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Automotive Supplier ZF Implements 
Runtime Analyses on VLAB Virtual ECUs
Understanding the runtime behavior of an embedded application is crucial for optimizing resource  
utilization and performance, and ultimately for meeting all safety requirements. Together with  
Lauterbach, ZF’s long-time partner for debug and trace tools, timing analyses for automotive ECUs  
could be moved from real hardware to virtual targets. The benefits are compelling.

By Frank Riemenschneider, Lauterbach GmbH

FROM THE REAL TO THE VIRTUAL TARGET WITH TRACE32®

ZF, headquartered in Friedrichshafen, Germany, 
is one of the most important suppliers to the  
automotive industry with 160.000 employees 
worldwide. The company is shaping vehicles 
of the future at all relevant levels: from sustain- 
ability, electromobility, automated and auto- 
nomous driving to software and digitalization to 
vehicle motion control. The product range also 
includes automotive control units (ECUs), which 
are supplied to almost all well-known car manu- 
facturers.

When developing an embedded application such 
as an ECU, not only is error-free software essen-
tial, but understanding the runtime behavior of the 
application is also crucial for optimizing resource 
utilization and performance, and ultimately for 

meeting all safety requirements. To this end, appro-
priate tools are used to measure execution times 
and verify timing requirements. To do this, the user 
must record hardware events by means of traces 
at the instruction level and process the trace data 
into system events at an abstracted level, which is 
known as profiling.

In order to be able to trace at all, the user must first 
of all use chips that are trace-capable. For eco-
nomic reasons, this is still not the case for all micro- 
controllers or processors in 2023. ZF has taken this 
requirement into account from the very beginning 
and, among other chips, relies on the AURIX™ 

TC397XE, a microcontroller from Infineon with six 
TriCore™ CPUs, each clocked at 300 MHz. The 
Multi-Core Debug Solution (MCDS) implemented in 
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Figure 1: Diagram for real-time flow trace with Lauterbach TRACE32®. ©Lauterbach
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the TC397XE provides parallel and timed trace of 
cores and buses, powerful trigger conditions, and 
on-chip logic analyzer functions. The TriCore™ 
CPU architecture is also particularly designed for 
high interrupt loads, such as those encountered in  
engine control systems. Thanks to this predictive 
chip selection, ZF is thus not forced to perform 
a purely software-based analysis, as would have 
been the case with non-trace-capable chips. The 
code instrumentation required in this case would 
have a considerable influence on the timing be-
havior and would make the measurement results 
obtained only of limited use. In addition to the chip 
itself, ZF also makes sure from the very beginning 
that the software developed in-house is prepared 
for corresponding timing analyses.

In the so-called „real-time flow trace” with  
Lauterbach’s TRACE32® tools, the information of 
the address/data bus is transmitted by the MCDS 
as it occurs directly at the CPU core (Figure 1). 
The process itself is not „Rocket Science,” but 
trace products from different manufacturers differ 
in terms of data rates and functional scope. Even 
though a flow trace is already very powerful through 
the use of Lauterbach’s TRACE32®, the analysis 
capabilities could be significantly expanded again 
with the introduction of AUTOSAR ARTI (AUTOSAR 
Run Time Interface). This was implemented at ZF 
in November 2021 by a joint ZF/Lauterbach project 
group. Lauterbach has been a member of the relevant 
AUTOSAR committees from the very beginning and 
has contributed significantly to this new standard.



Figure 2: Example of decoded ARTI trace. ©Lauterbach/ZF

  AUTOSAR ARTI  
 Extends Analysis Capabilities

AUTOSAR ARTI uses a similar approach to its  
predecessor ORTI (OSEK Run-Time Interface), but 
extends the trace capabilities and addresses some 
shortcomings of ORTI-based analysis. With ORTI, 
the developer is usually not able to distinguish  
between task completion, interruption and waiting in 
the trace, since only task changes can be recorded, 
and thus cannot perform a detailed timing analysis 
on activation delays or total response time, for  
example.

In addition, runnables are not covered by the ORTI 
file, nor the communication between software com-
ponents. ORTI-based timing analysis focuses on 
the operating system and ignores other AUTOSAR 
modules such as software components (SWCs) 
and the runtime environment (RTE). The scheduling 
of AUTOSAR runnables (by means of OS tasks) is  
often the authoritative object of investigation in  
timing analysis.

AUTOSAR ARTI provides extended information, 
which is important for the automotive industry, 
e.g. about tasks, ISRs (interrupt service routines), 
runnables, RTE communication or spinlocks in an 
ARXML format. Thus, ARTI support enables an  

in-depth analysis of the runtime behavior of AUTO-
SAR-based systems. ARTI defines a comprehen-
sive, standardized interface between the build tools 
and the debug and trace tools and, in addition to 
detailed debug information, also provides a model 
for detailed runtime measurement and analysis of 
operating system tasks and their runnables. This 
includes not only simple timing measurements, but 
also the possible states of tasks, runnables and 
ISRs. Because ARTI consistently records only this 
relevant information, it gets by with relatively low 
bandwidth.

The trace data generated for ARTI profiling (pro-
filing the runtime behavior of an AUTOSAR-based 
application is often also referred to as AUTOSAR 
profiling) can be streamed to the host computer 
at program runtime, allowing very long recording 
times. The trace data can be used to cover CPU 
load analysis, event chain analysis, calculation of 
OS metrics, and much more, in addition to the use 
case validation of timing requirements, which is the 
focus here. 

Lauterbach’s TRACE32® trace tools are an estab-
lished part of the AUTOSAR Classic timing tool 
chain and also support ARTI profiling for the AUTO-
SAR Adaptive Platform. Figure 2 shows an example 
of a decoded ARTI trace in Lauterbach’s PowerView 
software. (Figure 2)
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TRACE32® uses the ARTI file (arxml) generat-
ed during the build process to display all relevant  
debug information in a suitable manner. The  
recorded trace data can also be exported as  
ASAM MDF (Measurement Data Format) and then 
processed further using timing tools. Figure 3 
shows the workflow.

ZF has incorporated these timing measurements 
and analyses into the development process. The 
extended analysis options enable the developer  
to check the effects of functional changes on the 
time behavior in a simple way. This procedure is 

essential for automotive applications because auto-
motive software is typically structured in time slots 
– e.g. task one gets 5 ms, task two 3 ms – which 
must be strictly adhered to.

In addition to TRACE32®, ZF also uses Vector’s TA 
Tool Suite [1] for automatic requirement analysis, for 
which Lauterbach has developed an appropriate 
export format for its trace data. For example, if a 
task is allowed to take 10 ms, TRACE32® provides 
the actual runtime statistics (e.g., 11 ms), while the 
TA Tool Suite reports a violation of the requirements 
(11 ms > 10 ms) at a higher level.
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Figure 4: Debugging virtual targets with TRACE32. ©Lauterbach

  ZF’s Step from Real   
 to VLAB Virtual Target

In the next step, ZF wanted to integrate the  
previously described procedures into a continuous  
integration process so that it could constantly mon-
itor the extent to which changes to the software 
caused changes in runtime behavior. The goal was 
to be able to run the tests completely automatically 
on a server – 24 hours a day, 365 days a year, if 
necessary. So, when a developer at ZF commits 
code to the repository, a CI server not only initiates 
a build and documents the results of the build, but 
also automatically checks the impact on timing. 

Making a test bench suitable for the project,  
including all the necessary debug and trace tools, 
permanently available for a CI service proved to  
be a major challenge. It therefore made sense to 
replace the real test bench with a virtual test bench 
including a virtual ECU with virtual AURIX™ MCU. 
A pleasing side effect: virtualizing the microcon- 
troller eliminates hardware limitations with respect 
to trace, since a model naturally does not rely on 
hardware implementations such as MCDS to gener-
ate trace data. Thus, such a setup is even usable for 
projects that do not have the appropriate hardware.

The AURIX™ Virtual Development Machine (VDM) is 
supplied by the Australian Semiconductor Techno- 
logy Company Pty Ltd (ASTC). Called VLAB  
AURIX™ Toolbox, ASTC’s product[2] provides a set  
of simulation models for the AURIX™ TC2xx and  
AURIX™ TC3xx MCUs, covering not only the  
TriCore™ CPUs but also the peripherals and  
other programmable cores, and supporting e.g.  
advanced debugging for GTM with disassem-
bly, tracing and breakpoints. VLAB runs on the CI  
server and ZF wanted to do the timing measure-
ments on it as well. Even if the simulation is of 
course slower than a real target, this does not  
matter because the measurements can run at night.

For ZF, this presented two challenges. The first was 
that Lauterbach’s TRACE32® had to be connected 
to VLAB in some way (Figure 4) so that it could  
simply debug the simulation from the Power 
View software [3]. The second challenge, which 
turned out to be much greater, was to be able to 
trace the VLAB model at all.

Thanks to intensive cooperation between the devel-
opment teams at Lauterbach and ASTC, the Pow-
erView connection was implemented promptly. The 
MCD API, which ASTC had already implemented in 
the simulator by default, was used as the interface.
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The MCD API [4] was developed as part of a joint 
project between ARM, Infineon Technologies, Lau-
terbach, NXP Semiconductors, STMicroelectron-
ics and TIMA Laboratory. It was defined to provide  
debugging tools with a unified debugging interface 
for both real hardware and software simulations. 
This allows application development to begin early 
in the design flow of an SoC platform without having 
to switch to different debug tools when moving from 
virtual prototypes to real hardware. 

In addition, the MCD API supports multi-core  
debugging, which is a ‘must have’ due to the com-
plexity of today’s SoC designs. The MCD API is a 
powerful but simple C interface. It has a number of 
sub-APIs that provide functions for target connec-
tion, retrieving information from the target system, 
trigger support e.g. for breakpoints, memory and 
register accesses, and communication channels, 
among others.

  Tracing via MCD API  
 as a Challenge

In contrast to debugging, tracing the VLAB model 
via the MCD API did not work, although one of the 
sub-APIs provides a generic trace interface with 
predefined trace sources. The prerequisite for this 
to work is that the simulation first generates and 
provides the trace data and second provides the 
ability to retrieve this trace data via the API. The 
VLAB model provided inconsistent trace data at 
the beginning of the project due to an MCD API not  
being 100% implemented. However, what was even 

more serious was the unimplemented data trace, 
which is essential for ARTI. The simulation record-
ed the program run, but no data. However, it was 
imperative that TRACE32® be able to tell the VLAB 
simulation to selectively record certain data, such 
as when writing to a specific memory location. 

As a result, in the interest of and at the request of ZF, 
Lauterbach worked with ASTC beginning in March 
2022 to implement the missing data trace as well 
as to eliminate the inconsistencies in the MCD API. 
Lauterbach provided this support at no cost to ZF as 
part of customer support and did not charge ASTC.

By August 2022, ASTC’s revised model, including 
data trace, was ready. Figure 5 shows an example 
of the configuration for recording variables with 
Lauterbach’s PowerView software. 

However, another challenge unexpectedly arose. 
The TC397XE is known to contain six cores, all of 
which should be recorded during the trace. In the 
scenario at ZF with the selective ARTI trace, core 
0 delivered thousands of relevant messages, while 
the other cores delivered almost none, even though 
they were not idle but also processing workloads. 
They just did not generate as many relevant trace 
messages as core 0. 

Figure 6 shows such a scenario reduced to three 
cores for simplification reasons. At time t0, all 
three cores deliver a message. At times t1, t2 and 
t3, however, only core 0 delivers a message, while 
cores 1 and 2 deliver their first further message  
after the one transmitted at time t0 only later,  
namely at time t4. 

Figure 5: Variables recorded in the trace. ©Lauterbach
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Figure 6: Asymmetrically distributed trace messages across three cores. ©Lauterbach

Now, if all cores were queried one after the other at time 
points t0, t1, t2, t3 and t4 respectively, the messages 
came in a wrong temporal order (Figure 6 above). 
The correct order would be, after querying Core 0, 
Core 1 and Core 2 at time t0, four more messages 
from each Core 0 at t1, t2, t3 and t4, and only then 
Core 1 and Core 2 again, also at t4 (Figure 6 bottom). 

Lauterbach had subsequently worked on putting 
the timestamps in the correct order before export-
ing, which is a key requirement of Vector’s TA Tool 
Suite for the timing analyses. By January 2023,  
everything was running to ZF’s complete satis- 
faction.
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 | Conclusion and Outlook
ZF has been successfully using ASTC’s VLAB Virtual 
Development Machines, on which its own applica-
tion runs, since January 2023. Lauterbach’s Power-
View is used as the front end for virtualization, and 
program and data traces are used to record timing 
behavior and export it to Vector’s TA Tool Suite.

Of course, for certification reasons, everything must 
also be traced on a real target before delivery. For 
this purpose, ZF uses the on-chip trace on the one 
hand, since the trace buffer at ARTI is sufficient up 
to a recording duration of 1 second or even longer, 
and on the other hand Lauterbach’s CombiProbe [5] 
hardware module for even longer recordings. 

The added value for ZF is obvious: on the one hand, 
a real target is no longer required at the beginning 
of a development project; and on the other hand, 
nightly automated tests with equally automated 
requirement analysis can be performed on the CI 
server. This means that every software change  
is automatically checked immediately for timing  
behavior.

Currently, the trend in the automotive industry 
is clearly moving in the direction of consolidating  
multiple applications onto one ECU. In light of this,  
it is all the more important to constantly check 
during the development process whether the ECU 
is still able to handle the load at all or whether the 
timing requirements can no longer be met. In the 
past, in the age of „simple” single-core CPUs with 
in-order instruction execution, there were mathe-
matical methods that made it easy to calculate the 
runtime of individual functions. 

Today, in the age of multi-core SoCs, multi-level 
cache architectures and out-of-order instruction 
execution, this no longer works. The only thing 
that really helps here is concrete measurement.  
This successful project at ZF is therefore likely to  
set a precedent in a similar form throughout the  
automotive industry.
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