
Speeding Up Safety Certification with
Trace-based Code Coverage

Many embedded systems must be developed according to an internationally recognized safety standard.
Part of the data required to prove that a system meets these standards is a form of code coverage.
In this article, we show how code coverage measurements can be made using TRACE32® trace tools
with little or no code instrumentation required. This approach simplifies and accelerates integration and
system tests in particular and can complement traditional unit testing tools for faster and more efficient
safety certifications.

FROM UNIT TO INTEGRATION TO SYSTEM TESTING

 Introduction

Code coverage measurement is a requirement for
certification to evaluate the completeness of test
cases and to demonstrate that there is no un-
intended functionality. Test cases for the verification
of code coverage can be executed in different test
phases, the unit test, the integration test and the
system test.

When using traditional test tools, integration and
system tests often generate considerable time and
personnel expenditure due to the necessary code

instrumentation, which can be reduced dramatically
with trace-based code coverage measurements
using TRACE32® tools.

The combination of traditional test tools and their
code coverage measurement capabilities, which
can play to their strengths particularly in unit
testing, and TRACE32® with its advantages
in integration and system testing, together offer
optimum customer benefits.

APPLICATION BRIEF

Figure 1. Code Coverage Measurements with TRACE32®.

APPLICATION BRIEF

 Challenges of Traditional
 Code Coverage Approaches

Traditionally, Code Coverage needs instrumen-
tation of full source code or object code to capture
the program flow. In the case of source code
instrumentation, the instrumented code is compiled
before running it on the target or in a simulator.
In the case of object code instrumentation, the
process is similar, but instrumentation is done
after compilation. In both cases the program flow is
acquired via a functional interface and analyzed in
the Code Coverage Tool after that. Figure 2 shows
the workflow.

While the described traditional approach works fine
in unit testing, it brings up a couple of typical issues
in integration and system tests: The first challenge is

the larger code size caused by the instrumentation,
which can lead to the executable no longer fitting
into the target’s memory. Furthermore, developers
suffer from larger RAM consumption and a longer
execution time due to the code overhead.

The biggest problem, however, is that this approach
no longer works for real-time applications in
integration testing and, at the latest, system testing,
because the code instrumentation no longer
provides real-time conditions.

To solve these problems, the code coverage
measurements are typically divided into several parts,
in each of which only a part of the code is instru-
mented. The results are then merged. This means that
several build and test runs are necessary, which in
practice can take days or even weeks depending on
the complexity of the application.

Figure 3. Workflow of TRACE32® Trace-based Code Coverage Measurements.

Figure 2. Workflow of traditional Code Coverage Measurements.

 – 2 –

APPLICATION BRIEF

BUILD/TESTRUN #1 BUILD/TESTRUN #2 MERGE

APPLICATION CODE

APPLICATION CODE

APPLICATION CODE
TRADITIONAL TOOLS

FULLY
INSTRUMENTED

Performing
Code Coverage
Measurement

NON
INSTRUMENTED

NON
INSTRUMENTED

FULLY
INSTRUMENTED

RESULTS
OF BOTH

BUILD/TESTRUN

TARGETED
INSTRUMENTED

 Advantages of TRACE32®
 Code Coverage Approach in
 Integration and System Testing
When using Lauterbach‘s TRACE32® tools for
realtime trace, the data required for code coverage
measurements is obtained directly from the re-
corded trace data and analyzed in the TRACE32®
PowerView software. Code instrumentation is either
not necessary at all, or only to a very limited extent
using so named targeted instrumentation.

Targeted instrumentation covers any trace gaps
and is only necessary in the code coverage metrics
MC/DC, decision coverage and condition coverage
in connection with conditional instructions, for
example. For other metrics such as statement
coverage, function coverage and call coverage, no
code instrumentation is necessary at all.

The uninstrumented or targeted instrumented code
is then compiled and executed on the target or in
the simulator. The program flow is recorded by the
TRACE32® tools via the trace interface and then
analyzed in the TRACE32® PowerView software or
in external code coverage tools (Figure 3).

The advantages in integration and system testing
are obvious: there is only a small increase in code

size, if any, and additional data memory (RAM) is
not required at all. The biggest advantage, however,
is that code coverage measurements can also
be carried out far more efficiently for real-time
applications: You need fewer build and test runs
for a complete code coverage measurement. This
saves time and effort.

In practice, it is often the case that the code fully
instrumented by traditional test tools no longer
fits into the memory or no longer meets the time
specifications, or both. This problem is then solved
by alternately instrumenting only parts of the code,
in fact such large parts that the time specifications
(just now) are met and the code (just now) fits into
the memory. In many practical examples, one half
is instrumented alternately, which means, that two
build and test runs must be carried out and at the
end the two code coverage measurements have to
be merged (Figure 4, above) .

With the TRACE32® trace-based code covera-
ge measurement, one build and test run is usually
sufficient due to the minimally invasive instrumenta-
tion, which leads to a saving of 50% of the total effort
in our example (Figure 4, below). When you consider
that these tests often take days or weeks to com-
plete, it is easy to see the relevance of the savings.

Figure 4. TRACE32® Trace-based Code Coverage Measurements vs. Use of Traditional Tools in System Tests (Example).

 – 3 –

 Merging Code Coverage
 Measurements
In the application example that runs on different
MCUs and contains specific code parts for each
of them, you cannot run both test scenarios at the
same time. Each test scenario will therefore only
show a certain amount of code coverage because
the part for the other MCU will not be executed.

With our TRACE32® Merge Tool, several code
coverage reports can be merged to generate
an overall code coverage report (Figure 5).
It consolidates the results of multiple code
coverage test runs performed at different times,
with different builds or – like in our example –
different target configurations.

 Conclusion
Lauterbach’s TRACE32® debug and trace tools
enable trace-based, minimally invasive code
coverage measurements in integration and system
testing. TRACE32® tools provide code coverage
measurements that are closer to the production
code than with traditional tools. Embedded test
engineers therefore require fewer builds, fewer test
runs and can significantly reduce their overall effort
compared to using traditional methods only.

In conclusion, the combination of traditional test
tools and their code coverage measurement capa-
bilities for unit testing and TRACE32® for integration
and system testing, provide the best possible
customer experience for efficient and time saving
code coverage measurements.

 Figure 5.
Merging code
coverage
measurements and
generating an overall
code coverage report.

 – 4 –

This information is subject to change without notice. TRACE32®, µTrace®, Lauterbach® are registered trademarks of Lauterbach GmbH.
All product and service names mentioned are the trademarks of their respective companies. ©Lauterbach GmbH | V 1.01

https://www.lauterbach.com/

