
CASE STUDY

Pole Position in Formula Student with
TRACE32® Debug and Trace Tools
Since 2006, motorsport enthusiasts from the University of Applied Sciences Wuerzburg-Schweinfurt
have been successfully developing a new racing car for the Formula Student every year. We have been
supporting them in electronics and software development with our TRACE32® debug and trace tools.
In this case study, we take a closer look at some of the race car's electronics applications and the
practical use of TRACE32®.

By Frank Riemenschneider, Senior Marketing Engineer, Lauterbach GmbH

LEADING EDGE ON THE RACE TRACK

The Formula Student project at the University of
Applied Sciences Wuerzburg-Schweinfurt was
launched in 2006 as the brainchild of individual
motorsport enthusiasts. Motivated students
from various departments formed a team called
Mainfranken Racing (MFR). Mainfranken Racing
e.V. is a registered, non-profit association based
at the University of Applied Sciences Wuerzburg-
Schweinfurt [1]. In addition to building an efficient
vehicle, the aim of the association is to compete in
several international competitions. The individual
disciplines are described on the Formula Student
website [2].

To achieve this, it is essential to develop a racing
car each season that is as light as possible, but at

the same time powerful and competitive. To achieve
this, the students plan and manufacture the various
components over a period of months.

Over the past 18 years, they have implemented
many changes and innovations. For example,
they raced with a combustion engine for the first
11 seasons and then decided to switch to the
pioneering electric version. With the third e-vehicle
came the switch to a monocoque made of carbon
fiber in order to achieve optimum weight savings in
the chassis. A monocoque is a special construc-
tion that forms the chassis and replaces the frame.
This allows greater stability to be achieved with
less mass in the vehicle. However, the production
process is very complex and takes several months.

CASE STUDY

 – 2 –

The current, fourth vehicle with an electric motor,
the MF16, also includes an autonomous system for
corresponding competitions.

The team celebrated great successes in the
2024/2025 season: at the beginning of August
2024, the team achieved 3rd place in the driver-
less disciplines with the autonomous system in the
Czech Republic. In France, the team stood on the
podium in 2nd place in the overall standings.

 Lauterbach is a
 Long-standing Partner for
 Development Tools Tools

Training and supporting students of engineering
and other STEM (Science, technology, engineering,
and mathematics) subjects has always been a
matter close to Lauterbach’s heart. We always
offer interested working students the opportunity
to work on specific projects in order to get to
know the real working world in a market-leading
high-tech company. More than once this has
resulted in a new employee after graduation.
Supporting the MFR team with our tools was
therefore an absolute no-brainer.

For central vehicle functions, three of which are
explained in detail later in this article (dashboard,
battery management system, traction control &
slip control), the team opted for microcontrollers
from Infineon’s XMC family [3]. Infineon is the world
leader in automotive semiconductors.

Lauterbach’s debug and trace tools under the
TRACE32® brand are also global market leaders
and are used by all well-known automotive manu-
facturers, their suppliers and chip manufacturers.
To ensure the simplest and smoothest possible
use with the XMC chips, we have consequently
recommended our µTrace® [4] to MPR, which allows
debugging of the Cortex-M CPUs with the highest
bandwidth available on the market. In addition to
its leading debugging capabilities in the Cortex-M
market, µTrace® can record real-time information
such as system traces and parallel ETM flow
traces, enabling code coverage and code profiling,
for example.

 Commissioning of Lauterbach’s
 µTrace Debugger with Evaluation
 Board for Infineon XMC4700

To test the trace and debug interface of an XMC4700
microcontroller for the first time, the team designed
its own evaluation board (Fig. 1a). The purpose of
this board was to be able to put the TRACE32®

µTrace® debugger into operation as quickly as
possible with the given hardware. Figure 1b shows
the block diagram of the evaluation board.

HEADER

TRACE CONNECTOR

Infineon XMC4700
MICROCONTROLLER

SWD
CONNECTOR

VOLTAGE
CONVERTER

HEADER

LEDs

HEADER

HEADER

LEDs

LEDs

CAN
TRANSCEIVER

Figure 1a:
3D view of the
evaluation board
developed in-house.

Figure 1b. Block diagram of the evaluation board.

CASE STUDY

 – 3 –

The complete setup with µTrace debugger and
circuit board can be seen in Figures 2. Thanks to
the simple configuration of our TRACE32® Power-
View software, MPR could quickly put the µTrace®
debugger into use with this test setup and the first
problems in the software developed by the team
were quickly found.

Apart from the µTrace, Figure 2 also shows
Lauterbach’s Mixed Signal Probe. It allows the
recording of digital and analog signals, which can
be correlated to the recorded program flow. This
way it is easy to verify signal-timings which are
initiated by the application software or to calculate
the power consumption of specific program parts.

Thanks to the TRACE32® PowerView Software,
the MFR team can drive both tools from a single UI
with cross-triggering and a common timestamp,
allowing the verification of software changes and
signal behavior.

The device in the center of Figure 2 is called a whis-
ker. It is the physical link between the Evaluation
Board’s debug and trace ports and the µTrace.
Because the whisker’s transceivers are close to
the target, it provides the most stable signal at the
highest transmission speeds. Each of Lauterbach’s
whisker models is optimized to perfectly match the
physical and electrical specifications of the target’s
debug and trace ports.

Figure 2: Test setup with self-developed evaluation board.

CASE STUDY

 – 4 –

 Use Case Dashboard
Figure 3 shows the dashboard circuit board. The
dashboard serves as a central display for a variety
of vehicle parameters and statuses, including the
battery charge level and the temperature of the
cooling circuit. It also offers the option of activat-
ing autonomous driving by pressing a rotary knob
on the cockpit. The selected driverless mission is
signaled by a blue LED and then transmitted to the
vehicle via the CAN bus. In addition, the dashboard
registers the status of a “Ready to Drive” button
and also sends this value to the vehicle via the
CAN. Status LEDs and an LC display are mainly
used to visualize the data.

Figure 3: µTrace in use during dashboard development.

The architecture of the dashboard software is
shown in Figure 4. The software reads the required
information directly from the vehicle CAN via the
CAN interface. The hardware interface records the
encoder for the driverless missions and the button
for the “Ready-to-Drive” function. In the state
handler, the retrieved values are assigned to a
status LED or converted accordingly so that they
can be shown on the LC display. The “Ready-to-
Drive” status is sent via CAN to the vehicle and the
driver informed via either an LED changing color or
new information on the LC display.

The LC display is controlled via SPI, whereby all
specific commands for controlling the display are
implemented directly in the LC display node. The
LVGL graphics library is used to create an appealing
and user-friendly user interface. The development
process is carried out with the help of GuiGuider,
a UI toolbox that enables the intuitive creation of
user interfaces. The LVGL-Lib interface serves as a
bridge to access the different components of LVGL
and GuiGuider. This enables navigation between
different screens, the adjustment of vehicle
parameters and many other functions.

Encoder

Hardware Interface

CAN Interface

State Handler

LC Display

LVGLLibInterface

LED Switcher Status LEDs

Display

Button

CAN

Figure 4: Overview of the dashboard software.

CASE STUDY

 – 5 –

 Application Area of the
 µTrace Debugger in
 Dashboard Development

In the software development for the dashboard,
the main focus is on the integration of a graphics
library with the microcontroller and the system
display. The µTrace debugger was able to help find
a memory allocation error at dashboard runtime.
The error manifested itself in the fact that the soft-
ware crashed after switching between different
pages on the display several times.

Troubleshooting was accelerated by tracing the
software sequence and recording it until the soft-
ware crashed. By analyzing the expired code
shortly before the software error, the problem
could be narrowed down to a memory problem.
In the end, the problem was found in the memory
allocation of the graphics library, which uses its
own malloc function. The error was rectified by
switching to the standard C-malloc function.

 Use Case Battery
 Management System

Figure 5a shows the control unit of the battery
management system (BMS) master. The task of this
control unit is to manage the battery management
system of the HV battery and to monitor faults
within the battery.

The master communicates with the BMS ICs via a
UART transceiver using an isolated UART (isoUART)
protocol (Fig. 5b). The BMS ICs are connected to
the Li-Ion cells of the battery and measure cell volt-
ages and cell temperatures. In addition, discharge
resistors can be connected to each individual cell
in order to discharge the cells to the same voltage
level, known as “balancing”.

Figure 5b: Communication of the BMS ICs.

MICROCONTROLLER

UART

isoUART

isoUART

isoUART...

UART TRANSCEIVER

BMS-IC #1

BMS-IC #2

BMS-IC #15

Figure 5a:
Board of the battery
management system
(BMS master).

CASE STUDY

 – 6 –

Figure 6 shows the software modules of the battery
management system. Inputs to the software are
shown on the left. This is the insulation monitor-
ing system (IMD), the BMS ICs are connected via a
bus system. The microcontroller is also connected
to the vehicle CAN and to a current sensor. An
EEPROM is available for storing non-volatile data.
The BMS system communicates with the ICs via the
BMS interface and thus reads in measurement data
such as cell temperatures and voltages. The State
of Charge (SOC) and the State of Health (SOH) are
calculated from the cell data and the charging/
discharging current.

 Application area of the µTrace
 debugger in BMS development

A large part of the BMS master’s software deals
with communication with the BMS ICs and pro-
cessing the measurement data. The BMS ICs are
connected to the microcontroller via an isoUART
bus. This allows data such as the individual cell
voltages and temperatures to be read out and all
cells to be discharged to the same voltage level.

The µTrace debugger was used to adjust the
communication timings so that all the required data
can be queried at the required frequency without
overloading the BMS ICs and the isoUART bus.

Figure 7: BMS master installed in the battery container.

IMD

BMS ICs

IMD Interface Fan Control Fan

ContactorsMST StatusBMS StatusBMS Interface

CAN Interface Current Sensor
Interface

SOC / SOH

Current
Sensor CAN

Car CAN

EEPROM EEPROM
Interface

Figure 6: Battery management software modules.

CASE STUDY

 – 7 –

 Use Case Traction Control
 and Slip Control

In order to get the greatest possible acceleration
out of the Formula Student vehicle, a certain
amount of slip on the driven tires must not be
exceeded, otherwise the transmitted force and
thus the acceleration will be reduced. A controller
is required to set this optimum slip.

The input variables of the controller are the vehicle
speed and the rotational speed of the driven tires.
The variable to be controlled, the slip, is calculated
from these. The output variable of the controller is
the torque specification for the inverter.

The “ETC” (Electronic Throttle Control) control unit,
which is primarily used for reading the accelerator
pedal and sending the torque specifica-
tion, is equipped with an Infineon XMC1404
microcontroller. The software part of the traction
control is located on this control unit. The initial
parameterization of the controller takes place in the
structure shown in Fig. 8.

Figure 8: Schematic structure & integration of the debug-
ger into the test setup.

Figure 9 shows a photo of the setup described.
Here, the control unit is connected to an SiL system
via a CAN bus. The vehicle simulation on the SiL
system supplies the input variables for the controller
and reacts to the manipulated variable.

The µTrace debugger is connected to the micro-
controller via SWD, but without trace functionality,
as the XMC1404 does not support this.

Figure 9: Setup and integration of the µTrace debugger
into the test setup.

 Application Area of the µTrace
 Debugger in ETC Development

The main task of the debugger is to record the
internal controller variables and to be able to
adjust the controller parameters live. In addition,
the utilization of the microcontroller’s computing
power is measured in order to find the optimum
point between controller computing power and
controller performance.

Control Unit (ETC)

µTrace Debugger

SWD

CAN Bus

SiL
(Car Simulation)

References:

[1] Web Page of Mainfranken Racing e.V.: https://mainfranken-racing.de/

[2] Disciplines in the Formula Student: https://www.formulastudent.de/about/disciplines/

[3] XMC Microcontroller from Infineon: https://www.infineon.com/cms/en/product/microcontroller/32-bit-industrial-microcontroller-based-on-arm-cortex-m/

[4] µTrace Debugger from Lauterbach: https://www.lauterbach.com/products/debugger/microtrace

 – 8 –

 Conclusion
With our TRACE32-µTrace debugger, the Main-
franken racing team was able to realize and com-
plete the electronics and software development for
its new MF16 race car faster and more smoothly
than planned, which contributed to the great
successes in the 2024/2025 season. We would like
to congratulate all the students who contributed to

this and are delighted that the collaboration worked
smoothly and purposefully at all times. In line with
the motto “After the race car is before the race car”,
we are excited to see what innovations the MF16
successor, MF17, will bring and how our TRACE32®
tools can make a small contribution to leading this
vehicle to great success once again.

Formula Student - a Student Design Competition

Formula Student is a compe-
tition in which university teams
design and build a single-seater
race car. The teams have from
October to August to plan and
build the vehicle. The teams
then compete against each
other with their vehicles in
various disciplines at different
racing events. However, it is
not just speed on the specified
tracks that determines the over-
all winner. The so-called static

disciplines also play an important
role. These include, for example,
the presentation of the design
and business plan, as well as a
cost breakdown.

Before the actual competition
begins, the teams must pass
the technical scrutineering.
For Formula Student Electric
vehicles, i.e. with an electric
drive train, the electrical safety
as well as the technology and

safety in general are tested. In
addition, the vehicles undergo
a static test known as a “tilt
table”, a rain test and a brake
test. Only when all these
tests have been successfully
passed are the
vehicles admitted to
the competition.
Further details on
the individual
disciplines can
be found at [2].

This information is subject to change without notice. TRACE32®, µTrace®, Lauterbach® are registered trademarks of Lauterbach GmbH.
All product and service names mentioned are the trademarks of their respective companies. ©Lauterbach GmbH | V 1.01

https://mainfranken-racing.de/
https://www.formulastudent.de/about/disciplines/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-industrial-microcontroller-based-on-arm-cortex-m/
https://www.lauterbach.com/products/debugger/microtrace
https://www.lauterbach.com

