
APPLICATION BRIEF

Effective Debugging of Electronic Control
Units in Vehicles via XCP

Measurement and calibration (MC) and software debugging (DBG) are essential techniques used during all
stages of ECU (Electronic Control Unit) development. MC and DBG typically rely on the same target debug
interface for ECU access. Switching between MC-hardware and debug probe is cumbersome, furthermore
the mechanical setup might even prevent a debug probe access to permanent installed ECUs. Debugging
over XCP overcomes these challenges.

WHEN TRADITIONAL DEBUG APPROACHES ARE NOT FEASIBLE

 Introduction in XCP
As the successor to the CAN Calibration Protocol
(CCP), the Universal Measurement and Calibration
Protocol (XCP) is primarily used for measurement
– the acquisition of values of internal variables of
an ECU – and calibration – the adjustment of inter-
nal variables. It has been standardized by an ASAM
(Association for Standardization of Automation and

Measuring Systems) working group. Lauterbach
made a significant contribution to the debugging
over XCP working group. ASAM is an organization
of automotive OEMs, suppliers, and tool manufac-
turers. In addition to Lauterbach, key players such
as dSPACE, ETAS, Robert Bosch, and Vector are
represented in the responsible ASAM working group.

APPLICATION BRIEF

 – 2 –

Figure 1. XCP as a Tool/Service solution.

XCP Tool

XCP ServiceXCP ServiceXCP ServiceXCP Service

BUS

XCP is designed as a two-layer protocol that
implements a unique protocol layer and a transport
layer that supports different transport media/
busses. The following transport layers are
particularly relevant to the automotive industry
XCP on CAN and CAN FD, XCP on SxI (SPI, SCI),
XCP on Ethernet (TCP/IP and UDP/IP), and XCP on
FlexRay.

An XCP solution consists of a tool (e.g. for
measurement and calibration) that communicates

with an XCP service. The XCP service is either
implemented in the ECU or an POD connected to it.
Even if the architecture allows a tool to communi-
cate with several services (figure 1), in practice one
tool often communicates with one service.

Various measurement and calibration tasks can be
performed by different configurations of the XCP
service without recompiling the ECU application
code. The procedure works universally and is not
limited to embedded ECUs.

APPLICATION BRIEF

 – 3 –

Figure 3. Partitioned MC system is unable to provide debug signals.

CHALLENGE:
 Limitations in Various ECU
 Debugging Approaches
While MC and DBG techniques have typically been
used apart in the past, the demand of concurrent
use is growing over time. Different approaches result
in different disadvantages, including the impossibility
of connecting a debugger to the ECU.

For example, switching of ECU debug signals
(Figure 2) using a hardware-based arbitration
mechanisms which lacks semantical information of
the arbitration request. This limits interoperability,

system performance and usability. In addition,
switching of high-speed signals is impossible. Last
but not least, if the POD is encapsulated within ECU
housing, the debug probe is unable to access the
POD.

A partitioned MC system (figure 3) using a
proprietary protocol for communication between
a base module and a plug-on device (POD) even
prevents to relay debug probe signals.

Figure 2: Switching of ECU debug signals suffers from several disadvantages.

MODULAR SYSTEM

Debug
ProbePowerDebug

Base Module
(X-Series)

PowerView
SOFTWARE

Base Module

XCP Service

POD

Proprietary
Protocol

XCP on Ethernet

*MC: Measurement and Calibration

JTAG, DAP, IO-Pins, ...

Proprietary Communication

MC* Tool
(PC based)

Proprietary
Protocol

X
ECU IO

ECU

MODULAR SYSTEM

Debug
ProbePowerDebug

PowerView
SOFTWARE Base Module

(X-Series)

POD

XCP Service

ECU IO

XCP on Ethernet

*MC: Measurement and Calibration

JTAG, DAP, IO-Pins, ...

ECU

MC* Tool
(PC based)

APPLICATION BRIEF

Last but not least, there are applications where
the POD is integrated directly into the ECU, e.g.
in gearboxes or in the engine compartment.
Here, the MC is connected via the
BroadR-Reach Ethernet physical layer standard

from Broadcom [1], for example. In this case,
the necessary tool access fails, too. As figure 4
shows, there is no interface option to connect the
debug probe to a POD inside an ECU.

Figure 4. Tool accesses via e.g. BroadR-Reach lack an interface to connect the debug probe to a POD inside an ECU.

MODULAR SYSTEM

Debug
ProbePowerDebug

Base Module
(X-Series)

ECU

POD

XCP Service

µC IO

BroadR-Reach (XCP on Ethernet)

*MC: Measurement and Calibration

JTAG, DAP, IO-Pins, ...

µCMC* Tool
(PC based)

X

 – 4 –

APPLICATION BRIEF

 SOLUTION:
 Utilization of XCP for
 efficient ECU debugging
To overcome the challenges described before, XCP
debugging provides a manufacturer-independent
mechanisms addressing todays and future needs
of ECU debugging. The idea was to create a

standard enabling the interoperability of a debugger
like Lauterbach’s TRACE32® PowerView with
different PODs and different MC tools. Figure 5
shows the general setup.

Figure 5. XCP Debugging at a glance.

XCP Service
Access to µC

Debug Resources
µC

XCP

Embedded XCP Services
as well as attached PODs

 – 5 –

APPLICATION BRIEF

POD
POD BASED SOLUTION

XCP on Ethernet

XCP on Ethernet

*MC: Measurement and CalibrationJTAG, DAP, IO-Pins, ...

MC* Tool
(PC based)

ECU
XCP Service ECU IO

µC
Embedded XCP Tool

e.g XCP on CAN XCP Service

Debug
Support

Unit

µC Rersources

The standard covers two possible scenarios: The
POD-based solution (figure 6) and an embedded

XCP service, where the XCP service is part of the
ECU itself (figure 7).

Figure 6. The POD based solution provides the largest range of debug functionality.

Figure 7. XCP service is embedded in ECU.

 – 6 –

APPLICATION BRIEF

When implementing the POD-based solution, the
PODs are connected to the control unit via serial
interfaces such as JTAG, SWD and DAP. This
interface is used both for debugging the software
and for measurement and calibration via XCP.
By including the debugging use case in
the XCP standard, developers can use the
debugger and the measurement and calibration
tool over the same robust physical interface.
This makes it possible to debug ECUs that are
already permanently installed in the vehicle.
The debugger software is connected to an XCP
service via XCP on Ethernet.

Debug commands entered via the TRACE32®
PowerView software are encoded into XCP
commands instead of sending them directly to the
target CPU via a low-level debug protocol. These
XCP commands can either be read or write
memory, perform low-level communication or
access I/Os. This works like classical XCP memory
access mechanisms but without address
translation. The XCP commands are then sent
over the host computer’s TCP stack and a network
cable to the 3rd party XCP service. The 3rd party
XCP service translates the XCP commands back
into low-level debug commands.

Low-level communication commands are a fallback
solution if resources are not memory mapped or a
POD is not aware of accessing arbitrary memory
locations. For more complex, atomic accesses
exclusive access can be requested. Concerning
I/O control the debugger may control target reset,
watchdog disable and other functions a POD might
not be aware of.

The POD can optimize the scheduling of XCP
commands from different XCP tools (MC, debugger)
to improve the system performance.

The XCP debug standard covers nearly all every-
day debug uses cases from setting breakpoints
and watchpoints to single stepping and
investigations of structures, objects and so on.
The standard is not designed to support high
end debug use cases like continuous off-chip
instruction and/or data trace or use cases
that require extremely low communication delay.

TRACE32® PowerView supports debugging for
Infineon AURIX™, MPC5xxx/SPC5xxx PowerPC
devices, Renesas RH850 devices and Arm®

Neoverse as well as Cortex-A/R/M devices.

 Partnering with
 Automotive Key Players
For XCP debugging, Lauterbach collaborates with
market leaders in measurement and calibration
tools in the automotive industry.

ETAS offers a broad range of solutions for
measurement, calibration and vehicle testing.
They consist of the software INCA, the ES8xx
interface modules and FETK/XETK ECU
interfaces [5]. They support also software
debugging via the XCP standard extension and
perfectly match TRACE32®.

Vector’s VX1000 Measurement and Calibration
hardware [6] provides direct access to ECU-
internal resources such as RAM or Flash. Several
tools can simultaneously access the ECU via
XCP. An exemplary scenario is debugging ECU
software with TRACE32® while simultaneously
measuring ECU data or calibrating ECU parameters
with CANape.

 – 7 –

This information is subject to change without notice. TRACE32®, µTrace®, Lauterbach® are registered trademarks of Lauterbach GmbH.
All product and service names mentioned are the trademarks of their respective companies. ©Lauterbach GmbH | V 2.00

REFERENCES:
[1] BroadReach Technology: https://en.wikipedia.org/wiki/BroadR-Reach

[2] Lauterbach TRACE32® XCP Debugging: https://www.lauterbach.com/products/software/debugging-via-xcp

[3] XCP debugging standard documentation: https://www.asam.net/standards/detail/mcd-1-xcp

[4] Video Tutorial explaining TRACE32®XCP debugging: https://support.lauterbach.com/kb/articles/trace32-tutorials-debugging-over-xcp

[5] ETAS tools for measurement and calibration: https://www.etas.com/de/portfolio/etk_fetk_xetk_ecu_interfaces.php

[6] Vector tools for measurement and calibration: https://www.vector.com/int/en/products/products-a-z/hardware/vx1000/

 Conclusion
In today’s automotive ECU development, software
debugging and tracing as well as measurement and
calibration are essential techniques. In this industry,
concurrent operation of multiple tools has been a
necessity for many years, and the demand is ever
increasing.

Using Lauterbach’s TRACE32® PowerView debug
software with XCP enables developers to use many
of TRACE32® world class debugging features
such as multicore debugging, OS awareness and
on-chip trace. Furthermore high-level language
(HLL) debugging, flash programming, full

peripheral register access using a descriptive
menu tree and performance benchmark counters
are supported.

As a member of the Software Debugging over
XCP Working Group, Lauterbach is cooperating
with major vendors of MC tools like ETAS and
Vector. In close collaboration with these partners
Lauterbach has merged two previously separate
processes, ECU debugging and engine data
management, to overcome the previous ECU debug
challenges and support all major automotive CPU
architectures.

 – 8 –

https://www.lauterbach.com
https://en.wikipedia.org/wiki/BroadR-Reach
https://www.lauterbach.com/products/software/debugging-via-xcp
https://www.asam.net/standards/detail/mcd-1-xcp
https://support.lauterbach.com/kb/articles/trace32-tutorials-debugging-over-xcp
https://www.etas.com/de/portfolio/etk_fetk_xetk_ecu_interfaces.php
https://www.vector.com/int/en/products/products-a-z/hardware/vx1000/

