
CASE STUDY

Automotive Supplier ZF Implements
Runtime Analyses on VLAB Virtual ECUs
Understanding the runtime behavior of an embedded application is crucial for optimizing resource
utilization and performance, and ultimately for meeting all safety requirements. Together with
Lauterbach, ZF’s long-time partner for debug and trace tools, timing analyses for automotive ECUs
could be moved from real hardware to virtual targets. The benefits are compelling.

By Frank Riemenschneider, Lauterbach GmbH

FROM THE REAL TO THE VIRTUAL TARGET WITH TRACE32®

ZF, headquartered in Friedrichshafen, Germany,
is one of the most important suppliers to the
automotive industry with 160.000 employees
worldwide. The company is shaping vehicles
of the future at all relevant levels: from sustain-
ability, electromobility, automated and auto-
nomous driving to software and digitalization to
vehicle motion control. The product range also
includes automotive control units (ECUs), which
are supplied to almost all well-known car manu-
facturers.

When developing an embedded application such
as an ECU, not only is error-free software essen-
tial, but understanding the runtime behavior of the
application is also crucial for optimizing resource
utilization and performance, and ultimately for

meeting all safety requirements. To this end, appro-
priate tools are used to measure execution times
and verify timing requirements. To do this, the user
must record hardware events by means of traces
at the instruction level and process the trace data
into system events at an abstracted level, which is
known as profiling.

In order to be able to trace at all, the user must first
of all use chips that are trace-capable. For eco-
nomic reasons, this is still not the case for all micro-
controllers or processors in 2023. ZF has taken this
requirement into account from the very beginning
and, among other chips, relies on the AURIX™

TC397XE, a microcontroller from Infineon with six
TriCore™ CPUs, each clocked at 300 MHz. The
Multi-Core Debug Solution (MCDS) implemented in

CASE STUDY

Figure 1: Diagram for real-time flow trace with Lauterbach TRACE32®. ©Lauterbach

 – 2 –

the TC397XE provides parallel and timed trace of
cores and buses, powerful trigger conditions, and
on-chip logic analyzer functions. The TriCore™
CPU architecture is also particularly designed for
high interrupt loads, such as those encountered in
engine control systems. Thanks to this predictive
chip selection, ZF is thus not forced to perform
a purely software-based analysis, as would have
been the case with non-trace-capable chips. The
code instrumentation required in this case would
have a considerable influence on the timing be-
havior and would make the measurement results
obtained only of limited use. In addition to the chip
itself, ZF also makes sure from the very beginning
that the software developed in-house is prepared
for corresponding timing analyses.

In the so-called „real-time flow trace” with
Lauterbach’s TRACE32® tools, the information of
the address/data bus is transmitted by the MCDS
as it occurs directly at the CPU core (Figure 1).
The process itself is not „Rocket Science,” but
trace products from different manufacturers differ
in terms of data rates and functional scope. Even
though a flow trace is already very powerful through
the use of Lauterbach’s TRACE32®, the analysis
capabilities could be significantly expanded again
with the introduction of AUTOSAR ARTI (AUTOSAR
Run Time Interface). This was implemented at ZF
in November 2021 by a joint ZF/Lauterbach project
group. Lauterbach has been a member of the relevant
AUTOSAR committees from the very beginning and
has contributed significantly to this new standard.

Figure 2: Example of decoded ARTI trace. ©Lauterbach/ZF

 AUTOSAR ARTI
 Extends Analysis Capabilities

AUTOSAR ARTI uses a similar approach to its
predecessor ORTI (OSEK Run-Time Interface), but
extends the trace capabilities and addresses some
shortcomings of ORTI-based analysis. With ORTI,
the developer is usually not able to distinguish
between task completion, interruption and waiting in
the trace, since only task changes can be recorded,
and thus cannot perform a detailed timing analysis
on activation delays or total response time, for
example.

In addition, runnables are not covered by the ORTI
file, nor the communication between software com-
ponents. ORTI-based timing analysis focuses on
the operating system and ignores other AUTOSAR
modules such as software components (SWCs)
and the runtime environment (RTE). The scheduling
of AUTOSAR runnables (by means of OS tasks) is
often the authoritative object of investigation in
timing analysis.

AUTOSAR ARTI provides extended information,
which is important for the automotive industry,
e.g. about tasks, ISRs (interrupt service routines),
runnables, RTE communication or spinlocks in an
ARXML format. Thus, ARTI support enables an

in-depth analysis of the runtime behavior of AUTO-
SAR-based systems. ARTI defines a comprehen-
sive, standardized interface between the build tools
and the debug and trace tools and, in addition to
detailed debug information, also provides a model
for detailed runtime measurement and analysis of
operating system tasks and their runnables. This
includes not only simple timing measurements, but
also the possible states of tasks, runnables and
ISRs. Because ARTI consistently records only this
relevant information, it gets by with relatively low
bandwidth.

The trace data generated for ARTI profiling (pro-
filing the runtime behavior of an AUTOSAR-based
application is often also referred to as AUTOSAR
profiling) can be streamed to the host computer
at program runtime, allowing very long recording
times. The trace data can be used to cover CPU
load analysis, event chain analysis, calculation of
OS metrics, and much more, in addition to the use
case validation of timing requirements, which is the
focus here.

Lauterbach’s TRACE32® trace tools are an estab-
lished part of the AUTOSAR Classic timing tool
chain and also support ARTI profiling for the AUTO-
SAR Adaptive Platform. Figure 2 shows an example
of a decoded ARTI trace in Lauterbach’s PowerView
software. (Figure 2)

 – 3 –

CASE STUDY

ASAM
MDF

*.c
*.h

ARXML

ELF

ASAM
MDF

ARXML ARXML

ARXML

*.c
*.h

*.c
*.h

OS ARTI
config

ECU
Configuration

RTE ARTI
config

OS
Code

RTE
code

Trace Profiling
data

Executable

ARTI
(hooks, etc.)

ARTI
Extract

#i
nc

lu
d

e

Scheduling analysis or
scheduling simulation tool

Build
Process

ARTI
Generator

OS
Generator

RTE
Generator

Trace visualization
and analysis tool

<

<

Figure 3:
Development
process with

ARTI in the V-model
©Lauterbach

TRACE32® uses the ARTI file (arxml) generat-
ed during the build process to display all relevant
debug information in a suitable manner. The
recorded trace data can also be exported as
ASAM MDF (Measurement Data Format) and then
processed further using timing tools. Figure 3
shows the workflow.

ZF has incorporated these timing measurements
and analyses into the development process. The
extended analysis options enable the developer
to check the effects of functional changes on the
time behavior in a simple way. This procedure is

essential for automotive applications because auto-
motive software is typically structured in time slots
– e.g. task one gets 5 ms, task two 3 ms – which
must be strictly adhered to.

In addition to TRACE32®, ZF also uses Vector’s TA
Tool Suite [1] for automatic requirement analysis, for
which Lauterbach has developed an appropriate
export format for its trace data. For example, if a
task is allowed to take 10 ms, TRACE32® provides
the actual runtime statistics (e.g., 11 ms), while the
TA Tool Suite reports a violation of the requirements
(11 ms > 10 ms) at a higher level.

 – 4 –

 – 5 –

Figure 4: Debugging virtual targets with TRACE32. ©Lauterbach

 ZF’s Step from Real
 to VLAB Virtual Target

In the next step, ZF wanted to integrate the
previously described procedures into a continuous
integration process so that it could constantly mon-
itor the extent to which changes to the software
caused changes in runtime behavior. The goal was
to be able to run the tests completely automatically
on a server – 24 hours a day, 365 days a year, if
necessary. So, when a developer at ZF commits
code to the repository, a CI server not only initiates
a build and documents the results of the build, but
also automatically checks the impact on timing.

Making a test bench suitable for the project,
including all the necessary debug and trace tools,
permanently available for a CI service proved to
be a major challenge. It therefore made sense to
replace the real test bench with a virtual test bench
including a virtual ECU with virtual AURIX™ MCU.
A pleasing side effect: virtualizing the microcon-
troller eliminates hardware limitations with respect
to trace, since a model naturally does not rely on
hardware implementations such as MCDS to gener-
ate trace data. Thus, such a setup is even usable for
projects that do not have the appropriate hardware.

The AURIX™ Virtual Development Machine (VDM) is
supplied by the Australian Semiconductor Techno-
logy Company Pty Ltd (ASTC). Called VLAB
AURIX™ Toolbox, ASTC’s product[2] provides a set
of simulation models for the AURIX™ TC2xx and
AURIX™ TC3xx MCUs, covering not only the
TriCore™ CPUs but also the peripherals and
other programmable cores, and supporting e.g.
advanced debugging for GTM with disassem-
bly, tracing and breakpoints. VLAB runs on the CI
server and ZF wanted to do the timing measure-
ments on it as well. Even if the simulation is of
course slower than a real target, this does not
matter because the measurements can run at night.

For ZF, this presented two challenges. The first was
that Lauterbach’s TRACE32® had to be connected
to VLAB in some way (Figure 4) so that it could
simply debug the simulation from the Power
View software [3]. The second challenge, which
turned out to be much greater, was to be able to
trace the VLAB model at all.

Thanks to intensive cooperation between the devel-
opment teams at Lauterbach and ASTC, the Pow-
erView connection was implemented promptly. The
MCD API, which ASTC had already implemented in
the simulator by default, was used as the interface.

MODULAR SYSTEM

10100111010PowerView
SOFTWARE

TA
RG

ET

virtual Target

CASE STUDY

The MCD API [4] was developed as part of a joint
project between ARM, Infineon Technologies, Lau-
terbach, NXP Semiconductors, STMicroelectron-
ics and TIMA Laboratory. It was defined to provide
debugging tools with a unified debugging interface
for both real hardware and software simulations.
This allows application development to begin early
in the design flow of an SoC platform without having
to switch to different debug tools when moving from
virtual prototypes to real hardware.

In addition, the MCD API supports multi-core
debugging, which is a ‘must have’ due to the com-
plexity of today’s SoC designs. The MCD API is a
powerful but simple C interface. It has a number of
sub-APIs that provide functions for target connec-
tion, retrieving information from the target system,
trigger support e.g. for breakpoints, memory and
register accesses, and communication channels,
among others.

 Tracing via MCD API
 as a Challenge

In contrast to debugging, tracing the VLAB model
via the MCD API did not work, although one of the
sub-APIs provides a generic trace interface with
predefined trace sources. The prerequisite for this
to work is that the simulation first generates and
provides the trace data and second provides the
ability to retrieve this trace data via the API. The
VLAB model provided inconsistent trace data at
the beginning of the project due to an MCD API not
being 100% implemented. However, what was even

more serious was the unimplemented data trace,
which is essential for ARTI. The simulation record-
ed the program run, but no data. However, it was
imperative that TRACE32® be able to tell the VLAB
simulation to selectively record certain data, such
as when writing to a specific memory location.

As a result, in the interest of and at the request of ZF,
Lauterbach worked with ASTC beginning in March
2022 to implement the missing data trace as well
as to eliminate the inconsistencies in the MCD API.
Lauterbach provided this support at no cost to ZF as
part of customer support and did not charge ASTC.

By August 2022, ASTC’s revised model, including
data trace, was ready. Figure 5 shows an example
of the configuration for recording variables with
Lauterbach’s PowerView software.

However, another challenge unexpectedly arose.
The TC397XE is known to contain six cores, all of
which should be recorded during the trace. In the
scenario at ZF with the selective ARTI trace, core
0 delivered thousands of relevant messages, while
the other cores delivered almost none, even though
they were not idle but also processing workloads.
They just did not generate as many relevant trace
messages as core 0.

Figure 6 shows such a scenario reduced to three
cores for simplification reasons. At time t0, all
three cores deliver a message. At times t1, t2 and
t3, however, only core 0 delivers a message, while
cores 1 and 2 deliver their first further message
after the one transmitted at time t0 only later,
namely at time t4.

Figure 5: Variables recorded in the trace. ©Lauterbach

 – 6 –

ZEIT
Core 0 Core 1 Core 2

t0

t1

t2

t3

t4

t0

t1

t2

t3

t4

t0

t1

t2

t3

t4

TRACE MESSAGETRACE MESSAGETRACE MESSAGE

TRACE MESSAGE

TRACE MESSAGE

TRACE MESSAGE TRACE MESSAGE TRACE MESSAGE

TRACE MESSAGE

ZEIT
Core 0 Core 1 Core 2

t0

t1

t2

t3

t4

t0

t1

t2

t3

t4

t0

t1

t2

t3

t4

TRACE MESSAGETRACE MESSAGETRACE MESSAGE

TRACE MESSAGE TRACE MESSAGE TRACE MESSAGE

TRACE MESSAGE

TRACE MESSAGE

TRACE MESSAGE

Figure 6: Asymmetrically distributed trace messages across three cores. ©Lauterbach

Now, if all cores were queried one after the other at time
points t0, t1, t2, t3 and t4 respectively, the messages
came in a wrong temporal order (Figure 6 above).
The correct order would be, after querying Core 0,
Core 1 and Core 2 at time t0, four more messages
from each Core 0 at t1, t2, t3 and t4, and only then
Core 1 and Core 2 again, also at t4 (Figure 6 bottom).

Lauterbach had subsequently worked on putting
the timestamps in the correct order before export-
ing, which is a key requirement of Vector’s TA Tool
Suite for the timing analyses. By January 2023,
everything was running to ZF’s complete satis-
faction.

 – 7 –

 | Conclusion and Outlook
ZF has been successfully using ASTC’s VLAB Virtual
Development Machines, on which its own applica-
tion runs, since January 2023. Lauterbach’s Power-
View is used as the front end for virtualization, and
program and data traces are used to record timing
behavior and export it to Vector’s TA Tool Suite.

Of course, for certification reasons, everything must
also be traced on a real target before delivery. For
this purpose, ZF uses the on-chip trace on the one
hand, since the trace buffer at ARTI is sufficient up
to a recording duration of 1 second or even longer,
and on the other hand Lauterbach’s CombiProbe [5]
hardware module for even longer recordings.

The added value for ZF is obvious: on the one hand,
a real target is no longer required at the beginning
of a development project; and on the other hand,
nightly automated tests with equally automated
requirement analysis can be performed on the CI
server. This means that every software change
is automatically checked immediately for timing
behavior.

Currently, the trend in the automotive industry
is clearly moving in the direction of consolidating
multiple applications onto one ECU. In light of this,
it is all the more important to constantly check
during the development process whether the ECU
is still able to handle the load at all or whether the
timing requirements can no longer be met. In the
past, in the age of „simple” single-core CPUs with
in-order instruction execution, there were mathe-
matical methods that made it easy to calculate the
runtime of individual functions.

Today, in the age of multi-core SoCs, multi-level
cache architectures and out-of-order instruction
execution, this no longer works. The only thing
that really helps here is concrete measurement.
This successful project at ZF is therefore likely to
set a precedent in a similar form throughout the
automotive industry.

REFERENCES:
[1] The TA Tool Suite from Vector: https://www.vector.com/ta-tool-suite

[2] The virtual AURIX™ from ASTC: https://vlabworks.com/vlab-vdms/

[3] Lauterbach’s PowerView debug and trace software: https://www.lauterbach.com/products/software/trace32-powerview

[4] MCD API download: https://www.lauterbach.com/products/software/debugger-for-simulators/mcd-api

[5] Lauterbach’s TRACE32® CombiProbe: https://www.lauterbach.com/products/trace-extensions/combiprobe

 – 8 –

This information is subject to change without notice. TRACE32®, µTrace®, Lauterbach® are registered trademarks of Lauterbach GmbH.
All product and service names mentioned are the trademarks of their respective companies. ©Lauterbach GmbH | V 2.00

https://www.vector.com/ta-tool-suite
https://vlabworks.com/vlab-vdms/
https://www.lauterbach.com/products/software/trace32-powerview
https://www.lauterbach.com/products/software/debugger-for-simulators/mcd-api
https://www.lauterbach.com/products/trace-extensions/combiprobe
https://www.lauterbach.com

