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Debugging the Software Defined Vehicle 
(SDV) – How to be "SDV Ready"

With the transition from traditional, domain-based E/E vehicle architectures to the software-defined  
vehicle (SDV), the requirements for development tools are increasing to a considerable extent.  
New heterogeneous multi-core high-performance chips and a highly complex software stack in a  
virtualized environment limit the choice of suitable debug and trace tools. However, there are already  
perfect "SDV ready" solutions for these complex architectures.

ENABLING THE AUTOMOTIVE FUTURE

 Introduction
The term "software-defined vehicle" (SDV) describes 
a vehicle whose features and functions are mainly 
enabled by software. This is the result of the pro-
gressive transformation of the automobile from 
a mainly hardware-based product to a software- 
centered electronic device on wheels.

Premium vehicles today can already contain up to 
150 million lines of software code, distributed across 
up to 100 electronic control units (ECUs) and a grow-
ing number of sensors, cameras, radar and lidar 
devices. Mass market vehicles are not far behind. 
Three powerful trends – electrification, automation 
and connectivity – are changing customer expecta-
tions and prompting manufacturers to increasingly 
rely on software to meet them.

In the past, vehicle manufacturers differentiated 
themselves through mechanical features such as 
power and torque. Today, consumers are increas-
ingly looking for software-defined features, such as 
driver assistance functions, infotainment innovations 
and intelligent connectivity solutions.

As driver assistance functions grow towards auto-
mated and fully autonomous driving, so does the 
need for more software. As consumers expect more 
rich content in their infotainment systems, the amount 
of digital content that the vehicle needs to manage is 

also increasing. And as vehicles become part of the 
Internet of Things (IoT) and transfer large amounts 
of data to and from the cloud, software is needed to 
process, manage and distribute all this data.

The software-defined vehicle not only offers new 
safety, comfort and convenience functions, but also 
has a number of other advantages over its hard-
ware-defined predecessor.  

Today, software upgrades for infotainment, telemat-
ics or vehicle diagnostics systems require a trip to 
the dealership. With a software-defined vehicle, 
customers can not only receive over-the-air (OTA) 
updates that include safety patches, infotainment 
enhancements and monitoring and tuning of core 
vehicle functions such as powertrain and driving  
dynamics, but can also download new features from 
an app store.

ECUs will send and receive vast amounts of data 
to and from sensors and actuators, giving vehicle 
manufacturers insight into every aspect of a vehicle,  
its performance and its place in the connected eco-
system. This gives vehicle manufacturers the oppor-
tunity to improve lifecycle management and develop 
revenue-boosting features to offer their customers 
– all of which will lead to deeper, more connected 
relationships with customers.
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 From Hardware to Software
Figure 1 shows a traditional domain-based vehicle 
architecture. It divides the vehicle into different do-
mains for the purposes of structure and hierarchy. 
Similar functions for the chassis, powertrain, body 
or infotainment are grouped together in these do-
mains. If ADAS is subsequently added, for example, 
a new domain must be created and its control unit 
connected to the central gateway. Each feature or 
function is represented by its own control unit (ECU). 
The microcontroller of the ECU is selected precisely 
for the software mapping this function and together 
with the hardware, the ECU is set up for this function, 
e.g. as an "ECU for electric windows" or "ECU for 
airbag activation" or whatever. In line with the limited 
functionality, the computing power requirements and 
memory capacity of the microcontrollers are kept 
within narrow limits compared to SoCs (system-on-
a-chip), such as those found in smartphones.

In an SDV, features and functions are consolidated 
on fewer, but significantly higher-performance chips. 
Figure 2 shows an example of a proposal for the 
gradual transition from a domain-based to a zone 
architecture with a central computer. 

In a zonal architecture, the functionality shifts from 
domain controllers to zonal control units and central 
processors. Instead of dividing similar functions into 
domains, they are assigned to a zone depending on 
their location in the vehicle. This approach signifi-
cantly reduces the complexity of the vehicle electri-
cal system and facilitates standardization. The de-
vices in a zone are controlled by one or more ECUs, 
which in turn communicate with a local host or zonal 
gateway. Several data streams and functions thus 
share a single piece of hardware.

A simpler car could consist of three or four zones in 
this sense, and six zones would be conceivable for 
more complex vehicle classes.

The design of the zones is variable – including the el-
ements in the hierarchy. In addition, the changeover 
does not have to happen abruptly. For example, the 
three development stages shown in Figure 2, which 
are considered likely by various manufacturers, are 
possible.

Figure 1: Traditional E/E 
architecture in the vehicle. 
Source: Lauterbach
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  From the Domain-based  
  Architecture to the Software  
 Defined Vehicle (SDV)

The body domain, with its many distributed  
actuators and sensors as well as sensor ECUs, will 
be one of the first domains to transition to a zone 
architecture. This first approach reduces the com-
plexity of the wiring harnesses within the vehicle. 
Devices are connected to a zonal gateway locally, 
reducing the number and length of data and power 
cables. The zonal gateway functions not only as a 
processing center, but also as a power distributi-
on module. The communication links between the 
gateways and the central computing cluster can 
be established with just a few high-speed network 
connections. This means that the redundancy  
required in safety-critical systems is also possible 
with less material input.

The second phase is about much more than "just" re-
ducing weight through less complex cable harnesses. 
Here, more and more computing power is required 
in the individual control units and the central compu-
ter unit. The number of ECUs is consolidated and the 
central computer becomes the brain of the vehicle. 
Instead of outsourcing the chassis control together 
with the drivetrain via a motion domain controller, for 
example, it could become part of the zones.

The ultimate goal of the zone architecture is a fully 
software-defined vehicle that ideally combines 
standardized components for sensors, actuators, 
zonal modules and data connections. The zonal 
aggregator is responsible for traffic management 

Figure 2: Consolidation of chips in the SDV.  Source: Lauterbach
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Figure 3: Typical SDV vehicle architecture.   Source: Lauterbach
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and real-time processing. It combines different 
types of data  with different criticality, safety and 
security requirements. It must ensure both access 
to and exit from the data highway and finally 
the reconversion of Ethernet packets into CAN 
or LIN bus signals without compromising the  
above-mentioned requirements of each individual 
bit of information.

The zonal controller is responsible for extended 
network processing. Sensors, actuators and so-
metimes functions are connected locally to the 
zoned controller. These can also be regarded as 
mini-gateways, as they combine CAN or LIN with 
Ethernet. Finally, the zone ECUs are connected to 
the central brain of the vehicle via a high-speed 
Ethernet network backbone.

In addition to all these functions, the zone pro-
cessor is able to perform application processing 
and advanced gateway services. This architecture 
places high demands on data transmission, the 
microcontrollers used and the edge intelligence. 
However, the advantages are obvious: the cont-
rollers are reusable and can be easily updated, as 

the necessary functions are available together in 
the central computer.

Figure 3 shows a proposal that contains four zone 
controllers in addition to the endpoint MCUs on the 
sensors and actuators. The requirements description 
above makes it clear that these must be high-perfor-
mance microcontrollers with real-time capability and 
features for functional safety. Chips suitable for this 
are being developed by various semiconductor ma-
nufacturers or are already on the market.

At the top of the hardware list for the central com-
puter in Figure 3 are three so-called high-perfor-
mance SOCs, which are high-end chips such as 
Qualcomm’s Snapdragon, Nvidia’s Drive Orin/Thor, 
NXP’s S32N55 Super Vehicle Integration Processor 
or Renesas’ 5th generation R-Car. Other semicon-
ductor manufacturers are currently developing simi-
lar SoCs for HPC. These include massive multicore 
architectures with the most powerful Cortex-A/R co-
res currently offered by Arm®, as well as additional 
cores for accelerating special tasks (e.g. Hexagon 
DSPs in Snapdragon, CEVA-X DSPs in certain R-Car 
derivatives).
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  Hardware Requirements  
 for Debug and Trace Tools

Even if there is still no standard definition of "the"  
SDV architecture, there is general agreement on the 
type of hardware and software stack that will be  
found in SDVs.

It sounds trivial, but a debug and trace tool must of 
course support all chips installed in the SDV as a first 
step, primarily meaning effective multicore debug-
ging, especially for heterogeneous chip architectures 
with a large number of different cores. These so-cal-
led AMP systems have several cores, each of which 
fulfills its own task. 

Lauterbach’s TRACE32® PowerView software provi-
des a consistent user interface and feature set for any 
mix of core architectures. You can debug all types of 
multicore configurations with up to 16 synchronized 
PowerView instances via a single debug probe [1].  
Within your system, each core can have its own core 
architectures, memory models, operating systems, 
address translations and debug symbols, as well as 
its own physical address space. You can even combi-
ne several separate multicore SoCs for debugging via 
a daisy chain (JTAG), a star topology (cJTAG/SWD) or 
using two whiskers with a TRACE32® CombiProbe.

Sometimes traditional stop-mode debugging is not 
sufficient, e.g. for heisenbugs that only occur in real 

time or if errors only occur occasionally or have 
complex causes. This is where program flow data 
provided by trace extensions can help, showing 
exactly which instructions were executed when 
and how long the execution took, without af fec-
ting the application under test. Code coverage 
measurements and timing analysis also require 
the collection of trace information over a long  
period of time. 

With TRACE32® trace tools, developers can  
capture real-time traces on any multicore SoC 
that offers a trace interface or an on-chip buffer.  
It doesn’t matter what type of multicore sys-
tem you use: Symmetric Multiprocessing (SMP), 
Asymmetric Multiprocessing (AMP), Integrated 
Asymmetric Multiprocessing (iAMP) or any mix-
ture. Modern multi-core SoCs merge the trace 
data of all cores so that you only need a single 
trace sample to capture the off-chip trace of all 
cores together.

Before deciding on a debugger or trace tool in 
an SDV project, questions such as "Does the tool 
actually support all chips including HPC SoCs?" 
and "Can I debug all cores including accelerators 
such as the Hexagon DSP on Qualcomm’s Snap-
dragon?" are more than important.
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  Software Requirements  
 for Debug and Trace Tools

On the side of an SDV software stack, we are  
experiencing a significantly greater paradigm shift 
compared to hardware. Several consortia have 
been formed to develop a standardization here. 
According to a study by the renowned analysis 
company WardsAuto™, the SOAFEE consortium 
founded by Arm® has the best prospects of being 
successful here [2].

Figure 4 shows the highly complex software 
stack as envisioned by the SOAFEE consortium  
(www.soafee.io). The aim is to significantly de-
couple the previous co-development of hardware 
and software. The components are developed in-
dependently of each other. The integration of all 
modules, which was previously carried out by the 
OEM, is now carried out by the car itself during 
operation.

There are two crucial points here in particular: First-
ly, the environment is virtualised. As we have dis-
covered with data centres, this is a more efficient 
use of the computing power available. With the help 
of hypervisors, so-called virtual machines (VMs) are 
set up, each of which runs not only applications but 
also its own operating systems, strictly separated 

from other VMs. Secondly, container technology 
can be used to install new applications from the 
cloud without affecting existing workloads.

What does this mean for debug and trace tools? 
First of all, they must offer broad hypervisor and 
OS awareness. This means that users can debug 
the entire software stack from the user applica-
tion to the device driver and query and display 
all operating system objects such as threads,  
message queues, etc. In virtualized systems, all 
VMs and their applications must be debuggable at 
the same time in order to create complete transpa-
rency (Figure 5).

On virtualized systems where multiple operating 
systems are controlled by one hypervisor, Lauter-
bach's TRACE32® Hypervisor-aware Debugging 
enables simultaneous OS-aware debugging for 
each guest operating system/virtual machine (VM) 
and the display of an overview of the entire system. 
In addition to static hypervisors, dynamic hyper-
visors that dynamically allocate memory resour-
ces and cores to the VMs are also supported – a 
unique TRACE32® feature in the entire embedded 
industry [3].

Figure 4: Software stack with virtualized environment and containers for SDVs.   Source: SOAFEE consortium

http://www.soafee.io
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  Supporting Heterogeneous  
 Operating Systems and AUTOSAR

TRACE32® OS Awareness is available for more 
than 80 embedded operating systems of all kinds. 
It supports Rich OSes as well as RTOSes and all 
common open source and commercial operating 
systems used in embedded applications.

To be able to read the task list or to enable pro-
cess or module debugging, OS awareness acces-
ses the internal structures of the OS kernel via the 
kernel symbols. TRACE32® OS awareness and 
TRACE32® MMU support enable seamless debug-
ging across process boundaries: it is possible to 
directly access the virtual address space of each 
process and display the current register set and 
stack frame for each individual process. After loa-
ding an operating system-specific extension, the 
TRACE32® PowerView software offers additional 
commands, options and displays that simplify the 
debugging of the operating system.

OS awareness is of course also important when 
using AUTOSAR. The AUTOSAR Classic platform 
uses a static operating system that is based on the 
OSEK OS and has been extended by AUTOSAR 
with a range of functionalities. TRACE32® OS-awa-
re debugging for AUTOSAR Classic based opera-
ting systems is activated by loading the ORTI file or 
the AUTOSAR ARTI description file. The TRACE32®  
PowerView software is extended by a dedica-
ted menu that gives developers access to AUTO-
SAR OS resources such as tasks, alarms, stack  
coverage and much more. When running multiple 
AUTOSAR Classic operating systems on multicore 
SoCs, the TRACE32® tools also support simulta-
neous debugging of these systems. This also inclu-
des hypervisor debugging of virtualized systems.

In contrast to the Classic Platform, AUTOSAR uses 
a POSIX operating system (POSIX Profile PSE51) in 

Figure 5: Parallel debugging of several guest operating systems on a hypervisor.   Source: Lauterbach
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Figure 6: Simultaneous debugging for AUTOSAR Classic and AUTOSAR Adaptive Platform.  Source: Lauterbach
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the Adaptive Platform. This means that Linux, for  
example, which has long been used in the auto- 
motive sector for infotainment systems and other appli-
cations, is also available as an operating system for the 
Adaptive Platform. In addition to Linux, the TRACE32® 
tools support all relevant POSIX-compatible operating 
systems such as QNX, PikeOS or eMCOS.

If several AUTOSAR Adaptive Platform-compliant 
operating systems are used on multicore SoCs, 
TRACE32® also supports the simultaneous  
debugging of these systems. This also includes 
hypervisor debugging of virtualized systems.

As can be seen in Figure 4, mixed AUTOSAR Clas-
sic/Adaptive components are used in the SOAFEE 
reference software stack. The TRACE32® debug 
and trace tools also support various configura-

tions for the simultaneous debugging of AUTOSAR 
Classic-based and AUTOSAR Adaptive-compliant 
operating systems thanks to the almost unlimited 
support of any multicore configurations. A typical 
configuration is shown in Figure 6.

Before starting an SDV project, you should the-
refore ask yourself, for example, "Does the tool  
actually support all hypervisors and OSes, inclu-
ding all AUTOSAR-compliant OSes for my project?",  
"Can I debug all active and non-active VMs in  
virtualized environments at the same time and track 
the memory conversion from virtual to physical  
addresses via MMU (Memory Management Unit)?" 
and "Can I debug applications in containers, e.g.  
from Docker?". If the answer is "no", it is likely to 
become difficult at some point in the course of an 
SDV development project.
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  Development in the Cloud  
 thanks to "Shift Left"  

In order to be able to start software development 
as early as possible before real chips are available 
(in sufficient numbers), development is increasingly 
being started on virtual targets in the cloud. Provi-
ders such as ASTC, Correlium, Synopsys and others 
offer entire chips or even automotive platforms "in 
software" for this purpose. In a standard white paper 
[4] from 2020, five levels of virtual and real ECUs are 
described, in which the real production environment 
is increasingly approximated with ascending levels. 

From the customer’s point of view, it is of course 
desirable to be able to debug all levels of an ECU 
with one toolchain and one GUI so that there is no 
break in the development process.  Lauterbach’s 
TRACE32® supports the "Shift Left" approach by not 
only supporting real chips in silicon, but also virtual 
targets and emulators from various partner suppliers 

via different interfaces, on which software develop-
ment is already possible if no real chips in silicon are 
available (Figure 7). The functions and the GUI of the 
TRACE32® PowerView software do not differ from 
real targets, so that the user experience is the same 
throughout the entire development cycle [5].

With its reference platform RD-1AE (Fig. 8), Arm has 
made a concrete proposal for the architecture of 
an SDV. The platform combines high-performance  
Arm® Neoverse V3AE application processors  
(primary compute) with an Arm® Cortex®-R82AE- 
based so-called security island for scenarios  
where additional system security monitoring is  
required. The system also includes a Runtime  
Security Engine (RSE) realized on an Arm Cortex- 
M55, which is used for the secure start of the system 
elements and the Runtime Secure Services. In  
addition, an open source software package is  
supplied with the Xen hypervisor and the Zephyr OS 
real-time operating system, among other things.

Figure 7: Debugging virtual and real ECUs.   Source: Lauterbach
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  Debugging Arm’s Automotive  
 Reference Platform in the Cloud

The company Corellium has fully virtualized this 
platform and brought it into the cloud [6]. The spe-
cial feature is that the virtual platform runs on AWS 
instances at Amazon Webservices with real Arm 
hardware (specifically: Amazon’s Graviton Arm 

Server), so that the Arm instructions of the virtual 
Arm cores do not have to be migrated to x86, as is 
the case with many cloud solutions. Performance 
is therefore significantly higher.

TRACE32® is already capable of debugging the  
entire Corellium platform in the cloud, both the  
Neoverse V3 and the Cortex-R82AE and Cortex-M55 
clusters (Figure 9).

Figure 8: Arm Automotive reference platform RD-1AE.  Source: Arm

Figure 9: Debugging the Corellium Arm Automotive reference platform in the AWS cloud with TRACE32®.      Source: Lauterbach
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  CONCLUSION: 

  "SDV Ready" Tools make 
 Life easier for SDV Developers

To summarize, the world for developers of 
SDV architectures is becoming more complex  
compared to the traditional approach. Not all 
tools support all new challenges from highly com-
plex multicore SoCs to vir tualized environments,  
containers and vir tual targets. The good news 

is that Lauterbach’s TRACE32® debug and 
trace tools are already "SDV Ready" today: With 
TRACE32®, developers can debug your entire 
SDV software stack on all current and future 
automotive SoCs and across the entire lifecycle 
from virtual ECU to real silicon.
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