
WHITEPAPER

Debugging of RISC-V-Based Chips
Made Easy

RISC-V cores can be found in increasingly more chips, either as the main CPU(s) or as a companion
core together with other CPU architectures. This article explains RISC-V debugging and shows, that even
multicore debugging with RISC-V cores is not rocket science and that there are efficient methods to
master even complex chips with complex software configurations.

From Frank Riemenschneider, Senior Marketing Engineer, Lauterbach GmbH

FROM SIMPLE MICROCONTROLLERS TO COMPLEX MULTICORE SOCS

RISC-V is an open standard instruction set archi-
tecture (ISA) based on established reduced
instruction set computer (RISC) principles. Unlike
most other ISA designs, RISC-V is provided under
royalty-free open-source licenses.

As a RISC architecture, the RISC-V ISA is a load-
store architecture. Its floating-point instructions
use IEEE 754 floating-point. Notable features of the
RISC-V ISA include instruction bit field locations
chosen to simplify the use of multiplexers in a CPU
and a fixed location for the sign bit of immediate
values to speed up sign extension.

The base instruction set has a fixed length of 32-bit
naturally aligned instructions, and the ISA supports
variable length extensions where each instruction
can be any number of 16-bit parcels in length. The
instruction set specification defines 32-bit and
64-bit address space variants. The specification
even includes a description of a 128-bit flat address
space variant, as an extrapolation of 32- and 64-bit
variants.

The RISC-V Foundation was formed in 2015 to own,
maintain, and publish intellectual property related
to RISC-V’s definition. The founding members of
RISC-V were: Andes, Antmicro, Bluespec, CEVA,
Codasip, Cortus, Esperanto, Espressif, ETH Zurich,
Google, IBM, ICT, IIT Madras, Lattice, lowRISC,
Microchip, MIT (Csail), Qualcomm, Rambus,
Rumble, SiFive, Syntacore, and Technolution.

In the meantime, other major semiconductor sup-
pliers have implemented RISC-V-based CPUs or
accelerators in their chips, including NXP and
Renesas, which introduced the industry’s first
general-purpose 32-bit RISC-V MCU series with an
internally developed CPU core in early 2024.

Also in early 2024 a new company Quintauris was
founded as a single source to enable compatible
RISC-V-based products, provide reference archi-
tectures, and help establish solutions to be widely
used across various industries. Shareholders are
leading industry players Bosch, Infineon, Nordic
Semiconductor, NXP and Qualcomm [1].

Each chip and core supplier is free to decide which
functions its RISC-V core(s) support and how they
are integrated into the overall system. While the
complexity of SoCs grows with the number of cores
and the number of different core architectures, the
challenges for embedded developers grow expo-
nentially with operating systems, hypervisors, and
other software running across multiple cores and/
or architectures.

 Debugging RISC-V Cores
RISC-V’s open-source nature and diverse eco-
system pose unique challenges in debugging
applications. In order to avoid a proliferation of
proprietary debug interfaces, a working group
within the RISC-V Foundation has defined a debug
standard. Lauterbach, the global market leader for
debug and trace tools, has been a strategic member
of the RISC-V Foundation from the very beginning
and has made a significant contribution to the
debug standard within this working group.

The RISC-V Debug Specification outlines standar-
dized interfaces for debugging, including but not
limited to, external debug support (EDS) and ad-
vanced features for run-control debugging. Familia-
rity with this specification is essential, as it guides
the use of hardware breakpoints, watchpoints, and
control over the CPU’s execution flow, offering a
structured approach to hardware debugging.

WHITEPAPER

Figure 1: RISC-V Debug System Overview.
Source: RISC-V Debug Specification

 – 2 –

The latest ratified release of the official RISC-V de-
bug specification has the version number v0.13 [2].
The document outlines a standard architecture for
external debug support on RISC-V platforms. This
specification allows a variety of implementations
and tradeoffs, which are ideally suited to the wide
range of RISC-V implementations. At the same time,
the specification defines common interfaces to
allow debugging tools and components to target a
variety of platforms based on the RISC-V ISA.

Figure 1 shows the main components of external
debug support. Blocks shown in dotted lines are
optional. The user interacts with the debug host,
which is running a debugger like TRACE32®
PowerView from Lauterbach. The debugger
communicates with a debug translator to commu-
nicate with debug transport hardware. The debug
transport hardware connects the debug host to
the Platform’s Debug Transport Module (DTM). The
DTM provides access to one or more Debug Modu-
les (DMs) using the Debug Module Interface (DMI).

Each hart (Hardware Thread [3]) in the platform is
controlled by exactly one DM. Harts may be hetero-
geneous. There is no further limit on the hart-DM
mapping, but usually all harts in a single core are
controlled by the same DM. In most platforms there
will only be one DM that controls all the harts in the
platform. DMs provide run control of their harts in the
platform. Abstract commands provide access to Ge-
neral Purpose Registers (GPRs). Additional registers
are accessible through additional abstract commands
or by writing programs to the optional Program Buffer.

The Program Buffer allows the debugger to execute
arbitrary instructions on a hart. This mechanism
can also be used to access memory. An optional
system bus access block allows memory accesses
without using a RISC-V hart to perform the access.
Each RISC-V hart may implement a Trigger
Module. When trigger conditions are met, harts will
halt and inform the debug module that they have
halted.

The RISC-V ISA consists of several optional pieces,
referred to as the ISA extensions, which impact
the naming convention of the final device. These
extensions can be combined. Examples for
standard RISC-V ISA extensions: "I" (integer), "M"
(multiplication), "F" (floating-point) and "C" (com-
pressed). It is also possible to add one’s own custom
(non-standard) RISC-V ISA extensions. The
Lauterbach TRACE32® RISC-V disassembler can
support such custom ISA extensions in two ways:
They can be integrated into the TRACE32® Power-
View software directly, or via an APU API, which
allows developers to create their own custom
disassembler plugin [4].

Furthermore, with Lauterbach's TRACE32® tools,
developers can now debug and control RISC-V
cores in almost any combination with other CPU
architectures via a single debug interface. Many
SoCs implement different kinds of cores; in addition
to RISC-V one often finds Arm® CPUs or other
proprietary cores, e.g. DSPs such as ARC® or
Xtensa®. No matter what kind of multicore system
is used, TRACE32® supports them all. TRACE32®
supports full on-chip breakpoint capabilities, run-time
memory access, flash programming, and
benchmark counters. Everything is scriptable, which
enables developers to automate tests very easily.
Developers can use any debug interface protocol
such as classic JTAG, compact JTAG (2-wire),
Arm CoreSight SoC-400/600 (SWD, APB, JTAG-
AP, CTI) and Tessent debug interfaces (JTAG/USB
communicator, JPAM, cross-triggering).

Another advantage of Lauterbach’s TRACE32® is
OS-aware debugging which provides key insights
into applications and the operating systems they
are running on, regardless of whether its a rich
operating system like Linux, a real-time operating
system (RTOS) such as Zephyr OS or FreeRTOS
or a mixture of all types [5]. TRACE32® OS-aware
debugging can query and display all OS objects such
as threads, message queues, and more. With this,
engineers can better understand how these are
behaving and utilizing chip resources.

Debug Transport
Hardware

(eg. JTAG debug probe)
Debug TranslatorDebugger

DEBUG HOST

Debug
Mode

System
Bus

Program
Buffer (4B-64B)

Hardware
Trigger
Module

Debug Transport
Module (DTM)

RISC-V PLATFORM

RISC-V CORE

HARDWARE
THREAD

DEBUG MODULE (DM)

bus access

abstract
commands

Debug Module
Interface (DMI)

reset/halt
control

WHITEPAPER

 – 3 –

 Tracing RISC-V Cores

In complex systems understanding program
behavior is not easy. Unsurprisingly in such
systems, software sometimes does not behave
as expected. This may be due to a number of
factors, for example, interactions with other cores,
software, peripherals, real-time events, poor
implementations or some combination of all of the
above.

It is not always possible to use a debugger to
observe behavior of a running system as this is
intrusive. Providing visibility of program execution
is important. One method of achieving this is via
a processor trace. This can be used to work out
where code has been, how long things took, to
analyze task switches, interrupts, and to generate
code coverage reports. If one thinks of traditional
debugging as a series of snapshots, then trace-
based debugging is a video with timestamps.

In contrast to the uniform RISC-V debug standard,
there will be two RISC-V trace standards:
The N-Trace standard and the E-Trace standard.
The specifications necessary for either one of them
are about to be ratified, and should be finalized
in the second half of 2024. As with the debug
standard, Lauterbach has made significant

contributions to both trace standards within three
RISC-V Processor Trace Task Groups. Currently,
two proprietary trace solutions are widely used,
the SiFive Nexus trace for RISC-V and the trace
solution from Tessent Embedded Analytics.

When implementing the SiFive Nexus trace, both
the cores and the trace IP must be from SiFive.
An integration into Arm CoreSight is also possible.
In this scenario cores and trace encoder must be
from SiFive, the rest of trace IP can be from Arm.

In contrast the Tessent trace allows the imple-
mentation of RISC-V-cores from any vendor. Only
the whole trace IP is from Tessent. When the chip
implements additional Arm cores, an integration
into Arm CoreSight is possible as well. In a joint
RISC-V/Arm-core implementation with CoreSight,
the RISC-V-core(s) can be from any vendor while
the trace IP comes from Tessent and Arm repspec-
tively for the Arm core(s).

As Figure 2 shows, there will probably be proprie-
tary trace solutions from several IP manufacturers
in the future that are derived from the respective
trace standards. These are currently still being de-
veloped or planned.

Figure 2: RISC-V Trace Solutions. ©Lauterbach

RISC-V Trace Solutions

Non-Standard RISC-V Standard

RISC-V
N-Trace Standard

Proprietary
RISC-V E-Trace #1

Proprietary
RISC-V N-Trace #2

Proprietary
RISC-V N-Trace #1

RISC-V
E-Trace Standard

Tessent Proprietary
(non-standard)

RISC-V Trace Encoder

SiFive Proprietary
RISC-V Nexus Trace v0

Others

Others

Others

WHITEPAPER

 – 4 –

Figure 3: Example overview of both RISC-V trace standards. ©Lauterbach

Figure 3 shows an overview of both RISC-V trace
standards. The trace standards are split up into
multiple documents. Some documents like the
RISC-V Trace Control Interface Specification and the
RISC-V Trace Connector Specification are shared
among both standards (N-Trace / E-Trace), other
documents are exclusive to one standard or the other.

Due to the architecture, it is even possible to mix
N- and E-Trace encoders on one chip. With the
N-Trace, the trace message format is based on the
Nexus IEEE-ISTO 5001 standard. It’s called N-Trace
instead of Nexus to make clear that there are differ-
ences to the original Nexus. N-Trace is the successor
of the proprietary SiFive Nexus Trace.

For E-Trace the trace message format is based on a
new trace format developed by Tessent Embedded
Analytics. It’s the successor of the proprietary
Tessent trace.

It is not enough to just generate trace data, the data
should also be made available to debuggers or other

development tools. To make this possible, the RISC-V
Trace Control Interface Specification defines several
components like trace funnels or trace buffer memo-
ries. The allowed inputs for the standard RISC-V trace
funnel (RVFUNNEL) are the RISC-V trace encoders
(N-Trace or E-Trace) or other RISC-V trace funnels.
The allowed funnel outputs are a RISC-V trace sink
or other RISC-V trace funnels. RVFUNNEL is not
allowed to connect to any 3rd party trace IP (3rd party
trace sources, funnels or trace sinks). Trace sinks are
defined for off-chip trace (Pin Interface Block PIB, a
parallel off-chip trace port similar to Arm’s TPIU) and
on-chip trace providing three alternatives.

An SRAM on-chip trace sink is a circular-buffer
on-chip trace RAM similar to Arm’s Embedded
Trace Buffer (ETB); an SMEM on-chip trace sink is a
memory range in system memory reserved for trace
similar to Arm’s Embedded Trace Router (ETR); finally,
an ATB Bridge allows for feeding the RISC-V trace
stream into an Arm CoreSight trace infrastructure
with ATB bus.

C
H

IP

C
H

IP

RISC-V N-Trace Standard RISC-V E-Trace Standard

Trace Encoder
is specific to the

trace protocol
(N-Trace/E-Trace)

Other RISC-V
trace infrastructure

(funnels, sinks,
connectors...)

is identical
and can be

shared among
N-Trace / E-Trace

N-Trace Standard
Trace Encoder

("NEXUS")

N-Trace Standard
Trace Encoder

("NEXUS")

Standard RISC-V
Trace Funnel

("RVFUNNEL")

Standard RISC-V
Pin Interface Block (PIB)

("RVPIB")

Trace Connector
Mictor38 or MIPI20

(Standard RISC-V Trace Pinout)

RISC-V
hart #0

E-Trace Standard
Trace Encoder

("ETRACE")

E-Trace Standard
Trace Encoder

("ETRACE")

Standard RISC-V
Trace Funnel

("RVFUNNEL")

Standard RISC-V
Pin Interface Block (PIB)

("RVPIB")

RISC-V
hart #1

Trace Connector
Mictor38 or MIPI20

(Standard RISC-V Trace Pinout)

RISC-V
hart #0

RISC-V
hart #1

This information is subject to change without notice. TRACE32®, µTrace®, Lauterbach® are registered trademarks of Lauterbach GmbH.
All product and service names mentioned are the trademarks of their respective companies. ©Lauterbach GmbH | V 1.03

REFERENCES:
[1] Website of Quintauris: https://www.quintauris.eu/

[2] Official RISC-V debug specification: https://riscv.org/wp-content/uploads/2019/03/riscv-debug-release.pdf

[3] Hardware Threads in RISC-V: https://groups.google.com/a/groups.riscv.org/g/sw-dev/c/QKjUDjz_vKo

[4] Lauterbach RISC-V disassembler support for custom RISC-V ISA extensions: www.lauterbach.com/pdf/api_apu.pdf

[5] Lauterbach TRACE32 OS-Awareness: https://www.lauterbach.com/features/os-awareness

[6] Lauterbachs RISC-V debug and trace solutions at a glance: https://www.lauterbach.com/supported-platforms/architectures/risc-v

 – 5 –

Figure 4 shows the integration in a chip with RISC-V
and Arm cores using the Arm CoreSight infra-struc-
ture. This uses the Advanced Trace Bus (ATB) as the
main transport bus. Multiple trace sources that are
transmitting to one ATB can be distinguished via the
ATB-ID (ATID). A RISC-V Trace Encoder or RISC-V
Trace Funnel cannot have a direct ATB output, as
they do not have the possibility to add an ATB-ID
(ATID). To connect a RISC-V trace system with an
Arm CoreSight trace infrastructure (which uses ATB),
a RISC-V ATB Bridge is therefore necessary.

As Figure 4 shows, there can be multiple trace funnel
types in one system, each with its own component
type. The RISC-V Trace Funnel (RVFUNNEL) works
with an unspecified input and output bus type (not
ATB due to missing ATID), while the Arm CoreSight
Trace Funnel (FUNNEL) works with an ATB input and
output bus type.

Figure 4: Trace infrastructure for mixed RISC-V/Arm SoCs.
©Lauterbach

C
H

IP

RISC-V SUBSYSTEM
RISC-V
hart #0

N-Trace Standard
Trace Encoder

("NEXUS")

E-Trace Standard
Trace Encoder

("ETRACE")

Standard RISC-V
Trace Funnel

("RVFUNNEL")

Standard RISC-V
Trace ATB Bridge

RISC-V
hart #1

Arm Embedded
Trace Macrocell

("ETM")

Arm
Core

bus type:
undefined

ATB ATB

ATB

Arm CoreSight
Embedded Trace Buffer ("ETB")

Arm CoreSight
Trace Funnel ("FUNNEL")

 RISC-V N-Trace vs E-Trace
Comparing the two "competing" RISC-V trace
standards, N-Trace and E-Trace, one cannot
say that one or another is better. Regarding the
features, there is no big difference. Most trace
encoder features are available for both: instruction
trace, filters, timestamps and others.

Data trace is supported in E-Trace v2.0. The
N-Trace working group is planning that a future
N-Trace v2.0 standard will support data trace as
well.

The trace infrastructure (funnels, sinks, etc) is
identical. Regarding compression and reliability,
we cannot give any statements at this point,
because the standards are too new to publish
reliable empirical values.

Lauterbach TRACE32® trace tools support all
the before mentioned proprietary and future
RISC-V trace standards. They support real-time
on- and off-chip tracing for all major RISC-V trace
infrastructures.

 One Solution for All
 Different RISC-V Chips
Lauterbach’s modular TRACE32® system is designed
to grow and adapt as needed – from virtual targets
and simulators to real silicon. All modules are driven
by the same intuitive user interface to maximize the
return on investment. Developers can easily switch
from one RISC-V-based SoC to another RISC-V-
based SoC while keeping the same debug and trace
module and user interface. All Lauterbach debug
and trace solutions for RISC-V are summarized at
Lauterbach’s RISC-V website [6]. Thanks to the long-
standing close partnership with RISC-V processor
designers and semiconductor manufacturers, future
chip developments are also accompanied by proven
Lauterbach tools from the very beginning – ensuring
a futureproof investment.

https://www.lauterbach.com
https://www.quintauris.eu/
https://riscv.org/wp-content/uploads/2019/03/riscv-debug-release.pdf
https://groups.google.com/a/groups.riscv.org/g/sw-dev/c/QKjUDjz_vKo
http://www.lauterbach.com/pdf/api_apu.pdf
https://www.lauterbach.com/features/os-awareness
https://www.lauterbach.com/supported-platforms/architectures/risc-v

