
WHITEPAPER

Debugging the Software Defined Vehicle
(SDV) – How to be "SDV Ready"

With the transition from traditional, domain-based E/E vehicle architectures to the software-defined
vehicle (SDV), the requirements for development tools are increasing to a considerable extent.
New heterogeneous multi-core high-performance chips and a highly complex software stack in a
virtualized environment limit the choice of suitable debug and trace tools. However, there are already
perfect "SDV ready" solutions for these complex architectures.

ENABLING THE AUTOMOTIVE FUTURE

 Introduction
The term "software-defined vehicle" (SDV) describes
a vehicle whose features and functions are mainly
enabled by software. This is the result of the pro-
gressive transformation of the automobile from
a mainly hardware-based product to a software-
centered electronic device on wheels.

Premium vehicles today can already contain up to
150 million lines of software code, distributed across
up to 100 electronic control units (ECUs) and a grow-
ing number of sensors, cameras, radar and lidar
devices. Mass market vehicles are not far behind.
Three powerful trends – electrification, automation
and connectivity – are changing customer expecta-
tions and prompting manufacturers to increasingly
rely on software to meet them.

In the past, vehicle manufacturers differentiated
themselves through mechanical features such as
power and torque. Today, consumers are increas-
ingly looking for software-defined features, such as
driver assistance functions, infotainment innovations
and intelligent connectivity solutions.

As driver assistance functions grow towards auto-
mated and fully autonomous driving, so does the
need for more software. As consumers expect more
rich content in their infotainment systems, the amount
of digital content that the vehicle needs to manage is

also increasing. And as vehicles become part of the
Internet of Things (IoT) and transfer large amounts
of data to and from the cloud, software is needed to
process, manage and distribute all this data.

The software-defined vehicle not only offers new
safety, comfort and convenience functions, but also
has a number of other advantages over its hard-
ware-defined predecessor.

Today, software upgrades for infotainment, telemat-
ics or vehicle diagnostics systems require a trip to
the dealership. With a software-defined vehicle,
customers can not only receive over-the-air (OTA)
updates that include safety patches, infotainment
enhancements and monitoring and tuning of core
vehicle functions such as powertrain and driving
dynamics, but can also download new features from
an app store.

ECUs will send and receive vast amounts of data
to and from sensors and actuators, giving vehicle
manufacturers insight into every aspect of a vehicle,
its performance and its place in the connected eco-
system. This gives vehicle manufacturers the oppor-
tunity to improve lifecycle management and develop
revenue-boosting features to offer their customers
– all of which will lead to deeper, more connected
relationships with customers.

WHITEPAPER

 – 2 –

 From Hardware to Software
Figure 1 shows a traditional domain-based vehicle
architecture. It divides the vehicle into different do-
mains for the purposes of structure and hierarchy.
Similar functions for the chassis, powertrain, body
or infotainment are grouped together in these do-
mains. If ADAS is subsequently added, for example,
a new domain must be created and its control unit
connected to the central gateway. Each feature or
function is represented by its own control unit (ECU).
The microcontroller of the ECU is selected precisely
for the software mapping this function and together
with the hardware, the ECU is set up for this function,
e.g. as an "ECU for electric windows" or "ECU for
airbag activation" or whatever. In line with the limited
functionality, the computing power requirements and
memory capacity of the microcontrollers are kept
within narrow limits compared to SoCs (system-on-
a-chip), such as those found in smartphones.

In an SDV, features and functions are consolidated
on fewer, but significantly higher-performance chips.
Figure 2 shows an example of a proposal for the
gradual transition from a domain-based to a zone
architecture with a central computer.

In a zonal architecture, the functionality shifts from
domain controllers to zonal control units and central
processors. Instead of dividing similar functions into
domains, they are assigned to a zone depending on
their location in the vehicle. This approach signifi-
cantly reduces the complexity of the vehicle electri-
cal system and facilitates standardization. The de-
vices in a zone are controlled by one or more ECUs,
which in turn communicate with a local host or zonal
gateway. Several data streams and functions thus
share a single piece of hardware.

A simpler car could consist of three or four zones in
this sense, and six zones would be conceivable for
more complex vehicle classes.

The design of the zones is variable – including the el-
ements in the hierarchy. In addition, the changeover
does not have to happen abruptly. For example, the
three development stages shown in Figure 2, which
are considered likely by various manufacturers, are
possible.

Figure 1: Traditional E/E
architecture in the vehicle.
Source: Lauterbach

WHITEPAPER

 – 3 –

 From the Domain-based
 Architecture to the Software
 Defined Vehicle (SDV)

The body domain, with its many distributed
actuators and sensors as well as sensor ECUs, will
be one of the first domains to transition to a zone
architecture. This first approach reduces the com-
plexity of the wiring harnesses within the vehicle.
Devices are connected to a zonal gateway locally,
reducing the number and length of data and power
cables. The zonal gateway functions not only as a
processing center, but also as a power distributi-
on module. The communication links between the
gateways and the central computing cluster can
be established with just a few high-speed network
connections. This means that the redundancy
required in safety-critical systems is also possible
with less material input.

The second phase is about much more than "just" re-
ducing weight through less complex cable harnesses.
Here, more and more computing power is required
in the individual control units and the central compu-
ter unit. The number of ECUs is consolidated and the
central computer becomes the brain of the vehicle.
Instead of outsourcing the chassis control together
with the drivetrain via a motion domain controller, for
example, it could become part of the zones.

The ultimate goal of the zone architecture is a fully
software-defined vehicle that ideally combines
standardized components for sensors, actuators,
zonal modules and data connections. The zonal
aggregator is responsible for traffic management

Figure 2: Consolidation of chips in the SDV. Source: Lauterbach

Domain-
Based

Body
Zonal

Cross-Domain
Zonal

Consolidated
Compute

Infotainment

ADAS

HPC

Gateway

Body

Powertrain

Chassis

Zone

End-Point ECUs

BODY ZONES ADVANCED ZONES HIGH-END ZONES

HPC (SoC) + MCU(s)

(...) (...) (...) (...)

END-POINTStandard SoC

WHITEPAPER

Figure 3: Typical SDV vehicle architecture. Source: Lauterbach

 – 4 –

and real-time processing. It combines different
types of data with different criticality, safety and
security requirements. It must ensure both access
to and exit from the data highway and finally
the reconversion of Ethernet packets into CAN
or LIN bus signals without compromising the
above-mentioned requirements of each individual
bit of information.

The zonal controller is responsible for extended
network processing. Sensors, actuators and so-
metimes functions are connected locally to the
zoned controller. These can also be regarded as
mini-gateways, as they combine CAN or LIN with
Ethernet. Finally, the zone ECUs are connected to
the central brain of the vehicle via a high-speed
Ethernet network backbone.

In addition to all these functions, the zone pro-
cessor is able to perform application processing
and advanced gateway services. This architecture
places high demands on data transmission, the
microcontrollers used and the edge intelligence.
However, the advantages are obvious: the cont-
rollers are reusable and can be easily updated, as

the necessary functions are available together in
the central computer.

Figure 3 shows a proposal that contains four zone
controllers in addition to the endpoint MCUs on the
sensors and actuators. The requirements description
above makes it clear that these must be high-perfor-
mance microcontrollers with real-time capability and
features for functional safety. Chips suitable for this
are being developed by various semiconductor ma-
nufacturers or are already on the market.

At the top of the hardware list for the central com-
puter in Figure 3 are three so-called high-perfor-
mance SOCs, which are high-end chips such as
Qualcomm’s Snapdragon, Nvidia’s Drive Orin/Thor,
NXP’s S32N55 Super Vehicle Integration Processor
or Renesas’ 5th generation R-Car. Other semicon-
ductor manufacturers are currently developing simi-
lar SoCs for HPC. These include massive multicore
architectures with the most powerful Cortex-A/R co-
res currently offered by Arm®, as well as additional
cores for accelerating special tasks (e.g. Hexagon
DSPs in Snapdragon, CEVA-X DSPs in certain R-Car
derivatives).

WHITEPAPER

 – 5 –

 Hardware Requirements
 for Debug and Trace Tools

Even if there is still no standard definition of "the"
SDV architecture, there is general agreement on the
type of hardware and software stack that will be
found in SDVs.

It sounds trivial, but a debug and trace tool must of
course support all chips installed in the SDV as a first
step, primarily meaning effective multicore debug-
ging, especially for heterogeneous chip architectures
with a large number of different cores. These so-cal-
led AMP systems have several cores, each of which
fulfills its own task.

Lauterbach’s TRACE32® PowerView software provi-
des a consistent user interface and feature set for any
mix of core architectures. You can debug all types of
multicore configurations with up to 16 synchronized
PowerView instances via a single debug probe [1].
Within your system, each core can have its own core
architectures, memory models, operating systems,
address translations and debug symbols, as well as
its own physical address space. You can even combi-
ne several separate multicore SoCs for debugging via
a daisy chain (JTAG), a star topology (cJTAG/SWD) or
using two whiskers with a TRACE32® CombiProbe.

Sometimes traditional stop-mode debugging is not
sufficient, e.g. for heisenbugs that only occur in real

time or if errors only occur occasionally or have
complex causes. This is where program flow data
provided by trace extensions can help, showing
exactly which instructions were executed when
and how long the execution took, without af fec-
ting the application under test. Code coverage
measurements and timing analysis also require
the collection of trace information over a long
period of time.

With TRACE32® trace tools, developers can
capture real-time traces on any multicore SoC
that offers a trace interface or an on-chip buffer.
It doesn’t matter what type of multicore sys-
tem you use: Symmetric Multiprocessing (SMP),
Asymmetric Multiprocessing (AMP), Integrated
Asymmetric Multiprocessing (iAMP) or any mix-
ture. Modern multi-core SoCs merge the trace
data of all cores so that you only need a single
trace sample to capture the off-chip trace of all
cores together.

Before deciding on a debugger or trace tool in
an SDV project, questions such as "Does the tool
actually support all chips including HPC SoCs?"
and "Can I debug all cores including accelerators
such as the Hexagon DSP on Qualcomm’s Snap-
dragon?" are more than important.

WHITEPAPER

 – 6 –

 Software Requirements
 for Debug and Trace Tools

On the side of an SDV software stack, we are
experiencing a significantly greater paradigm shift
compared to hardware. Several consortia have
been formed to develop a standardization here.
According to a study by the renowned analysis
company WardsAuto™, the SOAFEE consortium
founded by Arm® has the best prospects of being
successful here [2].

Figure 4 shows the highly complex software
stack as envisioned by the SOAFEE consortium
(www.soafee.io). The aim is to significantly de-
couple the previous co-development of hardware
and software. The components are developed in-
dependently of each other. The integration of all
modules, which was previously carried out by the
OEM, is now carried out by the car itself during
operation.

There are two crucial points here in particular: First-
ly, the environment is virtualised. As we have dis-
covered with data centres, this is a more efficient
use of the computing power available. With the help
of hypervisors, so-called virtual machines (VMs) are
set up, each of which runs not only applications but
also its own operating systems, strictly separated

from other VMs. Secondly, container technology
can be used to install new applications from the
cloud without affecting existing workloads.

What does this mean for debug and trace tools?
First of all, they must offer broad hypervisor and
OS awareness. This means that users can debug
the entire software stack from the user applica-
tion to the device driver and query and display
all operating system objects such as threads,
message queues, etc. In virtualized systems, all
VMs and their applications must be debuggable at
the same time in order to create complete transpa-
rency (Figure 5).

On virtualized systems where multiple operating
systems are controlled by one hypervisor, Lauter-
bach's TRACE32® Hypervisor-aware Debugging
enables simultaneous OS-aware debugging for
each guest operating system/virtual machine (VM)
and the display of an overview of the entire system.
In addition to static hypervisors, dynamic hyper-
visors that dynamically allocate memory resour-
ces and cores to the VMs are also supported – a
unique TRACE32® feature in the entire embedded
industry [3].

Figure 4: Software stack with virtualized environment and containers for SDVs. Source: SOAFEE consortium

http://www.soafee.io

WHITEPAPER

 – 7 –

 Supporting Heterogeneous
 Operating Systems and AUTOSAR

TRACE32® OS Awareness is available for more
than 80 embedded operating systems of all kinds.
It supports Rich OSes as well as RTOSes and all
common open source and commercial operating
systems used in embedded applications.

To be able to read the task list or to enable pro-
cess or module debugging, OS awareness acces-
ses the internal structures of the OS kernel via the
kernel symbols. TRACE32® OS awareness and
TRACE32® MMU support enable seamless debug-
ging across process boundaries: it is possible to
directly access the virtual address space of each
process and display the current register set and
stack frame for each individual process. After loa-
ding an operating system-specific extension, the
TRACE32® PowerView software offers additional
commands, options and displays that simplify the
debugging of the operating system.

OS awareness is of course also important when
using AUTOSAR. The AUTOSAR Classic platform
uses a static operating system that is based on the
OSEK OS and has been extended by AUTOSAR
with a range of functionalities. TRACE32® OS-awa-
re debugging for AUTOSAR Classic based opera-
ting systems is activated by loading the ORTI file or
the AUTOSAR ARTI description file. The TRACE32®
PowerView software is extended by a dedica-
ted menu that gives developers access to AUTO-
SAR OS resources such as tasks, alarms, stack
coverage and much more. When running multiple
AUTOSAR Classic operating systems on multicore
SoCs, the TRACE32® tools also support simulta-
neous debugging of these systems. This also inclu-
des hypervisor debugging of virtualized systems.

In contrast to the Classic Platform, AUTOSAR uses
a POSIX operating system (POSIX Profile PSE51) in

Figure 5: Parallel debugging of several guest operating systems on a hypervisor. Source: Lauterbach

WHITEPAPER

Figure 6: Simultaneous debugging for AUTOSAR Classic and AUTOSAR Adaptive Platform. Source: Lauterbach

 – 8 –

the Adaptive Platform. This means that Linux, for
example, which has long been used in the auto-
motive sector for infotainment systems and other appli-
cations, is also available as an operating system for the
Adaptive Platform. In addition to Linux, the TRACE32®
tools support all relevant POSIX-compatible operating
systems such as QNX, PikeOS or eMCOS.

If several AUTOSAR Adaptive Platform-compliant
operating systems are used on multicore SoCs,
TRACE32® also supports the simultaneous
debugging of these systems. This also includes
hypervisor debugging of virtualized systems.

As can be seen in Figure 4, mixed AUTOSAR Clas-
sic/Adaptive components are used in the SOAFEE
reference software stack. The TRACE32® debug
and trace tools also support various configura-

tions for the simultaneous debugging of AUTOSAR
Classic-based and AUTOSAR Adaptive-compliant
operating systems thanks to the almost unlimited
support of any multicore configurations. A typical
configuration is shown in Figure 6.

Before starting an SDV project, you should the-
refore ask yourself, for example, "Does the tool
actually support all hypervisors and OSes, inclu-
ding all AUTOSAR-compliant OSes for my project?",
"Can I debug all active and non-active VMs in
virtualized environments at the same time and track
the memory conversion from virtual to physical
addresses via MMU (Memory Management Unit)?"
and "Can I debug applications in containers, e.g.
from Docker?". If the answer is "no", it is likely to
become difficult at some point in the course of an
SDV development project.

WHITEPAPER

 – 9 –

 Development in the Cloud
 thanks to "Shift Left"

In order to be able to start software development
as early as possible before real chips are available
(in sufficient numbers), development is increasingly
being started on virtual targets in the cloud. Provi-
ders such as ASTC, Correlium, Synopsys and others
offer entire chips or even automotive platforms "in
software" for this purpose. In a standard white paper
[4] from 2020, five levels of virtual and real ECUs are
described, in which the real production environment
is increasingly approximated with ascending levels.

From the customer’s point of view, it is of course
desirable to be able to debug all levels of an ECU
with one toolchain and one GUI so that there is no
break in the development process. Lauterbach’s
TRACE32® supports the "Shift Left" approach by not
only supporting real chips in silicon, but also virtual
targets and emulators from various partner suppliers

via different interfaces, on which software develop-
ment is already possible if no real chips in silicon are
available (Figure 7). The functions and the GUI of the
TRACE32® PowerView software do not differ from
real targets, so that the user experience is the same
throughout the entire development cycle [5].

With its reference platform RD-1AE (Fig. 8), Arm has
made a concrete proposal for the architecture of
an SDV. The platform combines high-performance
Arm® Neoverse V3AE application processors
(primary compute) with an Arm® Cortex®-R82AE-
based so-called security island for scenarios
where additional system security monitoring is
required. The system also includes a Runtime
Security Engine (RSE) realized on an Arm Cortex-
M55, which is used for the secure start of the system
elements and the Runtime Secure Services. In
addition, an open source software package is
supplied with the Xen hypervisor and the Zephyr OS
real-time operating system, among other things.

Figure 7: Debugging virtual and real ECUs. Source: Lauterbach

WHITEPAPER

 – 10 –

 Debugging Arm’s Automotive
 Reference Platform in the Cloud

The company Corellium has fully virtualized this
platform and brought it into the cloud [6]. The spe-
cial feature is that the virtual platform runs on AWS
instances at Amazon Webservices with real Arm
hardware (specifically: Amazon’s Graviton Arm

Server), so that the Arm instructions of the virtual
Arm cores do not have to be migrated to x86, as is
the case with many cloud solutions. Performance
is therefore significantly higher.

TRACE32® is already capable of debugging the
entire Corellium platform in the cloud, both the
Neoverse V3 and the Cortex-R82AE and Cortex-M55
clusters (Figure 9).

Figure 8: Arm Automotive reference platform RD-1AE. Source: Arm

Figure 9: Debugging the Corellium Arm Automotive reference platform in the AWS cloud with TRACE32®. Source: Lauterbach

This information is subject to change without notice. TRACE32®, µTrace®, Lauterbach® are registered trademarks of Lauterbach GmbH.
All product and service names mentioned are the trademarks of their respective companies. ©Lauterbach GmbH | V 1.00

REFERENCES:
[1] Unlimited multicore debugging with Lauterbach TRACE32®: https://www.lauterbach.com/features/multicore-debugging-and-tracing

[2] WardsAuto Study "Unveiling Tomorrow's Ride: A Deep Dive Into Software- Defined Vehicles", page 19. Downloadable from https://www.nxp.com

[3] Hypervisor and OS-aware debugging with Lauterbach TRACE32® : https://www.lauterbach.com/features/os-awareness

[4] Requirements for the Standardization of Virtual Electronic Control Units (V-ECUs): https://www.ps-ent-2023.de/fileadmin/prod-download/
 WhitePaper_V-ECU_2020_05_04-EN.pdf

[5] "Shift Left Debugging" with Lauterbach TRACE32®: https://www.lauterbach.com/supported-platforms/toolchain/emulators-and-virtual-targets

[6] Corellium Arm Virtual Automotive Platform: https://www.corellium.com/blog/introducing-rd-1ae

[7] Debug SDVs with Lauterbach TRACE32®: https://www.lauterbach.com/sdv

 – 11 –

 CONCLUSION:

 "SDV Ready" Tools make
 Life easier for SDV Developers

To summarize, the world for developers of
SDV architectures is becoming more complex
compared to the traditional approach. Not all
tools support all new challenges from highly com-
plex multicore SoCs to vir tualized environments,
containers and vir tual targets. The good news

is that Lauterbach’s TRACE32® debug and
trace tools are already "SDV Ready" today: With
TRACE32®, developers can debug your entire
SDV software stack on all current and future
automotive SoCs and across the entire lifecycle
from virtual ECU to real silicon.

https://www.lauterbach.com
https://www.lauterbach.com/features/multicore-debugging-and-tracing
https://www.nxp.com
https://www.ps-ent-2023.de/fileadmin/prod-download/WhitePaper_V-ECU_2020_05_04-EN.pdf
https://www.ps-ent-2023.de/fileadmin/prod-download/WhitePaper_V-ECU_2020_05_04-EN.pdf

