
WHITEPAPER

How to Design SoCs for
Optimal Debuggability and
Improved Time-to-Market

 Introduction
Software is no longer just a tool for convenience
– it’s a driver of innovation. As the backbone of
the digital world, software has evolved from simp-
le commands to complex, adaptive systems. With
advancements in AI and quantum computing, soft-
ware will keep shaping our future, unlocking new
opportunities and redefining what’s possible in the
digital age.

A System-on-Chip (SoC) needs embedded soft-
ware to enable efficient operation and coordination
of its integrated components. The software mana-
ges functions, optimizes performance, and ensures
power efficiency, allowing the SoC to handle com-
plex tasks and meet specific application needs. Wi-
thout software, the SoC‘s components would lack
coordination, limiting its potential.

Integrating software on a SoC is an important step
in developing and producing embedded systems.
However, errors can occur during the creation of
software code, which developers have to find and
eliminate at great expense using methods such as
debugging.

Debugging an SoC is crucial for eliminating design
errors, optimizing performance, and ensuring functi-
onality and security in various application scenarios.
For example, debugging enables the identification and
elimination of security vulnerabilities that may have
been caused by design or implementation errors.

Other use cases such as timing and requirement
analyses – e.g. to evaluate worst execution times
– or code coverage measurements for functional
safety certifications are also indispensably linked to
debug tools and extensions for real-time trace.

According to a study at the Judge Business School
of the University of Cambridge [1], UK, developers
spend almost 50 percent of their time debugging,
with the rest of their time being spent on other acti-
vities such as writing code. Phaedrus claimed that
90% of most projects was spent on debug and op-
timization. In the early 2000’s Nokia did a study over
200 projects and found that having trace saved, on
average, 75% of the time it took to debug a design.
This proves how important debugging is to write
error-free code and develop error-free products.

WHITEPAPER

 – 2 –

To optimally prepare SoCs for debugging, it is es-
sential that tool suppliers and SoC designers work
together early on in the development process. The
requirements for the debug tools change depen-
ding on the characteristics of the SoC – and the
ease of use of the SoC, which the supplier consi-
ders in advance. Only close co-operation with SoC
manufacturers during the development process en-
sures that they meet all the requirements for mo-
dern and efficient debugging. On the other hand,
thorough debugging processes offer SoC suppliers
numerous advantages: reducing manufacturing
costs; speeding up time to market; improving pro-
duct quality and safety.

This document is intended to help SoC manufac-
turers to design their chips to be "simply and ea-
sily debuggable" from the outset in order to prevent
potential problems from arising for their customers
in later phases of the development process. A chip
that is optimally designed from a debugger‘s point
of view means less effort for customers, faster time
to market and, above all, lower development costs
as well as increased chip sales, because a failed
project sells no units.

 Importance of Debugging
 and Tracing for Time-to-Market
SoC manufacturers integrate different functional
units (IP blocks) into a SoC design. They must ensu-
re that all components work together smoothly and
meet the performance requirements of the end sys-
tem. Intellectual Property (IP) providers on the other
hand develop and license specialized Intellectual
Property (IP) blocks. These are prefabricated and
tested designs that SoC suppliers can integrate into
their chips. For a SoC to be debugged effectively,
it must fulfill certain requirements. These require-
ments relate to both the hardware and software
architecture of the SoC. It must provide special in-
terfaces and debugging ports that enable access to
internal components and signals.

Debug functions on an SoC come with added costs,
including silicon real-estate and manufacturing
resources. However, the benefits they provide make
this investment worthwhile for both semiconductor
suppliers and their customers. Faster debugging
reduces development time and accelerates time-
to-market. Integrated debugging functions are es-

sential for maintaining consistent quality, especial-
ly in safety-critical industries such as automotive,
avionics, space applications like satellites, medical
technology, robotics, cloud services, and IoT, where
high reliability is crucial. Modern debugging solu-
tions also incorporate security features to prevent
unauthorized access and minimize attacks on the
system, protecting the SoC in the field and boosting
customer confidence in the product’s security.

Debugging is the process in which developers spe-
cifically search for and fix errors or problems in
the code or hardware of a system by analyzing the
status and values of variables or stopping program
execution at certain points (e.g. using breakpoints).

Tracing, on the other hand, is the continuous recor-
ding of the execution sequence of a program or the
data flows in the SoC to analyze system performance
or understand the causes of complex problems. While
debugging is often carried out interactively and selec-
tively, tracing provides a more comprehensive and
temporally complete view of the processes in the sys-
tem which allows the run-time behavior of multiple IPs
to be monitored simultaneously. An SoC should the-
refore be able to capture the trace information that is
required to analyze program execution. This includes:

• Program Flow Trace: Records the progress of
program execution to see which instructions have
been executed by the processor as well as mo-
nitoring which decisions in a branch have been
taken and, maybe more importantly, not taken.

• Data Trace: Data trace refers to the tracking and
recording of load and store operations during
program execution. It provides insight into the
data flows within an SoC, particularly about read
and write operations in the memory. Data trace
typically needs high bandwidth and, therefore,
will not be present in most application processors
or complex SoCs.

• System Trace: Transports system-level trace
data from embedded systems, enabling real-time
monitoring of processor activities, memory
accesses, and inter-component interactions.

• Bus Trace: Bus trace refers to the capture and
recording of data traffic that runs via internal
communication buses in the SoC.

WHITEPAPER

 – 3 –

• Event Trace: Records important events in the
system, such as interrupts, context switches or
system calls. Whether an event trace is available
depends on the respective IP.

Many modern devices include a trace port or an
Embedded Trace Buffer, which is capable of provi-
ding real-time, non-intrusive information about pro-
gram flow and data operations. This can be used
to work out where code has been, how long things
took, to analyze task switches, interrupts, and to
generate code coverage reports. If one thinks of
traditional debugging as a series of snapshots, then
trace-based debugging is a video with timestamps.
Developers use time stamps to measure the latency
between events and identify bottlenecks or delays.
In multi-core or distributed systems, time stamps
enable the synchronization of different components
to ensure that actions are timed correctly.

 Debug Friendly SoC Designs –
 Key Considerations
An SoC must fulfill certain requirements in order to
be optimally prepared for debugging. This includes
integrated debug interfaces, special hardware mo-
dules for monitoring and controlling the SoC, trace
mechanisms, and support from the software tool-
chain. These features enable developers to identify
errors, analyze performance problems, and ultima-
tely deliver a high-quality, reliable product.

PURPOSE OF THE SOC
Before the start of the development, it should be
clear for which applications the corresponding
SoC is to be designed. After all, this determines
which peripheral components are to be accommo-
dated on the SoC. For example, as the number of
cores increases, debugging solutions must be de-
signed in such a way that they work efficiently, even
with large core numbers. This applies, for examp-
le, to parallel debugging sessions or the detailed
analysis of states and interactions. SoC manufac-
turers should also consider how certain modes and
scenarios can be debugged.

With multi-core SoCs, the trace solution must be
able to synchronize data from multiple cores and
subsystems to enable coherent analysis. The trace

buffering must be sufficiently dimensioned to avoid
data loss during data acquisition. Continuous recor-
ding is particularly important for real-time analyses.

CPU REQUIREMENTS
The processor has to integrate debug functions,
for example, hardware breakpoints, which allow
interrupting the execution of the program at a spe-
cific point. Watchpoints monitor memory accesses
and stop the program execution flow, when certain
memory addresses are accessed. Benchmark and
Event Counters can either be independent or feed
into the trace subsystem. Breakpoints and watch-
points are part of the provided IP. In addition, the
processor must be able to execute instructions
step by step and monitor the status of interrupts
and their effects on system performance with inter-
rupt handling monitoring. No code should be exe-
cuted without the user‘s control. Debugging should
therefore be possible from the first instruction after
the reset. This is often a key requirement e.g. for
Automotive applications, where debugging through
reset is almost always required.

MULTI-CORE DEBUG &
TRACE CAPABILITIES
Multi-core SoCs place higher demands on debug-
ging than single-core architectures, especially due
to the simultaneous execution of multiple cores and
the interactions between them. Effective debug-
ging in such architectures requires cross-triggering
between the cores, advanced monitoring functions
for inter-core communication, specialized mecha-
nisms for detecting synchronization problems (e.g.
race conditions and deadlocks), and comprehen-
sive traces, like system tracing (e.g., via MIPI STP),
and performance analysis to identify timing and
performance problems. When debugging or tra-
cing, it may be necessary for an event that occurs
on one core to trigger an action on another core or
hardware unit. Cross-triggering enables this inter-
action by exchanging signals or triggers between
the cores.

DEBUGGING INTERFACE AND
SUPPORTED STANDARDS
Low level interfaces: Different organizations have
defined debug and trace standards so that not
every SoC manufacturer has to develop its proprie-
tary solution.

WHITEPAPER

 – 4 –

The JTAG (Joint Test Action Group; IEEE 1149.1)
and compact JTAG (IEEE 1149.7) debug interfaces
provide a comprehensive ecosystem for testing, de-
bugging, and programming. Another example is the
RISC-V® Foundation, which has defined debug and
trace specifications for RISC-V® based CPUs.

A further example is the MIPI Alliance® [2], which
has promoted standardized interfaces for debug-
ging like Debug Over I3C™ or Debug Over USB SM [3].
The MIPI Alliance also defines several interfaces
for tracing, such as Debug Over USB SM or Debug
Over IPSockets [4]. MIPI provides a layered debug
solution.

Arm CoreSight Debug and Trace: Arm has
developed its own debug and trace ecosystem
specifically for the efficient monitoring, analysis, and
diagnosis of SoCs with Arm processors. It provides
a comprehensive infrastructure to give developers a
deep insight into how a system works.

OPEN SOURCE
When using open source tools for debugging
RISC-V® SoCs, for example, there are some im-
portant points to consider. These relate to legal and
security aspects as well as technical and organiza-
tional challenges, including

• Security

• Maintenance, support & warranty

• Adaptability and flexibility

• Integration into existing toolchains

• Long-term scalability

• Legal and liability, as well as commercial
 aspects

Open source tools offer flexibility, but often require
additional integration and maintenance. It is import-
ant to use these tools responsibly and ensure their
long-term sustainability by actively participating in
the community and carefully monitoring updates.
A company, which uses Open Source, still has to
spend resources to productize and maintain the
open source solution.

SECURITY
Implementing security mechanisms on an SoC is
crucial for vendors. The manufacturer has to think

about threats and different user types, which do-
mains should be open for debugging and which
should be locked, and whether there are any inter-
actions between them. Also, the signals for reset
and power down must be separated in the SoC.
Debugging mechanisms provide deep access to
internal hardware resources, which is a potential
gateway for attackers. Developers must therefore
deactivate debugging interfaces by default or se-
cure them through authentication. Only authorized
users should be allowed to access the system via
these interfaces.

Many systems also implement secure boot to ensu-
re that only trusted and authentic firmware is exe-
cuted. In security-critical SoCs, debugging should
only be permitted for non-security-relevant appli-
cation areas. Certifications such as ISO 26262 or
Common Criteria may require debugging interfaces
to be disabled or completely removed to ensure the
safety of the system.

Furthermore, there are technologies such as Arm®
CoreSight™ SDC-600 secure debug channel and
"Secure JTAG", which aim to make the debugging
process secure and build their own ecosystem for
security on their IP. Another secure approach to en-
abling debugging functions in production systems
is to use keys or debug tokens. Intel®, for example,
uses hardware-based authentication like "Disable
CPU Debug" or "Delayed Authentication Mode" [5].

OFF-CHIP-TRACE CAPABILITIES
AND INTERFACE
Off-chip trace enables continuous recording of pro-
gram execution and data flows to analyze system
behavior in detail without the trace data being re-
stricted by limited internal memory. Sufficient pins
must be available to transmit the trace data off chip
at the required band width. Off-chip trace pins are
often multiplexed with other features but essenti-
al features should not doubled up with trace pins.
High-speed-serial and parallel are used as interfa-
ces. Furthermore, off-chip trace requires compatib-
le external tools that can interpret and analyze the
trace data.

SAFETY
Safety is particularly important in addition to secu-
rity, especially in safety-critical applications such
as in the automotive industry, medical technology

WHITEPAPER

 – 5 –

or aviation. For example, in the event of an error,
the system should be designed in such a way that
it automatically switches to a safe state. There are
several regulations for safety documented e.g.in
ISO26262 for the automotive sector or DO-178 for
avionics. For various requirements from these sa-
fety standards, such as code coverage measure-
ments or timing analyses, the availability of off-chip
trace is a essential prerequisite in order to be able
to carry them out in a time- and resource-efficient
manner. An SoC that has (also) been developed for
safety-critical applications must, therefore, imple-
ment a trace interface.

DOCUMENTATION
Another big part of debugging is the availability
of consistent documentation. It serves as a vital
source of information and streamlines the entire
process. For example, documentation provides a
comprehensive overview of the system architec-
ture, including all IP blocks, interfaces, and com-
munication paths. It helps to identify known errors
and typical problems more quickly. In safety-criti-
cal applications like space, aerospace, automotive,
and medical technology, thorough documentation
is essential for traceability. It ensures that informa-
tion about known problems and their solutions is
available for later development phases and other
teams. Detailed and precise documentation is key
to making the debugging process faster, more con-
sistent, and safer.

 The Perfect SoC for
 Optimal Debuggability
All these requirements end in an SoC, which is –
from Debugging-Vendor-perspective – the „perfect
SoC“ for debugging. To optimally prepare an SoC
for debugging, special IP blocks must be integrated
to support the development and debugging pro-
cess. Below are the 10 most important IP blocks
that are required in an SoC for an effective debug
and trace infrastructure:

JTAG OR ANY OTHER DEBUG INTERFACE:
Provides a standard interface for accessing internal
registers and memory contents. It enables the CPU
to be stopped and controlled and status information
to be read out.

DEBUG UNIT:
Manages the debugging functionalities of the SoC,
e.g. setting and managing breakpoints, watch-
points, and single stepping.

TRACE MODULES:
Program-Flow-Trace for example, records the
sequence of executed commands to trace the
program execution. Important for troubleshooting
complex programs. Data Trace records memo-
ry accesses and data changes. This is crucial for
identifying memory errors or data inconsistencies.
Event trace and System Trace on the other hand
enable the tracking of events (software or hard-
ware) and signals within the SoC to analyze time
sequences and look out for synchronization pro-
blems.

TRACE BUFFER OR EXPORT INTERFACES:
Saves trace data temporarily before it is expor-
ted. These buffers must be large enough to avoid
data loss, especially at high execution frequencies.
Export interfaces need to be accessible and pro-
vide sufficient bandwidth for the essential usage
scenarios.

EMBEDDED CROSS TRIGGERING:
Coordinates debug and trace activities between
multiple cores or subsystems. It can generate and
receive trigger events to enable synchronous ana-
lysis in multi-core architectures. Particularly import-
ant in systems with multiple processors to track
complex interactions between cores.

SYSTEM MONITORS AND
PERFORMANCE COUNTERS:
Monitors the performance parameters of the SoC,
such as CPU utilization, memory accesses, bus or
cache usage, and memory access latencies. This
information is useful for identifying bottlenecks and
inefficient code sections.

EMBEDDED LOGIC ANALYZERS:
Enables internal signals to be sampled and analy-
zed directly on the chip. These analyzers work like
external logic analyzers but are integrated into the
SoC and allow the monitoring and diagnosis of pro-
blems at signal level without the need for external
devices.

This information is subject to change without notice. TRACE32®, µTrace®, Lauterbach® are registered trademarks of Lauterbach GmbH.
All product and service names mentioned are the trademarks of their respective companies. ©Lauterbach GmbH | V 1.00

 – 6 –

SECURITY MODULES:
Control access to debug features to ensure that
sensitive information remains protected. Access
controls, encryption, and authentication are often
used. They are also important for protection against
unauthorized access, especially in security-critical
and trusted applications.

BUSES OR NETWORKS:
A separate bus or internal network that is only used
for debugging and trace purposes ensures low-in-
vasiveness of debugging. Creates simple and scal-
able access to various debug and trace compo-
nents, also manufacturer-independent.

POWER MANAGEMENT:
Makes it possible to carry out debugging in vari-
ous power-saving modes. This allows developers
to analyze the state of the SoC even when parts of
the system are in a low power state. All possible
low-power mode scenarios and their influence on
debugging must be considered. This concerns,
for example, settings of the debug pins in the
firmware so that they are also active in low-power
modes or a possible manual selection of suitable
clock generators for peripheral devices. As many
chips often switch off all oscillators that are not
low-speed oscillators when they are stopped, it is
possible that a peripheral device used obtains its
clock source from a switched-off clock genera-
tor and a low-speed oscillator has to be selected
manually.

 Conclusion
System-on-chips (SoC) require software as the ba-
sis for functionality. Integrating software on an SoC
is an important step in the development and pro-
duction of embedded systems. However, errors can
occur during the creation of software code, which
developers have to find and eliminate at great ex-
pense using methods such as debugging.

A comprehensive debug and trace infrastructure is
crucial for the development and test processes of
an SoC, as it significantly influences the efficiency
and quality of the product. A well-dimensioned de-
bug solution such as Lauterbach TRACE32® enab-
les developers to quickly identify errors and analyze
the functionality of the SoC in detail [6].

Trace functions offer seamless tracking of program
execution, making critical errors and optimization
potential clearly visible [7]. Particularly in complex,
safety-critical applications, such as in automotive or
medical technology, precise monitoring is required
to ensure system integrity and detect unforeseen
problems at an early stage.

In addition, special trace ports and buffers facili-
tate analysis without compromising performance.
Targeted trace data and efficient export mechanis-
ms enable developers to maintain an overview of
all processes and memory accesses, even in highly
complex systems, and ensure the reliability and
stability of the SoC in the long term.

REFERENCES:

[1] https://www.jbs.cam.ac.uk/2013/research-by-cambridge-mbas-for-tech-firm-undo-finds-software-bugs-cost-the-industry-316-billion-a-year/

[2] https://www.mipi.org/

[3] https://www.mipi.org/specifications/stp

[4] mipi.org/hubfs/white-papers/mipi-Architecture-Overview-for-Debug-v1-3.pdf

[5] https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/secure-coding/intel-debug-technology.html

[6] https://www.lauterbach.com/

[7] https://www.lauterbach.com/products/trace-extensions/powertrace-system

[8] https://www.lauterbach.com/products/software/trace32-powerview

https://www.lauterbach.com
https://www.jbs.cam.ac.uk/2013/research-by-cambridge-mbas-for-tech-firm-undo-finds-software-bugs-cost-the-industry-316-billion-a-year/
https://www.mipi.org/
https://www.mipi.org/specifications/stp
https://mipi.org/hubfs/white-papers/mipi-Architecture-Overview-for-Debug-v1-3.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/secu
https://www.lauterbach.com/
https://www.lauterbach.com/products/trace-extensions/powertrace-system
https://www.lauterbach.com/products/software/trace32-powerview

