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Debugging of RISC-V-Based Chips  
Made Easy

RISC-V cores can be found in increasingly more chips, either as the main CPU(s) or as a companion  
core together with other CPU architectures. This article explains RISC-V debugging and shows, that even  
multicore debugging with RISC-V cores is not rocket science and that there are efficient methods to  
master even complex chips with complex software configurations.

From Frank Riemenschneider, Senior Marketing Engineer, Lauterbach GmbH

FROM SIMPLE MICROCONTROLLERS TO COMPLEX MULTICORE SOCS

RISC-V is an open standard instruction set archi- 
tecture (ISA) based on established reduced  
instruction set computer (RISC) principles. Unlike 
most other ISA designs, RISC-V is provided under 
royalty-free open-source licenses. 

As a RISC architecture, the RISC-V ISA is a load- 
store architecture. Its floating-point instructions 
use IEEE 754 floating-point. Notable features of the  
RISC-V ISA include instruction bit field locations 
chosen to simplify the use of multiplexers in a CPU 
and a fixed location for the sign bit of immediate 
values to speed up sign extension. 

The base instruction set has a fixed length of 32-bit 
naturally aligned instructions, and the ISA supports 
variable length extensions where each instruction 
can be any number of 16-bit parcels in length. The 
instruction set specification defines 32-bit and  
64-bit address space variants. The specification 
even includes a description of a 128-bit flat address 
space variant, as an extrapolation of 32- and 64-bit 
variants.

The RISC-V Foundation was formed in 2015 to own, 
maintain, and publish intellectual property related 
to RISC-V’s definition. The founding members of 
RISC-V were: Andes, Antmicro, Bluespec, CEVA, 
Codasip, Cortus, Esperanto, Espressif, ETH Zurich, 
Google, IBM, ICT, IIT Madras, Lattice, lowRISC, 
Microchip, MIT (Csail), Qualcomm, Rambus,  
Rumble, SiFive, Syntacore, and Technolution.

In the meantime, other major semiconductor sup-
pliers have implemented RISC-V-based CPUs or 
accelerators in their chips, including NXP and  
Renesas, which introduced the industry’s first  
general-purpose 32-bit RISC-V MCU series with an 
internally developed CPU core in early 2024. 

Also in early 2024 a new company Quintauris was 
founded as a single source to enable compatible 
RISC-V-based products, provide reference archi-
tectures, and help establish solutions to be widely 
used across various industries. Shareholders are 
leading industry players Bosch, Infineon, Nordic 
Semiconductor, NXP and Qualcomm [1].

Each chip and core supplier is free to decide which 
functions its RISC-V core(s) support and how they 
are integrated into the overall system. While the 
complexity of SoCs grows with the number of cores 
and the number of different core architectures, the 
challenges for embedded developers grow expo-
nentially with operating systems, hypervisors, and 
other software running across multiple cores and/
or architectures.

 Debugging RISC-V Cores
RISC-V’s open-source nature and diverse eco- 
system pose unique challenges in debugging  
applications. In order to avoid a proliferation of  
proprietary debug interfaces, a working group  
within the RISC-V Foundation has defined a debug 
standard. Lauterbach, the global market leader for 
debug and trace tools, has been a strategic member 
of the RISC-V Foundation from the very beginning 
and has made a significant contribution to the  
debug standard within this working group.

The RISC-V Debug Specification outlines standar-
dized interfaces for debugging, including but not  
limited to, external debug support (EDS) and ad-
vanced features for run-control debugging. Familia-
rity with this specification is essential, as it guides 
the use of hardware breakpoints, watchpoints, and 
control over the CPU’s execution flow, offering a 
structured approach to hardware debugging.
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Figure 1: RISC-V Debug System Overview.  
Source: RISC-V Debug Specification
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The latest ratified release of the official RISC-V de-
bug specification has the version number v0.13 [2]. 
The document outlines a standard architecture for 
external debug support on RISC-V platforms. This 
specification allows a variety of implementations 
and tradeoffs, which are ideally suited to the wide 
range of RISC-V implementations. At the same time, 
the specification defines common interfaces to  
allow debugging tools and components to target a 
variety of platforms based on the RISC-V ISA.

Figure 1 shows the main components of external 
debug support. Blocks shown in dotted lines are 
optional. The user interacts with the debug host, 
which is running a debugger like TRACE32®  
PowerView from Lauterbach. The debugger  
communicates with a debug translator to commu-
nicate with debug transport hardware. The debug 
transport hardware connects the debug host to 
the Platform’s Debug Transport Module (DTM). The 
DTM provides access to one or more Debug Modu-
les (DMs) using the Debug Module Interface (DMI).

Each hart (Hardware Thread [3]) in the platform is  
controlled by exactly one DM. Harts may be hetero-
geneous. There is no further limit on the hart-DM  
mapping, but usually all harts in a single core are 
controlled by the same DM. In most platforms there 
will only be one DM that controls all the harts in the 
platform. DMs provide run control of their harts in the 
platform. Abstract commands provide access to Ge-
neral Purpose Registers (GPRs). Additional registers 
are accessible through additional abstract commands 
or by writing programs to the optional Program Buffer.

The Program Buffer allows the debugger to execute 
arbitrary instructions on a hart. This mechanism 
can also be used to access memory. An optional 
system bus access block allows memory accesses 
without using a RISC-V hart to perform the access. 
Each RISC-V hart may implement a Trigger  
Module. When trigger conditions are met, harts will 
halt and inform the debug module that they have 
halted.

The RISC-V ISA consists of several optional pieces, 
referred to as the ISA extensions, which impact 
the naming convention of the final device. These  
extensions can be combined. Examples for  
standard RISC-V ISA extensions: "I" (integer), "M" 
(multiplication), "F" (floating-point) and "C" (com-
pressed). It is also possible to add one’s own custom  
(non-standard) RISC-V ISA extensions. The  
Lauterbach TRACE32® RISC-V disassembler can 
support such custom ISA extensions in two ways: 
They can be integrated into the TRACE32® Power-
View software directly, or via an APU API, which 
allows developers to create their own custom  
disassembler plugin [4].

Furthermore, with Lauterbach's TRACE32® tools, 
developers can now debug and control RISC-V  
cores in almost any combination with other CPU  
architectures via a single debug interface. Many 
SoCs implement different kinds of cores; in addition 
to RISC-V one often finds Arm® CPUs or other  
proprietary cores, e.g. DSPs such as ARC® or  
Xtensa®. No matter what kind of multicore system 
is used, TRACE32® supports them all. TRACE32®  
supports full on-chip breakpoint capabilities, run-time  
memory access, flash programming, and 
benchmark counters. Everything is scriptable, which 
enables developers to automate tests very easily. 
Developers can use any debug interface protocol 
such as classic JTAG, compact JTAG (2-wire), 
Arm CoreSight SoC-400/600 (SWD, APB, JTAG-
AP, CTI) and Tessent debug interfaces (JTAG/USB  
communicator, JPAM, cross-triggering).

Another advantage of Lauterbach’s TRACE32® is 
OS-aware debugging which provides key insights 
into applications and the operating systems they 
are running on, regardless of whether its a rich 
operating system like Linux, a real-time operating 
system (RTOS) such as Zephyr OS or FreeRTOS 
or a mixture of all types [5]. TRACE32® OS-aware  
debugging can query and display all OS objects such 
as threads, message queues, and more. With this,  
engineers can better understand how these are  
behaving and utilizing chip resources.
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 Tracing RISC-V Cores

In complex systems understanding program  
behavior is not easy. Unsurprisingly in such  
systems, software sometimes does not behave 
as expected. This may be due to a number of  
factors, for example, interactions with other cores, 
software, peripherals, real-time events, poor  
implementations or some combination of all of the 
above.

It is not always possible to use a debugger to  
observe behavior of a running system as this is 
intrusive. Providing visibility of program execution 
is important. One method of achieving this is via 
a processor trace. This can be used to work out 
where code has been, how long things took, to  
analyze task switches, interrupts, and to generate 
code coverage reports. If one thinks of traditional 
debugging as a series of snapshots, then trace- 
based debugging is a video with timestamps.

In contrast to the uniform RISC-V debug standard, 
there will be two RISC-V trace standards:  
The N-Trace standard and the E-Trace standard. 
The specifications necessary for either one of them 
are about to be ratified, and should be finalized 
in the second half of 2024. As with the debug  
standard, Lauterbach has made significant  

contributions to both trace standards within three 
RISC-V Processor Trace Task Groups. Currently, 
two proprietary trace solutions are widely used, 
the SiFive Nexus trace for RISC-V and the trace 
solution from Tessent Embedded Analytics.

When implementing the SiFive Nexus trace, both 
the cores and the trace IP must be from SiFive. 
An integration into Arm CoreSight is also possible. 
In this scenario cores and trace encoder must be 
from SiFive, the rest of trace IP can be from Arm.

In contrast the Tessent trace allows the imple-
mentation of RISC-V-cores from any vendor. Only 
the whole trace IP is from Tessent. When the chip  
implements additional Arm cores, an integration 
into Arm CoreSight is possible as well. In a joint  
RISC-V/Arm-core implementation with CoreSight, 
the RISC-V-core(s) can be from any vendor while 
the trace IP comes from Tessent and Arm repspec-
tively for the Arm core(s).

As Figure 2 shows, there will probably be proprie-
tary trace solutions from several IP manufacturers 
in the future that are derived from the respective 
trace standards. These are currently still being de-
veloped or planned.

Figure 2: RISC-V Trace Solutions.  ©Lauterbach
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Figure 3: Example overview of both RISC-V trace standards. ©Lauterbach

Figure 3 shows an overview of both RISC-V trace 
standards. The trace standards are split up into  
multiple documents. Some documents like the 
RISC-V Trace Control Interface Specification and the 
RISC-V Trace Connector Specification are shared 
among both standards (N-Trace / E-Trace), other  
documents  are exclusive to one standard or the other. 

Due to the architecture, it is even possible to mix  
N- and E-Trace encoders on one chip. With the 
N-Trace, the trace message format is based on the 
Nexus IEEE-ISTO 5001 standard. It’s called N-Trace 
instead of Nexus to make clear that there are differ-
ences to the original Nexus. N-Trace is the successor 
of the proprietary SiFive Nexus Trace.

For E-Trace the trace message format is based on a 
new trace format developed by Tessent Embedded 
Analytics. It’s the successor of the proprietary  
Tessent trace.

It is not enough to just generate trace data, the data 
should also be made available to debuggers or other 

development tools. To make this possible, the RISC-V 
Trace Control Interface Specification defines several 
components like trace funnels or trace buffer memo-
ries. The allowed inputs for the standard RISC-V trace 
funnel (RVFUNNEL) are the RISC-V trace encoders 
(N-Trace or E-Trace) or other RISC-V trace funnels. 
The allowed funnel outputs are a RISC-V trace sink 
or other RISC-V trace funnels. RVFUNNEL is not  
allowed to connect to any 3rd party trace IP (3rd party 
trace sources, funnels or trace sinks). Trace sinks are 
defined for off-chip trace (Pin Interface Block PIB, a 
parallel off-chip trace port similar to Arm’s TPIU) and 
on-chip trace providing three alternatives.

An SRAM on-chip trace sink is a circular-buffer  
on-chip trace RAM similar to Arm’s Embedded 
Trace Buffer (ETB); an SMEM on-chip trace sink is a  
memory range in system memory reserved for trace 
similar to Arm’s Embedded Trace Router (ETR); finally, 
an ATB Bridge allows for feeding the RISC-V trace 
stream into an Arm CoreSight trace infrastructure 
with ATB bus. 
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Figure 4 shows the integration in a chip with RISC-V 
and Arm cores using the Arm CoreSight infra-struc-
ture. This uses the Advanced Trace Bus (ATB) as the 
main transport bus. Multiple trace sources that are 
transmitting to one ATB can be distinguished via the 
ATB-ID (ATID). A RISC-V Trace Encoder or RISC-V 
Trace Funnel cannot have a direct ATB output, as 
they do not have the possibility to add an ATB-ID 
(ATID). To connect a RISC-V trace system with an 
Arm CoreSight trace infrastructure (which uses ATB), 
a RISC-V ATB Bridge is therefore necessary.

As Figure 4 shows, there can be multiple trace funnel 
types in one system, each with its own component 
type. The RISC-V Trace Funnel (RVFUNNEL) works 
with an unspecified input and output bus type (not 
ATB due to missing ATID), while the Arm CoreSight 
Trace Funnel (FUNNEL) works with an ATB input and 
output bus type.

Figure 4: Trace infrastructure for mixed RISC-V/Arm SoCs. 
©Lauterbach
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 RISC-V N-Trace vs E-Trace
Comparing the two "competing" RISC-V trace 
standards, N-Trace and E-Trace, one cannot 
say that one or another is better. Regarding the  
features, there is no big difference. Most trace  
encoder features are available for both: instruction 
trace, filters, timestamps and others. 

Data trace is supported in E-Trace v2.0.  The 
N-Trace working group is planning that a future 
N-Trace v2.0 standard will support data trace as 
well. 

The trace infrastructure (funnels, sinks, etc) is 
identical. Regarding compression and reliability, 
we cannot give any statements at this point,  
because the standards are too new to publish  
reliable empirical values.

Lauterbach TRACE32® trace tools support all 
the before mentioned proprietary and future 
RISC-V trace standards. They support real-time  
on- and off-chip tracing for all major RISC-V trace  
infrastructures. 

  One Solution for All 
 Different RISC-V Chips
Lauterbach’s modular TRACE32® system is designed 
to grow and adapt as needed – from virtual targets 
and simulators to real silicon. All modules are driven 
by the same intuitive user interface to maximize the 
return on investment. Developers can easily switch 
from one RISC-V-based SoC to another RISC-V-
based SoC while keeping the same debug and trace 
module and user interface. All Lauterbach debug 
and trace solutions for RISC-V are summarized at 
Lauterbach’s RISC-V website [6]. Thanks to the long-
standing close partnership with RISC-V processor 
designers and semiconductor manufacturers, future 
chip developments are also accompanied by proven 
Lauterbach tools from the very beginning – ensuring 
a futureproof investment.
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