32 need still be aware of the connected ATB
trace sources and sink in order to know the ATB topology. To
build a complete topology across multiple instances of
PowerView the property Name should be set at all instances to a
chip wide unique identifier.

OCP.Type <type> Specifies the type of the OCP module. The <type> is just a
number which you need to figure out in the chip documentation.

RTP.PerBase <address> PERBASE specifies the base address of the core peripheral
registers which accesses shall be traced. PERBASE is needed
for the RAM Trace Port (RTP) which is available on some
derivatives from Texas Instruments. The trace packages include
only relative addresses to PERBASE and RAMBASE.

RTP.RamBase <address> RAMBASE is the start address of RAM which accesses shall be
traced. RAMBASE is needed for the RAM Trace Port (RTP)
which is available on some derivatives from Texas Instruments.
The trace packages include only relative addresses to PERBASE
and RAMBASE.

STM.Mode [NONE | XTIv2 |
SDTI | STP | STP64 | STPv2]

Selects the protocol type used by the System Trace Module (STM).

STM.Type [None | Generic |
ARM | SDTI | TI]

Selects the type of the System Trace Module (STM). Some types
allow to work with different protocols (see STM.Mode).

TPIU.Type [CoreSight |
Generic]

Selects the type of the Trace Port Interface Unit (TPIU).

CoreSight: Default. CoreSight TPIU. TPIU control register
located at TPIU.Base <address> will be handled by the
debugger.

Generic: Proprietary TPIU. TPIU control register will not be
handled by the debugger.
C5000 Debugger | 42©1989-2024 Lauterbach

AMBA trace bus DSP Trace Formatter (ADTF) - Texas Instruments
Module of a TMS320C5x or TMS320C6x core converting program and data trace information in ARM
CoreSight compliant format.

CMI.Base <address>
CMI.RESet
CMI.TraceID <id>
Clock Management Instrumentation (CMI) - Texas Instruments
Trace source delivering information about clock status and events to a system trace module.

DRM.Base <address>
DRM.RESet
Debug Resource Manager (DRM) - Texas Instruments
It will be used to prepare chip pins for trace output.

EPM.Base <address>
EPM.RESet
Emulation Pin Manager (EPM) - Texas Instruments
It will be used to prepare chip pins for trace output.

ETB.ATBSource <source>
ETB.Base <address>
ETB.RESet
ETB.Size <size>
Embedded Trace Buffer (ETB) - ARM CoreSight module
Enables trace to be stored in a dedicated SRAM. The trace data will be read out through the debug port after
the capturing has finished.

FUNNEL.ATBSource <sourcelist>
FUNNEL.Base <address>
FUNNEL.Name <string>
FUNNEL.PROGrammable [ON | OFF]
FUNNEL.RESet
CoreSight Trace Funnel (CSTF) - ARM CoreSight module
Combines multiple trace sources onto a single trace bus (ATB = AMBA Trace Bus).

REP.ATBSource <sourcelist>
REP.Base <address>
REP.Name <string>
REP.RESet
CoreSight Replicator - ARM CoreSight module
This command group is used to configure ARM Coresight Replicators with programming interface. After the
Replicator(s) have been defined by the base address and optional names the ATB sources REPlicatorA and
REPlicatorB can be used from other ATB sinks to connect to output A or B to the Replicator.

OCP.Base <address>
OCP.RESet
OCP.TraceID <id>
OCP.Type <type>
Open Core Protocol watchpoint unit (OCP) - Texas Instruments
Trace source module delivering bus trace information to a system trace module.
C5000 Debugger | 43©1989-2024 Lauterbach

PMI.Base <address>
PMI.RESet
PMI.TraceID <id>
Power Management Instrumentation (PMI) - Texas Instruments
Trace source reporting power management events to a system trace module.

SC.Base <address>
SC.RESet
SC.TraceID <id>
Statistic Collector (SC) - Texas Instruments
Trace source delivering statistic data about bus traffic to a system trace module.

STM.Base <address>
STM.Mode [NONE | XTIv2 | SDTI | STP | STP64 | STPv2]
STM.RESet
STM.Type [None | Generic | ARM | SDTI | TI]
System Trace Macrocell (STM) - MIPI, ARM CoreSight, others
Trace source delivering system trace information e.g. sent by software in printf() style.

TPIU.ATBSource <source>
TPIU.Base <address>
TPIU.RESet
TPIU.Type [CoreSight | Generic]
Trace Port Interface Unit (TPIU) - ARM CoreSight module
Trace sink sending the trace off-chip on a parallel trace port (chip pins).
C5000 Debugger | 44©1989-2024 Lauterbach

<parameters> which are “Deprecated”

In the last years the chips and its debug and trace architecture became much more complex. Especially the
CoreSight trace components and their interconnection on a common trace bus required a reform of our
commands. The new commands can deal even with complex structures.

… BASE <address> This command informs the debugger about the start address of
the register block of the component. And this way it notifies the
existence of the component. An on-chip debug and trace
component typically provides a control register block which
needs to be accessed by the debugger to control this
component.

Example: SYStem.CONFIG ETMBASE APB:0x8011c000

Meaning: The control register block of the Embedded Trace
Macrocell (ETM) starts at address 0x8011c000 and is accessible
via APB bus.

In an SMP (Symmetric MultiProcessing) debug session you can
enter for the components BMC, CORE, CTI, ETB, ETF, ETM, ETR a
list of base addresses to specify one component per core.

Example assuming four cores: “SYStem.CONFIG COREBASE
0x80001000 0x80003000 0x80005000 0x80007000”.

COREBASE (old syntax: DEBUGBASE): Some cores e.g. Cortex-
A or Cortex-R do not have a fix location for their debug register
which are used for example to halt and start the core. In this case it
is essential to specify its location before you can connect by e.g.
SYStem.Up.

PERBASE and RAMBASE are needed for the RAM Trace Port
(RTP) which is available on some derivatives from Texas
Instruments. PERBASE specifies the base address of the core
peripheral registers which accesses shall be traced, RAMBASE
is the start address of RAM which accesses shall be traced. The
trace packages include only relative addresses to PERBASE and
RAMBASE.

For a list of possible components including a short description
see Components and Available Commands.
C5000 Debugger | 45©1989-2024 Lauterbach

… PORT <port> Informs the debugger about which trace source is connected to
which input port of which funnel. A CoreSight trace funnel
provides 8 input ports (port 0-7) to combine the data of various
trace sources to a common trace stream.

Example: SYStem.CONFIG STMFUNNEL2PORT 3

Meaning: The System Trace Module (STM) is connected to input
port #3 on FUNNEL2.

On an SMP debug session some of these commands can have a
list of <port> parameter.

In case there are dedicated funnels for the ETB and the TPIU
their base addresses are specified by ETBFUNNELBASE,
TPIUFUNNELBASE respectively. And the funnel port number for
the ETM are declared by ETMETBFUNNELPORT,
ETMTPIUFUNNELPORT respectively.

TRACE... stands for the ADTF trace source module.

For a list of possible components including a short description
see Components and Available Commands.

CTICONFIG <type> Informs about the interconnection of the core Cross Trigger
Interfaces (CTI). Certain ways of interconnection are common
and these are supported by the debugger e.g. to cause a
synchronous halt of multiple cores.

NONE: The CTI is not used by the debugger.
ARMV1: This mode is used for ARM7/9/11 cores which support
synchronous halt, only.
ARMPostInit: Like ARMV1 but the CTI connection differs from the
ARM recommendation.
OMAP3: This mode is not yet used.
TMS570: Used for a certain CTI connection used on a TMS570
derivative.
CortexV1: The CTI will be configured for synchronous start and
stop via CTI. It assumes the connection of DBGRQ, DBGACK,
DBGRESTART signals to CTI are done as recommended by
ARM. The CTIBASE must be notified. “CortexV1” is the default
value if a Cortex-A/R core is selected and the CTIBASE is
notified.
QV1: This mode is not yet used.

TIOCPTYPE <type> Specifies the type of the OCP module from Texas Instruments
(TI).

view Opens a window showing most of the SYStem.CONFIG settings
and allows to modify them.
C5000 Debugger | 46©1989-2024 Lauterbach

Deprecated and New Commands

In the following you find the list of deprecated commands which can still be used for compatibility reasons
and the corresponding new command.

SYStem.CONFIG <parameter>

<parameter>:
(Deprecated)

<parameter>:
(New)

BMCBASE <address> BMC.Base <address>

BYPASS <seq> CHIPIRPRE <bits>
CHIPIRLENGTH <bits>
CHIPIRPATTERN.Alternate <pattern>

COREBASE <address> COREDEBUG.Base <address>

CTIBASE <address> CTI.Base <address>

DEBUGBASE <address> COREDEBUG.Base <address>

DTMCONFIG [ON | OFF] DTM.Type.Generic

DTMETBFUNNELPORT <port> FUNNEL4.ATBSource DTM <port> (1)

DTMFUNNEL2PORT <port> FUNNEL2.ATBSource DTM <port> (1)

DTMFUNNELPORT <port> FUNNEL1.ATBSource DTM <port> (1)

DTMTPIUFUNNELPORT <port> FUNNEL3.ATBSource DTM <port> (1)

DWTBASE <address> DWT.Base <address>

ETB2AXIBASE <address> ETB2AXI.Base <address>

ETBBASE <address> ETB1.Base <address>

ETBFUNNELBASE <address> FUNNEL4.Base <address>

ETFBASE <address> ETF1.Base <address>

ETMBASE <address> ETM.Base <address>

ETMETBFUNNELPORT <port> FUNNEL4.ATBSource ETM <port> (1)

ETMFUNNEL2PORT <port> FUNNEL2.ATBSource ETM <port> (1)

ETMFUNNELPORT <port> FUNNEL1.ATBSource ETM <port> (1)

ETMTPIUFUNNELPORT <port> FUNNEL3.ATBSource ETM <port> (1)

FILLDRZERO [ON | OFF] CHIPDRPRE 0
CHIPDRPOST 0
CHIPDRLENGTH <bits_of_complete_dr_path>
CHIPDRPATTERN.Alternate 0

FUNNEL2BASE <address> FUNNEL2.Base <address>

FUNNELBASE <address> FUNNEL1.Base <address>

HSMBASE <address> HSM.Base <address>
C5000 Debugger | 47©1989-2024 Lauterbach

HTMBASE <address> HTM.Base <address>

HTMETBFUNNELPORT <port> FUNNEL4.ATBSource HTM <port> (1)

HTMFUNNEL2PORT <port> FUNNEL2.ATBSource HTM <port> (1)

HTMFUNNELPORT <port> FUNNEL1.ATBSource HTM <port> (1)

HTMTPIUFUNNELPORT <port> FUNNEL3.ATBSource HTM <port> (1)

ITMBASE <address> ITM.Base <address>

ITMETBFUNNELPORT <port> FUNNEL4.ATBSource ITM <port> (1)

ITMFUNNEL2PORT <port> FUNNEL2.ATBSource ITM <port> (1)

ITMFUNNELPORT <port> FUNNEL1.ATBSource ITM <port> (1)

ITMTPIUFUNNELPORT <port> FUNNEL3.ATBSource ITM <port> (1)

PERBASE <address> RTP.PerBase <address>

RAMBASE <address> RTP.RamBase <address>

RTPBASE <address> RTP.Base <address>

SDTIBASE <address> STM1.Base <address>
STM1.Mode SDTI
STM1.Type SDTI

STMBASE <address> STM1.Base <address>
STM1.Mode STPV2
STM1.Type ARM

STMETBFUNNELPORT <port> FUNNEL4.ATBSource STM1 <port> (1)

STMFUNNEL2PORT <port> FUNNEL2.ATBSource STM1 <port> (1)

STMFUNNELPORT <port> FUNNEL1.ATBSource STM1 <port> (1)

STMTPIUFUNNELPORT <port> FUNNEL3.ATBSource STM1 <port> (1)

TIADTFBASE <address> ADTF.Base <address>

TIDRMBASE <address> DRM.Base <address>

TIEPMBASE <address> EPM.Base <address>

TIICEBASE <address> ICE.Base <address>

TIOCPBASE <address> OCP.Base <address>

TIOCPTYPE <type> OCP.Type <type>

TIPMIBASE <address> PMI.Base <address>

TISCBASE <address> SC.Base <address>

TISTMBASE <address> STM1.Base <address>
STM1.Mode STP
STM1.Type TI

TPIUBASE <address> TPIU.Base <address>

TPIUFUNNELBASE <address> FUNNEL3.Base <address>

TRACEETBFUNNELPORT <port> FUNNEL4.ATBSource ADTF <port> (1)
C5000 Debugger | 48©1989-2024 Lauterbach

(1) Further “<component>.ATBSource <source>” commands might be needed to describe the full trace data
path from trace source to trace sink.

SYStem.Option.AHBHPROT Select AHB-AP HPROT bits

Default: 0

Selects the value used for the HPROT bits in the Control Status Word (CSW) of a CoreSight AHB Access
Port, when using the AHB: memory class.

SYStem.Option.AXIACEEnable ACE enable flag of the AXI-AP

Default: OFF.

Enables ACE transactions on the DAP AXI-AP, including barriers. This does only work if the debug logic of
the target CPU implements coherent AXI accesses. Otherwise this option will be without effect.

SYStem.Option.AXICACHEFLAGS Configure AXI-AP cache bits

Default: DeviceSYStem (=0x30: Domain=0x3, Cache=0x0).

TRACEFUNNELPORT <port> FUNNEL1.ATBSource ADTF <port> (1)

TRACETPIUFUNNELPORT <port> FUNNEL3.ATBSource ADTF <port> (1)

view state

Format: SYStem.Option.AHBHPROT <value> (deprecated)
Use SYStem.CONFIG.AHBAPn.HPROT instead.

Format: SYStem.Option.AXIACEEnable [ON | OFF] (deprecated)
Use SYStem.CONFIG.AXIAPn.ACEEnable instead.

Format: SYStem.Option.AXICACHEFLAGS <value> (deprecated)
Use SYStem.CONFIG.AXIAPn.CacheFlags instead.
C5000 Debugger | 49©1989-2024 Lauterbach

This option configures the value used for the Cache and Domain bits in the Control Status Word
(CSW[27:24]->Cache, CSW[14:13]->Domain) of an AXI Access Port of a DAP, when using the AXI: memory
class.

SYStem.Option.AXIHPROT Select AXI-AP HPROT bits

Default: 0

This option selects the value used for the HPROT bits in the Control Status Word (CSW) of a CoreSight AXI
Access Port, when using the AXI: memory class.

SYStem.Option.ByteMode Define byte mode

Default: AUTO.

Defines byte mode.

Format: SYStem.Option.AXIHPROT <value> (deprecated)
Use SYStem.CONFIG.AXIAPn.HPROT instead.

Format: SYStem.Option.ByteMode [AUTO | ACCESS | WORD | BYTE]

AUTO Byte mode is automatically detected by TRACE32.

ACCESS The selected byte mode depends on the CPU registers.

WORD TRACE32 interprets code in word-pointer mode.

BYTE TRACE32 interprets code in byte-pointer mode.
C5000 Debugger | 50©1989-2024 Lauterbach

SYStem.Option.DAPDBGPWRUPREQ Force debug power in DAP

Default: ON.

This option controls the DBGPWRUPREQ bit of the CTRL/STAT register of the Debug Access Port (DAP)
before and after the debug session. Debug power will always be requested by the debugger on a debug
session start because debug power is mandatory for debugger operation.

Use case:

Imagine an AMP session consisting of at least of two TRACE32 PowerView GUIs, where one GUI is the
master and all other GUIs are slaves. If the master GUI is closed first, it releases the debug power. As a
result, a debug port fail error may be displayed in the remaining slave GUIs because they cannot access the
debug interface anymore.

To keep the debug interface active, it is recommended that SYStem.Option.DAPDBGPWRUPREQ is set to
AlwaysON.

SYStem.Option.DAPSYSPWRUPREQ Force system power in DAP

Default: ON.

Format: SYStem.Option.DAPDBGPWRUPREQ [ON | AlwaysON | OFF]

ON Debug power is requested by the debugger on a debug session start, and
the control bit is set to 1.
The debug power is released at the end of the debug session, and the
control bit is set to 0.

AlwaysON Debug power is requested by the debugger on a debug session start, and
the control bit is set to 1.
The debug power is not released at the end of the debug session, and the
control bit is set to 0.

OFF Only for test purposes: Debug power is not requested and not checked by
the debugger. The control bit is set to 0.

Format: SYStem.Option.DAPSYSPWRUPREQ [AlwaysON | ON | OFF]
C5000 Debugger | 51©1989-2024 Lauterbach

This option controls the SYSPWRUPREQ bit of the CTRL/STAT register of the Debug Access Port (DAP)
during and after the debug session

SYStem.Option.DAPREMAP Rearrange DAP memory map

The Debug Access Port (DAP) can be used for memory access during runtime. If the mapping on the DAP is
different than the processor view, then this re-mapping command can be used

SYStem.Option.DEBUGPORTOptions Options for debug port handling

Default: SWITCHTOSWD.TryAll, SWDTRSTKEEP.DEFault.

See Arm CoreSight manuals to understand the used terms and abbreviations and what is going on here.

AlwaysON System power is requested by the debugger on a debug session start,
and the control bit is set to 1.
The system power is not released at the end of the debug session, and
the control bit remains at 1.

ON System power is requested by the debugger on a debug session start,
and the control bit is set to 1.
The system power is released at the end of the debug session, and the
control bit is set to 0.

OFF System power is not requested by the debugger on a debug session
start, and the control bit is set to 0.

Format: SYStem.Option.DAPREMAP {<address_range> <address>}

NOTE: Up to 16 <address_range>/<address> pairs are possible. Each pair has to
contain an address range followed by a single address.

Format: SYStem.Option.DEBUGPORTOptions <option>

<option>: SWITCHTOSWD.[TryAll | None | JtagToSwd | LuminaryJtagToSwd | Dor-
mantToSwd | JtagToDormantToSwd]
SWDTRSTKEEP.[DEFault | LOW | HIGH]
C5000 Debugger | 52©1989-2024 Lauterbach

SWITCHTOSWD tells the debugger what to do in order to switch the debug port to serial wire mode:

SWDTRSTKEEP tells the debugger what to do with the nTRST signal on the debug connector during serial
wire operation. This signal is not required for the serial wire mode but might have effect on some target
boards, so that it needs to have a certain signal level.

SYStem.Option.DAPNOIRCHECK No DAP instruction register check

Default: OFF.

Bug fix for derivatives which do not return the correct pattern on a DAP (Arm CoreSight Debug Access Port)
instruction register (IR) scan. When activated, the returned pattern will not be checked by the debugger.

TryAll Try all switching methods in the order they are listed below. This is
the default. Normally it does not hurt to try improper switching
sequences. Therefore this succeeds in most cases.

None There is no switching sequence required. The SW-DP is ready
after power-up. The debug port of this device can only be used as
SW-DP.

JtagToSwd Switching procedure as it is required on SWJ-DP without a
dormant state. The device is in JTAG mode after power-up.

LuminaryJtagToSwd Switching procedure as it is required on devices from
LuminaryMicro. The device is in JTAG mode after power-up.

DormantToSwd Switching procedure which is required if the device starts up in
dormant state. The device has a dormant state but does not
support JTAG.

JtagToDormantToSwd Switching procedure as it is required on SWJ-DP with a dormant
state. The device is in JTAG mode after power-up.

DEFault Use nTRST the same way as in JTAG mode which is typically a low-pulse
on debugger start-up followed by keeping it high.

LOW Keep nTRST low during serial wire operation.

HIGH Keep nTRST high during serial wire operation

Format: SYStem.Option.DAPNOIRCHECK [ON | OFF]
C5000 Debugger | 53©1989-2024 Lauterbach

SYStem.Option.DUALPORT Implicitly use run-time memory access

All TRACE32 windows that display memory are updated while the processor is executing code (e.g.
Data.dump, List.auto, PER.view, Var.View). This setting has no effect if SYStem.MemAccess is disabled.

If only selected memory windows should update their content during runtime, leave
SYStem.Option.DUALPORT OFF and use the access class prefix E or the format option %E for the
specific windows.

SYStem.Option.EnReset Allow the debugger to drive nRESET (nSRST)
[SYStem.state window> EnReset]

Default: ON.

If this option is disabled the debugger will never drive the nRESET (nSRST) line on the JTAG connector. This
is necessary if nRESET (nSRST) is no open collector or tristate signal.

From the view of the core, it is not necessary that nRESET (nSRST) becomes active at the start of a debug
session (SYStem.Up), but there may be other logic on the target which requires a reset.

SYStem.LOCK Tristate the JTAG port

Default: OFF.

If the system is locked, no access to the JTAG port will be performed by the debugger. While locked, the
JTAG connector of the debugger is tristated. The intention of the SYStem.LOCK command is, for example,
to give JTAG access to another tool. The process can also be automated, see SYStem.CONFIG TriState.

It must be ensured that the state of the core JTAG state machine remains unchanged while the system is
locked. To ensure correct hand-over, the options SYStem.CONFIG TAPState and SYStem.CONFIG
TCKLevel must be set properly. They define the TAP state and TCK level which is selected when the
debugger switches to tristate mode. Please note: nTRST must have a pull-up resistor on the target,
EDBGRQ must have a pull-down resistor.

Format: SYStem.Option.DUALPORT [ON | OFF]

Format: SYStem.Option.EnReset [ON | OFF]

Format: SYStem.LOCK [ON | OFF]
C5000 Debugger | 54©1989-2024 Lauterbach

SYStem.Option.EnTRST Control TAP reset

Default: ON.

To set the debug interface in a defined state the TAP is reset by driving the TRST pin low and additionally
holding TMS low for five 5 TCKs. By setting the EnTRST option to OFF only the TMS method is used. The
reason for introducing this command was that in some target systems several chips were connected to the
TRST line, which must not be reset together with the debug TAP.

SYStem.Option.INTDIS Disable all interrupts

Default: OFF.

If this option is ON, all interrupts on the core are disabled.

SYStem.Option.MUHP High-priority memory access

Default: OFF.

Format: SYStem.Option.EnTRST [ON | OFF]

Format: SYStem.Option.INTDIS [ON | OFF]

Format: SYStem.Option.MUHP [ON | OFF]
C5000 Debugger | 55©1989-2024 Lauterbach

SYStem.Option.OVERLAY Enable overlay support

Default: OFF.

Example:

SYStem.Option.PWRDWN Allow power-down mode

Default: OFF.

If this option is OFF, the debugger forces the chip to keep clock and keep power on OMAPxxxx devices.

Format: SYStem.Option.OVERLAY [ON | OFF | WithOVS]

ON Activates the overlay extension and extends the address scheme of the
debugger with a 16 bit virtual overlay ID. Addresses therefore have the
format <overlay_id>:<address>. This enables the debugger to handle
overlaid program memory.

OFF Disables support for code overlays.

WithOVS Like option ON, but also enables support for software breakpoints. This
means that TRACE32 writes software breakpoint opcodes to both, the
execution area (for active overlays) and the storage area. This way, it is
possible to set breakpoints into inactive overlays. Upon activation of the
overlay, the target’s runtime mechanisms copies the breakpoint opcodes to
the execution area. For using this option, the storage area must be readable
and writable for the debugger.

SYStem.Option.OVERLAY ON
List.auto 0x2:0x11c4 ; List.auto <overlay_id>:<address>

Format: SYStem.Option.PWRDWN [ON | OFF]
C5000 Debugger | 56©1989-2024 Lauterbach

SYStem.Option.TargetServer Use target server from TI

Default: OFF.

This option forces the debugger to use the Target Server from Texas Instruments for all activities. It avoids
accelerated procedures and activates a more powerful error handling. This option should be used if the
debugger shows any unstable behavior.

SYStem.Option.TURBO Use DMA for write accesses

Default: OFF.

If TURBO is enabled the debugger uses a DMA channel of the DSP to write data to the DSP memory area.
This option doubles the download rate. In case the user application uses the same DMA resource, the
transfer will not work. Therefore we recommend to use that option for downloading data after reset at the
beginning of a debug session, only.

SYStem.RESetOut Reset the DSP

This command resets the DSP.

Format: SYStem.Option.TargetServer [ON | OFF]

Format: SYStem.Option.TURBO [ON | OFF]

Format: SYStem.RESetOut
C5000 Debugger | 57©1989-2024 Lauterbach

SYStem.Option.CToolsDecoder Use TI’s trace decoder software

Default: OFF.

When this option is enabled, the TI’s cTools trace decoder software is used instead of LAUTERBACH’s trace
decoder software. We recommend not to activate this option since the LAUTERBACH trace decoder
software is optimized for TRACE32 software architecture. However, TI’ CToolsDecoder might be helpful for
error diagnostics.

SYStem.Option.CtoolsNoSync CToolsNoSync

Default: OFF.

Some first generation chips with C55x cTools trace functionality do not generate synchronization sequences.
In that very untypical case, this option has to be set to ON. Normally, this option is not required!

Format: SYStem.Option.CToolsDecoder [ON | OFF]

Format: SYStem.Option.CtoolsNoSync [ON | OFF]
C5000 Debugger | 58©1989-2024 Lauterbach

CPU specific BenchMarkCounter Commands

The benchmark counters can be read at run-time.

For information about architecture-independent BMC commands, refer to “BMC” (general_ref_b.pdf).

For information about architecture-specific BMC command(s), see command description(s) below.

BMC.<counter>.ATOB Advise counter to count within AB-range

Advise the counter to count the specified event only in AB-range. Alpha and Beta markers are used to
specify the AB-range.

Example to measure the time used by the function sieve:

Format: BMC.<counter>.ATOB [ON | OFF]

BMC.<counter> ClockCylces ; <counter> counts clock cycles

BMC.CLOCK 450.Mhz ; core is running at 450.MHz

Break.Set sieve /Alpha ; set a marker Alpha to the entry
; of the function sieve

Break.Set V.END(sieve)-1 /Beta ; set a marker Beta to the exit
; of the function sieve

BMC.<counter>.ATOB ON ; advise <counter> to count only
; in AB-range
C5000 Debugger | 59©1989-2024 Lauterbach

BMC.<counter>.EVENT Assign event to counter

Assign event to counter.

The following <events> are available:

Format: BMC.<counter>.EVENT <event>

BMC.<counter>.EVENT ClockCycles ; <counter> counts clock cycles

BMC.<counter> ClockCycles ; equivalent

OFF Disabled

ICMISS Instruction cache misses: Counts instructions cache misses, in relation to
total instruction access.

INST Instructions

PINST Parallel instructions

INT Interrupts

PNULL Pipe protection NULL

FNULL Instruction fetch NULL

DNULL Data fetch NULL

DCMISS Data cache misses: Counts data cache misses, in relation to total data
access.

DCACOLL Data cache arbitration collisions

IDLE Idle clock cycles

D Delta breakpoints

E Echo breakpoints

CLOCKCYCLES Clock cycles

TIME TIME is measured by counting CLOCK. The translation to TIME is done by
using the CPU frequency. For this reason, the CPU frequency has to be
entered with the command BMC.CLOCK.
C5000 Debugger | 60©1989-2024 Lauterbach

TrOnchip Commands

TrOnchip.state Display on-chip trigger window

Opens the TrOnchip.state window.

TrOnchip.CONVert Adjust range breakpoint in on-chip resource

The on-chip breakpoints can only cover specific ranges. If a range cannot be programmed into the
breakpoint, it will automatically be converted into a single address breakpoint when this option is active. This
is the default. Otherwise an error message is generated.

Format: TrOnchip.state

Format: TrOnchip.CONVert [ON | OFF] (deprecated)
Use Break.CONFIG.InexactAddress instead

TrOnchip.CONVert ON
Break.Set 0x1000--0x17ff /Write
Break.Set 0x1001--0x17ff /Write
…

TrOnchip.CONVert OFF
Break.Set 0x1000--0x17ff /Write
Break.Set 0x1001--0x17ff /Write

; sets breakpoint at range
; 1000--17ff sets single breakpoint
; at address 1001

; sets breakpoint at range
; 1000--17ff
; gives an error message
C5000 Debugger | 61©1989-2024 Lauterbach

C55X specific TrOnchip Commands

The TrOnchip command provides low-level access to the on-chip debug register.

TrOnchip.ATOB Activate on-chip breakpoints in AB-range

Activate the on-chip breakpoints between the program breakpoints Alpha and Beta only.

TrOnchip.BMCTR Configure the benchmark counter

Benchmark Counter - short BMCTR - collect Information about the throughput of the target processor. They
count for certain events, like interrupts, cache misses or cpu cycles. This information may be helpful in
finding bottlenecks and tuning the application.

Format: TrOnchip.ATOB [ON | OFF]

Format: TrOnchip.BMCTR0 | BMCTR1 <bmctr>

<bmctr>: OFF
CMISS
INST
PINST
INT
PipeNULL
FetchNULL
DataNULL
IDLE
Delta
Echo
CLOCK
TIME
Init
ATOB
C5000 Debugger | 62©1989-2024 Lauterbach

NOTE: CMISS, INST, PINS, and INT count the number of occurrences of the corresponding event. PNULL,
FNULL, and DNULL add the benchmark counter by one for every NULL cycle, which was inserted.

OFF Switch off the benchmark counter.

CMISS Cache MISS counts instruction cache misses.

INST Count executed INSTructions.

PINST PINST counts executed Parallel INSTructions and is incremented by 1 for each
parallel instruction.

INT Count INTerrupts which occurred.

PipeNULL Count cycles which have to be inserted, because of a pipeline conflict, e.g. a
resource conflict between instructions.

FetchNULL Count cycles which have to be inserted, because of an instruction not being
available in the instruction pipeline, e.g. if the pipeline is flushed after a
conditional branch or a cache miss on the instruction cache.

DataNULL Count cycles which have to be inserted, because of data not being available
(Data NULL), e.g. when reading data from a slow off-chip memory.

IDLE If the cpu is in IDLE state, this option will count the clock cycles as long as the
cpu stays in an IDLE state.

Delta Count hits of Delta-Marker, if specified.

Echo Count hits of Echo-Marker, if specified.

CLOCK Incremented for each cpu clock.

TIME TIME is measured by counting CLOCK. The translation to TIME is done by
using the cpu frequency. For this reason, the cpu frequency has to be entered
with the command TrOnchip.CLOCK.

Init Reset the benchmark counter to zero.

ATOB Activate the benchmark counter to count between the program marker Alpha and
Beta only.
C5000 Debugger | 63©1989-2024 Lauterbach

To count parallel instructions, in relation to the total instructions, use the following commands:

BMCTR0 is incremented by 1 for every instruction. If a parallel instruction gets to be executed, both
BMCTR0/INST and BMCTR1/PINST are incremented by 1.

In order to count the number of calls of a user-defined function func13, specify as follows:

There are two separate benchmark counters available. If only the first one is
selected, it is laid out as a 40-bit counter. If both counters are active, both of them
are 16 bit counters only.
Most measurements are only useful in relation to others, e.g. number of
events in a given time frame. In this scenario one counter may measure the
elapsed time and the second counts for the interrupts which occurred during
that time frame.
In this case, both counters are used as 16 bit counters. Therefore they may
overrun, shortly. For this reason, the benchmark counter can only be applied
to short program sections or single functions.

TrOnchip.RESet ; Reset the TrOnchip settings

TrOnchip.view ; Display the TrOnchip window

TrOnchip.BMCTR0 INST ; Set the first (BMCTR0) benchmark counter
; to count INSTructions

TrOnchip.BMCTR1 PINT ; Set the second (BMCTR1) benchmark counter
; to count parallel instructions

TrOnchip.RESet ; Reset the TrOnchip settings

TrOnchip.view ; Display the TrOnchip window

Break.Set func13 /Program /Delta
/Onchip

; Set the program marker Delta
; to the entry of func13

TrOnchip.BMCTR0 Delta ; Set the first (BMCTR0)
; benchmark counter to count
; hits on the program marker
; Delta
C5000 Debugger | 64©1989-2024 Lauterbach

The following sequence will count on write access, with value of 1, to a variable:

In order to measure the time, for one pass through the function sieve:

Activate the benchmark counter to count parallel instructions in between the program marker Alpha and
Beta only:

; Reset the TrOnchip settings
TrOnchip.RESet

; Set the data write marker on a write 0x01 to the variable flags[3]
Var.Break.Set flags[3] /Write /Echo /Onchip /DATA.Word 0x01

; Set the first (BMCTR0) benchmark counter to count hits on the
; marker Echo
TrOnchip.BMCTR1 Echo

TrOnchip.RESet ; Reset the TrOnchip settings

TrOnchip.view ; Display the TrOnchip window

TrOnchip.BMCTR0 TIME ; Set the first (BMCTR0) benchmark counter
; to measure the time

TrOnchip.CLOCK 12.MHz ; Set the frequency of the CPU

Go sieve ; Go to the function sieve

TrOnchip.BMCTR0 Init ; Initialize the benchmark counter

Go.Return ; Go to the last instruction of the function
; sieve

TrOnchip.RESet ; Reset the TrOnchip settings

TrOnchip.view ; Display the TrOnchip window

Break.Set sieve /Alpha ; Set the program marker Alpha to the begin
; of function sieve

Break.Set V.END(sieve)-1
/Beta

; Set the program marker Beta to the end of
; function sieve

TrOnchip.BMCTR0 ATOB ON ; Instruct the benchmark counter to count
; between the program marker Alpha and Beta
; only

TrOnchip.BMCTR0 PINST ; Instruct the benchmark counter to count
; for parallel instruction between Alpha and
; Beta only
C5000 Debugger | 65©1989-2024 Lauterbach

TrOnchip.CLOCK Set the clock for the benchmark counter

In order to measure the time, as one option of the benchmark counter, clock has to be set to the frequency of
the target cpu.

TrOnchip.CoefficientAccess AET trigger optimization

Default: OFF.

Supports AET trigger optimization.

TrOnchip.DualAccess AET trigger optimization

Default: ON.

Supports AET trigger optimization.

TrOnchip.PROfile Display the benchmark data

Displays the collected data of the first benchmark counter BMCTR0 in a graphical representation. In order to
specify a vertical scaling, use the optional <value> parameter.

Format: TrOnchip.CLOCK <value>

TrOnchip.CLOCK 30.MHz ; Set the frequency of the cpu

Format: TrOnchip.CoefficientAccess [ON | OFF]

Format: TrOnchip.DualAccess [ON | OFF]

Format TrOnchip.PROfile [<value>]
C5000 Debugger | 66©1989-2024 Lauterbach

TrOnchip.RESet Set on-chip trigger to default state

Sets the TrOnchip settings and trigger module to the default settings.

Format: TrOnchip.RESet
C5000 Debugger | 67©1989-2024 Lauterbach

Tracing

Depending on the chip the C5000 trace can either be directly output on dedicated trace pins or sent into a
Coresight trace bus using an ADTF component. Another option is to store the trace onchip in trace buffers
(e.g. ETB). For further information about Coresight component configuration please refer to “Setup of the
Debugger for a CoreSight System” (app_arm_coresight.pdf).

For information about trace hardware setup refer to the “AutoFocus User’s Guide” (autofocus_user.pdf).

Controlling the Trace Capture

On the C5x cores the trace capture setup is controlled by the AET command group.

Trace Breakpoints

The following breakpoint examples use AET resources:

Broadcast only the execution of the instruction at address 0x4dd84.

; Broadcast only the execution of the specified instructions

Break.Set <address> | <range> /Program /TraceEnable

; Broadcast only the instructions that perform the specified data access

Break.Set <address> | <range> /ReadWrite | /Read | /Write /TraceData

Break.Set 0x1234ABCD /Program /TraceEnable

…

Trace.List ; display the result

…

Break.Delete ; delete breakpoint
C5000 Debugger | 68©1989-2024 Lauterbach

JTAG Connection

Mechanical Description of the 20-pin Debug Cable

This connector is defined by ARM. Our debuggers “JTAG Debugger for ARM7” (LA-7746) and “JTAG
Debugger for ARM9” (LA-7742) and “JTAG Debugger for TMS320” are supplied with this connector:

This is a standard 20 pin double row connector (pin-to-pin spacing: 0.100 in.).

We strongly recommend to use a connector on your target with housing and having a center polarization
(e.g. AMP: 2-827745-0). A connection the other way around indeed causes damage to the output driver of
the debugger.

Signal Pin Pin Signal

VREF-DEBUG 1 2 VSUPPLY (not used)
TRST- 3 4 GND

TDI 5 6 GND
TMS|TMSC|SWDIO 7 8 GND
TCK|TCKC|SWCLK 9 10 GND

RTCK 11 12 GND
TDO|-|SWO 13 14 GND

RESET- 15 16 GND
DBGRQ 17 18 GND

DBGACK 19 20 GND
C5000 Debugger | 69©1989-2024 Lauterbach

Electrical Description of the 20-pin Debug Cable

• The input and output signals are connected to a supply translating transceiver (74ALVC164245).
Therefore the ICD/AICD can work in an voltage range of (1.5 V) 1.8 … 3..3 V (3.6 V). Please
note that a 5 V supply environment is not supported! This would cause damage on the
ICD/AICD. Please contact us for alternate solutions if you need to work with 5 V.

• VTREF is used as a sense line for the target voltage. It is also used as supply voltage for the
supply translating transceiver of the ICD/AICD interface to make an adaptation to the target
voltage (1.5 V) 1.8 … 3.3 V (3.6 V).

• nTRST, TDI, TMS, TCK are driven by the supply translating transceiver. In normal operation
mode this driver is enabled, but it can be disabled to give another tool access to the JTAG port. In
environments where multiple tools can access the JTAG port, it is absolutely required that there
is a pull down resistor at TCK. This is to ensure that TCK is low during a hand-over between
different tools.

• RTCK is the return test clock signal from the target JTAG port. This signal can be used to
synchronize JTAG clock with the processor clock (see SYStem.JtagClock).

• TDO is an ICD/AICD input. It is connected to the supply translating transceiver.

• nSRST (=nRESET) is used by the debugger to reset the target CPU or to detect a reset on the
target. It is driven by an open collector buffer. A 47 k pull-up resistor is included in the ICD/AICD
connector. The debugger will only assert a pulse on nSRST when the SYStem.UP, the
SYStem.Mode Go or the SYStem.RESetOUT command is executed. If it is ensured that the DSP
is able to enter debug mode every time (no hang-up condition), the nSRST line is optional.

• EDBGRQ is driven by the supply translating transceiver. This line is optional. It allows to halt the
program execution by an external trigger signal.

• DBGACK is an ICD/AICD input. It is connected to the supply translating transceiver. A 47 k pull-
down resistor is included in the ICD/AICD connector. This line is optional. It allows exact runtime
measurement and exact triggering of other devices on a program execution halt.

• N/C (= Vsupply) is not connected in the ICD/AICD. This pin is used by debuggers of other
manufacturers for supply voltage input. The ICD/AICD is self-powered.

There is an additional plug in the connector on the debug cable to the debug interface. This signal is tristated
if the JTAG connector is tristated by the debugger and it is pulled low otherwise. This signal is normally not
required, but can be used to detect the tristate state if more than one debug tools are connected to the same
JTAG port.
C5000 Debugger | 70©1989-2024 Lauterbach

Mechanical Description of the 14-pin Debug Cable

This connector was defined by ARM. We used that debug cable in former times. An adapter to the 20-pin
connector (see above) and vice versa is available (LA-7747: JTAG ARM Converter 14-20).

This is a standard 14 pin double row (two rows of seven pins) connector (pin-to-pin spacing: 0.100 in.).

Electrical Description of the 14-pin Debug Cable

• TCK, TMS, TDI and nTRST are driven by a VHC125 driver which is supplied with VCCS.
Therefore the ICD/AICD can work in an voltage range of (2.25 V) 2.5…5.0 V (5.5 V). In normal
operation mode this driver is enabled, but it can be disabled to give another tool access to the
JTAG port. The TMS, TDI and nTRST lines have a 47k pull-up resistor in the ICD connector. In
environments where multiple tools can access the JTAG port, it is absolutely required that there
is a pull down resistor at TCK. This is to ensure that TCK is low during a hand-over between
different tools.

• TDO is ICD input only and needs standard TTL level.

• VCCS is used as a sense line for the target voltage. It is also used as supply voltage for the
output driver of the ICD interface to make an adaptation to the target voltage (I(VCCS) appr.
3 mA).

• nRESET (= nSRST) is used by the debugger to reset the target CPU or to detect a reset on the
target. It is driven by an open collector buffer. A 22k pull-up resistor is included in the ICD
connector. The debugger will only assert a pulse on nRESET when the SYStem.Up command is
executed. If it is ensured that the DSP is able to enter debug mode every time (no hang-up
condition), the nRESET line is optional.

VCCS 1 GND

nTRST GND

TDI GND

TMS GND

TCK GND

TDO nRESET

VCCS GND
C5000 Debugger | 71©1989-2024 Lauterbach

Mechanical Description of the TI Connector

This connector is defined by Texas Instruments. It is typically used on TMS320 designs. Our debuggers are
not supplied with this connector, but an adapter is available (LA-7748: JTAG ARM Converter ARM-TI).

This is a standard 14 pin double row (two rows of seven pins) connector (pin-to-pin spacing: 0.100 in.).

FAQ

Please refer to https://support.lauterbach.com/kb.

TMS 1 nTRST

TDI GND

VTREF GND

TDO GND

RTCK GND

TCK GND

EMU0 EMU1
C5000 Debugger | 72©1989-2024 Lauterbach

https://support.lauterbach.com/kb

Operation Voltage

Adapter OrderNo Voltage Range

JTAG Debugger for C5500 (ICD) LA-7830 1.8 .. 3.6 V
C5000 Debugger | 73©1989-2024 Lauterbach

	C5000 Debugger
	Introduction
	Brief Overview of Documents for New Users
	Demo and Start-up Scripts

	Converter from GEL to PRACTICE
	Warning
	DSP specific Implementations
	Trigger
	Breakpoints
	Software Breakpoints
	On-chip Breakpoints for Instructions
	On-chip Breakpoints for Data

	Memory Classes

	DSP specific SYStem Commands
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.CPU Select the used CPU
	SYStem.JtagClock Define JTAG frequency
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Establish the communication with the target
	SYStem.CONFIG.state Display target configuration
	SYStem.CONFIG Configure debugger according to target topology
	<parameters> describing the “DebugPort”
	<parameters> describing the “JTAG” scan chain and signal behavior
	<parameters> describing a system level TAP “MultiTap”
	<parameters> configuring a CoreSight Debug Access Port “AP”
	<parameters> describing debug and trace “Components”
	<parameters> which are “Deprecated”

	SYStem.Option.AHBHPROT Select AHB-AP HPROT bits
	SYStem.Option.AXIACEEnable ACE enable flag of the AXI-AP
	SYStem.Option.AXICACHEFLAGS Configure AXI-AP cache bits
	SYStem.Option.AXIHPROT Select AXI-AP HPROT bits
	SYStem.Option.ByteMode Define byte mode
	SYStem.Option.DAPDBGPWRUPREQ Force debug power in DAP
	SYStem.Option.DAPSYSPWRUPREQ Force system power in DAP
	SYStem.Option.DAPREMAP Rearrange DAP memory map
	SYStem.Option.DEBUGPORTOptions Options for debug port handling
	SYStem.Option.DAPNOIRCHECK No DAP instruction register check
	SYStem.Option.DUALPORT Implicitly use run-time memory access
	SYStem.Option.EnReset Allow the debugger to drive nRESET (nSRST)
	SYStem.LOCK Tristate the JTAG port
	SYStem.Option.EnTRST Control TAP reset
	SYStem.Option.INTDIS Disable all interrupts
	SYStem.Option.MUHP High-priority memory access
	SYStem.Option.OVERLAY Enable overlay support
	SYStem.Option.PWRDWN Allow power-down mode
	SYStem.Option.TargetServer Use target server from TI
	SYStem.Option.TURBO Use DMA for write accesses
	SYStem.RESetOut Reset the DSP
	SYStem.Option.CToolsDecoder Use TI’s trace decoder software
	SYStem.Option.CtoolsNoSync CToolsNoSync

	CPU specific BenchMarkCounter Commands
	BMC.<counter>.ATOB Advise counter to count within AB-range
	BMC.<counter>.EVENT Assign event to counter

	TrOnchip Commands
	TrOnchip.state Display on-chip trigger window
	TrOnchip.CONVert Adjust range breakpoint in on-chip resource

	C55X specific TrOnchip Commands
	TrOnchip.ATOB Activate on-chip breakpoints in AB-range
	TrOnchip.BMCTR Configure the benchmark counter
	TrOnchip.CLOCK Set the clock for the benchmark counter
	TrOnchip.CoefficientAccess AET trigger optimization
	TrOnchip.DualAccess AET trigger optimization
	TrOnchip.PROfile Display the benchmark data
	TrOnchip.RESet Set on-chip trigger to default state

	Tracing
	Controlling the Trace Capture
	Trace Breakpoints

	JTAG Connection
	Mechanical Description of the 20-pin Debug Cable
	Electrical Description of the 20-pin Debug Cable
	Mechanical Description of the 14-pin Debug Cable
	Electrical Description of the 14-pin Debug Cable
	Mechanical Description of the TI Connector

	FAQ
	Operation Voltage

