LAUTERBACH

Debugging of RISC-V-Based Chips

Made Easy

RISC-V cores can be found in increasingly more chips, either as the main CPU(s) or as a companion

core together with other CPU architectures. This article explains RISC-V debugging and shows, that even
multicore debugging with RISC-V cores is not rocket science and that there are efficient methods to
master even complex chips with complex software configurations.

From Frank Riemenschneider, Senior Marketing Engineer, Lauterbach GmbH

RISC-V is an open standard instruction set archi-
tecture (ISA) based on established reduced
instruction set computer (RISC) principles. Unlike
most other ISA designs, RISC-V is provided under
royalty-free open-source licenses.

As a RISC architecture, the RISC-V ISA is a load-
store architecture. lIts floating-point instructions
use |IEEE 754 floating-point. Notable features of the
RISC-V ISA include instruction bit field locations
chosen to simplify the use of multiplexers in a CPU
and a fixed location for the sign bit of immediate
values to speed up sign extension.

The base instruction set has a fixed length of 32-bit
naturally aligned instructions, and the ISA supports
variable length extensions where each instruction
can be any number of 16-bit parcels in length. The
instruction set specification defines 32-bit and
64-bit address space variants. The specification
even includes a description of a 128-bit flat address
space variant, as an extrapolation of 32- and 64-bit
variants.

The RISC-V Foundation was formed in 2015 to own,
maintain, and publish intellectual property related to
RISC-V’s definition. The founding members of

RISC-V were: Andes, Antmicro, Bluespec, CEVA,
Codasip, Cortus, Esperanto, Espressif, ETH Zurich,
Google, IBM, ICT, IT Madras, Lattice, lowRISC,
Microchip, MIT (Csail), Qualcomm, Rambus,
Rumble, SiFive, Syntacore, and Technolution.

In the meantime, other major semiconductor sup-
pliers have implemented RISC-V-based CPUs or
accelerators in their chips, including NXP and
Renesas, which introduced the industry’s first
general-purpose 32-bit RISC-V MCU series with an
internally developed CPU core in early 2024.

Also in early 2024 a new company Quintauris was
founded as a single source to enable compatible

RISC-V-based products, provide reference archi-
tectures, and help establish solutions to be widely
used across various industries. Shareholders are
leading industry players Bosch, Infineon, Nordic
Semiconductor, NXP and Qualcomm [1].

Each chip and core supplier is free to decide which
functions its RISC-V core(s) support and how they
are integrated into the overall system. While the
complexity of SoCs grows with the number of cores
and the number of different core architectures, the
challenges for embedded developers grow expo-
nentially with operating systems, hypervisors, and
other software running across multiple cores and/
or architectures.

Debugging RISC-V Cores

RISC-V’s open-source nature and diverse eco-
system pose unique challenges in debugging
applications. In order to avoid a proliferation of
proprietary debug interfaces, a working group
within the RISC-V Foundation has defined a debug
standard. Lauterbach, the global market leader for
debug and trace tools, has been a strategic mem-
ber of the RISC-V Foundation from the very begin-
ning and has made a significant contribution to the
debug standard within this working group.

The RISC-V Debug Specification outlines standar-
dized interfaces for debugging, including but not
limited to, external debug support (EDS) and ad-
vanced features for run-control debugging. Familia-
rity with this specification is essential, as it guides
the use of hardware breakpoints, watchpoints, and
control over the CPU’s execution flow, offering a
structured approach to hardware debugging.

The latest ratified release of the official RISC-V de-
bug specification has the version number v0.13 [2].

The document outlines a standard architecture
for external debug support on RISC-V platforms.
This specification allows a variety of implemen-
tations and tradeoffs, which are ideally suited to
the wide range of RISC-V implementations. At
the same time, the specification defines common
interfaces to allow debugging tools and compo-
nents to target a variety of platforms based on the
RISC-V ISA.

Figure 1 shows the main components of external
debug support. Blocks shown in dotted lines
are optional. The user interacts with the debug
host, which is running a debugger like TRACE32®
PowerView from Lauterbach. The debugger
communicates with a debug translator to commu-
nicate with debug transport hardware. The debug
transport hardware connects the debug host to
the Platform’s Debug Transport Module (DTM).
The DTM provides access to one or more Debug
Modules (DMs) using the Debug Module Interface
(DMI).

Debugger S— Debug Translator

Debug Transport Hardware

(eg. JTAG debug probe)

<——— Debug Module Interface (DMI) [———| Debug Transport Module (DTM)

reset/halt control

abstract commands

System Bus

| Module

Debug Mode |

Figure 1: RISC-V Debug System Overview.

Source: RISC-V Debug Specification

Each hart (Hardware Thread [3]) in the platform is
controlled by exactly one DM. Harts may be hetero-
geneous. There is no further limit on the hart-DM
mapping, but usually all harts in a single core are
controlled by the same DM. In most platforms there
will only be one DM that controls all the harts in the
platform. DMs provide run control of their harts in the
platform. Abstract commands provide access to Ge-
neral Purpose Registers (GPRs). Additional registers
are accessible through additional abstract commands
or by writing programs to the optional Program Buffer.

The Program Buffer allows the debugger to execu-
te arbitrary instructions on a hart. This mechanism
can also be used to access memory. An optional
system bus access block allows memory accesses
without using a RISC-V hart to perform the access.
Each RISC-V hart may implement a Trigger Mo-
dule. When trigger conditions are met, harts will
halt and inform the debug module that they have
halted.

The RISC-V ISA consists of several optional
pieces, referred to as the ISA extensions, which
impact the naming convention of the final device.
These extensions can be combined. Examples for
standard RISC-V ISA extensions: I (integer), ,M*
(multiplication), ,F“ (floating-point) and ,C“ (com-
pressed). It is also possible to add one’s own
custom (non-standard) RISC-V ISA extensions.
The Lauterbach TRACE32® RISC-V disassem-
bler can support such custom ISA extensions in
two ways: They can be integrated into the TRA-
CE32® PowerView software directly, or via an APU
API, which allows developers to create their own
custom disassembler plugin [4].

Furthermore, with Lauterbach‘s TRACE32® tools,
developers can now debug and control RISC-V
cores in almost any combination with other CPU
architectures via a single debug interface. Many
SoCs implement different kinds of cores; in addi-
tion to RISC-V one often finds Arm® CPUs or other
proprietary cores, e.g. DSPs such as ARC® or
Xtensa®. No matter what kind of multicore system
is used, TRACE32® supports them all. TRACE32®
supports full on-chip breakpoint capabilities, run-
time memory access, flash programming, and
benchmark counters. Everything is scriptable, which
enables developers to automate tests very easily.
Developers can use any debug interface protocol
such as classic JTAG, compact JTAG (2-wire),
Arm CoreSight SoC-400/600 (SWD, APB, JTAG-
AP, CTIl) and Tessent debug interfaces (JTAG/USB
communicator, JPAM, cross-triggering).

Another advantage of Lauterbach’s TRACE32° is
OS-aware debugging which provides key insights
into applications and the operating systems they
are running on, regardless of whether its a rich
operating system like Linux, a real-time operating
system (RTOS) such as Zephyr OS or FreeRTOS
or a mixture of all types [5]. TRACE32® OS-aware
debugging can query and display all OS objects such
as threads, message queues, and more. With this,
engineers can better understand how these are
behaving and utilizing chip resources.

Tracing RISC-V Cores

In complex systems understanding program
behavior is not easy. Unsurprisingly in such
systems, software sometimes does not behave
as expected. This may be due to a number of
factors, for example, interactions with other cores,
software, peripherals, real-time events, poor
implementations or some combination of all of the
above.

It is not always possible to use a debugger to
observe behavior of a running system as this is
intrusive. Providing visibility of program execution
is important. One method of achieving this is via
a processor trace. This can be used to work out
where code has been, how long things took, to
analyze task switches, interrupts, and to generate
code coverage reports. If one thinks of traditional
debugging as a series of snapshots, then trace-
based debugging is a video with timestamps.

In contrast to the uniform RISC-V debug standard,
there will be two RISC-V trace standards:
The N-Trace standard and the E-Trace standard.
The specifications necessary for either one of them
are about to be ratified, and should be finalized
in the second half of 2024. As with the debug
standard, Lauterbach has made significant

contributions to both trace standards within three
RISC-V Processor Trace Task Groups. Currently,
two proprietary trace solutions are widely used,
the SiFive Nexus trace for RISC-V and the trace
solution from Tessent Embedded Analytics.

When implementing the SiFive Nexus trace, both
the cores and the trace IP must be from SiFive.
An integration into Arm CoreSight is also possible.
In this scenario cores and trace encoder must be
from SiFive, the rest of trace IP can be from Arm.

In contrast the Tessent trace allows the imple-
mentation of RISC-V-cores from any vendor. Only
the whole trace IP is from Tessent. When the chip
implements additional Arm cores, an integration
into Arm CoreSight is possible as well. In a joint
RISC-V/Arm-core implementation with CoreSight,
the RISC-V-core(s) can be from any vendor while
the trace IP comes from Tessent and Arm repspec-
tively for the Arm core(s).

As Figure 2 shows, there will probably be proprie-
tary trace solutions from several IP manufacturers
in the future that are derived from the respective
trace standards. These are currently still being de-
veloped or planned.

RISC-V Trace Solutions

Non-Standard

Tessent Proprietary
(non-standard)
RISC-V Trace Encoder

SiFive Proprietary
RISC-V Nexus Trace vO

RISC-V
N-Trace Standard

RISC-V Standard

RISC-V
E-Trace Standard

Proprietary
RISC-V N-Trace #1

Proprietary Proprietary
RISC-V N-Trace #2 RISC-V E-Trace #1

Others

Others

Figure 2: RISC-V Trace Solutions.

Others

©Lauterbach

RISC-V N-Trace Standard

RISC-V
hart #0

RISC-V
hart #1

N-Trace Standard
Trace Encoder

N-Trace Standard
Trace Encoder

("NEXUS") ("NEXUS") (N-Trace/ ("ETRACE") ("ETRACE")
Standard RISC-V Standard RISC-V
Trace Funnel Trace Funnel
("RVFUNNEL") ("RVFUNNEL")
l Other RISC-V l
trace infrastructure
Standard RISC-V Standard RISC-V
Pin Interface Block (PIB) ch e Pin Interface Block (PIB)
('RVPIB") s igentical ('RVPIB")

Trace Connector

Mictor38 or MIPI20
(Standard RISC-V Trace Pinout)

Figure 3: Example overview of both RISC-V trace standards.

Figure 3 shows an overview of both RISC-V trace
standards. The trace standards are split up into
multiple documents. Some documents like the
RISC-V Trace Control Interface Specification and the
RISC-V Trace Connector Specification are shared
among both standards (N-Trace / E-Trace), other
documents are exclusive to one standard or the other.

Due to the architecture, it is even possible to mix
N- and E-Trace encoders on one chip. With the
N-Trace, the trace message format is based on the
Nexus IEEE-ISTO 5001 standard. It's called N-Trace
instead of Nexus to make clear that there are differ-
ences to the original Nexus. N-Trace is the successor
of the proprietary SiFive Nexus Trace.

For E-Trace the trace message format is based on a
new trace format developed by Tessent Embedded
Analytics. It's the successor of the proprietary
Tessent trace.

It is not enough to just generate trace data, the data
should also be made available to debuggers or other

Trace Encoder
is specific to the
trace protocol

shared among
N-Trace / E-Trace

RISC-V Standard
RISC-V RISC-V
hart #0 hart #1

E-Trace Standard
Trace Encoder

E-Trace Standard
Trace Encoder

Trace Connector

Mictor38 or MIPI20
(Standard RISC-V Trace Pinout)

©Lauterbach

development tools. To make this possible, the RISC-V
Trace Control Interface Specification defines several
components like trace funnels or trace buffer memo-
ries. The allowed inputs for the standard RISC-V trace
funnel (RVFUNNEL) are the RISC-V trace encoders
(N-Trace or E-Trace) or other RISC-V trace funnels.
The allowed funnel outputs are a RISC-V trace sink
or other RISC-V trace funnels. RVFUNNEL is not
allowed to connect to any 3rd party trace IP (3rd party
trace sources, funnels or trace sinks). Trace sinks are
defined for off-chip trace (Pin Interface Block PIB, a
parallel off-chip trace port similar to Arm’s TPIU) and
on-chip trace providing three alternatives.

An SRAM on-chip trace sink is a circular-buffer
on-chip trace RAM similar to Arm’s Embedded
Trace Buffer (ETB); an SMEM on-chip trace sink is a
memory range in system memory reserved for trace
similar to Arm’s Embedded Trace Router (ETR); finally,
an ATB Bridge allows for feeding the RISC-V trace
stream into an Arm CoreSight trace infrastructure
with ATB bus.

Figure 4 shows the integration in a chip with
RISC-V and Arm cores using the Arm CoreSight
infra-structure. This uses the Advanced Trace Bus
(ATB) as the main transport bus. Multiple trace
sources that are transmitting to one ATB can be
distinguished via the ATB-ID (ATID). A RISC-V
Trace Encoder or RISC-V Trace Funnel cannot
have a direct ATB output, as they do not have the
possibility to add an ATB-ID (ATID). To connect a
RISC-V trace system with an Arm CoreSight trace

infrastructure (which uses ATB), a RISC-V ATB
Bridge is therefore necessary.

As Figure 4 shows, there can be multiple trace fun-
nel types in one system, each with its own compo-
nent type. The RISC-V Trace Funnel (RVFUNNEL)
works with an unspecified input and output bus
type (not ATB due to missing ATID), while the Arm
CoreSight Trace Funnel (FUNNEL) works with an
ATB input and output bus type.

RISC-V RISC-V
hart #0 hart #1
N-Trace Standard E-Trace Standard Arm Embedded
Trace Encoder Trace Encoder Trace Macrocell
("NEXUS") ("ETRACE") ("ETM")
Standard RISC-V bus type:
Trace Funnel undefined
("RVFUNNEL")
Standard RISC-V
Trace ATB Bridge
I
ATB l ATB
Arm CoreSight Trace Funnel ("FUNNEL")
l ATB
[Arm CoreSight Embedded Trace Buffer ("ETB")]

Figure 4: Trace infrastructure for mixed RISC-V/Arm SoCs.

©Lauterbach

RISC-V N-Trace
vs E-Trace

Comparing the two ,competing” RISC-V trace
standards, N-Trace and E-Trace, one cannot
say that one or another is better. Regarding the
features, there is no big difference. Most trace
encoder features are available for both: instruction
trace, filters, timestamps and others.

Datatraceis supportedin E-Trace v2.0. The N-Trace
working group is planning that a future N-Trace v2.0
standard will support data trace as well.

The trace infrastructure (funnels, sinks, etc) is
identical. Regarding compression and reliability,
we cannot give any statements at this point,
because the standards are too new to publish
reliable empirical values.

Lauterbach TRACE32® trace tools support all
the before mentioned proprietary and future
RISC-V trace standards. They support real-time
on- and off-chip tracing for all major RISC-V trace
infrastructures.

REFERENCES:

One Solution for All
Different RISC-V Chips

Lauterbach’s modular TRACE32® system is de-
signed to grow and adapt as needed — from virtual
targets and simulators to real silicon. All modules
are driven by the same intuitive user interface to
maximize the return on investment. Developers can
easily switch from one RISC-V-based SoC to an-
other RISC-V-based SoC while keeping the same
debug and trace module and user interface. All
Lauterbach debug and trace solutions for RISC-V
are summarized at Lauterbach’s RISC-V website
[6]. Thanks to the longstanding close partnership
with RISC-V processor designers and semicon-
ductor manufacturers, future chip developments
are also accompanied by proven Lauterbach tools
from the very beginning — ensuring a futureproof
investment.

[1] Website of Quintauris: https://www.quintauris.eu/

[2] Official RISC-V debug specification: https://riscv.org/wp-content/uploads/2019/03/riscv-debug-release.pdf

[3] Hardware Threads in RISC-V: https://groups.google.com/a/groups.riscv.org/g/sw-dev/c/QKjUDjz_vKo

[4] Lauterbach RISC-V disassembler support for custom RISC-V ISA extensions: www.lauterbach.com/pdf/api_apu.pdf

[5] Lauterbach TRACE32 OS-Awareness: https:/www.lauterbach.com/features/os-awareness

[6] Lauterbachs RISC-V debug and trace solutions at a glance:
https://www.lauterbach.com/supported-platforms/architectures/risc-v

This information is subject to change without notice. TRACE32®, pTrace®, Lauterbach® are registered trademarks of Lauterbach GmbH.
All product and service names mentioned are the trademarks of their respective companies. ©Lauterbach GmbH | V 2.00

https://www.lauterbach.com
https://www.quintauris.eu/
https://riscv.org/wp-content/uploads/2019/03/riscv-debug-release.pdf
https://groups.google.com/a/groups.riscv.org/g/sw-dev/c/QKjUDjz_vKo
http://www.lauterbach.com/pdf/api_apu.pdf
https://www.lauterbach.com/features/os-awareness
https://www.lauterbach.com/supported-platforms/architectures/risc-v

